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New Results on Multiple-Input Multiple-Output
Broadcast Channels with Confidential Messages

Ruoheng Liu, Tie Liu, H. Vincent Poor, and Shlomo Shamai t&hi

Abstract—This paper presents two new results on multiple-
input multiple-output (MIMO) Gaussian broadcast channels
with confidential messages. First, the problem of the MIMO
Gaussian wiretap channel is revisited. A matrix characterzation
of the capacity-equivocation region is provided, which ex@énds the
previous result on the secrecy capacity of the MIMO Gaussian
wiretap channel to the general, possibly imperfect secrecsetting.
Next, the problem of MIMO Gaussian broadcast channels with

two receivers and three independent messages: a common mes-

sage intended for both receivers, and two confidential mesgas
each intended for one of the receivers but needing to be kept
asymptotically perfectly secret from the other, is considesd.
A precise characterization of the capacity region is provied,
generalizing the previous results which considered only tar out
of three possible messages.

Index Terms—Multiple-input multiple-output (MIMO) com-
munication, wiretap channel, capacity-equivocation regin,
broadcast channel, confidential message

I. INTRODUCTION

needing to be kept asymptotically perfectly secret from the
other, was characterized in_[10].

This paper presents two new results on MIMO Gaussian
broadcast channels with confidential mesﬂges

1) The problem of the MIMO Gaussian wiretap channel
is revisited. A matrix characterization of theapacity-
equivocatiorregion is provided, which extends the result
of [6] on the secrecy capacity of the MIMO Gaussian
wiretap channel to the general, possibly imperfect secrecy
setting.

The problem of MIMO Gaussian broadcast channels
with two receivers andhree independent messages, a
common message intended for both receivers, and two
mutually confidential messages each intended for one
of the receivers but needing to be kept asymptotically
perfectly secret from the other, is considered. A precise
characterization of the capacity region is provided, gener
alizing the results of [9] and [10] which considered only
two out of three possible messages.

2)

Information-theoretic security has been a very active areayoiation Vectors and matrices are written in bold letters.
of research recently. (Segl[1] and [2] for overviews of rég yectors by default are column vectors. The identity ma-

cent progress in this field.) In particular, significant mess
has been made in understanding the fundamental limits

trices are denoted by, where a subscript may be used to
iﬂ&icate the size of the matrix to avoid possible confusion.

multiple-input multiple-output (MIMO) secret communiaai. The transpose of a matri& is denoted byAT, and the trace

More specifically, the secrecy capacity of the MIMO Gaussi

wiretap channel was characterized [in [8]-[7]. The wofKs [8
and [9] considered the problem of MIMO Gaussian broadcagé

channels with two confidential messages, each intended

a square matriA is denoted byIr(A). Finally, we write
= B (or, equivalentlyB > A) wheneveiB — A is positive

midefinite.
for

one receiver but needing to be kept asymptotically pesfectl

secret from the other, and provided a precise charactenivat
of the capacity region. The capacity region of the MIMO Gaus-

II. THE CAPACITY-EQUIVOCATION REGION OF THE
MIMO GAUSSIAN WIRETAP CHANNEL

sian broadcast channel with two receivers and two indepgnd@. Channel Model

messages, a common message intended for both receivers al
a confidential message intended for one of the receivers l?g
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r#jonsider a MIMO Gaussian broadcast channel with two
ceivers, one of which is a legitimate receiver and therothe
is an eavesdropper. The received signals at time indexre
given by

Y[m] = H,X[m]+ W,[m] )
Zim] = H.X[m]+ W,[m]

whereH,. andH,. are (real) channel matrices at the legitimate
receiver and the eavesdropper respectively, &Wd,.[m]},,
and {W_.[m]},, are independent and identically distributed
(i.i.d.) additive vector Gaussian noise processes witto zer
means anddentity covariance matrices.

1The main results of this paper were initially posted on théawebsite
in January 2010[[11] and were subsequently reported at ti€® 2BEE
International Symposium on Information Theofy [1Z]_J[1Similar results
were independently reported by Ekrem and Ulukudin [14] .|
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Fig. 1. Wiretap channel.

The transmitter has a single messdde which is uni- the equivocationk, is set to equal the communication rate

formly distributed over{1,...,2"%} where R is therate of R. In this case, the secrecy constralft (2) can be equivglentl
communication. The goal of communication is to deliv&r written as ]
reliably to the legitimate receiver while keeping it infaation- —I(W;Z") < ¢ (4)

n

theoretically secure from the eavesdropper. Following the

classical work[[1B],[[117], for every > 0 it is required that  i-€., messagéV’ needs to be asymptoticallyerfectly secure
from the eavesdropper. Under the asymptotic perfect sgcrec

1 . . S
—HWI|Z")> R, — ¢ (2) constraint[(R), the maximum rate of communication is called
o " . the secrecycapacity. For the MIMO Gaussian wiretap channel
for sufficiently largen, wherer is the block length of commu- @) ' a4 matrix characterization of the secrecy capacity was
nication,Z" := (Z([1],. .., Z[n]), andR. represents the prede-gptained in[[3]4[5] under an average total power constraint
termined level of security of messagjg at the eavesdropper;, [6] and [7] under a more generajatrix power constraint.

known asequivocation The capacity-equivocatiomegion is  gimilar matrix characterizations of the capacity-equasian
the set of rate-equivocation paif&, R.) that can be achieved ggion, however, werenknown

by any coding scheme. In the literature, this communication
scenario is usually known as the rate-equivocation setiing .
the MIMO Gaussianwiretap channel; see Fig]1(a) for anB. Main Results

illustration. The main result of this section is a matrix characterization
Csiszar and Kornef [17] studied the rate-equivocatidn s@f the capacity-equivocation region of the MIMO Gaussian

ting of a general discrete memoryless wiretap channel. mretap channel. More specifically, conS|_der the MIMO Ggus—

single-letter expression for the capacity-equivocatiegion Sian wiretap channef1) under the matrix power constraint

was derived[[1]7, Theorem 1], which can be written as the set 1
of nonnegative rate-equivocation paii&, R.) satisfying - > (X[m]XT[m]) < S (5)
m=1
R. < min{R,I(V;Y|U)-I1(V;Z|U)} . iy o .
R < I(ViY) (3) whereS is a positive semidefinite matrix. Let

1
for somep(u,v,z,y,z) = p(u)p(v|u)p(z|v)p(y, z|z). Here, C(S,H,) = 3 log I+ H,SHT| (6)
p(y, z|x) is the transition probability of the discrete memory- ) . . .
less wiretap channel, aid and V' are twoausxiliary random be the Shf_;mnon capacity qf a MIMO Gaussian po_lnt-to-pomt
variables. In theory, a computable expression for the dgpac channe! with chagnlel matrikd, and under the matrix power
equivocation region can be obtained by evaluating the eJ}ngFonStra'”tKB), and let
letter expressior{3) for the MIMO Gaussian wiretap channel B 1
(I). However, such an evaluation is generally difficult dae t Cs(S, Hyr, He) = o?@ﬁs 9 log
the presence of the auxiliary random variablésand V.

I1+H,BH] @
I+H.BH!

be the secrecy capacity of a MIMO Gaussian wiretap channel
Several recent work$[[3]H[7] studied the special case whewith legitimate receiver and eavesdropper channel matkite




The capacity-equivocation region of the MIMO Gaussian

35¢ 1 wiretap channel under an average total power constraint is
summarized in the following corollary. The result is a direc
3r 1 consequence of Theordrm 1 and][18, Lemma 1].

Corollary 1: The capacity-equivocation region of the
MIMO Gaussian wiretap channédll(1) under the average total

o 2t ] power constraint
1 n
Lo 1 — X[m]™X <P 9
w2 (XIml"Xim) < (©)
A | -
is given by the set of nonnegative rate-equivocation pairs
0.5 1 (R, R.) satisfying
0 ‘ : ‘ ] : R. < min{R,C«(S,H,, H,)}
0 1 2 3 4 5 6 R < C(S.H) (20)
(a) Capacity-equivocation region for someS > 0 Tr(S) <p
4 ‘ ‘ ‘ ‘ ‘ C. Proof of the Main Results
350 ] Next, we prove Theoreni]1. As mentioned previously,
directly evaluating the single-letter expressidd (3) foet
8r 7 MIMO Gaussian wiretap channdll(1) is difficult due to the

presence of the auxiliary random variables. We thus resort t
anindirectapproach that connects the rate-equivocation setting

o 2t 1 of a MIMO Gaussian wiretap channel to the problem of simul-
taneously communicating private and confidential messages
L5y 7 The problem of simultaneously communicating private and

confidential messages over a discrete memoryless wiretap
channel is illustrated in Fid]1(b). Here, the transmittes h

05l | a private messagél’,,, which is uniformly distributed over
{1,...,2"f%} and a confidential messagd’;, which is
% 1 2 3 7 s 5 uniformly distributed over{1,...,2"%s}. The confidential
Ry messagéV; is intended for the legitimate receiver but needs to
(b) Private-confidential message capacity region be kept asymptoticallperfectlysecret from the eavesdropper.

That is, for anye > 0 it is required that
Fig. 2. MIMO Gaussian wiretap channel under matrix powerst@int.

Lrwazm < (11)
n

andH, respectively and under the matrix power constrdiht (3¢r sufficiently large block length. The private messagé’,

[6], [[7]. We then have the following result. is also intended for the legitimate receiver, bunist subject
Theorem 1:The capacity-equivocation region of the MIMOI a@ny secrecy constraint. Tharivate-confidentialmessage

Gaussian wiretap channdll (1) under the matrix power cof@Pacity region is the set of private-confidential rate air

straint [B) is given by the set of nonnegative rate-equitiona (% fts) that can be achieved kgny coding scheme. ,
pairs (R, R.) satisfying The following lemma provides a single-letter characteriza

tion of the private-confidential message capacity regiothef

R, < min{R,C(S,H,,He)} () discrete memoryless wiretap channel.

R < C(S,H,) Lemma 1:The private-confidential message capacity re-
whereC(S, H, ) andC,(S, H,, H,) are defined as ifi16) and gion of the discrete memoryless wiretap chanmel, z|x) is
(@), respectively. given by the set of nonnegative private-confidential ratiespa

Fig. [A(a) illustrates the capacity-equivocation regionaof (Rp, Rs) satisfying

MIMO Gaussian wiretap channel with channel matrices R, < I(V;Y|U)—-1(V;Z|U) (12)
1.8 2.0 33 1.3 R+ R, < I(V;Y)
H, = and H, =
L0 3.0 20 -15 for somep(u,v,2,y,2) = p(u)p(v|u)p(z|v)p(y, z|z), where

(which yields anondegradedwiretap channel) and matrix U andV are auxiliary random variables.

power constraint The achievability part of the lemma can be proved by
considering a coding scheme that combines superposition
S — <5-0 1-25) ) coding, random binning, and rate splitting. In particulzeyt
125 10.0 of the private message will be used in the binning scheme



n

H, Z,

Y - W
Y]“ ] ( [} 1)
@—> Receiver 1

L Lioway?hy —o0

X" N

(Wo,W;,W,) — Transmitter

Z,
Y R
v (Wo.W2)

H,
—»@—» Receiver2 —

()

L LiewYs) —o

Fig. 3. MIMO Gaussian broadcast channel with common and denfial messages.

to protect the confidential message against the eavesdroppgthe private-confidential rate regidn {13) follows fronattof
The converse proof follows standard information-thearet{12) by settingV = X = U+ G, whereU andG denote two
argument. The details of the proof are deferred to Appendlix Aadependent Gaussian vectors with zero means and covarianc
A simple inspection of the capacity-equivocation regiomatricesS — B* andB*, respectively.
@) and the private-confidential message capacity redi@ (1 The fact thatR, < Cs(S,H,,H,) for any achievable
reveals the following interesting fact: confidential rateR, follows from the secrecy capacity result
Fact 1: A nonnegative rate pa{?, R.) = (R,+Rs, Rs) IS of [6] and [7] on the MIMO Gaussian wiretap channel under a
an achievable rate-equivocation pair for a discrete mefessy matrix power constraint, by ignoring the private messHge
wiretap channel if and only if(k,, ;) is an achievable The fact thatk, + R, < C(S, H,.) for any achievable private-
private-confidential rate pair for the same channel. confidential rate pai(R,, R,) follows from the well-known
The “if" part of the fact is easy to verify: Simply usecapacity result on the MIMO Gaussian point-to-point chdnne
the samecode for both communication scenarios and viewnder a matrix power constraint, by viewirgv,, W) as a
(Wy, W) as the single messag€ for the rate-equivocation single message and ignoring the asymptotic perfect secrecy

setting. Note that constraint[(T1) on the confidential messdge. ]
1 | " Remark 1:1t is particularly worth mentioning the corner
EH(W|Z ) = EH(WP’Wslz ) point (R,, R,) of the private-confidential message capacity
1 . .
> EH(WSIZ") region [13) as given by
2 RS — € (RP’RS) = (C(SvHT) _CS(SaHTaHe)ch(SaHmHe))-
= R.—e Here, under the matrix power constraint, both messagjes

L nd , viewed as a single private message, can
Thus, the same code satisfying the secrecy constfaiht ()Il)‘?l (W, W) : gle private 9
. . ) - 2 L fransmitsimultaneoushat their respectivenaximunmrates. In
simultaneous private-confidential communication alssgas . " - .
the secrecy constrairffl(2) for the rate-equivocationrgtihe particular, transmitting an additional private mess#ggedoes
sonly i’ grt of the fact comes as a m?ld surprise gas in thQOt incur any rate loss for communicating the confidential

ymp . . . prise, messagél/.

rate-equivocation setting which part of message is secues d N h foll ) diately f Lemii 2 and
not need to be specified priori and may even depend on NOW: Theorentll follows immediately from Lem an

the realization of the channel noise. We note here that tpﬂfourler—Motzkln elimination with? = R, + R, and Re =

above interesting fact was first mentioned in][19, pp. 4118 For comparison, the private-confidential message capacit

412] without proof region of the same MIMO Gaussian wiretap channel as used

In light of Fact[1, next we first establish a matrix charad® Fig.[2(a) is illustrated in Fid.12(b).
terization of the private-confidential message capacigyore
using the existing matrix characterizationl [6].] [7] on the
secrecy capacity of the MIMO Gaussian wiretap channel. !ll: MIMO G AUSSIAN BROADCAST CHANNELS WITH
The result will then be mapped to the rate-equivocation COMMON AND CONFIDENTIAL MESSAGES
setting using the aforementioned equivalence betweere thes
two communication scenarios. A. Channel Model

Lemma 2: The private-confidential message capacity region cqnsider a two-receiver MIMO Gaussian broadcast channel.
of the MIMO Gaussian wiretap channél (1) under the matrig,o transmitter is equipped with transmit antennas, and
power constrain{{5) is given by the set of nonnegative peia 1o ceiverr, i = 1,2, is equipped withr, receive antennas. A
confidential rate pair¢R,, R) satisfying discrete-time sample of the channel at timecan be written

R, < Cs(S,H, H,) 13 as
R.+R, < C(S.H,) (13) Yim] = HpX[m] + Zp[m], k=1,2 (14)

Proof: Let B* be an optimal solution to the optimizationwhereH,, are the (real) channel matrices of sizex ¢, and
problem on the right-hand side &fl (7). Then, the achievighili{Z[m]|},, are i.i.d. additive vector Gaussian noise processes



with zero means and identity covariance matrites.
As illustrated in Fig[B, the transmitter has a common mes-
sagell, and two independent confidential messagésand

Ws. The common messagd#) is intended for both receivers. y

The confidential messagé’;, is intended for receivek but /;//%%

needs to be kept asymptotically perfectly secret from therot
receiver. Mathematically, for every> 0 we must have

124
Wipie
4@#@{?’” v,
Wy iy, 3 Wi
]
QA

1 1
—I(W;Yy) <e and —I(Wy;YT) <e (15)
n n

for sufficiently large block lengthn. Our goal here is

to characterize the entire capacity regi6(H;,H,,S) =
{(Ro, R1, R2)} that can be achieved by any coding scheme,
whereR, R, and R, are the communication rates correspond-
ing to the common messadg, and the confidential messages
W1 and Ws, respectively.

With both confidential messagé$; and W, but without
the common messadé&), the problem was studied ihl[8] for
the multiple-input single-output (MISO) case and fin [9] fo
general MIMO case. Rather surprisingly, it was shown_in [¢
that, under a matrix power constraint both confidential me
sages can bsimultaneouslyvommunicated at their respectec 2l
maximum rates. With the common messafjg and onlyone
confidential messagéi(; or W5), the capacity region of the
MIMO Gaussian wiretap channel was characterizedin [1 15f -
using a channel-enhancement approach [18] and an extre
entropy inequality of Weingarteet al. [21].

25

B. Main Results !

0.5F
The main result of this section is a precise characterimati

of the capacity region of the MIMO Gaussian broadcast cha 5 |
nel with a more complete message set that includes a comn 0 : ‘ ‘ - ‘3
messagédlV, and two independent confidential messagés ' R
and .

Theorem 2:The capacity regionC(H;,H,,S) of the
MIMO Gaussian broadcast chaanD(]A) with a common mdsg. 4. MIMO Gaussian broadcast channel with common and dentfial
sagelV; and two confidential messag#s, and1W, under the Mes539¢s:
matrix power constrainf{5) is given by the set of nonnegativ
rate triples(Ry, R1, R2) such that

(b) (R1, R2)-cross sections

with respect toH; andH,, even though it is not immediately

. (1 H,;SHT+1, . .
Ry < min {5 log ’ Hl(si];;ol)H{Jlr_Ir1 ) evident from the expressions themselves.
Llog ’}h(};%m } Remark 3:By settingB, = S — B; we can recover the
R < llooll H.B.HT| — o result of [10, Theorem 1] that includes the common message
I E— 20g|7‘1+ 1D1 1| 16 . . .
llOgIIr + H,B,H]| (16) Wy and the confidential messad®; but without the other
R, < 1] ITz-EHg(S—B20)H; confidential messag@/s.
2 = 08| TmBH] |

Fig.[4(a) illustrates the capacity regi6H,, Ho, S) for the
channel matrices and the matrix power constraint as given by

1.8 2.0 33 1.3
H. = (1.0 3.0)’ H; = (2.0 —1.5)

g_ (50 125
~\125 100)

I"‘l +H1(SfB0)HI

1
2log |t BT

for someBy = 0, B; = 0 andBy +B; < S.

Remark 2:By settingB, = 0 we can recover the result of
[O, Theorem 1] that includes both confidential messagés
and W, but without the common messagg,. Similar to [9,
Theorem 1], for any giveB, the upper bounds o, and

and

Ry can be simultaneously maximized by a saBe In fact,

the upper bounds oR; and R, in (I8) are fully symmetric

2The channel model is the same as that in Se¢fion II-A. Howelitierent

notation is used here for the convenience of presentation.

(The channel parameters are the same as those used fiQh)Fig. 2.
In Fig.[4(b), we have also plotted thd?;, R;)-cross section
of C(H,,H,,S) for several given values oR,. Note that

when Ry = 0, the (R;, R2)-cross section isectangular im-

plying that under a matrix power constraint, both confidanti



messages$?; and W, can be simultaneously transmitted arero means and covariance matrigkg B; andS — By — B;

their respective maximum rates| [9]. Fét, > 0, however, respectively, and

the (R;, Ro)-cross sections are generally non-rectangular as T o1

different boundary points on the same cross section may F:=BH; I, + H,BH;)""H,.

correspond talifferentchoice of Bg. To sh hat th . 19 I Bl -
The capacity region under an average total power constraint o show that the rate region (19) over all possiBlg - 0,

is summarized in the following corollary. The result is aedir ! =0 an.d By + B, =Sis md_ee@ the capacity region, we
consequence of Theordrh 2 and][18, Lemma 1] shall consider proof by contradiction and resort to a chknne

Corollary 2: The capacity regionC(H;, Hs, P) of the enhancement argument akin to that[inl[10].

MIMO Gaussian broadcast channé[](14) with a common More specifically, assume thak}, R, R}) is anachievable
messagél, and two confidential messagds andWW, under rate triple that liesoutsidethe rate region[{19) for any given

the average total power constraifit (9) is given by B = 0, By = 0 and B, + B, = S. Since (R, k], R}) is
. T
C(H, Hy, P) = U C(H,. Hs,S). (17) achievable, we can bounf, by
S=0, Tr(S)<P BRI < min llog S+ N, llog S+ Nl _ Rmax.
0= 2 N, T2 N, 0

C. Proof of the Main Results Moreover, if Rl = R} = 0, then R?"** can be achieved by

Next, we prove Theorel 2. Following [18], we shall focusettingBy = S andB; = 0 in (I9). Thus, by the assumption
on the canonical case in which the channel matrilgsand that (Rg, RI, RE) is outside the rate regioh (19) for any given
H, are square and invertible and the matrix power constraiBy >~ 0, B; = 0 and By + B; < S, we can always find
S is strictly positive definite. In this case, multiplying ot A\; > 0 and A, > 0 such that

sides of [I#) byH, ', the MIMO Gaussian broadcast channel t N e .
{@3) can be equivalently written as MRy + MRy = MR+ AR5 +p (21)

Y [m] = Xy [m] + Z[m], k=1,2 (18) for somep > 0, whereA; R + \2R3 is given by
max(g, B,) A1f1(B1)+ Xaf2(Bo,B1)

where {Z;[m]},, are ii.d. additive vector Gaussian noise subject to fo(Bo) > R(TJ

processes with zero means and covariance matigs=

H, 'H, 7. Similarly, the rate regior[{16) can be equivalently go E 8 (22)

ritten as L=
W' By + B < S.

- f1 S+N; 1 S+N»
Ro < min{}log | wiiline| 308NN} Here, the functionglo, f1 and f, are defined as
B, +N B +N
R g By og| B i | S
_ _ 0(Bg) :=minq{ = log | ————71,
Ro < log| SRR - o] 5P| 27 |6 B N,
(19) 1 S + N,

Next, we show that the rate region [19) over all possible 508 (S—By) + Ny
By = 0, B; = 0 andB, + B; < S gives the capacity region 1 B, +N;| 1 B, + N,
C(H,,H,,S) for the canonical MIMO Gaussian broadcast f1(By) = 7 log N, | 510g‘T2
channel[(IB). Extensions to the general mddél (14) follamnfr 1 (S—By) + N
the well-known limiting argument[6][[10].[18] and henceea and  f2(Bg, B1) := = log #
omitted from the paper. 2 1+ N2

To prove the achievability of the rate region (19), recall _1 ‘(S -Bo)+ Ny
that the problem of a two-receiver discrete memorylessdroa 2 B +N;

cast channel with a common message and two confidential s ) _ o
common messages was studied(inl [22]. There, a single-lette}-€t (Bj, BT) be an optimal solution to the optimization
expression for an achievable rate region was establishgdhw Program [2R). By assumption, the matrix power constraint

is given by the set of rate tripleRo, Ry, Rs) such that S is strictly positivg definite in th(_a canonical model. Thus,
(B§,BY) must satisfy the following Karush-Kuhn-Tucker
Ry < min[I(U;Yy),1(U,Y3)] (KKT) conditions:
Ry < I(Vi;Y1|U) = I(V1; V2, Y,|U) (20) 1 1
Ry < I(V2;Y3|U) —1(Va; Vi, Y:|U) (B1+A2)[(S —Bj) + Ni1] 7" + B2[(S — Bf) + No] + My
= X2[(S = Bj) + No| ™' + My (23)

whereU, V; andV are auxiliary random variables satisfying
the Markov relation(U, V1, V,) — X — (Y1,Y5). The (M 4+ A2)(BY + Nyt + M,

propose[g:oding scheme is a natural combination of double = (A1 4 X2)(BY + Ny) ™! + M, (24)
binning [23] and superposition coding. Thus, the achiditsbi * x * *

of the rate region[{19) follows from that of {20) by setting MoB; =0, MyBj =0, andMx(S — B; — Bj) =0 (25)
Vi =U; +FU,, V, =U,, andX = U 4+ U; + Uy where whereMg, M; andM,, are positive semidefinite matrices, and
U, U; and U, are three independent Gaussian vectors with),, £ = 1,2, are nonnegative real scalars such that> 0 if



and only if Following (24), we may also obtain

llog _ S+Nk | pt (A +22)(BY +N) ™" = (A + X2) (B} + Np) ™' + M
2 (S—By) + Ny 0 (31)
It follows that which implies thatN < N».
(B + 52)R$ + /\1RJ{ + )\232 Consider the following enhanced aligned MIMO Gaussian
B S+ N, B2 S + N, broadcast channel
=—loglgmr— | T o8| - -
2 718 =By+Na| - 2" |(S—Bf) + Ny Yim] = X[m] +Zia[m]
1 B7 + N, 1 Bi + N, Yis[m| = X[m]+ Ziy[m]
+ A <—1o ‘17 ——1lo ‘7> 216 21b 32
2N 2 %N Youlm] = X[m] + Zoa[m] (32)
W <% log ‘ (S —BPE)§ N, ng[m] = X[m] + ZQb[m]
1 (S— B*l) L 1\12 where{Z,[m]}, {Z1p[m|}, {Z2.[m]} and{Zq[m]} are i.i.d.
——log ‘+1 > +p. (26) additive vector Gaussian noise processes with zero meahs an
2 Bi+Ny covariance matriceN, Ny, N and N, respectively.

Next, we shall find a contradiction t¢_(26) through the The message set configuration is the same as that for

following three steps. channel [2F). Sinc&N < {Nj,N,}, we conclude that the
capacity region of channdl (32) & least as largeas that of

1) Split each receiver into two virtual receiver€onsider . :
ghannelKZI?) under the same matrix power constraint.

the following canonical MIMO Gaussian broadcast chann

with four receivers: Furthermore, from[{31) we have
Yialm] = Xm] 4 Zalm] (8~ Bf) + N)(Bf + N)
Yulm] = Xim] +Zu[m] (27) —[(S- By + NaJ(B +No)™! (33)
Y2a[m] = X[m] + Zga[m] = 0 2 1 2
You[m] = X[m]+ Zoy[m] and hence
where{Z,[m]}, {Zi[m]}, {Z2a[m]} and{Zgy[m]} are i.i.d. (S—Bj) +N| [(S—B}) +N,
additive vector Gaussian noise processes with zero meahs an B+ N = BT + N, (34)
covariance matricelN1, N1, N2 and Ns, respectively. o L ! .
Suppose that the transmitter has three independent messgd%mb'n'ng (2B) and(31), we may obtain
Wo, W1 andW,, whereW,, is intended for both receiverid (M +A)[(S —B) + ﬁ]*l
and 20, Wy is intended for receiveta but r_1eeds to be k_ept — (Mo + B)[(S = BY) + Ny !
asymptotically perfectly secret from receiveb, and W, is . .
intended for receivea but needs to be kept asymptotically + A1+ B2)[(S = Bg) + NaJ 7 + Mo. (35)

perfectly secret from receiverb. Mathematically, for every sypstituting [[3D) and(34) inté (26), we have
e >0, we must have i i "
(ﬁl + ﬁg)RO + )\1R1 + /\2R2

1 n 1 n
EI(WU 5) <€ and EI(W% ) <e  (28) B ‘ S+ N; N B ‘ S + Ny
=58 e T R AN | TS 8 Te R LN
for sufficiently large block lengtm. Note that receiverda 2 (S —Bj) + Ny B 2 (S —Bj) + N2
and 1b are statistically identical to receiver 1 in chanriell (18), A 1 1 (S—-Bj)+N| 1 ) (S—B{§) + No
so are receiver8a and 2b to receiver 2 in channel18). We 1|58 N ~ 5% N,
thus conclude that the capacity region of chanhel (27) is the .=
sameas that of channe[{18) under the same matrix power llog (S - B~0) + N llog ’ (S—Bj) +N,
constraint. 2 N 2 N,
2) Construct an enhanced channélet N be a real sym- +p- (36)

metric matrix satisfying
3) Outer bound the enhanced channBlext, we consider a

-1
1) (29) discrete memoryless broadcast channel with four recearms
A1+ A2 three independent messages and provide a single-letter out

which implies thatN < Nj. SinceM; B = 0, following [18, bound on the capacity region.

N := (Nl_l +

Lemma 11] we have Lemma 3:Consider a discrete memoryless broadcast chan-

1 N . nel p(Y1a; Y1b, Y2a, y2|x) with four receivers and three in-
(A1 +A2)(BT +N)™" = (A + A2)(B + N1)™" + My dependent messagé€d/y, Wi, Ws): W is intended for both
and receiverslb and2b, W1 is intended for receiveta but needs
to be kept asymptotically perfectly secret from receilér

BT + NJ[Ny[ = [B] + Ny | [N]. (30) and Wy is intended for receiveRa but needs to be kept



asymptotically perfectly secret from receivdr. Assume that IV. CONCLUDING REMARKS

X = Vi, — (Yip,Yay) and X — Yoy — (Yip, Yap) In th_is paper we have present_ed two_new_results on MIMO
_ _ ~ Gaussian broadcast channels with confidential messages, le
form two Markov chains. Then, any achievable rate tripliag to a more comprehensive understanding of the fundarenta

(Ro, R1, R2) must satisfy limits of MIMO secret communication.
Ro < wmin[I(U;Yy), [(U, Yap)] E|rst, a matrix character|zat_|on of_the capacity-equivimra
= region of the MIMO Gaussian wiretap channel has been
Ry < I(X;Yia|U) — I(X; Ya|U) (37) : o - -
~ obtained, generalizing the previous results [3]-[7] whilgalt
Ry < I(X;Ya,|U) = I(X;Yy|U)

only with the secrecy capacity of the channel. The result

for somep(u, z), whereU is an auxiliary random variable. has been obtained via an interesting connection between the
The proof follows standard information-theoretic arguteriate-equivocation setting and simultaneous private-dential

and is deferred to Appendix]B. communication over a discrete memoryless wiretap channel,
Now, we can combine all previous three steps and obtain Which allows a matrix characterization of the entire cafyaci

upper bound on the weighted sum rétg +[32)R$ +/\131 4+ equivocation rggion based on the exis_ting gharacterirzalfo

A2 R}. By assumption(R], RI, Rl) is an achievable rate triple SECrecy capacity for the MIMO Gaussian wiretap channel.

for channel [(IB). Then, following Lemnid 3 we have Next, the problem of MIMO Gaussian wiretap channels with
; : : two receivers and three independent messages, a common mes-
(B1+ B2) Ry + MRy + Ao Ry sage intended for both receivers, and two mutually confident

messages each intended for one of the receivers but needing t
be kept asymptotically perfect secure from the other, has be
considered. A precise characterization of the capacitioreg
has been obtained via a channel-enhancement argumenty whic
is a natural extension of the channel-enhancement argesment

of [9] and [24].

< % log [2me(S + N1)| + % log |2me(S + Ny)|

A1 No| A
+ > log ‘ + > log

N
ﬁl‘ +n(A1,A2)  (38)
where

N1, A2) i = MAX + Z1a|U) 4+ Aah(X + Zoa|U)
— Do+ BORX 4+ Z1|U) — (Mt + Bo)h(X + Zap|U). APPENDIX A

PROOF OFLEMMA [II

Note that0 < N < {N;,N»}, 0 < By < S, andB;M, = 0. We first prove the achievability part of the lemma by con-
By [21, Corollary 4] and[(35), we have sidering a coding scheme that combines superposition gpdin
o~ random binning, and rate splitting. FiXu)p(v|u)p(z|v). Split
(A1, A2) < (A1 + Az) log | 2me(S — Bg) + N the private messagdé’, into two independent submessage$
— (A2 +ﬁ1)10g|27r€(s —B6)+N1| andWZ’)’.
* Codebook generatiorrix § > 0. Randomly and indepen-
— (A1 + log [2me(S — Bj)) + N3 . 39 )
N (A1 + B2) log 2me( o) + Nol. - (39) dently generate™(%>*9) codewords of lengthn according
Combining [38) and{39), we have to py. Label each of the codewords a§, wherej is the
f f 1 codeword number. We will refer to the codeword collection
(B B2) By + By + Aok {u}}; as theU-codebook.

< P 1Og‘ S+ N P2 1Og‘ S+ No For each codeword? in the U-codebook, randomly and
T2 (S—-Bj) + N B 2 (S —Bj) + N independently generat'(%-+E,+7) codewords of lengtm
\ 1 1 (S—=By)+N| 1 1 (S—B{§) + No according to]];"_; pvju—u,[j- Randomly partition the code-
tA| glos N 2 Og‘ N, words into 2"%: bins so that each bin contairg(Fs+7)
NS . codewords. Further partition each bin i sub-bins so
+ Ao llog w _ llog‘m that each sub-bin containg"” codewords. Label each of
2 N 2 Ny the codewords as?, ,, where k denotes the bin number,

which is a contradiction td (36) gs > 0. We thus conclude [ denotes the sub—bin7nu-mk;)er within each bin, arqjanotes
that the rate regiof(19) over all possiie = 0, B, = 0 and the codeword numbe_r within each sub-bin. We will refer to
B, + By < S is indeed the capacity region of the canonicd® codeword collectiofvy, , ,}r... as theV-subcodebook
MIMO Gaussian broadcast channEI](18). This completes thgresponding ta:?. Fig.[3 illustrates the overall codebook
proof of Theoreni 2. structure. i .

Remark 4:Note that in the enhanced channkll(32), both .Enco_dlng.To send a message triple,, w,, ), the trans-
legitimate receiver$a and2a have thesamenoise covariance mitter first chooses the codeword}, from the U-codebook.
matrices. This fact greatly simplified the capacity analysi

Next, the transmitter looks into th&-subcodebook corre-
the enhanced channel and is key to the success of the prop(%leod]d'ng to“w/p andrandomly(according to a urllllform d'SF”
channel enhancement approach. We mention here that Rytion) chooses a codeword, , . , from thew;th sub-bin
same technique was also used in [24] to derive the sum-priva®f the ws”_‘ bin. Once R chosen, an input se-
v.s-common message capacity region of the MIMO Gaussi@iencer” is generated according {d;"_, PX|v=v

broadcast channel. and is then sent through the channel.

w ,ws,wg,t[i]

’
p



V-subcodebook secrecy condition (11) implies that for every> 0,

U-codebook ; sub-bin 1 H(Ws|Zn) > H(Ws) — MeE. (45)
sub-bin 2 bin 1 On the other hand, Fano’s inequalify [20, Ch. 2.11] implies
codeword 1 / : that for everyey, > 0,
codeword 2 /// sub-bin 277 H(W,, Wp|yn) < g log [2”(R3+Rp) _ 1} + h(EQ)
' . = nd. (46)
codeword j Applylng m) and EB), we have
N Ry = H(W,
N sub-bin 1 " ( ) n "
codeword 2" \\\ sub-bin 2 = [H(WS|Z ) - ne} + [715 B H(WS’ WP|Y )}
. bin 2 < HWg, W,|Z™) — HWs, Wp|Y™) 4+ n(e +6). (47)
. t;' T By the chain rule of the mutual information [20, Ch. 2.5],
N sSub-odin P

n(Rs —e—10) < I(VV57 Wy Y — I(Ws, Wy Z7)
Fig. 5. Codebook structure. = Z (Ws, W, YY)

I(Ws, Wy Zi| Z1)]
Decoding at receiver 1Giveny7, receiver 1 looks into the
codebooksU and V' and searches for a pair of codewords - Z
(uf}, 0%y, ) that are jointly typical withy'. In the case when
R, < I(U;Y) (40)
and R,+R,+T < I(V;YU) (41)

W57 va Y|Yl ! Zszrl)

— LW, Wy ZIY'"1, 27 1)] - (48)
where the last equality follows fromh [IL7, Lemma 7]. Let

U, .= (Y=t zn and V; := (W, W,.,U,; 49
with high probability the transmitted codeword pair ( ”1) ( »U3) (49)

(ulh, v . y) IS the only one that is jointly typical and we have from((48) that

7y ’
wy,? P wy,,w

with .
Security at receivers 2 and Fix ¢ > 0. In the case when ~ (Bs —¢— Z (Vis YilUs) — I(Vi; Zi|U;)] . (50)
RI+T > 1(V; Z|U) (42)
we have[[1V, Theorem 1]
1 n
EI(WS;Z W,) <e (43)
for sufficiently largen. Since W, and W), are independent,
we have from[(4B) that Next, we consider an upper bound on the sum private-
lI(WS;Z”) < lI(WS;Z”, W) confidential message raf, + R,. By (48),
" 7 / n(Ry + Ry) = H(W,, W)
= LWy Z"Wy) < I(Wy, Wp: Y™) — nd. (51)
< €

Applying the chain rule of the mutual information |20,
i.e., the messag®/; is asymptotically perfectly secure at theCh. 2.5], we have
eavesdropper.

To summarize, for any givep(u)p(v|u)p(z|v) and any n(Rs+ Ry —0) <
T > 0, any rate triple(Rs, R;,, R))) that satisfies[(40)E(42)
is achievable. Note that

I(Ws, W, YY)

-

s
Il
-

I(W87 Wp7 Yi717 72—1; }/7,)

-

N
Il
-

R, =R, +R). (44)
Eliminating 7', R, and R4 from (@0)-[42) and[{44) using
Fourier-Motzkin elimination, we may conclude that any rate
pair (R, R,) satisfying [1P) is achievable. Applying the standard single-letterization procedurg.(esee

To prove the converse part of the lemma, we first consider 0, Ch. 14.3]) to[(5D) and($2), we have the desired converse
upper bound on the confidential message rateThe perfect result for Lemmdli.

I(Vi; Y3). (52)

|

N
Il
-



APPENDIXB
PROOF OFLEMMA [3

The perfect secrecy conditiof (28) implies that for every

e >0,

H(Wh|Yy) = H(W1) — ne
H(W2|Yﬁ)) Z H(Wg) — Ne.

(53a)

and (53b)

On the other hand, Fano’s inequality [20, Chapter 2.11] iespl

that for everyey > 0,
max[H (Wo[Y7y), H(Wo|Y3;)]

< eglog (2" — 1) + h(ey) :==ndy  (54a)
H(W:[YT,)
< ¢glog (2”R1 —1) + h(eg) :=ndy (54b)
and  H(W,|V3.)
< ¢glog (2”R2 —1) 4 h(ep) :==ndy.  (54c)
Let
Ui = (Wovylizjlayz%,wﬂ) (55)
which satisfies the Markov chain
Ui = Xi = (Yia, Yaa, Y1, Yab). (56)
We first boundR, based on[(54a) as follows:
nRy = H(Wp)
< I(Wo; Y7}) + ndo
= Z I(WQ; leb,ilylib_l) + 7’L50
i=1
< Z I(Wo, Ylib_lv Yz?;,iH? Ylb,i) + ndo
i=1
= I(Ui; Yipi) + ndo. (57)
i=1
Similarly, we have
nRy < I(Wo; }/277) + ndy
= Z I(Wo; Yap,i|Yap i41) + ndo
=1
< I(Wo, Yy, Yot ias Yani) + ndo
=1

=1
Next, we boundR; based on[(53a) an@ (54b) as follows:
nRy = H(Wy)
< [H(W1|Y3}) + ne] + [ndy — H(Wi|Y7L))]
= H (W |Wo,Y3;) + I(Wi; WolY3) — H(W: |7,

+n(e+01)
< H (Wi |Wo,Ya}) + H(Wo|Yay) — H(W:[Wo, V72)
+n(e+01). (59)

10

Substituting [(54b) into[(39), we may obtain
nRy < H(Wi[Wo,Y5;) — H(Wi|Wo, Yi)
+n(e+ 0o + 61)
= I(Wa; Y{,[Wo) — I(Wh; Yo [Wo)
+n(e+ 0o + 61).
Applying [17, Lemma 7],[(80) can be rewritten as

(60)

nky < Z[I(Wl; 3~/1a.,i|W0, ?11;1, Yahiv1)
=1
— I(Wa; Yoo Wo, Yoy Y55 140)] + e + 6o + 1)

< (X Viai|Wo, Vi, Yopit1)

-

LI

— I(Xy; Yau,i|Wo, Yy 1 Yah 110)] + (e + 8o + 61)
(61)

where [61) follows from the Markov chain
Wy — X; — }A}laz — Yop;.

Moreover, due to the Markov chain

(Wo, Viasi, Yapirr) = Vig ' = Yy, ! (62)
we can further bound?; as

NRl S Z [I(Xla }71a,i|WOa }A}lia_1 ) Ylib_la }/2711),1’4—1)

=1

- I(XZ7 Y2b7i|WOa Ylia_15 Ylib_lv }/27;771'-1-1”

+n(e+ 6o+ d1)

[1(X5 VialUs, Yin 1)

I
-
I M:
)

~

(X33 YoilUs, Yo )] +nle+ 80+ 1) (63)

[1(X; 171a,i|Ui) — I(X4; Yap,i|Us)|

I
-
I M:
)

+

la >

(6+50+51)

IV, s Viaa|U) = T(YE, Y YaualU)]

—

3

[1(X; ViealUs) — I(X;; Yau,i|Us)]

I

<
=1
+ n(e + 8o + 51) (64)

where [63) follows from the definition df; in (55), and [64)
fgllows froL'n. the fact thathb,iN ils de~graded with respect to
Yias SOI(Y{, " Yau il Us) < I(Y{, Y5 Yia i U3).

la >

Following the same steps as those [in] (5391-(64), we may
obtain

nRy < Z[I(Xi;%a,i|Ui)

i=1

—I(Xi;yvlb7i|Ui)} +TL(€+50+52). (65)
Finally, applying the standard single-letterization prdare

(e.g., se€l[20, Chapter 14.3]) o 157).1(58).1(64) andl (66y@s
the desired resulf(B7) for Lemnha 3.
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