
1

Fingerprinting with Equiangular Tight Frames
Dustin G. Mixon, Christopher J. Quinn, Student Member, IEEE, Negar Kiyavash, Member, IEEE,
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Abstract—Digital fingerprinting is a framework for marking
media files, such as images, music, or movies, with user-specific
signatures to deter illegal distribution. Multiple users can collude
to produce a forgery that can potentially overcome a finger-
printing system. This paper proposes an equiangular tight frame
fingerprint design which is robust to such collusion attacks. We
motivate this design by considering digital fingerprinting in terms
of compressed sensing. The attack is modeled as linear averaging
of multiple marked copies before adding a Gaussian noise vector.
The content owner can then determine guilt by exploiting corre-
lation between each user’s fingerprint and the forged copy. The
worst-case error probability of this detection scheme is analyzed
and bounded. Simulation results demonstrate the average-case
performance is similar to the performance of orthogonal and
simplex fingerprint designs, while accommodating several times
as many users.

Index Terms—digital fingerprinting, collusion attacks, frames.

I. INTRODUCTION

D IGITAL media protection has become an important is-
sue in recent years, as illegal distribution of licensed

material has become increasingly prevalent. A number of
methods have been proposed to restrict illegal distribution of
media and ensure only licensed users are able to access it.
One method involves cryptographic techniques, which encrypt
the media before distribution. By doing this, only the users
with appropriate licensed hardware or software have access;
satellite TV and DVDs are two such examples. Unfortunately,
cryptographic approaches are limited in that once the content
is decrypted (legally or illegally), it can potentially be copied
and distributed freely.

An alternate approach involves marking each copy of the
media with a unique signature. The signature could be a
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change in the bit sequence of the digital file or some noise-like
distortion of the media. The unique signatures are called fin-
gerprints, by analogy to the uniqueness of human fingerprints.
With this approach, a licensed user could illegally distribute
the file, only to be implicated by his fingerprint. The potential
for prosecution acts as a deterrent to unauthorized distribution.

Fingerprinting can be an effective technique for inhibiting
individual licensed users from distributing their copies of the
media. However, fingerprinting systems are vulnerable when
multiple users form a collusion by combining their copies
to create a forged copy. This attack can reduce and distort
the colluders’ individual fingerprints, making identification of
any particular user difficult. Some examples of potential at-
tacks involve comparing the bit sequences of different copies,
averaging copies in the signal space, as well as introducing
distortion (such as noise, rotation, or cropping).

There are two principal approaches to designing fingerprints
with robustness to collusions. The first approach uses the
marking assumption [1]: that the forged copy only differs
from the colluders’ copies where the colluders’ copies are
different (typically in the bit sequence). In many cases, this is
a reasonable assumption because modifying other bits would
likely render the file unusable (such as with software).

Boneh and Shaw proposed the first known fingerprint design
that uses the marking assumption to identify a member of
the collusion with high probability [1]. Boneh and Shaw’s
method incorporates the results of Chor et al., who investigated
how to detect users who illegally share keys for encrypted
material [2]. Schaathun later showed that the Boneh-Shaw
scheme is more efficient than initially thought and proposed
further improvements [3]. Tardos also proposed a method with
significantly shorter codelengths than those of the Boneh-
Shaw procedure [4]. Several recent works investigate the
relationship between the fingerprinting problem and multiple
access channels, and they calculate the capacity of a “finger-
print channel” [5]–[8]. Barg and Kabatiansky also developed
“parent-identifying” codes under a relaxation of the marking
assumption [9], and there have been a number of other works
developing special classes of binary fingerprinting codes,
including [10]–[15].

The second major approach uses the distortion assumption.
In this regime, fingerprints are noise-like distortions to the
media in signal space. In order to preserve the overall quality
of the media, limits are placed on the magnitude of this distor-
tion. The content owner limits the power of the fingerprint he
adds, and the collusion limits the power of the noise they add
in their attack. When applying the distortion assumption, the
literature typically assumes that the collusion linearly averages
their individual copies to forge the host signal. Also, while
results in this domain tend to accommodate fewer users than
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those with the marking assumption, the distortion assumption
enables a more natural embedding of the fingerprints, i.e., in
the signal space.

Cox et al. introduced one of the first robust fingerprint
designs under the distortion assumption [16]; the robustness
was later analytically proven in [17]. Ergun et al. then showed
that for any fingerprinting system, there is a tradeoff between
the probabilities of successful detection and false positives
imposed by a linear-average-plus-noise attack from sufficiently
large collusions [18]. Specific fingerprint designs were later
studied, including orthogonal fingerprints [19] and simplex
fingerprints [20]. There are also some proposed methods mo-
tivated by CDMA techniques [21], [22]. Jourdas and Moulin
demonstrated that a high rate can be achieved by embed-
ding randomly concatenated, independent short codes [23].
Kiyavash and Moulin derived a lower bound on the worst-
case error probabilities for designs with equal-energy finger-
prints [24]. An error probability analysis of general fingerprint
designs with unequal priors on user collusion is given in [25].
Some works have also investigated fingerprint performance
under attack strategies other than linear averaging [26], [27]
and under alternative noise models [28].

When working with distortion-type fingerprints, some em-
bedding process is typically needed. This process is intended
to make it difficult for the colluders to identify or distort
fingerprints without significantly damaging the corresponding
media in the process. For instance, if the identity basis is
used as an orthogonal fingerprint design, then three or more
colluders can easily identify and remove their fingerprints
through comparisons. Indeed, different signal dimensions have
different perceptual significance to the human user, and one
should vary signal power strengths accordingly. There is a
large body of work in this area known as watermarking,
and this literature is relevant since fingerprinting assigns a
distinct watermark to each user. As an example, one method
of fingerprint embedding is known as spread spectrum water-
marking. Inspired by spread spectrum communications [29],
this technique rotates the fingerprint basis to be distributed
across the perceptually significant dimensions of the sig-
nal [16]. This makes fingerprint removal difficult while at the
same time maintaining acceptable fidelity. For an overview of
watermarking media, see [30], [31].

The present paper proposes a fingerprint design under the
distortion assumption. Specifically, we propose equiangular
tight frames for fingerprint design and analyze their perfor-
mance for the worst-case collusion. Moreover, through simu-
lations, we show that these fingerprints perform comparably
to orthogonal and simplex fingerprints on average, while
accommodating several times as many users. Li and Trappe
[22] also used fingerprints satisfying the Welch bound, but
did not use tight frames, designed the decoder to return the
whole collusion, and did not perform worst case analysis.
Use of compressed sensing for fingerprint design was first
suggested in [32] and [33], follow by [34]. However, [34] and
[33] focused on detection schemes with Gaussian fingerprints.
Additionally, [35] examined combinatorial similarities of fin-
gerprint codes and compressed sensing measurement matrices.

We present the description of the fingerprinting problem

in Section II. In Section III, we discuss this problem from a
compressed sensing viewpoint and introduce the equiangular
tight frame fingerprint design. Using this design, we consider a
detector which determines guilt for each user through binary
hypothesis testing, using the correlation between the forged
copy and the user’s fingerprint as a test statistic. In Section IV,
we derive bounds on the worst-case error probability for this
detection scheme assuming a linear-average-plus-noise attack.
Finally in Section V, we provide simulations that demonstrate
the average-case performance in comparison to orthogonal and
simplex fingerprint designs.

II. PROBLEM SETUP

In this section, we describe the fingerprinting problem and
discuss the performance criteria we will use in this paper. We
start with the model we use for the fingerprinting and attack
processes.

A. Mathematical model

A content owner has a host signal that he wishes to share,
but he wants to mark it with fingerprints before distributing.
We view this host signal as a vector s ∈ RN , and the marked
versions of this vector will be given to M > N users.
Specifically, the mth user is given

xm = s+ fm, (1)

where fm ∈ RN denotes the mth fingerprint. We assume the
fingerprints have equal energy:

γ2 := ‖fm‖2 = NDf , (2)

that is, Df denotes the average energy per dimension of each
fingerprint.

We wish to design the fingerprints {fm}Mm=1 to be robust
to a linear averaging attack. In particular, let K ⊆ {1, . . . ,M}
denote a group of users who together forge a copy of the host
signal. Then their linear averaging attack is of the form

y =
∑
k∈K

αk(s+ fk) + ε,
∑
k∈K

αk = 1, (3)

where ε is a noise vector introduced by the colluders. We
assume ε is Gaussian noise with mean zero and variance Nσ2,
that is, σ2 is the noise power per dimension. The relative
strength of the attack noise is measured as the watermark-
to-noise ratio (WNR):

WNR := 10 log10

(NDf

Nσ2

)
. (4)

This is analogous to signal-to-noise ratio. See Figure 1 for a
schematic of this attack model.

B. Detection

Certainly, the ultimate goal of the content owner is to detect
every member in a forgery coalition. This can prove difficult in
practice, though, particularly when some individuals contribute
little to the forgery, with αk � 1. However, in the real world,
if at least one colluder is caught, then other members could
be identified through the legal process. As such, we consider
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Fig. 1. The fingerprint assignment (1) and forgery attack (3) processes.

focused detection, where a test statistic is computed for each
user, and we perform a binary hypothesis test for each user to
decide whether that particular user is guilty.

With the cooperation of the content owner, the host signal
can be subtracted from a forgery to isolate the fingerprint
combination:

z :=
∑
k∈K

αkfk + ε.

We refer to
∑
k∈K αkfk as the noiseless fingerprint combi-

nation. The test statistic for each user m is the normalized
correlation function:

Tm(z) :=
1

γ2
〈z, fm〉, (5)

where γ2 is the fingerprint energy (2). For each user m, let
H1(m) denote the guilty hypothesis (m ∈ K) and H0(m)
denote the innocent hypothesis (m 6∈ K). Letting τ denote a
correlation threshold, we use the following detector:

δm(τ) :=

{
H1(m), Tm(z) ≥ τ,
H0(m), Tm(z) < τ.

(6)

To determine the effectiveness of our fingerprint design and
focused detector, we will investigate the corresponding error
probabilities.

C. Error analysis

Due in part to the noise that the coalition introduced to the
forgery, there could be errors associated with our detection
method. One type of error we can expect is the false-positive
error, whose probability is denoted PI, in which an innocent
user m (m /∈ K) is found guilty (Tm(z) ≥ τ ). This could
have significant ramifications in legal proceedings, so this error
probability should be kept extremely low. The other error type
is the false-negative error, whose probability is denoted PII, in
which a guilty user (m ∈ K) is found innocent (Tm(z) < τ ).
The probabilities of these two errors depend on the fingerprints
F = {fm}Mm=1, the coalition K, the weights α = {αk}k∈K,
the user m, and the threshold τ :

PI(F,m, τ,K, α) := Prob[Tm(z) ≥ τ |H0(m)],

PII(F,m, τ,K, α) := Prob[Tm(z) < τ |H1(m)].

We will characterize the worst-case error probabilities over all
possible coalitions and users.

We first define the probability of a “false alarm”:

Pfa(F, τ,K, α) := max
m 6∈K

PI(F,m, τ,K, α). (7)

This is the probability of wrongly accusing the innocent user
who looks most guilty. Equivalently, this is the probability of
accusing at least one innocent user. The worst-case type I error
probability is given by

PI(F, τ, α) := max
K

Pfa(F, τ,K, α). (8)

Next, consider the probability of a “miss”:

Pm(F, τ,K, α) := min
m∈K

PII(F,m, τ,K, α).

This is the probability of not accusing the most vulnerable
guilty user. Equivalently, this is the probability of not detecting
any colluders. Note that this event is the opposite of detecting
at least one colluder:

Pd(F, τ,K, α) := 1− Pm(F, τ,K, α). (9)

The worst-case type II error probability is given by

PII(F, τ, α) := max
K

Pm(F, τ,K, α). (10)

The worst-case error probability is the maximum of the two
error probabilities (8) and (10):

Pe(F, τ, α) := max
{

PI(F, τ, α),PII(F, τ, α)
}
.

The threshold parameter τ can be varied to minimize this
quantity, yielding the minmax error probability:

Pminmax(F, α) := min
τ

Pe(F, τ, α). (11)

In Section IV, we will analyze these error probabilities. We
will also investigate average-case performance using simula-
tions in Section V.

D. Geometric figure of merit

Related to the error probabilities is an important geometric
figure of merit. For each user m, consider the distance between
two types of potential collusions: those of which m is a
member, and those of which m is not. Intuitively, if every
noiseless fingerprint combination involving m is distant from
every fingerprint combination not involving m, then even with
moderate noise, there should be little ambiguity as to whether
the mth user was involved or not.

To make this precise, for each user m, we define the “guilty”
and “not guilty” sets of noiseless fingerprint combinations:

G(K)
m :=

{
1

|K|
∑
k∈K

fk : m ∈ K⊆{1, . . . ,M}, |K|≤K
}
,

¬G(K)
m :=

{
1

|K|
∑
k∈K

fk : m 6∈ K⊆{1, . . . ,M}, |K|≤K
}
.

In words, G(K)
m is the set of size-K fingerprint combinations

of equal weights (αk = 1
K ) which include m, while ¬G(K)

m

is the set of combinations which do not include m. Note that
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in our setup (3), the αk’s were arbitrary nonnegative values
bounded by one. We will show in Section IV that the best
attack from the collusion’s perspective uses equal weights
(αk = 1

K ) so that no single colluder is particularly vulnerable.
For this reason, we use equal weights to obtain bounds on the
distance between these two sets, which we define to be

dist(G(K)
m ,¬G(K)

m )

:= min{‖x− y‖2 : x∈G(K)
m , y∈¬G(K)

m }. (12)

In Section III, we find a lower bound on this distance.
Another related parameter is the worst-case coherence,

which is the largest inner product between any two distinct
fingerprints:

µ := max
i 6=j
|〈fi, fj〉|. (13)

Intuitively, we want this value to be small, as this would
correspond to having the fingerprints spaced apart. In the
following section, we discuss a way of designing fingerprints
which we will later evaluate using the above criteria.

III. ETF FINGERPRINT DESIGN

In this section, we introduce a fingerprint design based
on equiangular tight frames (ETFs). We will discuss some
important properties of ETFs and use them to determine a
lower bound on the distance (12) from our geometric figure
of merit. But first, we consider the fingerprinting problem from
a compressed sensing viewpoint.

A. Compressed sensing viewpoint

We wish to design fingerprints in a way that will enable us to
identify the small group of users who take part in a collusion.
To do this, we consider a matrix-vector formulation of the
attack (3) without noise, i.e., with ε = 0. Specifically, let F
denote the N ×M matrix whose columns are the fingerprints
{fm}Mm=1, and let the M × 1 vector α denote the weights
used in the collusion’s linear average. Note that αm is zero if
user m is innocent, otherwise it’s given by the corresponding
coefficient in (3). This gives

z = Fα.

Using this representation, the detection problem can be in-
terpreted from a compressed sensing perspective. Namely, α
is a K-sparse vector that we wish to recover. Under certain
conditions on the matrix F , we may “sense” this vector with
N < M measurements in such a way that the K-sparse vector
is recoverable:

Theorem 1 ([36]). Suppose an N ×M matrix F satisfies the
restricted isometry property (RIP):

(1− δ2K)‖α‖22 ≤ ‖Fα‖22 ≤ (1 + δ2K)‖α‖22 (14)

for every 2K-sparse vector α ∈ RM , where δ2K ≤
√

2 − 1.
Then for every K-sparse vector α ∈ RM ,

α = arg min ‖α̂‖1 subject to Fα̂ = Fα.

Thus, if F satisfies RIP (14), we can recover the K-sparse
vector α ∈ RM by linear programming. For the attack model

with adversarial noise, z = Fα + ε, if F satisfies RIP (14),
linear programming will still produce an estimate α̂ of the
sparse vector [37]. However, the distance between α̂ and α
will be on the order of 10 times the size of the error ε.
Due to potential legal ramifications of false accusations, this
order of error is not tolerable. Note that these methods (both
for the noiseless and noisy cases) recover the entire vector
α; equivalently, they identify the entire collusion. That said,
we will investigate RIP matrices for fingerprint design, but to
minimize false accusations, we will use focused detection (6)
to identify colluders.

B. Geometric figure of merit for RIP matrices

We now investigate how well RIP matrices perform with
respect to our geometric figure of merit. Without loss of
generality, we assume the fingerprints are unit norm; since they
have equal energy γ2, the fingerprint combination z can be
normalized by γ before the detection phase. With this in mind,
we have the following a lower bound on the distance (12)
between the “guilty” and “not guilty” sets corresponding to
any user m:

Theorem 2. Suppose fingerprints F = [f1, . . . , fM ] satisfy
the restricted isometry property (14). Then

dist(G(K)
m ,¬G(K)

m ) ≥

√
1− δ2K
K(K − 1)

. (15)

Proof: Take K,K′ ⊆ {1, . . . ,M} such that |K|, |K′| ≤ K
and m ∈ K\K′. Then the left-hand inequality of the restricted
isometry property (14) gives∥∥∥∥ 1

|K|
∑
m∈K

fm −
1

|K′|
∑
m∈K′

fm

∥∥∥∥2
=

∥∥∥∥( 1
|K|−

1
|K′|
)∑
m∈K∩K′

fm + 1
|K|

∑
m∈K\K′

fm − 1
|K′|

∑
m∈K′\K

fm

∥∥∥∥2
≥ (1− δ|K∪K′|)

(
|K ∩ K′|

(
1
|K|−

1
|K′|
)2

+ |K\K′|
|K|2 + |K′\K|

|K′|2

)
=

1− δ|K∪K′|
|K||K′|

(
|K|+ |K′| − 2|K ∩ K′|

)
. (16)

For a fixed |K|, we will find a lower bound for

1

|K|

(
|K|+ |K′| − 2|K ∩ K′|

)
= 1 +

|K| − 2|K ∩ K′|
|K′|

. (17)

Since we can have |K ∩K′| > |K|
2 , we know |K|−2|K∩K′|

|K′| < 0

when (17) is minimized. That said, |K′| must be as small
as possible, that is, |K′| = |K ∩ K′|. Thus, when (17) is
minimized, we must have

1

|K|

(
|K|+ |K′| − 2|K ∩ K′|

)
=

|K|
|K ∩ K′|

− 1,

i.e., |K ∩K′| must be as large as possible. Since m ∈ K \K′,
we have |K ∩ K′| ≤ |K| − 1. Therefore,

1

|K|

(
|K|+ |K′| − 2|K ∩ K′|

)
≥ 1

|K| − 1
. (18)
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Substituting (18) into (16) gives∥∥∥∥ 1
|K|

∑
m∈K

fm − 1
|K′|

∑
m∈K′

fm

∥∥∥∥2 ≥ 1− δ|K∪K′|
|K|(|K| − 1)

≥ 1− δ2K
K(K − 1)

.

Since this bound holds for every m, K and K′ with m ∈ K\K′,
we have (15).

Note that (15) depends on δ2K , and so it’s natural to ask
how small δ2K can be for a given fingerprint design. Also,
which matrices even satisfy RIP (14)? In general, we say F
is (K, δ)-RIP if for every K-sparse vector x,

(1− δ)‖x‖22 ≤ ‖Fx‖22 ≤ (1 + δ)‖x‖22.

Proving that a given matrix F is (K, δ)-RIP involves calcu-
lating eigenvalues of all size-K submatrices, which is com-
putationally difficult for large matrices. The following lemma
makes this explicit:

Lemma 3. The smallest δ for which F is (K, δ)-RIP is

δmin := max
K⊆{1,...,M}
|K|=K

‖F ∗KFK − IK‖2. (19)

Proof: We first note that F being (K, δ)-RIP trivially
implies that F is (K, δ + ε)-RIP for every ε > 0. It therefore
suffices to show that (i) F is (K, δmin)-RIP, and (ii) F is not
(K, δ)-RIP for any δ < δmin. To this end, pick some K-sparse
vector x. To prove (i), we need to show that

(1− δmin)‖x‖2 ≤ ‖Fx‖2 ≤ (1 + δmin)‖x‖2. (20)

Let K ⊆ {1, . . . ,M} be the size-K support of x, and let xK
be the corresponding subvector. Then rearranging (20) gives

δmin ≥
∣∣∣‖Fx‖2‖x‖2 − 1

∣∣∣ =
∣∣∣ 〈FKxK,FKxK〉−〈xK,xK〉‖xK‖2

∣∣∣
=
∣∣∣〈 xK
‖xK‖ , (F

∗
KFK − IK) xK

‖xK‖

〉∣∣∣. (21)

Since, by definition, δmin maximizes (21) over all supports K
and entry values xK, the inequality necessarily holds; that is, F
is necessarily (K, δmin)-RIP. Furthermore, equality is achieved
by the support K which maximizes (19) and the eigenvector
xK corresponding to the largest eigenvalue of F ∗KFK − IK ;
this proves (ii).

Since calculating eigenvalues for all size-K submatrices
is computationally difficult, the Gershgorin circle theorem is
often used to obtain a coarse bound in demonstrating RIP:

Theorem 4 (Gershgorin circle theorem [38]). Take a K ×K
matrix A. Then for each eigenvalue λ of A, there exists an
i ∈ {1, . . . ,K} such that λ lies in the complex disk centered
at Aii of radius

∑
j 6=i |Aij |.

This leads to the following well-known bound on δ2K in
terms of worst-case coherence:

Lemma 5. Given a matrix F with unit-norm columns, then

δ2K ≤ (2K − 1)µ, (22)

where µ is the worst-case coherence (13).

Proof: From Lemma 3, the optimal δ2K is

δ2K := max
K⊆{1,...,M}
|K|=2K

‖F ∗KFK − IK‖2.

In words, given an ensemble of fingerprints, we consider
each subcollection of size 2K, subtract the identity from their
2K×2K Gram matrix and calculate the largest eigenvalue; the
largest eigenvalue we find over all subcollections is what we
call δ2K . Since the fingerprints have unit norm, every Gram
matrix of 2K fingerprints will have ones on the diagonal, and
the absolute values of the off-diagonal entries will be no more
than µ. Therefore, by applying the Gershgorin circle theorem
(Theorem 4) to δ2K , we obtain (22).

Combining Theorem 2 and Lemma 5 yields a coherence-
based lower bound on the distance between the “guilty” and
“not guilty” sets corresponding to any user m:

Theorem 6. Suppose fingerprints F = [f1, . . . , fM ] are unit-
norm with worst-case coherence µ. Then

dist(G(K)
m ,¬G(K)

m ) ≥

√
1− (2K − 1)µ

K(K − 1)
. (23)

We would like µ to be small, so that the lower bound (23)
is as large as possible. But for a fixed N and M , the worst-
case coherence of unit-norm fingerprints cannot be arbitrarily
small; it necessarily satisfies the Welch bound [39]:

µ ≥

√
M −N
N(M − 1)

.

Equality in the Welch bound occurs precisely in the well-
studied case where the fingerprints form an equiangular tight
frame (ETF). An equiangular tight frame is a N ×M matrix
which has orthogonal rows of equal norm and unit-norm
columns whose inner products have equal magnitude [40].

One type of ETF has already been proposed for fingerprint
design: the simplex [20]. The simplex is an ETF with M =
N + 1 and µ = 1

N . In fact, [20] gives a derivation for the
value of the distance (12) in this case:

dist(G(K)
m ,¬G(K)

m ) =

√
1

K(K − 1)

M

M − 1
. (24)

The bound (23) is lower than (24) by a factor of
√

1− 2K
N+1 ,

and for practical cases in which K � N , they are particularly
close. Overall, ETF fingerprint design is a natural generaliza-
tion of the provably optimal simplex design of [20].

C. Existence of RIP matrices

We now discuss the existence of RIP matrices as well as
the construction of a specific class of ETFs. Given the RIP
definition (14), it might not be clear how many matrices
satisfy this condition. Surprisingly, RIP matrices are abun-
dant; for any δ2K , there exists a constant C such that if
N ≥ CK log(M/K), then matrices of Gaussian or Bernoulli
(±1) entries satisfy RIP with high probability. However, as
mentioned in the previous section, checking if a given matrix
satisfies RIP is computationally difficult.

Fortunately, there are some deterministic constructions of
RIP matrices, such as [41], [42]. However the performance,
measured by how large K can be, is not as good as the
random constructions; the random constructions only require
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F =
1√
3


+ − + − + − + −
+ + − − + − + −
+ − − + + − + −

+ + − − + + − −
+ − − + + + − −

+ − − + + − − +

 .

Fig. 2. The equiangular tight frame constructed in Example 1.

N = Ω(K logaM), while the deterministic constructions
require N = Ω(K2). The specific class of ETFs additionally
requires M ≤ N2 [40].

Whether N scales as K versus K2 is an important
distinction between random and deterministic RIP matri-
ces in the compressed sensing community. However, this
difference offers no advantage for fingerprinting. Ergun et
al. showed that for any fingerprinting system, a collusion of
K = O(

√
N/ lnN) is sufficient to overcome the fingerprints

[18]. This means with such a K, the detector cannot, with
high probability, identify any attacker without incurring a
significant false-alarm probability Pfa (7). This constraint
is more restrictive than deterministic ETF constructions, as√
N/ lnN <

√
N � N/ logaM . Consequently, random

RIP constructions are no better for fingerprint design than
deterministic constructions.

Ergun’s bound indicates that with a large enough K, col-
luders can overcome any fingerprinting system and render our
detector unreliable. We now show that if K is sufficiently
large, the colluders can exactly recover the original signal s:

Lemma 7. Suppose the real equal-norm fingerprints {fk}k∈K
do not lie in a common hyperplane. Then s is the unique
minimizer of

g(x) :=
∑
k∈K

(
‖x− (s+fk)‖2− 1

|K|
∑
k′∈K

‖x− (s+fk′)‖2
)2

.

Proof: Note that g(x) ≥ 0, with equality precisely when
‖x− (s + fk)‖2 is constant over k ∈ K. Since the fk’s have
equal norm, g(s) = 0. To show that this minimum is unique,
suppose g(x) = 0 for some x 6= s. This implies that the values
‖x − (s + fk)‖2 are constant, with each being equal to their
average. Moreover, since

‖x− (s+ fk)‖2 = ‖x− s‖2 − 2〈x− s, fk〉+ ‖fk‖2,

we have that 〈x− s, fk〉 is constant over k ∈ K, contradicting
the assumption that the fingerprints {fk}k∈K do not lie in a
common hyperplane.

D. Construction of ETFs

Having established that deterministic RIP constructions are
just as good as random constructions for fingerprint design, we
now consider a particular method for constructing ETFs. Note
that ETFs are notoriously difficult to construct in general, but
a relatively simple approach was recently introduced in [42].
The approach uses a tensor-like combination of a Steiner
system’s adjacency matrix and a regular simplex, and it is

general enough to construct infinite families of ETFs. We
illustrate the construction with an example:

Example 1 (see [42]). To construct an ETF, we will use
a simple class of Steiner systems, namely (2, 2, v)-Steiner
systems, and Hadamard matrices with v rows. In particular,
(2, 2, v)-Steiner systems can be thought of as all possible pairs
of a v-element set [43], while a Hadamard matrix is a square
matrix of ±1’s with orthogonal rows [43].

In this example, we take v = 4. The adjacency matrix of
the (2, 2, 4)-Steiner system has

(
4
2

)
= 6 rows, each indicating

a distinct pair from a size-4 set:

A =


+ +
+ +
+ +

+ +
+ +

+ +

 . (25)

To be clear, we use “+/−” to represent ±1 and an empty
space to represent a 0 value. Also, one example of a 4 × 4
Hadamard matrix is

H =


+ + + +
+ − + −
+ + − −
+ − − +

 . (26)

We now build an ETF by replacing each of the “+” entries
in the adjacency matrix (25) with a row from the Hadamard
matrix (26). This is done in such a way that for each column
of A, distinct rows of H are used; in this example, we use
the second, third, and fourth rows of H . After performing this
procedure, we normalize the columns, and the result is a real
ETF F of dimension N = 6 with M = 16 fingerprints (see
Figure 2).

We will use this method of ETF construction for simu-
lations in Section V. Specifically, our simulations will let
the total number of fingerprints M range from 2N to 7N ,
a significant increase from the conventional N + 1 simplex
and N orthogonal fingerprints. Note, however, that unlike
simplex and orthogonal fingerprints, there are limitations to
the dimensions that admit real ETFs. For instance, the size
of a Hadamard matrix is necessarily a multiple of 4, and the
existence of Steiner systems is rather sporadic. Fortunately,
identifying Steiner systems is an active area of research, with
multiple infinite families already characterized and alternative
construction methods developed [42], [44].
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IV. ERROR ANALYSIS

A. Analysis of type I and type II errors

We now investigate the worst case errors involved with
using ETF fingerprint design and focused correlation detection
under linear averaging attacks. Recall that the worst-case type
I error probability (8) is the probability of falsely accusing the
most guilty-looking innocent user. Also recall that the worst-
case type II error probability (10) is the probability of not
accusing the most vulnerable guilty user.

Theorem 8. Suppose the fingerprints F = {fm}Mm=1 form an
equiangular tight frame. Then the worst-case type I and type
II error probabilities, (8) and (10), satisfy

PI(F, τ, α) ≤ Q
[
γ

σ

(
τ − µ

)]
,

PII(F, τ, α) ≤ Q
[
γ

σ

((
(1 + µ) max

k∈K
αk − µ

)
− τ
)]
,

where Q(x) := 1√
2π

∫∞
x
e−u

2/2du and µ =
√

M−N
N(M−1) .

Proof: Under hypothesis H0(m), the test statistic for the
detector (6) is

Tz(m) =
1

γ2

〈∑
n∈K

αnfn + ε, fm

〉
=
∑
n∈K

αn(±µ) + ε′,

where ε′ is the projection of noise ε/γ onto the normed vector
fm/γ, and, due to symmetry of the variance of ε in all di-
mensions, ε′ ∼ N (0, σ2/γ2). Thus, under hypothesis H0(m),
Tz(m) ∼ N (

∑
n∈K αn(±µ), σ2/γ2). We can subtract the

mean and divide by the standard deviation to obtain:

Prob [Tm(z) ≥ τ |H0(m)] = Q

(
γ

σ

[
τ −

(∑
n∈K

αn(±µ)

)])
≤ Q(

γ

σ
(τ − µ)). (27)

Note that Q(x) is a decreasing function. The bound (27) is
obtained by setting all of the coefficients of the coherence to
be positive.

Likewise, under hypothesis H1(m), the test statistic is

Tz(m) =
1

γ2

〈∑
n∈K

αnfn+ε, fm

〉
= αm+

∑
n∈K\{m}

αn(±µ)+ε′.

Thus, under hypothesis H1(m),

Tz(m) ∼ N

αm +
∑

n∈K\{m}

αn(±µ),
σ2

γ2

 .

Since 1−Q(x) = Q(−x), the type II error probability can be
bounded as

Prob [Tm(z) < τ ] = Q

−γ
σ

τ −
αm +

∑
n∈K\{m}

αn(±µ)


≤ Q

(γ
σ

([αm(1 + µ)− µ]− τ)
)
.

We can now evaluate the worst-case errors (8) and (10). For
type I errors, with m /∈ K:

PI(F, τ, α) = max
K

max
m 6∈K

PI(F,m, τ,K, α)

= max
K

max
m 6∈K

Prob [Tm(z) ≥ τ |H0(m)]

≤ max
K

max
m 6∈K

Q(
γ

σ
(τ − µ)).

= Q(
γ

σ
(τ − µ)).

For type II errors,

PII(F, τ, α) = max
K

min
m∈K

PII(F,m, τ,K, α)

= max
K

min
m∈K

Prob [Tm(z) < τ ]

≤ max
K

min
m∈K

Q(
γ

σ
([αm(1 + µ)− µ]− τ))

= Q(
γ

σ
([max
m∈K

αm(1 + µ)− µ]− τ)).

The last equation follows since once the α’s are fixed, the
actual coalition K does not matter.

We can further maximize over all possible weightings α:

PI(F, τ) = max
α

PI(F, τ, α)

≤ Q(
γ

σ
(τ − µ))

PII(F, τ) = max
α

PII(F, τ, α)

≤ max
α

Q(
γ

σ
([max
m∈K

αm(1 + µ)− µ]− τ))

= Q(
γ

σ
([min

α
max
m∈K

αm(1+µ)−µ]−τ))

= Q(
γ

σ
([

1

K
(1+µ)−µ]−τ)).

Thus, the vector α which minimizes the value of its maximum
element is the uniform weight vector. This motivates the
attackers’ use of a uniformly weighted coefficient vector α
to maximize the probability that none of the members will be
caught.

B. Minimax error analysis

From a detection standpoint, an important criterion is the
minimax error probability (11). The threshold τ trades off type
I and type II errors. Thus, there is a value of τ , denoted
by τ∗, which minimizes the maximum of the probabilities
of the two error types. Since the bound for the type I error
probability is independent of α, and the bound for the type
II error probability is maximized with a uniform weighting,
assume this to be the case.
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Theorem 9. The minmax probability of error (11) can be
bounded as:

Q

(
d∗low

2

)
≤ Pminmax(F, α) ≤ Q

(
d∗up
2

)
, (28)

where

d∗low :=

√
M
M−1

√
NDf

σ
√
K(K − 1)

d∗up :=

√
NDf

σK

(
1− (2K − 1)µ

)
.

Note that for orthogonal and simplex fingerprints, the min-
max errors are both of the form

Pminmax(F, α) = Q

(
d∗(K)

2

)
.

For orthogonal fingerprints [20],

d∗(K) =

√
NDf

σK
,

which is better than d∗low(K) (the Q function is decreasing).
For simplex fingerprints, d∗(K) is slightly better than both
[20]:

d∗(K) =

√
NDf

σK

M

M − 1
.

Proof: The lower bound is the sphere packing lower
bound [24]. For the upper bound,

Pe(F, τ, α) = max{PI(F, τ, α), PII(F, τ, α)}

≤ max{Q(
γ

σ
(τ−µ)), Q(

γ

σ
([

1

K
(1+µ)−µ]−τ))}.

Since the test statistic Tz(m) is normally distributed with the
same variance under either of the hypotheses H0(m) and
H1(m), the value of τ that minimizes this upper bound is
the average of the means µ and 1+µ

K − µ, namely τ∗ := 1+µ
2K .

Using this τ∗ and recalling (2), we have

Pminmax(F, α) = min
τ

Pe(F, τ, α) = Pe(F, τ
∗, α)

≤ Q

(
γ

σ

(
τ∗ − µ

))
= Q

(√
NDf

2σK

(
1− (2K − 1)µ

))
= Q(d∗up(K)/2).

Consider the regime where N is large, M grows linearly
or faster than N , and WNR is constant (in particular 0, so
Df = σ2). Then µ ≈ 1/

√
N ,

d∗low ≈
√
N

K
, and d∗up ≈

√
N

K

(
1− 2K√

N

)
=

√
N

K
− 2.

If K �
√
N , then both bounds go to infinity so

Pminmax(F, α)→ 0. Also, the geometric figure of merit (12)
then behaves as

dist(G(K)
m ,¬G(K)

m ) ≈ 1

K
≈
√
Nd∗up.

If K is proportional to
√
N , then Pminmax(F, α) is bounded

away from 0.
We can also compute the error exponent for this test:

e(F, τ∗, α) := − lim
N→∞

1

N
ln Pe(F, τ

∗, α).

Corollary 10. If M � N � K2, then the error exponent is

e(F, τ∗, α) =
1

8K2
. (29)

Proof: The proof follows by applying the asymptotic
equality lnQ(t) ∼ − t

2

2 as t → ∞ to the bounds in (28).
The bounds are asymptotically equivalent.

Note that this error exponent is the same as in the simplex
case [20]. As K →∞, the error exponent (29) goes to zero.

V. SIMULATIONS

In Section IV, the worst-case error probabilities were ana-
lyzed, where the worst case was over all collusions. Here we
investigate average case behavior. We examine the probability
of detecting at least one guilty user, Pd (9), as a function of
K with the false-alarm Pfa (7) fixed below a threshold. The
threshold can be interpreted as the (legally) allowable limit
for probability of false accusation. We compare the average
case performance of ETF fingerprints, simplex fingerprints
[20], and orthogonal fingerprints [16] for four dimension sizes
N ∈ {195, 651, 2667, 8128}. The ETF construction described
in Example 1 was used. The results demonstrate that ETF
fingerprints perform almost as well as both orthogonal and
simplex fingerprints, while accommodating several times as
many users. We now describe the design of the simulations.

A. Design

For a fixed signal dimension size N , ETF, orthogonal, and
simplex fingerprints were created. The ETF fingerprint design
was constructed using the method shown in Example 1. For
N = 195, a (2, 7, 91)-Steiner system was used [44], yielding
M = 1456 fingerprints. For N = 651 and N = 2667, the
Steiner systems were constructed using projective geometry,
with M = 2016 and M = 8128 respectively [42]. For
N = 8128, a (2, 2, 27)-Steiner system was used, giving
M = 16, 384 fingerprints [42].

The orthogonal fingerprint design was constructed using
an identity matrix. For actual embedding, the orthogonal
fingerprints should be randomly rotated to ensure difficulty in
removing them. One method to achieve this is to randomly
generate i.i.d. Gaussian vectors in N dimensional space,
orthogonalize them, then scale them to have the same energy
[16]. For detection purposes, however, rotations of the basis
vectors are inconsequential.

The simplex fingerprint design was constructed using the
following method of sequentially fixing the values of the fin-
gerprints in each dimension. The vectors of a regular simplex
are equidistant from the center, having the same power, and
have inner products equal to − 1

N [45]. Letting the first vector
have a one in the first row and zeros in the other rows forces
every other vector’s first element to be − 1

N to satisfy the inner
product constraint. For the second vector, choose its second
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element to satisfy the power constraint and set the elements of
the remaining rows to zero. Using the inner product constraint,
we can find the value of the second element for all other
vectors. Repeating these steps constructs a regular simplex.

Linear collusion attacks were simulated separately for the
different designs and collusion sizes K. For each attack, K
of the M fingerprints were randomly chosen and uniformly
averaged. Next, an i.i.d. Gaussian noise vector was added with
per-sample noise power σ2 = Df , corresponding to a WNR
(4) of 0 dB [19].

The test statistics Tz(m) (5) were then computed for each
user m. For each threshold τ , it was determined whether there
was a detection event (at least one colluder with Tz(m) > τ )
and/or a false alarm (at least one innocent user with Tz(m) >
τ ). In total, 50,000 attacks were simulated, and the detection
and false alarm counts were averaged. Then the minimal τ
value was selected for which Pfa ≤ 10−3. This induced the
corresponding Pd.

B. Results

We ran experiments with four different dimension sizes
N ∈ {195, 651, 2667, 8128}. The noise level was kept at
WNR = 0 dB. The value of K varied between 1 and suffi-
ciently large values so Pd approached zero. Plots for the prob-
ability of detection Pd as a function of the size of the coalition
K are shown in Figures 3–6 for N ∈ {195, 651, 2667, 8128}
respectively. The largest values of K for which at least one
attacker can be caught with probability (nearly) one under
the Pfa constraint are about 2, 5, 11, and 21 respectively.
Overall, ETF fingerprints perform comparably to orthogonal
and simplex fingerprints while accommodating many more
users.
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function of the number of colluders (K). The threshold τ is picked to be the
minimum threshold to fix Pfa ≤ 10−3. The WNR is 0 dB and N = 195.
The (maximum) number of fingerprints were 195 for the orthogonal, 196 for
the simplex, and 1456 for the ETF construction.

Fig. 4. A plot of the probability of detecting at least one colluder (Pd) as a
function of the number of colluders (K). The threshold τ is picked to be the
minimum threshold to fix Pfa ≤ 10−3. The WNR is 0 dB and N = 651.
The (maximum) number of fingerprints were 651 for the orthogonal, 652 for
the simplex, and 2016 for the ETF construction.

Fig. 5. A plot of the probability of detecting at least one colluder (Pd) as a
function of the number of colluders (K). The threshold τ is picked to be the
minimum threshold to fix Pfa ≤ 10−3. The WNR is 0 dB and N = 2667.
The (maximum) number of fingerprints were 2667 for the orthogonal, 2668
for the simplex, and 8128 for the ETF construction.

Fig. 6. A plot of the probability of detecting at least one colluder (Pd) as a
function of the number of colluders (K). The threshold τ is picked to be the
minimum threshold to fix Pfa ≤ 10−3. The WNR is 0 dB and N = 8128.
The (maximum) number of fingerprints were 8128 for the orthogonal, 8129
for the simplex, and 16, 384 for the ETF construction.
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