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Multiple Access Channels with States Causally
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Abstract—It has been recently shown by Lapidoth and Stein-
berg that strictly causal state information can be beneficial in
multiple access channels (MACs). Specifically, it was proved that
the capacity region of a two-user MAC with independent states,
each known strictly causally to one encoder, can be enlarged
by letting the encoders send compressed past state information
to the decoder. In this work, a generalization of the said
strategy is proposed whereby the encoders compress also thepast
transmitted codewords along with the past state sequences.The
proposed scheme uses a combination of long-message encoding,
compression of the past state sequences and codewords without
binning, and joint decoding over all transmission blocks. The
proposed strategy has been recently shown by Lapidoth and
Steinberg to strictly improve upon the original one. Capacity
results are then derived for a class of channels that include
two-user modulo-additive state-dependent MACs. Moreover, the
proposed scheme is extended to state-dependent MACs with an
arbitrary number of users. Finally, output feedback is intr oduced
and an example is provided to illustrate the interplay between
feedback and availability of strictly causal state information in
enlarging the capacity region.

Index Terms—Multiple access channels, state-dependent chan-
nels, strictly causal state information, long-message encoding,
quantize-forward, output feedback.

I. I NTRODUCTION

State-dependent channels model relevant phenomena in
wireless communication links, such as fading and interference.
The standard model prescribes the existence of a state se-
quencesn = (s1, s2, . . . , sn), with si denoting the state value
affecting the channel at time instanti, with i = 1, 2, . . . , n.
Understanding the merit of state information, i.e., informa-
tion about the sequencesn, for reliable communication is
a key problem of both theoretical and practical interest. In
the existing literature, state-dependent channels are mainly
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classified into the following two groups with respect to the
availability of state information at the encoders: (i) non-causal
state information, where the encoders know the entire state
sequencesn before encoding for the current block; (ii ) causal
state information, where at channel usei, the encoders know
all states up to and including ati.

While referring to [2] for a thorough review on state-
dependent channels, here we summarize existing results on
state-dependent multiple access channels (MACs), which are
the focus of our work. Reference [3] derived single-letter inner
and outer bounds on the capacity region for two-user MACs
with causal common state information at the encoders. Ref-
erence [4] derived a genie-aided bound to assess the capacity
advantage of non-causal state over causal state information for
MACs with independent state sequences available at the two
encoders. Reference [5] characterized the capacity regionof
a cooperative MAC with state non-causally available at one
encoder, while reference [6] proposed several inner and outer
bounds for a MAC with states non-causally known to some
encoders. A lattice coding strategy was proposed for a MAC
with non-causal state information in [7] and [8].

The works summarized above demonstrate the advantages
of causal and non-causal state information at the encoders
for MACs. Instead, in references [9] and [10] Lapidoth and
Steinberg discovered that, even withstrictly causalstate infor-
mation at the encoders, an improvement in the capacity region
is possible. By strictly causal state information, it is meant
that at channel usei, the encoders know a state sequence up
to, but excludingchannel usei. This result stands in contrast
to the well-known fact that strictly causal state information
cannot improve the capacity of point-to-point channels with an
independent and identically distritbuted (i.i.d.) state sequence.
More specifically, in [9], a common state sequence is assumed
to be known either strictly causally or causally at both en-
coders of a two-user MAC, while in [10] two independent
state sequences are assumed to be available strictly causally
or causally, each to a single encoder. An achievable rate region
is derived in both papers and the capacity region is identified
for some special cases including Gaussian models.

The main idea in the achievability proofs in [9] and [10]
is to use a block Markov coding scheme in which the two
users cooperatively [9] or non-cooperatively [10] transmit
compressed past state information to the decoder, which in
turn uses such information to perform coherent decoding. The
results show that an increase in the capacity region can be
obtained, even though transmission of the state information
requires diverting part of the transmission resources fromthe
transmission of message information.

http://arxiv.org/abs/1011.6639v2


IEEE TRANSACTIONS ON INFORMATION THEORY 2

A. Contributions

In this paper, we propose a generalization of the strategy in
[10] whereby the encoders compress also the past transmitted
codewords along with the past state sequences. We first focus
on the two-user MAC with independent states each strictly
causally known to one encoder. The proposed scheme is
based on long-message encoding [11], compression of the past
state sequences and past codewords without binning, and joint
decoding over all transmission blocks [12]. We also report on
an example, put forth by Lapidoth and Steinberg in [13], in
which the proposed scheme is shown to strictly improve upon
the original strategy of [10].

We then generalize the capacity result for Gaussian channels
of [10] for the case of a single state sequence to a larger
class of channels that includes two-user modulo-additive state-
dependent MACs. The proposed scheme is then extended
to the state-dependent MAC with an arbitrary number of
users. Finally, we introduce output feedback and show via
a specific example that feedback allows user cooperation for
the transmission of state information to the receiver, beside
standard cooperation on the transmission of messages [14],
and that this increases the capacity region.

The remainder of the paper is organized as follows: In
Section II, we describe the general model considered in this
work and summarize some of the existing results in [10].
Sections III and IV focus on the two-user state-dependent
MAC. Section V provides a generalization to arbitrary number
of users with independent states. Section VI discusses the
model with output feedback. Section VII concludes the paper.

Notation: Throughout the paper, probability distributions
are denoted byP with the subscript indicating the random
variables involved, e.g.,PX(x) is the probability ofX = x,
andPY |X (y |x) is the conditional probability ofY = y given
X = x. When the meaning is clear from the context, for
convenience, we will useP (x) or PX to representPX(x).
Also xi

k denotes vector[xk,1, . . . , xk,i]. E[X ] denotes the
expectation of random variableX . R

+
i denotes the set of

non-negative real vectors ini dimensions. For an integerL,
the notation[1 : L] denotes the set of integers{1, . . . , L};
for a positive real numberl, the notation[1 : 2l] denotes
the set of integers{1, . . . , ⌈2l⌉}, where ⌈.⌉ is the ceiling
function. In addition,N (0, σ2) denotes a zero-mean Gaussian
distribution with varianceσ2. FunctionC(x) is defined as
C(x) = 1

2 log2(1 + x).

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we describe our channel model, formulate
the problem and revisit some related results derived in previous
work [10].

A. System Model

We investigate anM -user discrete memoryless MAC chan-
nel with M mutually independent states, which is depicted in
Fig. 1 and denoted by the tuple
(

X1 × . . .×XM ,S1 × . . .× SM ,Y,
P (s1) . . . P (sM ), P (y |x1, . . . , xM , s1, . . . , sM )

)

(1)

with input alphabets(X1, . . . ,XM ), output alphabetY and
state alphabets(S1, . . . ,SM ). The state sequences are assumed
to be i.i.d. and are mutually independent, i.e.,

∏M
k=1 P (snk ) =

∏M
k=1

∏n
i=1 P (sk,i). The state-dependent channel is memory-

less in the sense that at any discrete timei = 1, . . . , n, we can
write:

P (yi
∣

∣xi
1, . . . , x

i
M , si1, . . . , s

i
M , yi−1 )

= P (yi |x1,i, . . . , xM,i, s1,i, . . . , sM,i ) (2)

Each state realization is available to its corresponding encoder
in a strictly causalmanner as defined in Section I. Transmitter
k’s signalxn

k is subject to an average input cost constraint:

1

n

n
∑

i=1

E[ck(Xk,i)] ≤ Γk, k = 1, . . . ,M, (3)

whereck : Xk → R
+ is a single-letter input cost function for

transmitterk and the expectation is taken with respect to all
the messages and states. We now define the following code.

Definition 1: Let wk, uniformly distributed over the set
Wk = [1 : 2nRk ], be the message sent by transmitter
k. A (2nR1 , . . . , 2nRM , n,Γ1, . . . ,ΓM ) code for the MAC
with strictly causal and independent state information at the
encoders consists of sequences of encoder mappings:

fk,i : Wk × Si−1
k → Xk, i = 1, . . . , n, k = 1, . . . ,M, (4)

each of which maps messagewk to a channel input such that
the cost constraint (3) is satisfied, and a decoder mapping

g : Yn → W1 × . . .×WM , (5)

which produces the estimate of messages(w1, . . . , wM ).
The average probability of error,Pr (E), is defined by:

Pr (E) =

M
∏

k=1

2−nRk

2nR1
∑

w1=1

. . .

2nRM
∑

wM=1

Pr

(

g (yn) 6= (w1, . . . , wM )
|(w1, . . . , wM ) sent

)

.

(6)

Given a cost tupleΓ = (Γ1, . . . ,ΓM ), a rate tuple
(R1, . . . , RM ) is said to beΓ-achievable if there exists a se-
quence of codes(2nR1 , . . . , 2nRM , n,Γ1, . . . ,ΓM ) as defined
above such that the probability of error satisfiesPr(E) → 0
asn → ∞. The capacity regionC (Γ) is the closure of all the
Γ-achievable rate tuples.

We first restrict our attention to a two-user MAC with two
independent states, and then generalize to an arbitraryM -user
MAC with M independent states in Section V.

B. Preliminaries

For comparison, we summarize a key result of [10].
Theorem 1 ([10]): Let Γ = (Γ1,Γ2) be given. LetPsc

be the set of all random variables(V1, V2, S1, S2, X1, X2, Y )
whose joint distribution is factorized as

PV1|S1
PV2|S2

PS1PS2PX1PX2PY |S1,S2,X1,X2
. (7)

For the two-user MAC with strictly causal state information,
a Γ-achievable rate region, denoted asRin1(Γ1,Γ2), is given
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Fig. 1. TheM -user state-dependent MAC withM mutually independent states, each of which is available to its corresponding encoder in a strictly causal
manner.

by the projection in the(R1, R2) plane of the set of rate-cost
tuples (R1, R2,Γ1,Γ2) belonging to the convex hull of the
collection of all the tuples(R1, R2,Γ

′
1,Γ

′
2) satisfying

0 ≤ R1 ≤ I(X1;Y |X2, V1, V2 )− I(V1;S1 |Y, V2 ), (8a)

0 ≤ R2 ≤ I(X2;Y |X1, V1, V2 )− I(V2;S2 |Y, V1 ), (8b)

R1 +R2 ≤ I(X1, X2;Y |V1, V2 )− I(V1, V2;S1, S2 |Y ),
(8c)

and E[ck(Xk)] ≤ Γ′
k, k = 1, 2, (8d)

for some random variables(V1, V2, S1, S2, X1, X2, Y ) ∈ Psc.
Remark 1:The basic idea of the achievable scheme of

Theorem 1 is to let the transmitters convey a compressed
version of the state, namelyV1 for S1 andV2 for S2, to the
receiver. The receiver can then use this partial information
about the state to improve decoding. As an example, if the state
models fading channels, state information enables partially
coherent decoding. The proof of the theorem, though not
available in detail in [10], is there indicated to be based ona
scheme that leverages distributed Wyner-Ziv compression [15]
and block Markov encoding.

III. A N EW ACHIEVABLE RATE REGION

In this section, for the two-user MAC (M = 2), we
propose a new achievable scheme. The scheme is based on
the idea of letting the encoders compress also the past input
codewords along with the past states. We first show that the
new achievable region includes the original one. Then, we
report on the example put forth in [13] that demonstrates that
the inclusion can be strict.

Theorem 2:Let Γ = (Γ1,Γ2) be given. LetP∗
sc be the

set of all random variables(V1, V2, S1, S2, X1, X2, Y ) whose
joint distribution is factorized as

PV1|S1,X1
PV2|S2,X2

PS1PS2PX1PX2PY |S1,S2,X1,X2
. (9)

For the two-user MAC with strictly causal state information, a
Γ-achievable rate region, denoted asRin2(Γ1,Γ2), is given by
the projection in(R1, R2) plane of the set of rate-cost tuples

(R1, R2,Γ1,Γ2) belonging to the convex hull of the tuples
(R1, R2,Γ

′
1,Γ

′
2) satisfying

0 ≤ R1 < I(X1, V1;Y |X2, V2 )− I(V1;S1 |X1 ), (10a)

0 ≤ R2 < I(X2, V2;Y |X1, V1 )− I(V2;S2 |X2 ), (10b)

R1 +R2 < I(X1, X2, V1, V2;Y )
−I(V1;S1 |X1 )− I(V2;S2 |X2 )

, (10c)

and E[ck(Xk)] ≤ Γ′
k, k = 1, 2, (10d)

for some random variables(V1, V2, S1, S2, X1, X2, Y ) ∈ P∗
sc.

Proof: The theorem follows as a special case of theM -
user result of Theorem 5 forM = 2. We refer the reader to
Appendix B for a proof of Theorem 5.

Remark 2: In the proposed strategy, the transmitters convey
codewordsV1 and V2, which compress both the past state
sequences and the past transmitted codewords. This difference
with respect to Theorem 1 is reflected in the different factor-
izations (7) and (9). Specifically, in the latter, the test channels
PVk|Sk,Xk

, k = 1, 2, is made to depend also on the previously
transmitted symbolsXk. We also note that, unlike [10], our
scheme uses long-message encoding, quantization without
binning and joint decoding over all blocks of transmission,
similar to [12] (see also [11]).

While the joint distribution factorization (9) is more general
than the original (7) used in [10], the two regions (8) and (10)
are not immediately comparable given the different mutual
information expressions. The next theorem shows that in fact
the proposed achievable region always includes the original.

Theorem 3:The achievable rate region of Theorem 2
includes the achievable rate region of Theorem 1, i.e.,
Rin2(Γ1,Γ2) ⊇ Rin1(Γ1,Γ2).

Proof: Given any cost-constraint pair(Γ1,Γ2), set-
ting PV1|S1,X1

= PV1|S1
and PV2|S2,X2

= PV2|S2
in

Rin2(Γ1,Γ2), we obtain the following,
1) For the sum-rate bound,

R1 +R2

< I(X1, X2;Y |V1, V2 ) + I(V1, V2;Y )

− I(V1;S1 |X1 )− I(V2;S2 |X2 ) (11a)

= I(X1, X2;Y |V1, V2 ) +H(V1 |S1 )
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+H(V2 |S2 )−H(V1, V2 |Y ) (11b)

= I(X1, X2;Y |V1, V2 ) +H(V1 |S1, S2, Y )

+H(V2 |S2, S1, V1, Y )−H(V1, V2 |Y ) (11c)

= I(X1, X2;Y |V1, V2 )− I(V1, V2;S1, S2 |Y ),
(11d)

where (11c) follows from the Markov chain(V1, V2) ↔
(S1, S2) ↔ Y and from the fact that(V1, S1) are
independent of(V2, S2). Note the last equation is exactly
the same sum-rate bound inRin1(Γ1,Γ2) given by (8c).

2) For the individual rate bound onR1, we can write

R1 < I(X1;Y |X2, V1, V2 )

+ I(V1;Y |X2, V2 )− I(V1;S1 |X1 ) (12a)

= I(X1;Y |X2, V1, V2 )

+H(V1 |S1 )−H(V1 |Y,X2, V2 ) (12b)

≥I(X1;Y |X2, V1, V2 )

+H(V1 |S1 )−H(V1 |Y, V2 ) (12c)

= I(X1;Y |X2, V1, V2 )

+H(V1 |S1, Y, V2 )−H(V1 |Y, V2 ) (12d)

= I(X1;Y |X2, V1, V2 )− I(V1;S1 |Y, V2 ), (12e)

where (12c) follows from conditioning reduces entropy
while (12d) follows from the Markov chainV1 ↔ S1 ↔
Y . The last equation is exactly the same as the bound
on R1 in Rin1(Γ1,Γ2) given by (8a).

3) A similar observation holds forR2 by symmetry.

These three facts imply the relationshipRin2(Γ1,Γ2) ⊇
Rin1(Γ1,Γ2).

It was recently shown in [13] that the proposed re-
gion Rin2(Γ1,Γ2) strictly includes the original region
Rin1(Γ1,Γ2) for some channels. The following is the example
given in [13] that illustrates such inclusion.

Example 1 ([13]): Consider a MAC with two binary inputs
X1 = X2 = {0, 1}; stateS1 = ∅ and stateS2 = (T0, T1) ∈
{0, 1}2, whereT0 andT1 are independent with entropies

H(T0) = H(T1) =
1

2
; (13)

and the outputY = (Y1, Y2) ∈ {0, 1}2 is given as

Y1 = X1 ⊕ TX2 , (14a)

Y2 = X2, (14b)

where notation “⊕” denotes the conventional modulo-sum
operation. The key point of this example is that the state
sequence affects the received signal in a way that depends
on the transmitted symbolX2. Therefore, joint compression
both the past state and the past codeword, or compression of
the past state in way that depends on the past codeword, is
expected to be beneficial. To show this, following [13], it can
be seen that rate pair(1, 1

2 ) lies in the inner bounds ofRin2 by
settingV1 = ∅, V2 = TX2 in (10). However, withR1 = 1, it
was demonstrated in [13] thatR2 is necessarilyzero in Rin1.
This allows us to conclude, along with Theorem 3, that the
region Rin2 is strictly larger than the regionRin1 for this
example.

IV. CAPACITY RESULT

In this section, we generalize the capacity result derived in
[10] for Gaussian channels with a single state sequence to a
larger class of channels.

Consider a class of discrete memoryless two-user determin-
istic MACs denoted byDMAC , in which the outputY is a
deterministic function of inputsX1, X2 and the channel state
S as

Y = f(X1, X2, S), (15)

and where the channel stateS, strictly causally known to
encoder1, can be calculated as a deterministic function of
the inputsX1, X2 and the outputY as

S = g(X1, X2, Y ). (16)

Then the capacity region for the class of channelsDMAC

is identified as follows.
Theorem 4:Let Γ = (Γ1,Γ2) be given. For any MAC in

the classDMAC defined above, the capacity regionC(Γ) is
given by:

C(Γ)
∆
=
⋃















(R1, R2) ∈ R
+
2 :

R1 ≤ H(Y |X2, Q )−H(S)
R2 ≤ H(Y |X1, S,Q )
R1 +R2 ≤ H(Y |Q)−H(S)















(17)

where the union is taken over all product input distributions
PX1|QPX2|QPQ satisfyingE[ck(Xk)] ≤ Γk, k = 1, 2, andQ
is an auxiliary random variable with cardinality bound|Q| ≤
5.

Proof: See Appendix A.
Remark 3:The achievability proof in Appendix A is based

on settingV1 = S1 = S in the achievable regionRin2

in Theorem 2, which implies thatV1 is independent ofX1.
Hence, the achievable scheme proposed in [10] is also optimal
for the class of channels considered here.

Remark 4:The classDMAC includes the Gaussian model
considered in [10], which is defined asY = X1+X2+S with
input power constraints1

n

∑n
i=1 E[X

2
k,i] ≤ Pk and stateS ∼

N (0, σ2
s) known strictly causally to encoder1. The capacity

regionCsnf for this model is given by:

Csnf =











(R1, R2) ∈ R
+
2 :

R1 ≤ C(P1

σ2
s
)

R1 +R2 ≤ C(P1+P2

σ2
s

)











. (18)

This region can be identified from Theorem 4 by the standard
extension to continuous alphabets (see, e.g., [16, Chapter3])
and by maximizing each bound via the maximum entropy
theorem [17]. Note that when providing bothS andX1 to the
receiver, the channel from user2 to the receiver is noiseless
and hence the individual bound onR2 is redundant.

Remark 5:The classDMAC contains more channels along
with the Gaussian model discussed in Remark 4. In particular,
consider a class of binary modulo-additive state-dependent
MAC channels, e.g.,Y = X1 ⊕ X2 ⊕ S, where S ∼
Bernoulli(ps), with input cost constraints1

n

∑n
i=1 E[X1,i] ≤

p1 and 1
n

∑n
i=1 E[X2,i] ≤ p2, 0 < p1, p2, ps ≤ 1

2 . Note that
assumption (16) automatically holds for this class of binary
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Fig. 2. Capacity region for the binary modulo-additive state-dependent MAC
with input constraints considered in Remark 5 (p1 = p2 = 1/3, ps = 1/4).

deterministic channels. From Theorem 4, by direct evaluation,
we obtain that the capacity region is:

Cs
bin =















(R1, R2) ∈ R
+
2 :

R1 ≤ Hb(p1 ∗ ps)−Hb(ps)
R2 ≤ Hb(p2)
R1 +R2 ≤ Hb(p1 ∗ p2 ∗ ps)−Hb(ps)















(19)

where p1 ∗ p2 denotes the convolution operation of two
Bernoulli distributions with parametersp1 and p2, i.e., p1 ∗
p2 = p1(1− p2) + p2(1− p1), and Hb(p) = −p log2 p −
(1− p) log2(1− p). It is known from [17] that, without state
information, the capacity region for this MAC channel is given
by:

Cns
bin =















(R1, R2) ∈ R
+
2 :

R1 ≤ Hb(p1 ∗ ps)−Hb(ps)
R2 ≤ Hb(p2 ∗ ps)−Hb(ps)
R1 +R2 ≤ Hb(p1 ∗ p2 ∗ ps)−Hb(ps)















. (20)

Hence, we have the relationshipCns
bin ⊆ Cs

bin, which confirms
the benefit of strictly causal state information in enlarging the
capacity region for this channel. For a numerical example, we
setp1 = p2 = 1/3 andps = 1/4. The corresponding regions
(19) and (20) are depicted and compared in Fig. 2. It is seen
that the presence of strictly causal state information at encoder
1 improves the maximum rate of user2.

V. GENERALIZATION TO M USERS WITHINDEPENDENT

STATES

In this section, we generalize the proposed achievable
scheme to an arbitrary numberM of users with independent
states, as depicted in Fig. 1 and described in Section II.

Let A denote any subset of the set of encoders[1 : M ], i.e.,
A ⊆ [1 : M ] andAc be the complement ofA with respect to
the set[1 : M ]. DefineX(A) to be the set of random variables
Xk indexed byk ∈ A and similarly forV(A).

Theorem 5:Let cost tuple Γ = (Γ1, . . . ,ΓM ) be
given. Let P∗

sc be the set of all random variables

(V1, . . . , VM , S1, . . . , SM , X1, . . . , XM , Y ) whose joint distri-
bution is factorized as

M
∏

k=1

(

PVk|Sk,Xk
PSk

PXk

)

PY |S1,...,SM ,X1,...,XM
. (21)

For the M -user MAC with strictly causal and indepen-
dent state information, aΓ-achievable rate region, de-
noted asRM

in (Γ1, . . . ,ΓM ), is given by the projection in
the space (R1, . . . , RM ) of the set of rate-cost tuples
(R1, . . . , RM ,Γ1, . . . ,ΓM ) belonging to the convex hull of
the tuples(R1, . . . , RM ,Γ′

1, . . . ,Γ
′
M ) satisfying

0 ≤
∑

k∈T
Rk <

min
S⊆[1:M ]:

T ⊆S

(

I(X(S),V(S);Y |X(Sc),V(Sc) )
−
∑

l∈S
I(Vl;Sl |Xl )

)

,

(22a)

∀ T ⊆ [1 : M ], (22b)

and E[ck(Xk)] ≤ Γ′
k, k = 1, . . . ,M, (22c)

for some random variables

(V1, . . . , VM , S1, . . . , SM , X1, . . . , XM , Y ) ∈ P∗
sc.

Proof: See Appendix B.

VI. I NTRODUCING OUTPUT FEEDBACK

In this section, we briefly consider an extension of the model
with independent states studied in Section III, where output
feedback is available to some encoder in addition to strictly
causal state information. It is well known that the use of output
feedback can enlarge the capacity region in MACs by allowing
cooperation in the transmission of the encoders’ message [14],
[18], [19]. Here, instead, we demonstrate that, with strictly
causal state information, a different type of cooperation is
enabled by feedback that concerns the transmission of the state
sequence.

To this end, we focus on the two-user state-dependent
Gaussian MAC shown in Fig. 3, for which the received signal
is given by:

Y = X1 +X2 + S (23)

with power constraints1
n

∑n
i=1 E

[

X2
k,i

]

≤ Pk, for k = 1, 2,

and stateS ∼ N
(

0, σ2
s

)

. We assume that the state information
aboutS is known strictly causally to the first transmitter and
a perfect output feedback link is available from the receiver
to the second transmitter. More specifically, we have the
following encoder and decoder mappings.

Definition 2: Let wk, uniformly distributed over the set
Wk = [1 : 2nRk ], be the message sent by transmitter
k, k = 1, 2. A (2nR1 , 2nR2 , n, P1, P2) code for the MAC
with strictly causal state information at encoder1 and output
feedback to encoder2 consists of the sequences of encoder
mappings:

f1,i : W1 × Si−1 → X1, (24a)

f2,i : W2 × Yi−1 → X2, i = 1, . . . , n, (24b)
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TX1
RX

TX2

Y

Delay

1i
S

Fig. 3. The state-dependent MAC with strictly causal state information at
TX1 and output feedback at TX2.

such that power constraints, i.e.,1
n

∑n
i=1 E

[

X2
k,i

]

≤ Pk, for
k = 1, 2, are satisfied and a decoder mapping

g : Yn → W1 ×W2. (25)

Achievability and capacity region are defined in the usual way,
see Section II.

Theorem 6:The capacity region of the model in Fig. 3 is
given by:

Csf =
⋃

0≤ρ≤1



















(R1, R2) ∈ R
+
2 :

R1 ≤ C

(

(1−ρ2)P1

σ2
s

)

,

R1 +R2 ≤ C
(

P1+P2+2ρ
√
P1P2

σ2
s

)



















. (26)

Proof: See Appendix C.
Remark 6:Without feedback, it is known from [9] that,

if the state is known strictly causally to both encoders, the
capacity is given by:

Css =

{

(R1, R2) ∈ R
+
2 :

R1 +R2 ≤ C
(

P1+P2+2
√
P1P2

σ2
s

)

}

, (27)

whereas if the state is known strictly causally only to encoder
1, the capacity regionCsnf is given by (18). We plot a instance
of these three capacity regions by settingP1 = P2 = 2 and
σ2
s = 1 in Fig. 4. As we observe, we have the inclusion

relationshipsCsnf ⊂ Csf ⊂ Css. As it will be seen in the
achievability proof in Appendix C, the gains obtained by
leveraging feedback can be ascribed to the fact that feedback
enables cooperation between the encoders in transmitting the
state information to the decoder. As a further remark, consider
a fourth setting in which no state information is present at
encoder1 but output feedback is available to encoder2. While
the capacity region of the case is unknown in general, it can be
easily seen thatR2 ≤ C

(

P2

σ2
s

)

holds for any coding scheme.
This is because the capacity of user2 cannot be improved via
feedback. Therefore, the capacity region in this case is strictly
smaller than the capacity regionCsf for the case in which the
state is known at encoder1. This demonstrates the interplay
between the availability of strictly causal side information at
encoder1 and of output feedback at encoder2 in increasing
the capacity region.
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1
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R
2

C
snf

C
sf

C
ss

Fig. 4. Comparison of different capacity regions.

VII. C ONCLUSIONS

In this work, we have studied the state-dependent MAC
with strictly causal state information at the encoders, following
the original work by Lapidoth and Steinberg in [9] and [10].
We have generalized the coding scheme proposed in [10]
by allowing the encoders to compress jointly past states and
codewords. The proposed scheme is shown to perform at least
as well as the original one, and it was demonstrated in [13]
that there are channels for which it outperforms the original
strategy of [10]. Moreover, the capacity result for the Gaussian
model of [10] for the special case of a single state sequence
has been generalized to a larger class of channels that includes
two-user modulo-additive state-dependent MACs. Next, the
proposed scheme has been extended to an arbitrary number of
users. We have also demonstrated with an example that output
feedback allows cooperation on the transmission of the state
sequence in the presence of strictly causal state information.
Finally, we remark that the evaluation of complete capacity
region for the state-dependent MACs with strictly causal state
information remains open and serves as an interesting problem
for future work.

APPENDIX A
PROOF OFTHEOREM 4

Achievability :
We provide the proof of achievability forQ = q for a

constant valueq and drop the conditioning onQ for simplicity.
The region (17) then follows by using coded time-sharing [16].
We setV2 = S2 = ∅ andV1 = S1 = S in the achievable region
Rin2 and use the properties (15) and (16) that characterize the
class ofDMAC to obtain that a rate pair(R1, R2) is achievable
if

R1 < I(X1, S;Y |X2 )− I(S;S |X1 ) (28a)

= H(Y |X2 )−H(S), (28b)

R2 < I(X2;Y |X1, S ) (28c)

= H(Y |X1, S ), (28d)

R1 +R2 < I(X1, X2, S;Y )− I(S;S |X1 ) (28e)

= H(Y )−H(S) (28f)
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andE[ck(Xk])] ≤ Γk, k = 1, 2, are satisfied.
Converse:
From Proposition1 and2 in [10], we have the bounds

R1 ≤ I(X1;Y |X2, Q ) + ǫn (29a)

= H(Y |X2, Q )−H(S) + ǫn (29b)

and

R1 +R2 ≤ I(X1, X2;Y |Q ) + ǫn (30a)

= H(Y |Q )−H(S) + ǫn (30b)

where ǫn → 0 as n → ∞, and we have definedQ as
a uniformly distributed random variable in the set[1 : n]
and independent of all other variables, and also the variables
X1 = X1Q, X2 = X2Q, Y = YQ and S = SQ. Moreover,
by providing perfect state information to the receiver, onecan
prove the following bound by using standard arguments:

R2 ≤ I(X2;Y |X1, S,Q) + ǫn (31a)

= H(Y |X1, S,Q) + ǫn. (31b)

From the definition of the code, it can be seen that the distri-
bution on (Q,S,X1, X2, Y ) is of the formPQ,S,X1,X2,Y =
PQPX1|QPX2|QPSPY |X1,X2,S . Notice that both (29b) and
(30b) leverage property (16) and the fact thatS is independent
of (Q,X1, X2). For the cost constraints, starting from the
definition (3), we easily obtain thatΓk ≥ E[ck(Xk)].

Finally, by the Fenchel-Eggleston-Caratheodory theorem
[16, Page 631], we establish the cardinality bound|Q| ≤ 5 by
observing that the rate region in Theorem 4 is characterized
by the following five continuous functions over the connected
compact subset given by the product probability mass func-
tions on X1 × X2: H(Y |X2, Q = q ), H(Y |X1, S,Q = q ),
H(Y |Q = q ), E[c1(X1) |Q = q ], andE[c2(X2) |Q = q ].

APPENDIX B
PROOF OFTHEOREM 5

Throughout the achievability proof, we use the definition
of typical sequences and typical sets as in reference [16].
The set of jointly ǫ-typical sequences according to a joint
probability distributionPX,Y is denoted byT n

ǫ (XY ). When
the distribution with respect to which typical sequences are
defined is clear from the context, we will useT n

ǫ for short.
Throughout, we use capital letters to denote random variables
and the corresponding lowercase letters to denote realized
values.

In the proposed scheme, transmission takes place inb blocks
of n channel uses each and the same message is transmitted
in all blocks (long-message transmission [11]). Letxn

k,j be
the codeword sent by userk in each blockj ∈ [1 : b]. This
codeword encodes both userk’s messagewk ∈ [1 : 2nbRk ]
and the index corresponding to a compressed versionvnk,j−1

of the state sequencesnk,j−1 realized in the previous(j− 1)th
block and of the codewordxn

k,j−1 transmitted in the previous
block. After theb transmission blocks, based on the received
signals(yn1 , . . . , y

n
b ), the decoder decodes the correct message

tuple w = (w1, . . . , wM ) by joint typicality decoding over
all blocks. We now provide details on codebook generation,

encoding and decoding operations, and probability of error
analysis.

Codebook Generation:
Let ǫ > ǫ′ > 0. Fix some probability mass function (PMF)

PXk
such that the input cost constraintE[ck(Xk)] ≤ Γk −

ǫ is satisfied, and the conditional PMFsPVk|Xk,Sk
, for all

k = 1, . . . ,M . Define the marginal PMFPVk|Xk
(vk |xk ) =

∑

Sk∈Sk
(PVk |Xk,Sk

(vk |xk, sk )PSk
(sk)), for k = 1, . . . ,M .

Finally, fix rateR̃1, . . . , R̃M (to be specified below).

1) For each blockj ∈ [1 : b], randomly and independently
generate2nbRk × 2nR̃k i.i.d. sequencesxn

k,j accord-
ing to the PMFPXn

k,j
(xn

k,j) =
∏n

i=1 PXk
(xk,j,i), for

k = 1, . . . ,M . Index the sequences asxn
k,j(wk, tk,j−1),

with wk ∈ [1 : 2nbRk ] and tk,j−1 ∈ [1 : 2nR̃k ]. As it
will be discussed below, indextk,j−1 is used to encode
a compressed version of past state and transmitted
codeword from a codebook of ratẽRk.

2) For each blockj ∈ [1 : b] and for each codeword
xn
k,j(wk, tk,j−1), randomly and independently

generate 2nR̃k i.i.d. sequences vnk,j according

to the marginal PMF P
V n
k,j |Xn

k,j
(vnk,j

∣

∣

∣xn
k,j ) =

∏n
i=1 PVk|Xk

(vk,j,i |xk,j,i ), for k = 1, . . . ,M .
Index the sequences asvnk,j (tk,j |wk, tk,j−1 ), with

tk,j ∈
[

1 : 2nR̃k

]

.

Encoding:
Let wk be the message sent by userk, wherek = 1, . . . ,M .

For blockj = 1, codewordxn
k,1(wk, 1) is transmitted by user

k. For blockj ∈ [2 : b], instead, encoderk looks for an index
tk,j−1 such that
(

snk,j−1, v
n
k,j−1(tk,j−1 |wk, tk,j−2 ),

xn
k,j−1(wk, tk,j−2)

)

∈ T n
ǫ′ (SkVkXk).

(32)

If no such index is found, then an arbitrary indextk,j−1 is
selected from the set[1 : 2nR̃k ]. If more than one such index is
found, the first one in lexicographical order is selected. Finally,
the codewordxn

k,j(wk, tk,j−1) is transmitted by userk in the
jth block.

Decoding:
After b blocks of transmission, the decoder looks for a

unique message tuplêw = (ŵ1, . . . , ŵM ), where ŵk ∈
[1 : 2nbRk ], such that there existssometuple (t1,j , . . . , tM,j),
with tk,j ∈ [1 : 2nR̃k ] andj ∈ [1 : b], satisfying the condition
(

xn
1,j(ŵ1, t1,j−1), . . . , x

n
M,j(ŵM , tM,j−1),

vn1,j(t1,j |ŵ1, t1,j−1 ), . . . , v
n
M,j(tM,j |ŵM , tM,j−1 ), y

n
j

)

∈ T n
ǫ (X1 . . . XMV1 . . . VMY ) (33)

for all blocksj ∈ [1 : b].
Probability of Error Analysis :
We now bound the probability of errorPr (E) averaged over

all distribution of the codebooks defined above. Without loss
of generality, given the symmetry of the codebook generation,
we assume the message tuple sent isw = (1, . . . , 1)

∆
= 1M

and we label the compression index chosen by encoderk for
each blockj as tk,j = 1. In the following, we first define
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the error events associated with the encoding and decoding
operations, and then bound the corresponding probabilities of
error.

Let E0 =
⋃M

k=1 E0,k denote the event corresponding to
encoding errors, whereE0,k represents the error event at
encoderk, for k = 1, . . . ,M . An encoding error at en-
coderk occurs when in some blockj there is no codeword
V n
k,j−1(tk,j−1 |1, 1) satisfying the joint typicality rule (32).

Therefore, the error eventE0,k can be written as the union

E0,k =

b
⋃

j=1







(

Sn
k,j−1, V

n
k,j−1(tk,j−1 |1, 1),

Xn
k,j−1(1, 1)

)

/∈ T n
ǫ′ ,

for all tk,j−1 ∈ [1 : 2nR̃k ]







.

(34)

In order to define the decoding error events, we first
define the eventEw indexed by a message tuplew =
(w1, . . . , wM ) as given by (35), where we have defined

that tj = (t1,j , t2,j, . . . , tM,j) and tk,j ∈
[

1 : 2nR̃k

]

, k =

1, . . . ,M . EventEw occurs when the decoder finds a message
tuple w satisfying the decoding rule (33). Based on the
decoding rule (33), the decoding error event can thus be
expressed as the unionEc

1M

⋃

{
⋃

w 6=1M
Ew}.

Overall, by considering both encoding and decoding errors
and leveraging the union bound, the probability of error can
be upper bounded as

Pr (E) ≤
M
∑

k=1

Pr (E0,k) + Pr
(

Ec
1M

∩ Ec
0

)

+
∑

w 6=1M

Pr (Ew) .

(36)

We now consider separately the terms in the sum (36).
1) By the covering lemma [16], we have the limit

Pr (E0,k) → 0 as long as the inequality

R̃k > I (Sk;Vk |Xk ) + δ(ǫ′) (37)

holds for sufficiently largen, whereδ(ǫ′) → 0 as ǫ′ → 0.
2) By the conditional joint typicality lemma [16], we have

thatPr
(

Ec
1M

∩ Ec
0

)

→ 0 for sufficiently largen.
3) To bound each term in the third summand in (36) , for

convenience, for any givenw 6= 1M , tj = (t1,j , . . . , tM,j)
and tj−1 = (t1,j−1, . . . , tM,j−1), we define the event
Aj(w, tj , tj−1) as

Aj(w, tj , tj−1) =










Xn
1,j(w1, t1,j−1), . . . , X

n
M,j(wM , tM,j−1),

V n
1,j(t1,j |w1, t1,j−1 ), . . . ,

V n
M,j(tM,j |wM , tM,j−1 ), Y

n
j



 ∈ T n
ǫ







.

(38)

From (35), we have the following

Pr (Ew) = Pr





⋃

tb

b
⋂

j=1

Aj(w, tj , tj−1)



 (39a)

≤
∑

tb

Pr





b
⋂

j=1

Aj(w, tj , tj−1)



 (39b)

≤
∑

tb

b
∏

j=2

Pr (Aj(w, tj , tj−1)), (39c)

where the union and sums overtb are taken over all vectors
t
b as defined in (35); and (39c) holds due to the independence

of the codebooks generated for each block, the memoryless
property of the channel and the fact that0 ≤ Pr (A1) ≤ 1.

Next, we provide an upper bound on the probability
Pr (Aj(w, tj , tj−1)) for a given tuple(w, tj , tj−1). To facil-
itate the analysis, we introduce some useful notation. Specifi-
cally, for any given pair of vectors(w, tj−1) with j ∈ [2 : b],
we define the index setSj(w, tj−1), where we will drop the
dependence on the arguments where necessary to simplify the
notation. This set contains all the indicesk for which at least
one of the conditionswk 6= 1 and tk,j−1 6= 1 is satisfied for
the pair of vectors(w, tj−1), i.e.,

Sj(w, tj−1) = {k ∈ [1 : M ] : wk 6= 1 or tk,j−1 6= 1} . (40)

In addition, let Sc
j (w, tj−1) denote the complement of

Sj(w, tj−1) with respect to the set[1 : M ], i.e.,
Sc
j (w, tj−1) = {k ∈ [1 : M ]\Sj(w, tj−1)}. Furthermore, we

partition the setSc
j (w, tj−1) into two subsets as follows:

S ′
j(w, tj−1, tj) =

{

k ∈ Sc
j (w, tj−1) : tk,j 6= 1

}

, (41a)

S ′′
j (w, tj−1, tj) =

{

k ∈ Sc
j (w, tj−1) : tk,j = 1

}

. (41b)

By definition, we have that

S ′
j(w, tj−1, tj)

⋃

S ′′
j (w, tj−1, tj) = Sc

j (w, tj−1).

Finally, for a generic setAj ⊆ [1 : M ], we define asX(Aj)
to be the set of variablesXk,j , for k ∈ Aj , whereXk,j is the
symbol transmitted by thekth user in thejth block. We use
similar definition forV(Aj).

Given the above notation and by the codebook construction,
we use standard arguments on joint typicality [16] to obtain

Pr (Aj (w, tj , tj−1))

≤ 2
−n

(

H(X(Sj),V(Sj))+H(V(S′
j)|X(S′

j) )+H(X(Sc
j),V(S′′

j ),Y )
−H(X(Sj),X(Sc

j),V(Sj),V(Sc
j),Y )−δ(ǫ)

)

(42a)

= 2
−n

(

I(X(Sj),V(Sj);X(Sc
j),V(S′′

j ),Y |V(S′
j) )

+I(V(S′
j);X(Sc

j),V(S′′
j ),Y )−I(V(S′

j);X(S′
j))−δ(ǫ)

)

(42b)

≤ 2−n(I(X(Sj),V(Sj);X(Sc
j ),V(S′′

j ),Y |V(S′
j) )−δ(ǫ)) (42c)

= 2−n(I(X(Sj),V(Sj);Y |V(S′
j),X(Sc

j ),V(S′′
j ) )−δ(ǫ)) (42d)

= 2−n(I(X(Sj),V(Sj);Y |X(Sc
j ),V(Sc

j ) )−δ(ǫ)), (42e)

Ew =











b
⋂

j=1

{(

Xn
1,j(w1, t1,j−1), . . . , X

n
M,j(wM , tM,j−1),

V n
1,j(t1,j |w1, t1,j−1 ), . . . , V

n
M,j(tM,j |wM , tM,j−1 ), Y

n
j

)

∈ T n
ǫ

}

,

for some tb
∆
= (t1, . . . , tb) .











, (35)



IEEE TRANSACTIONS ON INFORMATION THEORY 9

whereδ(ǫ) → 0 as ǫ → 0; (42b) follows from standard steps
involving mutual information; (42c) holds becauseS ′

j ⊆ Sc
j so

that I(V(S ′
j);X(Sc

j ),V(S ′′
j ), Y ) ≥ I(V(S ′

j);X(S ′
j)); (42d)

holds because of the fact that the tuple(X(Sj),V(Sj)) is
independent of the tuple(V(S ′

j),X(Sc
j ),V(S ′′

j )); and finally
(42e) is due to the fact thatS ′

j

⋃

S ′′
j = Sc

j . It is noted that the
upper bound of (42e) depends only on the setsSj(w, tj−1)
and Sc

j (w, tj−1), and hence it is independent oftj for any
givenw andtj−1.

Given this upper bound, we then proceed with (39c) and
obtain the following

Pr (Ew)

≤
∑

tb

b
∏

j=2

Pr (Aj(w, tj , tj−1)) (43a)

=
∑

tb

∑

tb−1

b
∏

j=2

Pr (Aj(w, tj , tj−1)) (43b)

≤
∑

tb

∑

tb−1

b
∏

j=2

2−n(I(X(Sj),V(Sj);Y |X(Sc
j ),V(Sc

j ) )−δ(ǫ))

(43c)

=
∑

tb

b
∏

j=2

∑

tj−1

2−n(I(X(Sj),V(Sj);Y |X(Sc
j ),V(Sc

j ) )−δ(ǫ))

(43d)

≤ 2n
∑

k∈[1:M] R̃k









∑

S⊆[1:M ]:
T (w)⊆S

∑

tj−1:
Sj(w,tj−1)=S

2−n(I(S)−δ(ǫ))









b−1

(43e)

≤ 2n
∑

k∈[1:M] R̃k







∑

S⊆[1:M]:
T (w)⊆S

2n
∑

l∈S R̃l2−n(I(S)−δ(ǫ))







b−1

(43f)

≤ 2n
∑

k∈[1:M] R̃k

(

2(M−1)2−n(Imin−δ(ǫ))
)b−1

, (43g)

= 2(n
∑

k∈[1:M] R̃k+(b−1)(M−1)−n(b−1)(Imin−δ(ǫ))) (43h)

where (43c) follows from (42e); (43d) holds because of the
fact that the upper bound (42e) is independent oftj for any
given w and tj−1; (43e) also follows from (42e), where we
have defined the index setT (w) = {k ∈ [1 : M ] : wk 6= 1}
and I(S) = I(X (S) ,V (S) ;Y |X (Sc) ,V (Sc) ); (43f) fol-
lows by tl,j−1 ∈ [1 : 2nR̃l ] for any l ∈ S; and (43g) holds
because there are at most2(M−1) subsets of[1 : M ] that
contain any index setT (w) given, where we have defined the
term

Imin = min
S⊆[1:M]:
T (w)⊆S

(

I(S) −
∑

l∈S
R̃l

)

. (44)

In this way, we obtain that

∑

w 6=1M

Pr (Ew)

≤
∑

T ⊆[1:M ]

2











nb
∑

k∈T Rk + n
∑

k∈[1:M ] R̃k

+(b− 1) (M − 1)
−n (b− 1) (Imin − δ(ǫ))











. (45)

Therefore, we conclude that the limit
∑

w 6=1M
Pr (Ew) → 0

holds as long as the condition:

nb
∑

k∈T
Rk + n

∑

k∈[1:M ]

R̃k + (b− 1) (M − 1)

< n (b− 1) (Imin − δ(ǫ)) , ∀ T ⊆ [1 : M ] , (46)

is satisfied, or equivalently we have

∑

k∈T
Rk <

(b− 1)

b
(Imin − δ(ǫ))−

∑

k∈[1:M ]

R̃k

b

−
(b − 1) (M − 1)

nb
, ∀ T ⊆ [1 : M ] . (47)

Settingb → ∞ andn → ∞, we then have the condition
∑

k∈T
Rk < Imin

= min
S⊆[1:M]:

T ⊆S

(

I (X (S) ,V (S) ;Y |X (Sc) ,V (Sc) )

−
∑

l∈S
R̃l

)

(48a)

≤ min
S⊆[1:M]:

T ⊆S

(

I (X (S) ,V (S) ;Y |X (Sc) ,V (Sc) )
−
∑

l∈S
I(Vl;Sl |Xl )

)

(48b)

for all T ⊆ [1 : M ]. This completes the proof of Theorem 5.

APPENDIX C
PROOF OFTHEOREM 6

Achievability :
The key idea of the achievable scheme is based on a vari-

ation of Schalkwijk-Kailath coding [14], [20]. User1 divides
its power into two parts. Specifically, it consumes fraction
α (0 ≤ α ≤ 1) of its power to send its messagew1 over n
channel uses using a codeword drawn from a codebook whose
entries are generated in an i.i.d. fashion from a zero-mean
Gaussian distribution with varianceαP1. Moreover, it uses
the remaining portion(1−α)P1 to transmit state information
via in cooperation with user2, as detailed below.

Codebook Generation: Randomly generate2nR1 i.i.d. se-
quencesxn

1p with each component distributed asx1p,i ∼
N (0, αP1), for i = 1, . . . , n. Index the sequences byxn

1p (w1)
with w1 ∈

[

1 : 2nR1
]

. Partition the interval[−1 : 1] into
2nR2 small intervals of equal length and map messages
w2 ∈

[

1 : 2nR2
]

to the middle points of these intervals. Index
these middle points byθ (w2).

Encoding:

1) Initial channel use,i = 0: User 1 keeps silent in this
channel use. To send messagew2 to the receiver, user2
transmitsθ (w2);
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2) First channel use,i = 1: By feedback, user2 learns state
s0 after subtracting its own information. Since user1
knows s0 as well, it cooperates with user2 to convey
information about states0 to the receiver, superimposed
on its private messagew1. Specifically, user1 transmits
x1,1 = x1p,1 (w1) + γ1,1s0, where the scalarγ1,1 is
chosen so thatγ1,1s0 ∼ N (0, (1− α)P1), while user2
transmitsx2,1 = γ2,1s0, where the scalarγ2,1 is chosen
so thatγ2,1s0 ∼ N (0, P2);

3) Channel usesi ≥ 2: At each following channel usei,
user2 forms the minimum mean squared error (MMSE)
estimateE[s0

∣

∣yi−1
1 ] of s0 based on the observed output

symbolsyi−1
1 at the beginning of channel usei. Let

s′i−1 = s0 − E[s0
∣

∣yi−1
1 ]. Then user2 transmitsx2,i =

γ2,is
′
i−1 over the channel usei, where the scalarγ2,i

is selected so thatγ2,is′i−1 ∼ N (0, P2). Given the fact
that user1 knows s0, the outdated channel statesi−1

and its own message symbols, it equivalently knows the
channel output symbols from the first channel use up
to current time. Hence it can also generate the MMSE
estimate ofs0 and thuss′i−1 as done by user2. User
1 then transmitsx1,i = x1p,i(w1) + γ1,is

′
i−1 in channel

usei, where the scalarγ1,i is chosen so thatγ1,is′i−1 ∼
N (0, (1− α)P1).

Decoding: After n + 1 channel uses, the receiver first
estimates states0 by ŝ0 = E[s0 |yn1 ]; it then estimatesθ(w2)
by θ̂ = y0 − ŝ0 = θ(w2) + (s0 − E[s0 |yn1 ]) and declares that
messagêw2 is sent ifθ(ŵ2) is the closest message point toθ̂.
After successfully estimating states0 and decoding message
w2, the receiver is able to retrieve the information abouts0,
which is conveyed from both users, so as to subtract it from
the received sequenceyn1 . In this way, messagew1 is decoded
based on the residual signal.

Analysis of Probability of Error: We note that using the
union bound, we have,Pr(E) ≤ Pr(E2)+Pr(E1 |Ec

2 ), where
the first term corresponds to the probability of decoding error
for messagew2, and the second term is the probability of
decoding error for messagew1 given that messagew2 is
correctly decoded. The probability of decoding errorPr(E2)
vanishes as the variance of estimation error ofs0 becomes
arbitrarily small asn → ∞. Similar to [14], it can be shown
that we havePr(E2) → 0 as long as

R2 ≤ C

(

(1− α)P1 + P2 + 2
√

(1− α)P1P2

σ2
s + αP1

)

. (49)

Moreover, from the standard consideration, we have
Pr(E1 |Ec

2 ) → 0 as long as the inequality

R1 ≤ C

(

αP1

σ2
s

)

(50)

holds. Settingα
∆
= (1− ρ2) concludes the proof of the

achievability.
It is remarked that the achievability can also be proved by

extending the scheme proposed in [9, page 15]. This scheme
demonstrates that it is enough for both users to know the initial
state symbols0, which can be accomplished by user2 via
feedback, in order to achieve the rate region of Theorem 6.

Converse:
Providing messagew2 to encoder1, the channel becomes

the MAC studied in [21] where encoder1 knows bothw1 and
w2, encoder2 knowsw2 and output feedback is available at
the encoders. In fact, the state sequence at encoder1 in this
genie-aided model can be seen as equivalent to feedback, since
via feedback, encoder1 effectively obtainssi−1. It is shown
in [21] that feedback does not increase capacity and thus the
capacity region is given by (26).

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and
the anonymous reviewers for their comments, which have
improved the quality of the paper.

REFERENCES

[1] M. Li, O. Simeone, and A. Yener, “Leveraging strictly causal state infor-
mation at the encoders for multiple access channels,” inProceedings of
IEEE International Symposium on Information Theory, Saint Petersburg,
Russia, August 2011, pp. 2806–2810.

[2] G. Keshet, Y. Steinberg, and N. Merhav, “Channel coding in the presence
of side information,”Foundations and Trends in Communications and
Information Theory, vol. 4, no. 6, pp. 445–586, 2007.

[3] S. Sigurjonsson and Y. H. Kim, “On multiple user channelswith state
information at the transmitters,” inProceedings of IEEE International
Symposium on Information Theory, Adelaide, Australia, September
2005, pp. 72–76.

[4] S. Jafar, “Capacity with causal and noncausal side information: A unified
view,” IEEE Transactions on Information Theory, vol. 52, no. 12, pp.
5468–5474, December 2006.

[5] A. Somekh-Baruch, S. Shamai, and S. Verdu, “Cooperativemultiple-
access encoding with states available at one transmitter,”IEEE Trans-
actions on Information Theory, vol. 54, no. 10, pp. 4448–4469, October
2008.

[6] S. P. Kotagiri and J. N. Laneman, “Multiaccess channels with state
known to some encoders and independent messages,”EURASIP Journal
on Wireless Communications and Networking, vol. 2008, pp. 1–14,
January 2008.

[7] T. Philosof and R. Zamir, “On the loss of single-letter characterization:
The dirty multiple access channel,”IEEE Transactions on Information
Theory, vol. 55, no. 6, pp. 2442–2454, June 2009.

[8] T. Philosof, R. Zamir, U. Erez, and A. Khisti, “Lattice strategies for
the dirty multiple access channel,”IEEE Transactions on Information
Theory, vol. 57, no. 8, pp. 5006–5035, August 2011.

[9] A. Lapidoth and Y. Steinberg, “The multiple access channel with causal
and strictly causal side information at the encoders,” inProceedings of
International Zurich Seminar on Communications, Zurich, Switzerland,
March 2010, pp. 13–16.

[10] ——, “The multiple access channel with two independent states each
known causally to one encoder,” inProceedings of IEEE International
Symposium on Information Theory, Austin, Texas, USA, June 2010, pp.
480–484.

[11] G. Kramer and J. Hou, “Short-message quantize-forwardnetwork cod-
ing,” in Proceedings of 8th International Workshop on Multi-Carrier
Systems and Solutions, Herrsching, Germany, May 2011, pp. 1–3.

[12] S. H. Lim, Y. H. Kim, A. El Gamal, and S. Y. Chung, “Noisy network
coding,” IEEE Transactions on Information Theory, vol. 57, no. 5, pp.
3132–3152, May 2011.

[13] A. Lapidoth and Y. Steinberg, “A note on multiple-access channels with
strictly-causal state information,” inProceedings of Wireless Advanced,
London, 2011, pp. 301–306.

[14] L. Ozarow, “The capacity of the white Gaussian multipleaccess channel
with feedback,” IEEE Transactions on Information Theory, vol. 30,
no. 4, pp. 623–629, July 1984.

[15] M. Gastpar, “The Wyner-Ziv problem with multiple sources,” IEEE
Transactions on Information Theory, vol. 50, no. 11, pp. 2762–2768,
November 2004.

[16] A. El Gamal and Y. H. Kim,Network Information Theory. Cambridge
University Press, January 2012.

[17] T. M. Cover and J. A. Thomas,Elements of Information Theory. Wiley-
Interscience, July 2006.



IEEE TRANSACTIONS ON INFORMATION THEORY 11

[18] T. M. Cover and C. Leung, “An achievable rate region for the multiple-
access channel with feedback,”IEEE Transactions on Information
Theory, vol. 27, no. 3, pp. 292–298, May 1981.

[19] F. Willems, “The feedback capacity region of a class of discrete mem-
oryless multiple access channels,”IEEE Transactions on Information
Theory, vol. 28, no. 1, pp. 93–95, January 1982.

[20] J. Schalkwijk and T. Kailath, “A coding scheme for additive noise
channels with feedback–I: No bandwidth constraint,”IEEE Transactions
on Information Theory, vol. 12, no. 2, pp. 172 – 182, April 1966.

[21] K. De Bruyn, V. V. Prelov, and E. C. van der Meulen, “Reliable
transmission of two correlated sources over an asymmetric multiple-
access channel,”IEEE Transactions on Information Theory, vol. 33,
no. 5, pp. 716–718, September 1987.

Min Li (M’12) received his B.E. degree in Telecommunications Engineering
from Zhejiang University, Hangzhou, China in June 2006, andhis M.E. degree
in Information and Communication Engineering from Zhejiang University,
Hangzhou, China in June 2008. He received his Ph.D. degree inElectrical
Engineering from The Pennsylvania State University, University Park, United
States in August 2012. Since September 2012, he is a researchfellow in
wireless communications at the Department of Electronic Engineering at
Macquarie University, Australia.

His research interests include network information theory, coding theory,
wireless communication theory and system designs, optimization techniques
and VLSI designs.

Osvaldo Simeone(M’02) received the M.Sc. degree (with honors) and the
Ph.D. degree in information engineering from Politecnico di Milano, Milan,
Italy, in 2001 and 2005, respectively.

He is currently with the Center for Wireless Communicationsand Signal
Processing Research (CWCSPR), New Jersey Institute of Technology (NJIT),
Newark, where he is an Associate Professor. His current research interests con-
cern the cross-layer analysis and design of wireless networks with emphasis on
information-theoretic, signal processing, and queuing aspects. Specific topics
of interest are: cognitive radio, cooperative communications, rate-distortion
theory, ad hoc, sensor, mesh and hybrid networks, distributed estimation, and
synchronization.

Dr. Simeone is a co-recipient of Best Paper Awards of the IEEESPAWC
2007 and IEEE WRECOM 2007. He currently serves as an Editor for IEEE
TRANSACTIONS ON COMMUNICATIONS.

Aylin Yener (S’91-M’00) received the B.Sc. degree in electrical and electron-
ics engineering, and the B.Sc. degree in physics, from Boğaziçi University,
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