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Multiple Access Channel with Partial and

Controlled Cribbing Encoders
Haim Permuter and Himanshu Asnani

Abstract

In this paper we consider a multiple access channel (MAC) with partial cribbing encoders. This means that

each of two encoders obtains a deterministic function of theother encoder output with or without delay. The partial

cribbing scheme is especially motivated by the additive noise Gaussian MAC since perfect cribbing results in the

degenerated case of full cooperation between the encoders and requires an infinite entropy link. We derive a single

letter characterization of the capacity of the MAC with partial cribbing for the cases of causal and strictly causal

partial cribbing. Several numerical examples, such as quantized cribbing, are presented. We further consider and derive

the capacity region where the cribbing depends on actions that are functions of the previous cribbed observations.

In particular, we consider a scenario where the action is “tocrib or not to crib” and show that a naive time-sharing

strategy is not optimal.

Index Terms

Backward decoding, Block-Markov coding, Cribbing encoders, Cribbing with actions, Gaussian MAC, Quantized

cribbing, Partial cribbing, Rate splitting, Superposition codes, “To crib or not to crib” .

I. I NTRODUCTION

In his remarkable dissertation [1], Willems introduced a new problem of the multiple access channel (MAC) with

cribbing encoders and derived its capacity region using a novel decoding technique called “backward decoding”.

Cribbing encoder refers to the case where the encoder knows perfectly the other output encoder, possibly with delay

or lookahead. The work by Willems on MACs with cribbing encoders has been extended to the interference channel

[2], and to state-dependent MAC [3]. However, for the Gaussian case, where the encoder output is of a continuous

alphabet, the cribbing idea is not an interesting case [4] since it implies a full cooperation between the encoders

regardless of the delay of the cribbing. This is due to the fact that in a single epoch time a noiseless continuous

signal may transmit an infinite amount of information. Motivated by this fact, we introduce in this paper “partial

cribbing” , where one encoder only knows a quantized version, or, more generally, a deterministic function of the

coded output of other encoder.

In this paper we consider two kinds of partial cribbing: causal and strictly-causal. Causal partial cribbing means

that at timei the encoder observes (and uses) the partial cribbing signalwithout delay, i.e.,Zi. Strictly-causal
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Fig. 1. Partial (deterministic-function) cribbing. Each encoder observes a deterministic function of the other encoder with or without delay.

Encoder 1 observes the cribbing in a strictly causal way, i.e., with delay, and Encoder 2 observes the cribbing causally,i.e., without delay. The

setting corresponds to Case B in this paper.

partial cribbing means that at timei the encoder observes the partial cribbing with a delay, i.e., Zi−1. We derive

the capacity region for two different cases according to thecausality or the strictly causality of the cribbing

Case A: The cribbing for both encoders isstrictly-causal.

Case B: The cribbing for one encoder iscausaland for the other encoder isstrictly-causal.

The setting that is depicted in Fig. 1 is the case where one encoder has causal partial cribbing and the other

strictly causal partial cribbing, namely Case B. To some extent, the partial cribbing problem is related to the semi-

deterministic relay channel [5] which was solved using the partial decode and forward technique [6]. The partial

cribbing setting has a similar structure to the semi-deterministic relay channel where Encoder 2 plays the role of

relay and receives a deterministic function of the output ofEncoder 1. However, the MAC with partial cribbing is

different from the semi-deterministic relay in the sense that Encoder 2 has its own message to transmit in addition

to its role of relaying information from Encoder 1. Another related problem is the semi-deterministic broadcast

channel [7], where one of the receivers obtains a deterministic function of the input channel. In our problem Encoder

1 “is broadcasting” to Encoder 2 and to the decoder hence thispart of the communication resembles the semi-

deterministic broadcast channel. However, in our problem of partial cribbing only the decoder is actually required

to decode the message error-free.

The coding scheme presented here for the partial cribbing uses the same techniques that were used for the perfect

cribbing, i.e., block Markov coding, Shannon’s strategies, super position coding, and backward decoding, and in

addition to that, we use rate splitting in the code design. Rate splitting is needed since Encoder 2 can decode only

part of the message transmitted by Encoder 1.

Recently, several problems on “action” in information theory have been considered in [8]–[11]. In these problems

the side information is not freely available but depends on an action that has a cost. The solution of partial cribbing

allows us to consider the case where the cribbing is action dependent. Namely, there is an action that is a function of
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the previously cribbed observations and this action determines the current cribbing function. This kind of questions

may be raised in cognitive communication systems where sensing other users signals is a resource with a cost. In

particular we show through a simple example where the actionis “to crib or not to crib” that a time-sharing action

is not necessarily optimal.

The remainder of the paper is organized as follows: In Section II, we introduce the setting of MAC with partial

cribbing and state the capacity region for strictly-causal(Case A), as well as mixed causal and strictly-causal (Case

B). In sections III and IV respectively we provide the converse and achievability proofs of the capacity region for

each case of partial cribbing. In Section V we consider the case where a common message, known to the encoders,

needs to be transmitted to the decoder in addition to the private messages. We show that no additional auxiliary

random variable is needed to characterize the capacity region since the partial cribbing is utilized via generating a

common message between the users. In Section VI we consider the case where one of the encoders has no message

to send; hence it becomes a special case of the semi-deterministic relay channel with and without delay. We show

that indeed the region obtained via partial cribbing and theregion obtained via a semi-deterministic relay channel

coincide. In Section VII we consider a Gaussian MAC with quantized cribbing. We provide a simple achievable

scheme and show numerically that even with a few bit quantizer we obtain an achievable region that is very close

to the perfect cribbing capacity region. In Section VIII we consider a scenario where a limited-resource action

controls the cribbing. In particular, we investigate an example where the action is “to crib or not to crib” and solve

it analytically. In Section IX we conclude the paper and suggest some research directions that have not been yet

solved such as noncausal partial cribbing, noisy cribbing and a few action related problems.

II. PROBLEM DEFINITION AND MAIN RESULT

The MAC setting consists of two transmitters (encoders) andone receiver (decoder). Each transmitterl ∈ {1, 2}
chooses an indexml uniformly from the set{1, ..., 2nRl} and independently of the other transmitter. The input to the

channel from encoderl ∈ {1, 2} is denoted by{Xl,1, Xl,2, Xl,3, ...}. Encoder 1 and Encoder 2 obtain a deterministic

function of the output of Encoder 2 and 1, respectively, of the form Z2,i = g2(X2,i), andZ1,i = g1(X1,i). The

output of the channel is denoted by{Y1, Y2, Y3, ...}. The channel is characterized by a conditional probability

P (yi|x1,i, x2,i). The channel probability does not depend on the time indexi and is memoryless, i.e.,

P (yi|xi
1, x

i
2, y

i−1) = P (yi|x1,i, x2,i), (1)

where the superscripts denote sequences in the following way: xi
l = (xl,1, xl,2, ..., xl,i), l ∈ {1, 2}. Since the settings

in this paper do not include feedback from the receiver to thetransmitters, i.e.,P (x1,i, x2,i|xi−1
1 , xi−1

2 , yi−1) =

P (x1,i, x2,i|xi−1
1 , xi−1

2 ), Equation (1) implies that

P (yi|xn
1 , x

n
2 , y

i−1) = P (yi|x1,i, x2,i). (2)

Definition 1: A (2nR1 , 2nR2 , n) codewith partial cribbing , as shown in Fig. 1, consists at timei of an encoding

function at Encoder 1

Case A, B, f1,i : {1, ..., 2nR1} × Zi−1
2 7→ X1,i, (3)
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and an encoding function at Encoder 2 that changes accordingto the following case settings

Case A f2,i : {1, ..., 2nR2} × Zi−1
1 7→ X1,i,

Case B f2,i : {1, ..., 2nR2} × Zi
1 7→ X1,i, (4)

and a decoding function,

g : Yn 7→ {1, ..., 2nR1} × {1, ..., 2nR2}. (5)

The average probability of errorfor (2nR1 , 2nR2 , n) code is defined as

P (n)
e =

1

2n(R1+R2)

∑

m1,m2

Pr{g(Y n) 6= (m1,m2)|(m1,m2) sent}. (6)

A rate (R1, R2) is said to beachievablefor the encoder with partial cribbing if there exists a sequence of

(2nR1 , 2nR2 , n) codes withP (n)
e → 0. The capacity regionof the MAC is the closure of all achievable rates.

The following theorem describes the capacity region of MAC with partial cribbing for two different cases of

causality.

Let us define the following regionsRA,RB , which are contained inR2
+, namely, contained in the set of

nonnegative two dimensional real numbers.

RA =











































R1 ≤ H(Z1|U) + I(X1;Y |X2, Z1, U),

R2 ≤ H(Z2|U) + I(X2;Y |X1, Z2, U),

R1 +R2 ≤ I(X1, X2;Y |U,Z1, Z2) +H(Z1, Z2|U),

R1 +R2 ≤ I(X1, X2;Y ), for

P (u)P (x1, z1|u)P (x2, z2|u)P (y|x1, x2).











































(7)

The regionRB is defined with the same set of inequalities as in (7), but the joint distribution is of the form

P (u)P (x1, z1|u)P (x2, z2|z1, u)P (y|x1, x2). (8)

Theorem 1 (Capacity region):The capacity regions of the MAC with strictly-causal (Case A), mixed causal and

strictly-causal (Case B) partial cribbing as described in Def. 1 areRA, RB , respectively.

Lemma 2:To exhaustRA andRB it is enough to restrict the alphabet ofU , to satisfy

|U| ≤ min(|Y| + 3, |X1||X2|+ 2)). (9)

The proof of Theorem 1 and Lemma 2 is given in the next section.

III. C ONVERSE

Here we provide the converse proof of Theorem 1 for the two cases, A and B.

Converse proof of Case A:Assume that we have a(2nR1 , 2nR2 , n) code as in Definition 1, Case A. We will

show the existence of a joint distributionP (u)P (z1|u)P (z2|u)P (x1|z1, u)P (x2|z2, u)P (y|x1, x2) that satisfies the

inequalities of (7) within someǫn, whereǫn goes to zero asn→∞. Consider

n(R1 +R2) = H(M1,M2)
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= H(M1,M2) +H(M1,M2|Y n)−H(M1,M2|Y n)

(a)
= I(M1,M2;Y

n) + nǫn

(b)
= I(Xn

1 , X
n
2 ;Y

n) + nǫn

=
n
∑

i=1

I(Xn
1 , X

n
2 ;Yi|Y i−1) + nǫn

(c)

≤
n
∑

i=1

I(X1,i, X2,i;Yi) + nǫn (10)

where (a) follows from Fano’s inequality, (b) from the fact that(Xn
1 , X

n
2 ) is a deterministic function of(M1,M2) and

the Markov chainY n− (Xn
1 , X

n
2 )− (M1,M2) and (c) from the Markov chainYi− (X1,i, X2,i)− (Xn

1 , X
n
2 , Y

i−1).

Now consider,

n(R1 +R2) = H(M1,M2)

(a)
= H(M1,M2, Z

n
1 , Z

n
2 )

= H(Zn
1 , Z

n
2 ) +H(M1,M2|Zn

1 , Z
n
2 )

(b)
= H(Zn

1 , Z
n
2 ) + I(M1,M2;Y

n|Zn
1 , Z

n
2 ) + nǫn

= H(Zn
1 , Z

n
2 ) + I(Xn

1 , X
n
2 ;Y

n|Zn
1 , Z

n
2 ) + nǫn

=

n
∑

i=1

H(Z1,i, Z2,i|Zi−1
1 , Zi−1

2 ) + I(Xn
1 , X

n
2 ;Yi|Y i−1, Zn

1 , Z
n
2 ) + nǫn

≤
n
∑

i=1

H(Z1,i, Z2,i|Zi−1
1 , Zi−1

2 ) + I(X1,i, X2,n;Yi|Zi
1, Z

i
2) + nǫn,

(c)
=

n
∑

i=1

H(Z1,i, Z2,i|Ui) + I(X1,i, X2,n;Yi|Z1,i, Z2,i, Ui) + nǫn, (11)

where (a) follows from the fact that(Zn
1 , Z

n
2 ) are a deterministic function of(M1,M2), (b) from Fano’s inequality,

and (c) from the following definition of a random variable

Ui , (Zi−1
1 , Zi−1

2 ). (12)

Furthermore, consider

nR1 = H(M1)

(a)
= H(M1|M2)

(b)
= H(M1, Z

n
1 |M2)

= H(Zn
1 |M2) +H(M1|Zn

1 ,M2)

= H(Zn
1 |M2) +H(M1|M2, Z

n
1 ) +H(M1|Y n,M2, Z

n
1 )−H(M1|Y n,M2, Z

n
1 )

(c)
=

n
∑

i=1

H(Z1,i|Zi−1
1 ,M2) + I(Yi;M1|Y i−1,M2, Z

n
1 ) + nǫn
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(d)
=

n
∑

i=1

H(Z1,i|Zi−1
1 , Zi−1

2 ,M2) + I(Yi;M1, X1,i|Y i−1,M2, X2,i, Z
n
1 , Z

n
2 ) + nǫn

(e)

≤
n
∑

i=1

H(Z1,i|Zi−1
1 , Zi−1

2 ) + I(Yi;X1,i|X2,i, Z
i
1, Z

i
2) + nǫn

=

n
∑

i=1

H(Z1,i|Ui) + I(Yi;X1,i|X2,i, Ui, Z1,i) + nǫn (13)

where (a) follows from the fact that the messagesM1 andM2 are independent of each other, (b) follows from the

fact thatZn
1 is a deterministic function of(M1,M2), (c) follows from Fano’s inequality, and (d) from the fact that

X1,i is a deterministic functions of(M1, Z
i−1
2 ) andX2,i is a deterministic function of(M2, Z

i−1
1 ). Step (e) follows

from the Markov chainYi − (X1,i, X2,i, Z
n) − (M1,M2, Y

i−1) and the fact that conditioning reduces entropy.

Similarly to (13) we obtain

nR2 ≤
n
∑

i=1

H(Z2,i|Ui) + I(Yi;X2,i|X1,i, Ui, Z2,i) + nǫn. (14)

Now let us verify that the three Markov chainsZ1,i−Ui−Z2,i, X1,i−(Ui, Z1,i)−(X2,i), andX2,i−(Ui, Z2,i)−(X1,i)

hold. The first Markov chain is due to the Markov(M1, Z
i−1
2 )− (Zi−1

1 , Zi−1
2 )− (M2, Z

i−1
1 ) or equivalentlyM1−

(Zi−1
1 , Zi−1

2 )−M2 and the second Markov chain is due to the Markov chain(M1, Z
i−1
2 )−(Zi

1, Z
i−1
2 )−(M2, Z

i−1
1 )

or equivalentlyM1− (Zi
1, Z

i−1
2 )−M2. The Markov chain follows from the joint distributionP (m1,m2, z

n
1 , z

n
2 ) =

P (m1)P (m2)
∏n

i=1 P (z1,i|zi−1
2 ,m1)

∏n
i=1 P (z2,i|zi−1

1 ,m2) and the observation that

P (m1|zn1 , zn2 ,m2) =
P (m1)P (m2)

∏n
i=1 P (z1,i|zi−1

2 ,m1)
∏n

i=1 P (z2,i|zi−1
1 ,m2)

(

P (m2)
∏n

i=1 P (z2,i|zi−1
1 ,m2)

)
∑

m1
P (m1)

∏n
i=1 P (z1,i|zi−1

2 ,m1)

=

∏n

i=1 P (z1,i|zi−1
2 ,m1)

∑

m1
P (m1)

∏n

i=1 P (z1,i|zi−1
2 ,m1),

(15)

does not depend onm2. The third Markov chain is an exchange between the indexes1 and2, namely,M1, X1,i, Z1,i

is exchanged withM2, X2,i, Z2,i, respectively. Finally, letQ be a random variable independent of(Xn
1 , X

n
2 , Y

n),

and uniformly distributed over the set{1, 2, 3, .., n}. We define the random variablesU , (Q,UQ) and obtain that

the region given in (7) is an outer bound to any achievable rate.

Once Case A is proved, Case B follows straightforwardly using the following modification.

Converse proof for Case B:We repeat the same converse as for Case A, except that in the final step we need to

show the Markov chainX2,i−(Ui, Z1,i, Z2,i)−X1,i rather thanX2,i−(Ui, Z2,i)−X1,i as in Case A. Since for case

B the Markov chain(M2, Z
i
1)−(Zi

1, Z
i
2)−M1 holds it follows thatX2,i−(M2, Z

i
1)−(Ui, Zi)−(M1, Z

i−1
2 )−X1,i

holds too.

Now we prove Lemma 2 which allows us to bound the cardinality of the auxiliary random variableU without

decreasing the rate regionsRA,RB.

Proof of Lemma 2:We invoke the support lemma [12, pp. 310]. The external random variableU must have|Y|−1
letters to preserveP (y) plus four more to preserve the expressionsH(Z1|U) + I(X1;Y |X2, Z1, U), H(Z2|U) +

I(X2;Y |X1, Z2, U), I(X1, X2;Y |U,Z1, Z2) + H(Z1, Z2|U), and H(Y |X1, X2, U, ). Alternatively, the external

random variableU must have|X1||X2|− 1 letters to preserveP (x1, x2) and three more to preserve the expressions
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H(Z1|U) + I(X1;Y |X2, Z1, U), H(Z2|U) + I(X2;Y |X1, Z2, U), I(X1, X2;Y |U,Z1, Z2) +H(Z1, Z2|U). Hence

the cardinality ofU may be bounded bymin(|Y|+ 3, |X1||X2|+ 2)).

IV. A CHIEVABILITY PROOF OF THEOREM 1

In this section we provide the achievability proof of Theorem 1 for the two cases, A and B. Throughout the

achievability proofs in the paper we use the definition of a strong typical set. The setT (n)
ǫ (X,Y, Z) of ǫ-typical

n−sequences is defined by{(xn, yn, zn) : 1
n
N(x, y, z|xn, yn, zn)−p(x, y, z)| ≤ ǫp(x, y, z)∀(x, y, z) ∈ X×Y×Z},

whereN(x, y, z|xn, yn, zn) is the number of appearances of(x, y, z) in then−sequnce(xn, yn, zn). Additionally,

we will use the following well-known lemma [12]–[15],

Lemma 3 (Joint typicality lemma):Consider a joint distributionPX,Y,Z and suppose(xn, yn) ∈ T
(n)
ǫ (X,Y ). Let

Z̃n be distributed according to
∏n

i=1 PZ|X(z̃i|xi). Then,

Pr{(xn, yn, Z̃n) ∈ T (n)
ǫ (X,Y, Z)} ≤ 2−n(I(Y ;Z|X)−δ(ǫ)), (16)

wherelimǫ→0 δ(ǫ) = 0.

For the achievability proof, we use the rate-splitting coding technique in addition to the techniques used by

Willems [16], i.e., block Markov coding, super-position coding, Shannon’s strategies and backward decoding. The

rate splitting technique introduces additional rate variables which are redundant and we eliminate them using the

Fourier−Motzkin elimination.

Achievability Proof of Case A:Let us split rateR1 into two ratesR′
1 andR′′

1 such thatR1 = R′
1+R′′

1 and similarly

R2 into R′
2 andR′′

2 such thatR2 = R′
2 + R′′

2 . Let m′
1 ∈ [1, ..., 2nR

′
1 ], m′′

1 ∈ [1, ..., 2nR
′′
1 ], m′

2 ∈ [1, ..., 2nR
′
2 ], and

m′′
2 ∈ [1, ..., 2nR

′′
2 ]. Note that there is a one-to-one mapping between(m′

1,m
′′
1) andm1 and between(m′

2,m
′′
2) and

m2.

Code construction:Divide a block of lengthBn into B blocks of lengthn. We use random coding to generate

independently the code for each subblockb. Construct2n(R
′
1
+R′

2
) codewordsun according to i.i.d.∼ P (u). For

every codewordun construct2nR
′
1 codewordszn1 according to i.i.d.∼ P (z1|u) and similarly2nR

′
2 codewordszn2

according to i.i.d.∼ P (z2|u). Furthermore, generate2nR
′′
1 codewordsxn

1 according to i.i.d.∼ P (x1|z1, u) and

similarly 2nR
′′
2 codewordsxn

2 according to i.i.d.∼ P (x2|z2, u) . The Markov structure of the code is

xn
1 is determined by (m′

1,b,m
′′
1,b) conditioned on(m′

1,b−1,m
′
2,b−1)

xn
2 is determined by (m′

2,b,m
′′
2,b) conditioned on(m′

1,b−1,m
′
2,b−1). (17)

Encoder: At block b ∈ [1, ..., B] encode the message(m′
1,b−1,m

′
2,b−1) ∈ [1, .., 2n(R

′
1
+R′

2
)] using

un(m′
1,b−1,m

′
2,b−1), encodem′

1,b conditioned on(m′
1,b−1,m

′
2,b−1) using zn1 (u

n,m′
1,b), and encodem′′

1,b condi-

tioned on(m′
1,b,m

′
1,b−1,m

′
2,b−1) usingxn

1 (z
n
1 , u

n,m′′
1,b). Similarly, encodem′

2,b conditioned on(m′
1,b−1,m

′
2,b−1)

using zn2 (u
n,m′

1,b), encodem′′
2,b conditioned on(m′

2,b,m
′
1,b−1,m

′
2,b−1) usingxn

2 (z
n
2 , u

n,m′′
2,b). We assume that

m′
1,0 = m′

2,0 = 1 andm′
1,b = m′

2,b = 1 which allow a backward decoding as explained next.

Decoder:The receiver waits till the end of the blockBn and starts decoding each message in the sub-blocks

going backwardsb ∈ [B,B − 1, B − 2, ..., 1]. At block b, we assume that(m′
1,b,m

′
2,b) is already known to the
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receiver from blockb+1 and it needs to decode ,m′
1,b−1, m′

2,b−1, m′′
2,b andm′′

2,b. The decoder uses joint typicality

decoding, hence at blockb it looks for (m̂′
1,b−1, m̂

′
2,b−1), m̂

′′
2,B andm̂′′

2,B for which

(un(m̂′
1,b−1, m̂

′
2,b−1), z

n
1 (u

n,m′
1,b), z

n
2 (u

n,m′
2,b), x

n
1 (z

n
1 , u

n, m̂′′
1,b), x

n
2 (z

n
2 , u

n, m̂′′
2,b) ∈ T (n)

ǫ (U,Z1, Z2, X1, X2, Y ).

(18)

If no such triplet, or more than one such triplet is found, an error is declared at blockb and therefore at the whole

superblocknB (we consider(m̂′
1,b−1, m̂

′
2,b−1) as one index in[1, ..., 2nR

′
1
+nR′

2 ]. The estimated message at block

b sent from Encoder 1 is(m̂1,a, m̂1,b), and the estimated message transmitted from Encoder 2 is(m̂2,a, m̂2,b).

Error analysis:The following lemma will enable us to bound the probability of error of the super-blocknB by

bounding the probability of error of each block.

Lemma 4:Let {Aj}Jj=1 be a set of events and letAc
j denotes the complement of the eventAj . Then

P (

J
⋃

j=1

Aj) ≤
n
∑

j=1

P (Aj |
j−1
⋂

i=1

Ac
i ) =

n
∑

j=1

P (Aj |Ac
1, A

c
2, ..., A

c
j−1). (19)

Proof: For simplicity let us assume thatJ = 3. In a straightforward manner the proof extends to any number

of setsJ . For any three sets of eventsA1, A2, A3 we have

P (A1 ∪ A2 ∪ A3) = P (A1 ∪ (A2 ∩ Ac
1) ∪ (A3 ∩ Ac

1 ∩ Ac
2))

= P (A1) + P (A2 ∩Ac
1) + P (A3 ∩ Ac

1 ∩ Ac
2)

≤ P (A1) +
P (A2 ∩Ac

1)

P (Ac
1)

+
P (A3 ∩Ac

1 ∩ Ac
2)

P (Ac
1 ∩ Ac

2)

= P (A1) + P (A2|Ac
1) + P (A3|Ac

1 ∩ Ac
2)

= P (A1) + P (A2|Ac
1) + P (A3|Ac

1, A
c
2) (20)

Using Lemma 4 we bound the probability of error in the supper block Bn by the sum of the probability of

having an error in each blockb given that in previous blocks(b + 1, ..., B) the messages were decoded correctly.

First let us bound the probability that for someb, Transmitter 1 decodes the messagem′
2,b incorrectly or

Transmitter 2 decodes the messagem′
1,b incorrectly at the end of blockb. Using Lemma 4 it suffices to show

that the probability of error-decoding in each blockb goes to zero, assuming that all previous messages in block

(1, 2, ..., b− 1) were decoded correctly.

Let E1,b be the event that Transmitter 1 has an error in decodingm′
2,b and letE2,b be the event that Transmitter 2

has an error in decodingm′
1,b. The termP (E1,b∪E2,b|Ec

0,b−1) is the probability that Transmitter 1 or 2 incorrectly

decodedm′
2,b and m′

1,b, respectively, given thatm′
1,b−1 and m′

2,b−1 were decoded correctly. Without loss of

generality let’s assume thatm′
1,b = m′

2,b = 1. An error occurs if and only if there is another messagem′
1,b > 1 that

maps to the same codeword aszn1 (1, u
n) or there is another messagem′

2,b > 1 that maps to the same codeword

aszn2 (1, u
n). The probability thatzn1 (i, u

n) = zn1 (1, u
n) wherei > 1 and where(zn1 (1, u

n), un) ∈ T
(n)
ǫ (Z1, U) is

bounded by2−n(H(Z1|U)−δ(ǫ)), whereδ(ǫ) goes to zero asǫ goes to zero. Hence

P (E1,b ∪ E2,b|Ec
1,b−1, E

c
2,b−1)

(a)

≤ P (E1,b|Ec
1,b−1, E

c
2,b−1) + P (E2,b|Ec

1,b−1, E
c
2,b−1)
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≤
2nR′

1
∑

i=2

2−n(H(Z1|U)−δ(ǫ)) +

2nR′
2

∑

i=2

2−n(H(Z2|U)−δ(ǫ))

≤ 2n(R
′
1
−n(H(Z1|U))+δ(ǫ)) + 2n(R

′
2
−n(H(Z2|U)+δ(ǫ))), (21)

where inequality (a) follows from the union bounds. Now we bound the probability that the receiver decodes the

messages(m′
1,b−1,m

′
2,b−1), orm′′

2,b orm′′
2,b incorrectly at blockb given that at blockb+1 the messages(m′

1,b,m
′
2,b)

were decoded correctly and given that Transmitter 1 and 2 encodes the right messages(m′
1,b−1,m

′
2,b−1) in block

b. Without loss of generality assume(m′
1,b−1,m

′
2,b−1) = 1 (for simplicity we index both messages by one index),

m′′
2,b = 1 andm′′

2,b = 1 . Let us define the event

Ei,j,k,b ,

{

(

un(i), zn1 (u
n,m′

1,b), z
n
2 (u

n,m′
2,b), x

n
1 (u

n, zn1 , j), x
n
2 (u

n, zn2 , k), y
n
)

∈ T (n)
ǫ (U,Z1, Z2, X1, X2, Y )

}

.

(22)

An error occurs if either the correct codewords are not jointly typical with the received sequences, i.e.,Ec
1,1,1,b, or

there exists a different(i, j, k) 6= (1, 1, 1) such thatEi,j,k,b occurs. LetP (n)
e,b be the error-decoding at blockb given

that in blocks(b+ 1, ..., B) there was no error-decoding. From the union of bounds we obtain that

P
(n)
e,b ≤ Pr(Ec

1,1,1,b)+
∑

i=1,j=1,k>1

Pr(Ei,j,k,b)+
∑

i=1,j>1,k=1

Pr(Ei,j,k,b)+
∑

i=1,j>1,k>1

Pr(Ei,j,k,b)+
∑

i>1,j≥1,k≥1

Pr(Ei,j,k,b).

(23)

Now let us show that each term in (23) goes to zero as the blocklength of the coden goes to infinity.

• Upper-boundingPr(Ec
1,1,1): Since we assume that the Transmitter 1 and 2 encode the right(m′

1,b−1,m
′
2,b−1)

and the receiver decoded the right(m′
1,b,m

′
2,b) in block b+ 1, by the LLN Pr(Ec

1,1,1,b)→ 0.

• Upper-bounding
∑

i=1,j=1,k>1 Pr(Ei,j,k): The probability that Y n, which is generated according to

P (y|x1, x2) = P (y|x1, x2, u, z), is jointly typical with xn
2 , which was generated according toP (x2|z2, u) =

P (x2|u, z1, z2, x1), where(xn
1 , z

n
1 , z

n
2 , u

n) ∈ T
(n)
ǫ (X1, Z1, Z2, U) is bounded by (Lemma 3)

Pr{(xn
1 , z

n
1 , X

n
2 , z

n
2 , u

n, Y n) ∈ T (n)
ǫ |(xn

1 , z
n
1 , z

n
2 , u

n) ∈ T (n)
ǫ } ≤ 2−n(I(X2;Y |X1,Z2,U)−δ(ǫ)). (24)

Hence, we obtain

∑

i=1,j=1,k>1

Pr(Ei,j,k,b) ≤ 2nR
′′
2 2−n(I(X2;Y |X1,Z1,Z2,U)−δ(ǫ)). (25)

• Upper-bounding
∑

i=1,j>1,k=1 Pr(Ei,j,k,b): Similarly, to (25) we obtain

∑

i=1,j>1,k=1

Pr(Ei,j,k,b) ≤ 2nR
′′
1 2−n(I(X1;Y |X2,Z1,Z2,U)−δ(ǫ)). (26)

• Upper-bounding
∑

i=1,j>1,k>1 Pr(Ei,j,k,b) by

∑

i=1,j>1,k>1

Pr(Ei,j,k,b) ≤ 2n(R
′′
2
+R′′

1
)2−n(I(X2,X1;Y |Z1,Z2,U)−δ(ǫ)). (27)

• Upper-bounding
∑

i>1,j≥1,k≥1 Pr(Ei,j,k,b) by

∑

i>1,j≥1,k≥1

Pr(Ei,j,k,b) ≤ 2n(R
′′
1
+R′

1
+R2)2−n(I(X2,X1,U,Z1,Z2;Y )−δ(ǫ))
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= 2n(R1+R2−I(X2,X1;Y )−δ(ǫ)) (28)

To summarize we obtained that ifR′
1 = R1 −R′′

1 , R′′
1 , R′

2 = R2 −R′′
2 , R′′

2 andR2 satisfy

R1 −R′′
1 ≤ H(Z1|U),

R2 −R′′
2 ≤ H(Z2|U),

R′′
1 ≤ I(X1;Y |X2, Z1, U),

R′′
2 ≤ I(X2;Y |X1, Z2, U),

R′′
1 +R′′

2 ≤ I(X1, X2;Y |Z1, Z2, U),

R1 +R2 ≤ I(X2, X1;Y ), (29)

then there exists a sequence of code with a probability of error that goes to zero as the block length goes to infinity.

Using Fourier−Motzkin elimination [17] first forR′′
1 we obtain

R1 −H(Z1|U) ≤ I(X1;Y |X2, Z1, U),

R2 −R′′
2 ≤ H(Z2|U),

R′′
2 ≤ I(X2;Y |X1, Z2, U),

R1 −H(Z1|U) +R′′
2 ≤ I(X1, X2;Y |Z1, Z2, U),

R1 +R2 ≤ I(X2, X1;Y ), (30)

and applying Fourier−Motzkin elimination also forR′′
2 we obtain

R1 −H(Z1|U) ≤ I(X1;Y |X2, Z1, U),

R2 −H(Z2|U) ≤ I(X2;Y |X1, Z2, U),

R1 −H(Z1|U) +R2 −H(Z2|U) ≤ I(X1, X2;Y |Z1, Z2, U),

R1 +R2 ≤ I(X2, X1;Y ), (31)

which is equivalent to the region of Case A in (7).

Achievability for Case B:The achievability of case B is very similar to case A, only that the codewords ofX2

needs to be generated according to shannon strategy (or a code-trees ) rather than codewords. This is due to the

fact thatZ1,i is known causally andX2 is generated according to a distributionP (x2|u, z1).

V. COMMON MESSAGE

Let us now consider the case where a common message,m0 ∈ {1, 2, ..., 2nR0}, is known to encoders 1 and 2

and needs to be transmitted to the decoder in addition to the private messagesm1,m2. Hence Encoder 1 is given

by the function

Case A, B, f1,i : {1, ..., 2nR0} × {1, ..., 2nR1} × Zi−1
2 7→ X1,i, (32)
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and Encoder 2 is given by the functions

Case A, f2,i : {1, ..., 2nR0} × {1, ..., 2nR2} × Zi−1
1 7→ X1,i,

Case B, f2,i : {1, ..., 2nR0} × {1, ..., 2nR2} × Zi
1 7→ X1,i. (33)

Remarkably, no additional auxiliary random variable is needed to characterizes the capacity region, since the partial

cribbing is used for generating a common message. Let the rate regionsR0
A andR0

B be defined exactly asRA and

RB only that the last inequality in (7), i.e.,R1 +R2 ≤ I(X1, X2;Y ), is replaced by

R0 +R1 +R2 ≤ I(X1, X2;Y ). (34)

Theorem 5 (Capacity region in the case of a common message):The capacity regions of the MAC with strictly-

causal (Case A), and mixed causal and strictly-causal (CaseB) partial cribbing with a common message areR0
A

andR0
B, respectively.

Note that if there is no cribbing, i.e.,Z1 andZ2 are constant, we obtain the capacity region of the MAC with a

common message as derived by Slepian and Wolf [18]. We sketchhere only the differences between the proof of

Theorem 5 and Theorem 1.

Proof of Theorem 5

Converse: Similar to the sequence of inequalities in (10) we have

n(R0 +R1 +R2) = H(M0,M1,M2)

≤
n
∑

i=1

I(X1,i, X2,i;Yi) + nǫn. (35)

Adding conditioning onM0 in the sequence of inequalities (11) we obtain

n(R1 +R2) = H(M1,M2)

= H(M1,M2|M0)

≤
n
∑

i=1

H(Z1,i, Z2,i|Zi−1
1 , Zi−1

2 ,M0) + I(X1,i, X2,n;Yi|Zi
1, Z

i
2,M0) + nǫn,

=
n
∑

i=1

H(Z1,i, Z2,i|Ui) + I(X1,i, X2,n;Yi|Z1,i, Z2,i, Ui) + nǫn, (36)

where the last step is due to the new definition ofUi as

Ui , (M0, Z
i−1
1 , Zi−1

2 ). (37)

Similarly, adding conditioning onM0 in the sequence of inequalities (13) we obtain

nR1 = H(M1)

= H(M1|M2,M0)

≤
n
∑

i=1

H(Z1,i|Zi−1
1 , Zi−1

2 ,M0) + I(Yi;X1,i|X2,i, Z
i
1, Z

i
2,M0) + nǫn
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=

n
∑

i=1

H(Z1,i|Ui) + I(Yi;X1,i|X2,i, Ui, Z1,i) + nǫn. (38)

In a similar way, we obtain the inequality forR2 as in (14).

Achievability: The achievability proof is similar to that in Theorem 1 except that we generate2n(R
′
1
+R′

2
+R0)

codewordsun according to i.i.d.∼ P (u), rather than2n(R
′
1
+R′

2
), and wherever we have in the achievability proof

of Theorem 1(m′
1,b−1,m

′
2,b−1) we should now have(m0,m

′
1,b−1,m

′
2,b−1). Hence we obtain the same sequence

of inequalities as in (29) except that in the last inequalitywhich corresponds to an error in all messages we have

R0 +R1 +R2 ≤ I(X2, X1;Y ). (39)

VI. SPECIAL CASE OF PARTIAL CRIBBING: SEMI-DETERMINISTIC RELAY CHANNEL

As a special case of the partial cribbing encoders, let us consider the case where Encoder 2 has no message to

send, i.e.,R2 = 0, and only Encoder 2 cribs from Encoder 1, i.e.,Z2 is a constant. We show here that indeed

the region obtained via partial cribbing whenR2 = 0 and the region obtained via semi-deterministic relay channel

coincide.

Case A, semi-deterministic relay with a delay:This case become a special case of the semi-deterministic relay

channel which was introduced and solved by El-Gamal [5], where Encoder 2 plays the role of the relay. In such a

case the regionRA becomes

RA =































R1 ≤ H(Z1|U) + I(X1;Y |X2, Z1, U),

R1 ≤ I(X1, X2;Y |U,Z1) +H(Z1|U),

R1 ≤ I(X1, X2;Y ), for

P (u)P (z1|u)P (x1|z1, u)P (x2|u)P (y|x1, x2).































(40)

Clearly,H(Z1|U)+ I(X1;Y |X2, Z1, U) ≤ I(X1, X2;Y |U,Z1)+H(Z1|U) hence the region we obtained isR1 ≤
min(H(Z1|U) + I(X1;Y |X2, Z1, U), I(X1, X2;Y )) for someP (u)P (z1|u)P (x1|z1, u)P (x2|u). Now consider

H(Z1|U) + I(X1;Y |X2, Z1, U)
(a)
= H(Z1|U,X2) + I(X1;Y |X2, Z1, U)

(b)

≤ H(Z1|X2) + I(X1;Y |X2, Z1), (41)

where step (a) follows from the Markov chainX2 − U − Z1 and step (b) from the fact that conditioning reduces

entropy and from the Markov chainY − (X1, Z1, X2) − U . By choosingU = X2 we obtain the upper bound of

(41) and the expressionI(X1, X2;Y ) does not decrease. Hence the capacity region is

R1 ≤ min(H(Z1|X2) + I(X1;Y |X2, Z1), I(X1, X2;Y )) (42)

for someP (x1, x2). Eq. (42) coincides with the result in [5].

Case B, semi-deterministic relay without delay:In this caseRB become the set of ratesR1 that satisfies

R1 ≤ min(H(Z1|U) + I(X1;Y |X2, Z1, U), I(X1, X2;Y )) (43)
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for someP (x1, z1, u)P (x2|u, z1). The case of relays without delay was investigated by El-Gamal et. al. in [19]

where it was shown that the capacity region for the semi-deterministic relay without delay which is denoted by

C0,semi-det is

C0,semi-det= max
P (u,x1),x2=f(u,z1)

min(I(X1;Y, Z1|U), I(U,X1;Y )). (44)

At first glance, the expressions in (43) seem to be different from the expression in (44), but with some simple

manipulations one can show that the expression are equivalent. In particular, the first term in (44) may be written

as

I(X1;Y, Z1|U) = I(X1;Z1|U) + I(X1;Y |U,Z1)

(a)
= H(Z1|U) + I(X1;Y |U,Z1)

(b)
= H(Z1|U) + I(X1;Y |U,Z1, X2), (45)

where step (a) follows from the fact thatZ1 is a function ofX1 and step (b) from the fact thatX2 is a function

of (U,Z1). The second term in (44) may be written as

I(U,X1;Y )
(a)
= I(U,X1, X2;Y )

(b)
= I(X1, X2;Y ), (46)

where step (a) follows from the fact thatX2 is a function of(U,X1) and step (b) follows from the Markov chain

Y − (X1, X2)−U . Now, to conclude that (43) and (44) are equivalent we need toshow that it suffices to consider

only distributions whereX2 is a function of(U,Z1) in (43). It follows from [20, Lemma 1] that there exists a

random variableW independent of(U,Z1) and satisfiesW − (X2, U, Z1)− (Y,X1) such thatX2 is a deterministic

function of (U,Z1,W ). Therefore

H(Z1|U) + I(X1;Y |X2, Z1, U) = H(Z1|U,W ) + I(X1;Y |X2, Z1, U,W )

= H(Z1|Ũ) + I(X1;Y |X2, Z1, Ũ), (47)

where Ũ = (U,W ). Hence it suffices to considerX2 that is a function of(Ũ , Z1) and it emerges that (43) is

equivalent to (44).

VII. G AUSSIAN MAC WITH QUANTIZED CRIBBING

In this section we consider the additive Gaussian noise MAC,i.e.,Y = X1+X2+W , whereW is a memoryless

Gaussian noise with varianceN , i.e.,W ∼ Norm(0, N). We assume a power constraintsP1 andP2 on the inputs

from Encoder 1 and Encoder 2, respectively. If the encoders do not cooperate than the capacity is given by

R1 ≤ 1

2
log

(

1 +
P1

N

)

R2 ≤ 1

2
log

(

1 +
P2

N

)

R1 +R2 ≤ 1

2
log

(

1 +
P1 + P2

N

)

. (48)
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If there is perfect cribbing from Encoder 1 to Encoder 2, either with delay or without the capacity is the same as
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∈ {1, ..., 2nR2}

X1,i(m1)

X2,i(m2, Z
i)

Y DecoderQuantization
Scalar

W ∼Norm(0, N)

m̂1(Y
n)

m̂2(Y
n)

Zi

Fig. 2. Gaussian MAC with quantized cribbing. The cribbing that Encoder 2 observes is the quantized signal from Encoder 1. There exist

power constraints
∑n

i=1
E[X2

1,i] ≤ P1 and
∑n

i=1
E[X2

1,i] ≤ P2.

if Encoder 2 knows the message of Encoder 1 since Encoder 1 cansend the message in one epoch time. Hence,

the capacity is the union over0 ≤ ρ ≤ 1 of the regions

R2 ≤ 1

2
log

(

1 +
P2

N
(1− ρ2))

)

R1 +R2 ≤ 1

2
log

(

1 +
P1 + 2ρ

√
P1P2 + P2

N

)

. (49)

Now, let us consider the case where Encoder 2 observes a quantized version of the signal from Encoder 1 without

delay. The setting is depicted in Fig. 2. We assume that the quantizer is a scalar quantizer designed such that under

a Gaussain input with varianceP1 = 1 the discrete values have the same probability (see Fig. 3 foran example of

2-bit quantizer).

−2 −1 0 1 2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PSfrag replacements

x1

Q = 1 Q = 2Q = 3 Q = 4

f
(x

1
)

Fig. 3. The 2-bit quantizer’s boundaries are designed such that if the input signal has a normal distribution with variance P1 = 1 the output

values from the quantizer have equal probability. The inputto the 2-bit quantizer isX1 and the output isQ ∈ {1, 2, 3, 4}.

Next, we consider a simple achievable scheme for the Gaussian MAC with a quantizer cribbing without delay,
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where the power constraints areP1 = P2 = 1 and the noise variance isN = 1
2 . We evaluate the regionRB given

by (7) and (8) for the case whereU1, U2, Z2 are constants,X1 ∼ N(0, 1), Z1 is a quantized version ofX1 such that

each value has equal probability. The input distribution isPX2|Z1
(x2|z1) = ρPV (x2)+(1−ρ)PX1|Z1

(x2|z1), where

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

 

 

no cribbing
perfect cribbing
1−bit cribbing
2−bit cribbing
4−bit cribbing

PSfrag replacements

R1

R
2

Fig. 4. Achievable regions of Gaussian MAC with a quantizer cribbing.

V ∼ N(0, 1) and is independent ofX1 andZ. Note that under these assumptionsX2 ∼ N(0, 1) and therefore

satisfies the power constraint. Fig. 4 depicts the simple achievable scheme for different quantizers. The blue line in

Fig. 4 is the capacity region where there is no cribbing, evaluated according to (48). The red line is the capacity

region where there is perfect cribbing, evaluated according to (49). The lines in between are achievable regions

according to the simple scheme we have described above. One can see that the main gain is already due to 1-bit

quantizer and that the difference between the achievable scheme with a 4-bit quantizer and the capacity region

where there is perfect cribbing is negligible.

VIII. CONTROLLED CRIBBING

Here we consider the case where the cribbing is controlled byan action which depends on previously cribbed

signals. In this study, only Encoder 2 cribs causally or strictly causally. More precisely, at timei there is a controller

which takes actiona1,i and the cribbed signals from Encoder 1 to Encoder 2 at timei is z1,i = f(x1,i, a1,i) as

shown in Fig. 5. The action at timei depends on past cribbed observation, i.e.,a1,i(z
i−1
1 ) and the action is a limited

resource, namely, there is a restriction that1
n

∑n

i=1 E[Λ(A1,i)] ≤ Γ, whereΛ(a1) is a cost of taking actiona1.

Let us now formally define a controlled code.

Definition 2: A (2nR1 , 2nR2 , n) codewith controlled partial cribbing , as shown in Fig. 5, consists at timei of

an encoding function at Encoder 1

Case A, B, f1,i : {1, ..., 2nR1} 7→ X1,i, (50)

and an encoding function at Encoder 2 that changes accordingto the following case settings

Case A f2,i : {1, ..., 2nR2} × Zi−1
1 7→ X1,i,
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Fig. 5. Partial cribbing with actions. The action at timei is a1,i and is determined by previous cribbed observations i.e.,zi−1

1
. The cribbed

signal z1,i from Encoder 1 to Encoder 2 is given by the deterministic function z1,i = g1(a1,i, x1,i). There exists a constraint on the actions

of the form 1

n

∑n
i=1

E[Λ(A1,i)] ≤ Γ.

Case B f2,i : {1, ..., 2nR2} × Zi
1 7→ X1,i, (51)

and a controlled action

g1,i : Zi−1
1 7→ A1,i, (52)

and a decoding function,

h : Yn 7→ {1, ..., 2nR1} × {1, ..., 2nR2}. (53)

The code needs to satisfy the constraint1
n

∑n

i=1 E[Λ1(A1,i)] ≤ Γ1. The probability of error, achievable pair-rates

and capacity region are defined in the usual way for MAC as presented in Def. 1.

Let us now define the following regionsRa
A,Ra

B , which are contained inR2
+, namely, contained in the set of

non negative two dimensional real numbers.

Ra
A =











































R1 ≤ H(Z1|U,A1) + I(X1;Y |X2, Z1, U,A1),

R2 ≤ I(X2;Y |X1, U,A1),

R1 +R2 ≤ I(X1, X2;Y |U,A1, Z1) +H(Z1|U,A1),

R1 +R2 ≤ I(X1, X2;Y ), for

P (u, a1)P (x1, z1|u, a1)P (x2|u, a1)P (y|x1, x2) s.t.E[Λ1(A1)] ≤ Γ1.











































(54)

The regionRa
B is defined with the same set of inequalities as in (54), but thejoint distribution is of the form

P (u, a1)P (x1, z1|u, a1)P (x2|z1, u, a1)P (y|x1, x2) s.t.E[Λ(A1)] ≤ Γ. (55)

Theorem 6 (Capacity region):The capacity regions of the MAC with actions and with strictly-causal (Case A),

and mixed causal and strictly-causal (Case B), as describedin Def. 2, areRa
A, andRa

B, respectively.

The proof is based on minor modification of the proof of the capacity region of the MAC with partial cribbing

presented in Theorem 1.
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Proof:

Achievability: Consider the achievability proof of Theorem 1 and just replace Ui by the pair(Ui, A1,i). Note

that the proof holds since at the end of blockb the controller is able to decodem′
1,b.

Converse: Consider the converse proof of Theorem 1 and just replaceUi. Note thatUi , Zi−1
1 . sinceAi is a

function ofZi−1
1 its also a function ofUi and by replacingUi by Ui, A1,i we obtain the converse proof

Example 1 (Deterministic Relay with actions):Consider the case where only Encoder 1 has a message to transmit

and Encoder 2 has no message of its own to transmit, but helps to increase the rate of Encoder 1. Encoder 2, which

plays the role of a relay, takes an actionAi that is a function of the observed signal up to timei − 1, i.e., Zi−1.

If Ai = 1, thenZi = Xi, and otherwiseZi is a constant. The cribbing signalZi is observed at Encoder 2 with

a delay. There exists a constraint that1
n

∑n

i=1 E[Ai] ≤ Γ. In addition, Encoder 2 transmits a signalX2,i through

the channel at timei, whereX2,i is a function ofZi−1. The output channelY is randomly chosen with equal

probability to be eitherX1 or X2. This example is illustrated in Fig. 6 and is a special case ofthe setting presented

in Fig. 5.

PSfrag replacements

Encoder 1Encoder 1

Encoder 2
(Relay)

m1m1

∈ {1, ..., 2nR1}∈ {1, ..., 2nR1}

m2

∈ {1, ..., 2nR2}

X1,i(m1)

X2,i(Z
i−1)

Channel

S

Y
Decoder

Z1,i = g1(X1,i)

Z2,i = g2(X2,i)

a

b

m12 ∈
{1, ..., 2nC12}

m̂1(Y
n)

A = 0
A = 1

Ai(Z
i−1)

Zi

X1

X2

Fig. 6. An example of deterministic cribbing with actions. The relay (Encoder 2) take an actionAi at timei that depends on previous cribbing,

i.s., Zi−1. The cribbing signalZi equals toX1,i if Ai = 1 and is constant otherwise. The cribbing is a limited resource hence there exists a

constraint that on the portion of time that Encoder 2 can cribthe signal from Encoder 1, namely,1
n

∑n
i=1

E[Ai] ≤ Γ. The output channelY

is randomly chosen with equal probability to be eitherX1 or X2

The next lemma establishes the capacity region of a deterministic relay with actions which is a special case of

the cribbing with actions.

Lemma 7:The capacity region of partial deterministic cribbing withactions where only Encoder 1 sends a

message, i.e.,R2 = 0 and there exists a delay in the cribbing (Case A) is

R1 = max
PX1,X2,A:E[c(A)]≤Γ

min{H(Z|X2, A) + I(X1;Y |X2, Z1, A), I(Y ;X1, X2)}. (56)

If there is no delay in the cribbing (Case B), i.e.,X2,i(Z
i), then

R1 = max
PU,X1,APX2|U,Z,A:E[c(A)]≤Γ

min{H(Z|U,A) + I(X1;Y |X2, Z, U,A), I(Y ;X1, X2)}. (57)
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Proof: SinceR2 = 0 follows from (54) that

R1 ≤ max
P

min{H(Z|U,A) + I(X1;Y |X2, Z, U,A), I(X1, X2;Y )}. (58)

For the case where there is a delay in the cribbing (case A) theset of joint distributionsP is of the form

P (u, a, x1)P (x2|u, a)P (y|x1, x2) andZ is a function ofA andX . Using mathematical manipulation on the first

term in the minimum in (58) we obtain

R1

(a)

≤ H(Z|U,A,X2) + I(X1;Y |X2, Z, U,A)

(b)

≤ H(Z|A,X2) + I(X1;Y |X2, Z,A), (59)

where step (a) follows from the Markov chainX2 − (U,A)−X1 −Z and step (b) from the fact that conditioning

reduces entropy and the Markov chainY − (X1, X2, ZA)−U . By choosingU = X2 the first term of (58) become

the upper bound in (59); hence (56) is the capacity region.

In the case that there is no delay in the cribbing the capacityregion is simply (58) where the set of joint

distributionP is of the formP (u, a, x1)P (x2|u, a, z)P (y|x1, x2) andz is a deterministic function ofa andx.

For the case of delay in the cribbing, the actionAi can be seen as part of the output signal from Encoder 2 to

the channel, and indeed by replacingX2 in (42) with (X2, A), we obtain (56). However, in the case of no delay in

the cribbing i.e.,X2(Z
i), the replacement ofX2 is not possible since the action must have a delay i.e.,Ai(Z

i−1).

For obtaining a numerical solution when there is a delay in the cribbing, namely, evaluating (56) for the example

in Fig. 6 we can assume without loss of optimality that

Pr(A = 1) = Γ,

Pr(X1 = X2|A = 0) = α0,

Pr(X1 = X2|A = 1) = α1. (60)

The reason one can assume thatPr(A = 1) = Γ is because if this is not the case, and one has a code where

the portion ofPr(A = 1) is smaller thanΓ, then one can add actionsA = 1 for some portion of time without

decreasing the performance of the code. Furthermore, sincethe channel is symmetric with respect to0 and1 (by

exchanging 0 and 1 for the inputs to the channels the performance of the code remains the same) only the probability

Pr(X1 = X2) is important. Furthermore, from the same reasons one can also assume thatP (x1) andP (x2) are

Bernoulli(12 ) without loss of optimality. Now we shall compute the terms in(56)

I(Y ;X1, X2) = H(Y )−H(Y |X1, X2)

= 1− Γ + α1Γ− (1− Γ)(1 − α0)

= α1Γ + α0(1− Γ), (61)

H(Z|X2, A) = ΓHb(α1), (62)
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I(X1;Y |X2, Z,A) = H(Y |X2, Z,A)−H(Y |X1, X2, A)

(a)
= Γ(1− α1) + (1− Γ)Hb

(

1 + α0

2

)

− Γ(1− α1)− (1− Γ)(1 − α0)

= (1− Γ)

(

Hb

(

1 + α0

2

)

+ α0 − 1

)

, (63)

where step (a) in (63) is due to the fact thatPr(Y = X2|X2, a = 0) = α0 +
1−α0

2 and thereforeH(Y |X2, Z,A) =

Γ(1−α1)+ (1−Γ)Hb(
1+α0

2 ) whereHb(p) is the binary entropy, i.e.,−p log p− (1− p) log(1− p) for 0 ≤ p ≤ 1.

Hence the capacity of the setting in Fig. 6 as a function on theconstrain of the actionΓ is

C(Γ) = max
0≤α0,α1≤1

min(ΓHb(α1) + (1 − Γ)

(

Hb

(

1 + α0

2

)

+ α0 − 1

)

, α1Γ + α0(1− Γ)). (64)

The capacityC(Γ) is depicted in Fig. 7 and can be found simply using a grid-search on0 ≤ α0, α1 ≤ 1 or by

0 0.2 0.4 0.6 0.8 1

0.4

0.5
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0.8

PSfrag replacements

Hb(
1
5 )− 2

5 →

← maxα min(α,Hb(α))

Γ

C
(Γ

)

Fig. 7. Capacity of setting in Fig. 6 as a function of the action constraintΓ. For the case whereΓ = 0 the capacity can be solved analytically

since it is the capacity of theZ channel. The capacity whereΓ = 1 is the simple expressionmaxα1
min(α1,Hb(α1)) which can be solved

numerically by solvingα = Hb(α).

convex optimization tools. In the case thatΓ = 0, X2,i is independent of the messagem1 and therefore we obtain

that at any timei the channel from Encoder 1 to the output behaves as aZ−channel ifX2,i = 0 and as anS

channel ifX2,i = 1 and the capacity of those two channels areHb(
1
5 ) − 2

5 , and thereforeC(0) = Hb(
1
5 ) − 2

5 .

For the case thatΓ = 1 we obtain from (64) thatC(1) = maxα1
min(α1, Hb(α1)). The α that maximizes the

expression ofC(1) is the one that solves the equationα1 = Hb(α1).

IX. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

We have considered the problem of MACs with partial cribbingencoders, namely, in a two encoder MAC the

observed cribbed signal is a deterministic function of the other encoder output. We have characterized the capacity

region for the two cases where the partial cribbing is causalor strictly causal. Rate splitting is the main additional
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technique used in the achievability proof over the techniques used for perfect cribbing. The extension of perfect

cribbing to partial cribbing resemble to the extension of the decode-and-forward technique for the relay to the

partial-decode-and-forward technique [15]. The method weused for partial cribbing may be also used for noisy

cribbing, although in general the capacity region of noisy cribbing is an open question. Another question that has not

been solved yet is the non causal partial cribbing. For the perfect cribbing case Willems [16] solved the noncausal

case simply by showing that causal and non-causal perfect cribbing results in the same capacity region.

Solving the partial cribbing setting allowed us to solve an action dependent cribbing problem. In this paper we

considered the case where the action is only a function of thepreviously observed cribbing. However, the case in

Fig. 5 where the action is a function of the previously observed cribbing and the message of the cribbing encoder,

i.e.,a1,i(z
i−1
1 ,m1) is yet to be solved. Issues of this nature may be raised in the sphere of cognitive communication

systems where sensing other users’ signals is a resource with a cost.
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