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Abstract

In this paper we study the existence of locally most powerful invariant tests (LMPIT) for the problem of testing

the covariance structure of a set of Gaussian random vectors. The LMPIT is the optimal test for the case of close

hypotheses, among those satisfying the invariances of the problem, and in practical scenarios can provide better

performance than the typically used generalized likelihood ratio test (GLRT). The derivation of the LMPIT usually

requires one to find the maximal invariant statistic for the detection problem and then derive its distribution under

both hypotheses, which in general is a rather involved procedure. As an alternative, Wijsman’s theorem provides the

ratio of the maximal invariant densities without even finding an explicit expression for the maximal invariant. We

first consider the problem of testing whether a set of N -dimensional Gaussian random vectors are uncorrelated or

not, and show that the LMPIT is given by the Frobenius norm of the sample coherence matrix. Second, we study the

case in which the vectors under the null hypothesis are uncorrelated and identically distributed, that is, the sphericity

test for Gaussian vectors, for which we show that the LMPIT is given by the Frobenius norm of a normalized version

of the sample covariance matrix. Finally, some numerical examples illustrate the performance of the proposed tests,

which provide better results than their GLRT counterparts.

Index Terms

Hypothesis test, invariance, locally most powerful invariant test (LMPIT), maximal invariant statistic, Wijsman’s

theorem.

This work was presented in part at the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) and at

the 2012 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).

The work of J. Vı́a and I. Santamarı́a was supported by the Spanish Government, Ministerio de Ciencia e Innovación (MICINN), under project

COSIMA (TEC2010-19545-C04-03) and project COMONSENS (CSD2008-00010, CONSOLIDER-INGENIO 2010 Program). The work of L.

Scharf was supported by the Airforce Office of Scientific Research under contract FA9550-10-1-0241.

D. Ramı́rez is with the Signal and System Theory Group, Universität Paderborn, 33098 Paderborn, Germany (e-mail:

david.ramirez@sst.upb.de).

J. Vı́a and I. Santamarı́a are with the Department of Communications Engineering, University of Cantabria, 39005 Santander, Spain (e-mail:

{jvia,nacho}@gtas.dicom.unican.es).

L. L. Scharf is with the Departments of Mathematics and Statistics, Colorado State University, Ft. Collins, CO 80523, USA (e-mail:

Louis.Scharf@ColoState.edu).

Copyright (c) 2012 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must

be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

December 6, 2012 DRAFT

ar
X

iv
:1

20
4.

56
35

v2
  [

cs
.I

T
] 

 5
 D

ec
 2

01
2



IEEE TRANSACTIONS ON INFORMATION THEORY 2

I. INTRODUCTION

Testing the covariance structure of Gaussian vectors is one of the classic problems in multivariate statistical

analysis [1], and is also commonly found in many applications, including sensor networks [2], cooperative networks

with multiple relays [3]–[5], multiantenna radar detection [6] and, more recently, cognitive radio sensing with

multiantenna spectrum monitors [7]–[10]. Assuming Gaussian vector measurements, the problem in its most general

formulation consists of testing whether the covariance matrix of the stack of all vectors is block-diagonal, that is,

whether all pairwise cross-covariance matrices are zero or not. A case of particular interest results when all vector

measurements share the same covariance matrix under the null hypothesis, in which case the test is a test of

sphericity for Gaussian vectors.

In practice, the likelihood depends on unknown parameters and the hypotheses are therefore composite. In the

absence of a uniformly most powerful test (UMPT), most approaches consider the generalized likelihood ratio test

(GLRT). However, despite its simplicity, it is known that the GLRT is not optimal in the Neyman-Pearson sense

[1]. Furthermore, although the GLRT tends asymptotically to be optimal [11], its performance may degrade for

practical scenarios such as those typically found in cognitive radio applications, which are characterized by close

hypotheses (low signal-to-noise ratio) and small sample sizes. When the problem exhibits symmetries or invariances,

a reasonable approach consists in focusing on the class of tests satisfying the required invariances under a suitable

group of transformations. Optimal invariant tests, which depend only on the maximal invariant statistic for the

problem, are called uniformly most powerful invariant tests (UMPIT). Nevertheless, in many practical situations,

such as those considered in this paper, the UMPIT does not exist (the maximal invariant statistic is vector-valued),

and we have to resort to further refinements. Thus, by focusing on the challenging case of close hypotheses, and by

applying a Taylor’s series approximation of the ratio of maximal invariant densities, it might be possible to avoid

the dependence on unknown parameters, yielding the so-called locally most powerful invariant test (LMPIT). The

main goal of this paper is to study the existence of LMPITs for testing the covariance structure of Gaussian vectors,

a problem for which UMP or UMPI tests do not exist in general.

In contrast to the conventional way of deriving a LMPIT, which is finding the maximal invariant statistic and

then deriving its distribution under both hypotheses, in this paper we apply Wijsman’s theorem [12]–[14]. This

powerful theorem (cf. Section II) allows us to obtain the ratio of densities even without an explicit formulation for

the maximal invariant statistic.

A. Related works and main contributions

The main theoretical work pertaining to the present paper was done in the seventies by John [15], who derived the

LMPIT in the scalar case for testing whether a set of real Gaussian random variables are uncorrelated and identically

distributed (i.e., all with the same variance), the so-called sphericity test for Gaussian variables. Another related work

is [16], where the author derived a locally minimax test for testing independence among real Gaussian vectors.

Apart from [15] and [16], the vast majority of published work for testing the correlation structure of Gaussian

random variables or random vectors with unknown parameters uses the GLRT. Specifically, the first generalized
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likelihood ratio test dates back to the work by Wilks in the 30s [17], where the author derived the GLRT for

testing the null hypothesis that the covariance matrix of a set of real Gaussian random variables is diagonal vs. the

alternative that it is positive definite and otherwise arbitrary. That is a test for correlation among Gaussian variables.

In particular, the GLRT derived by Wilks is given by the Hadamard ratio of the sample covariance matrix, i.e., the

ratio between the determinant of the sample covariance matrix and the product of the elements of its main diagonal,

which may also be rewritten as the determinant of the sample coherence matrix. More recently, this problem was

revisited in the field of signal processing for radioastronomy by Leshem and Van der Veen [18], [19], who derived

the GLRT for circular complex Gaussian random variables. Interestingly, the determinant of the sample coherence

matrix was also proposed in [20], [21] based on a geometric interpretation of the correlation coefficient, which they

referred to as generalized coherence (GC). The GLRT for sphericity was found by Mauchly [22]. These results

have been extended to vector-valued Gaussian data in [23], where the authors derived the GLRT for testing whether

a covariance matrix of complex Gaussian vectors is block-diagonal or not. Not surprisingly, the GLRT for this

problem is a generalized (block-based) Hadamard ratio of the sample covariance matrix.

In this paper, we focus on the case of close hypotheses and study the existence of LMPITs for the covariance

structure of Gaussian data. We extend [15] to the general case of vector-valued observations that may or may not

have the same covariance matrix under the null hypothesis. Instrumental in deriving these results is the application

of Wijsman’s theorem, which requires identifying the invariances of each problem and integrating the distribution

of the transformed observations under a measure on the corresponding group of transformations. Although we focus

on the case of complex Gaussian vectors, which is motivated by its applications in radar and spectrum sensing

problems, the presented results can be easily proved for real vectors, which is left as an exercise for the interested

reader. Specifically, the main contributions of this work are the following:

• Correlation Test: For vectors with different covariances under the null hypothesis, we show that the LMPIT

is given by the Frobenius norm of the sample coherence matrix. The block diagram of the LMPIT is depicted

in the lower part of Figure 1, where we can see that the whitening is different for each vector. We should also

point out that the Frobenius norm of the coherence matrix, or similar squared-sum test statistics, have been

previously proposed as approximations of the GLRT that might be computationally simpler or have some other

advantage [18], [19], [24], [25]. Here, we prove for the first time that the Frobenius norm of the coherence

matrix is in fact the LMPIT for this problem.

• Sphericity Test: When the vector-valued observations under the null hypothesis are independent and identically

distributed, we show that the LMPIT is given by the Frobenius norm of a normalized version of the sample

covariance matrix. Figure 1 also shows the block diagram of the LMPIT for this problem. However, in this

case, the whitening is common for all vectors, and it is given by the inverse square root matrix of the average

of the individual sample covariance matrices.

• Local Irrelevance of the rank-structure: Interestingly, the previous results also hold for the signal-plus-noise

model commonly used in many signal processing problems, regardless of the rank of the signal covariance
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R̂

R̂

‖ · ‖2 LMPIT for Correlation

‖ · ‖2 LMPIT for Sphericity

Fig. 1. Block diagram of the LMPIT for the testing problems considered in this paper. Whiten denotes a whitening step, that is, the input

vector is multiplied by the inverse of the square root matrix that enters into the block, R̂ is a block that computes the sample covariance matrix

of the input-vectors, whereas R̂kk computes the covariance matrix of the kth vector, 1/L
∑

averages the input matrices, and ‖ · ‖2 denotes

the squared Frobenius norm of the input-matrix. As can be seen, the main difference among the detectors is the whitening step. For testing

correlation among Gaussian vectors, the whitening step is different for each vector, whereas for testing sphericity the same whitening is applied

to each vector.

matrix. From a practical point of view, this means that for close hypotheses the spatial structure does not play

any role for detection purposes. In other words, the use of subspace-based estimation techniques does not help

for detection, at low signal-to-noise ratios (SNR) and/or low sample support.

The paper is organized as follows. Section II presents a brief review of Wijsman’s theorem and the use of

invariance in detection problems. The LMPIT for testing whether L non-identically distributed N -dimensional

vectors are uncorrelated is introduced in Section III, whereas Section IV presents the LMPIT when the vector

observations under the null hypothesis are identically distributed. The performance of the proposed detectors is

illustrated by means of numerical simulations in Section V, and Section VI summarizes the main conclusions of

this work.
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B. Notation

In this paper we use bold-faced upper case letters to denote matrices, with elements xk,l, bold-faced lower case

letters for column vectors, and light-face lower case letters for scalar quantities. The superscripts (·)T and (·)H

denote transpose and Hermitian transpose, respectively. The determinant, trace and Frobenius norm of a matrix A

will be denoted, respectively, as det (A), tr (A) and ‖A‖. The notation A ∈ CM×N
(
A ∈ RM×N

)
will be used

to denote a complex (real) matrix of dimension M × N . For vectors, the notation x ∈ CM
(
x ∈ RM

)
denotes

a complex (real) vector of dimension M . The absolute value of the complex number x is denoted as |x| and

x ∼ CN (µ,R) indicates that x is a complex circular Gaussian random vector of mean µ and covariance matrix

R. The expectation operator will be denoted as E[·] and ⊗ is the Kronecker product. IL is the identity matrix of

size L×L and 0L denotes the zero vector or the zero matrix (depending on the context) of sizes L× 1 and L×L,

respectively. We use A1/2 (A−1/2) to denote the Hermitian square root matrix of the Hermitian matrix A (A−1).

Finally, ∝ stands for equality up to additive and multiplicative positive constant (not depending on data) terms and

diagN (A) is a block-diagonal matrix formed by the N ×N matrix blocks on the diagonal of A, whereas diag(A)

denotes the vector composed by the elements of the main diagonal of A.

II. INVARIANT TESTS: WIJSMAN’S THEOREM

It is well known that the Neyman-Pearson detector, given by the likelihood ratio, is the optimal test for simple

hypotheses [26], that is, for hypotheses whose likelihood is known. Nevertheless, when the likelihood depends on

unknown parameters, the hypotheses are composite and the problem is far from trivial. In fact, an optimal detector

for composite hypothesis, known as a uniformly most powerful test (UMPT) [26], [27], only exists in a few fortunate

simple cases.

When a UMPT does not exist, a typical approach consists in focusing on the class of detectors invariant to some

transformations suitable for the problem. Let us first introduce the concepts of invariance and maximal invariant

statistic that will be used in the rest of the section. A detector is said to be invariant to the group of transformations

G if [26], [28]

T (g(x)) = T (x), ∀g(·) ∈ G, (1)

where T (·) is the test statistic and x are the measurements. A statistic M(x) is maximal invariant if [26], [28]

M(g(x)) = M(x), (2)

for all g(·) ∈ G and

M(x1) = M(x2), (3)

implies x2 = g(x1) for some g(·) ∈ G. Therefore, the maximal invariant statistic organizes the measurements into

sets that provide a constant value of M(x), and these sets are known as orbits. Taking this into account, every

invariant test may be written as a function of the maximal invariant statistic,

T (x) = T (M(x)), (4)
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and we can therefore restrict our attention to rules that are functions of M(x). Using this important concept, the

conventional approach to obtaining a uniformly most powerful invariant test (UMPIT) is as follows [26]:

1) Identify the problem invariances and identify the corresponding transformation group.

2) Find the maximal invariant statistic.

3) Derive the densities of the maximal invariant statistic under each hypothesis.

4) Obtain the detector based on the ratio of the densities of the maximal invariant statistic.

5) Establish that the detector statistic has a monotone likelihood ratio

This approach can be, for many problems, very difficult due to the need to obtain the distribution of the maximal

invariant statistic under each hypothesis, which might itself be a complicated function of the data. Wijsman’s

theorem [12]–[14] provides an alternative (simpler) way to derive the ratio of densities of the maximal invariant

statistic. The theorem states that, under some mild assumptions (presented later), the ratio of the maximal invariant

densities is given by

L =

∫
G p (g(x);H1) |det (Jg)| dg∫
G p (g(x);H0) |det (Jg)| dg

, (5)

where p (x;Hi) is the probability density function (pdf) of x under the hypothesis Hi, G is the group of invariant

transformations, Jg denotes the Jacobian of the transformation g(·) ∈ G and dg is an invariant group measure,

which in our problems may be taken as the usual Lebesgue measure. Despite its usefulness, Wijsman’s theorem

has received little attention in the information theory and signal processing communities and just a few works have

exploited this result to derive invariant tests for particular problems [29]–[35].

Stein [36] was the first to propose the idea of integrating over the group of transformations that describe the

problem invariances. Later, the conditions for the validity of the theorem were studied in [12], [13], [30], [37]–[39]

by Wijsman and other authors, who formally proved the theorem. For us, it suffices to consider the simplest set of

conditions in [12] and [30]. In particular, G has to be a Lie group, a finite group or a composition of both and the

observations have to belong to a linear Cartan G-space, that is, a nonempty open subset (denoted as S) of Euclidean

space such that, for every x ∈ S, there exists a neighborhood V for which the closure of {g(·) ∈ G : g(V)∩V 6= ∅}

is compact.

Unfortunately, for the testing problems considered in this paper, the ratio of the maximal invariant densities

(obtained through Wijsman’s theorem) still depends on an unknown parameter vector, which means that the UMPIT

does not exist in general. For this reason, we will focus our attention on the case of close hypotheses and will

study the existence of locally most powerful invariant tests (LMPIT). The main idea behind the LMPIT consists

in applying a Taylor’s series approximation of the likelihood ratio. When the lowest order term depending on the

data is a monotone function of a scalar statistic, the detector is locally optimal. We will detail this procedure in the

following sections for the tests considered in the paper.

III. THE LMPIT FOR CORRELATION OF GAUSSIAN VECTORS

Consider a set of L zero-mean circular complex jointly Gaussian vectors, x1, . . . ,xL, of dimension N , i.e.,

xi ∈ CN , i = 1, . . . , L. In this section, we address the problem of testing whether these vectors are correlated or not,
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without assuming any particular structure for the covariance matrices. That is, we want to check if E
[
xkx

H
l

]
= 0L,

∀k 6= l. We shall proceed by constructing the NL vector x = [xT1 , . . . ,x
T
L]T , and defining its covariance matrix as

R = E[xxH ] =


R11 R12 · · · R1L

RH
12 R22 · · · R2L

...
...

. . .
...

RH
1L RH

2L · · · RLL

 , (6)

with R ∈ CLN×LN and Rkl ∈ CN×N . Hence, the detection problem may be cast as the following test for the

covariance structure of x,
H1 : R ∈ S,

H0 : R ∈ DB+
,

(7)

where S is the set of positive definite matrices1 and DB+
is the set of block-diagonal matrices with positive definite

blocks. As previously pointed out, we do not impose any particular covariance structure on the individual vectors,

beyond uncorrelation among vectors under H0. Then, the test becomes

H1 : x ∼ CN (0LN ,R1),

H0 : x ∼ CN (0LN ,D),
(8)

where R1 ∈ S and D ∈ DB+ are two unknown covariance matrices. This test is rather general and encompasses, for

instance, the problem of testing whether a set of L univariate non-stationary Gaussian time series are uncorrelated

[23].

A. Derivation of the LMPIT

Given a set of M vector measurements, x[1], . . . ,x[M ], in this subsection we apply Wijsman’s theorem to

derive the LMPIT for the detection problem (8). To this end, it is first necessary to find the problem invariances.

Specifically, this hypothesis test is invariant under the group of transformations

G =
{
g : x→ g(x) = PGx,P = P⊗ IN ,P ∈ P,G ∈ DB

}
(9)

where P is the set of permutation matrices of dimension L and DB is the set of block diagonal invertible matrices.

That is, the test is invariant under permutations of the vectors, and to a (possibly different) linear transformation

of each of them.

Let us also obtain an explicit expression for the maximal invariant under the transformations in (9). This will

help to identify the difficulties of the conventional approach to deriving invariant tests for this problem, and to

further appreciate the value of Wijsman’s theorem. It is well known that the sufficient statistic for this problem is

the sample covariance matrix

R̂ =
1

M

M∑
m=1

x[m]xH [m]. (10)

1The results may be extended to consider positive semi-definite matrices.
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Now, taking into account the invariance of the problem to a multiplication by an invertible block-diagonal matrix,

we may introduce the transformation y = D̂−1/2x, whose covariance matrix is

R̂yy = Ĉ = D̂−1/2R̂D̂−1/2 =


IN Ĉ12 · · · Ĉ1L

ĈH
12 IN · · · Ĉ2L

...
...

. . .
...

ĈH
1L ĈH

2L · · · IN

 , (11)

where D̂ = diagN (R̂) and Ĉ is the coherence matrix. After this initial prewhitening stage, we can arbitrarily fix

the order of the vectors, for instance, according to the determinants of the matrices Ĉk,l.2

Once the order has been fixed, consider the singular value decomposition (SVD) of Ĉ1,2

Ĉ12 = U12diag
(
ξ̂12

)
VH

12, (12)

where ξ̂12 contains the canonical correlations between the first and second vectors. Thus, we may apply a unitary

transformation of y belonging to G, that diagonalizes Ĉ12 as follows: z = diag
(
UH

12,V12, I, . . . , I
)
y. Additionally,

the LQ decomposition of the first row and column partitions allows us to express R̂zz as

R̂zz =



IN diag(ξ̂12) L13Q13 · · · L1LQ1L

diag(ξ̂12) IN V12Ĉ23 · · · V12Ĉ2L

QH
13L

H
13 ĈH

23V
H
12 IN · · · Ĉ3L

...
...

...
. . .

...

QH
1LLH1L ĈH

2LVH
12 ĈH

3L · · · IN


, (13)

where Lkl is a lower triangular matrix with non-negative real diagonal elements and Qkl is a unitary matrix.

Finally, we can apply another linear transformation to triangularize the first row and column partitions as follows

w = diag (I, I,Q13, . . . ,Q1L) z. As an example, the final structure of R̂ww is shown in Figure 2. The following

lemma summarizes the obtained result.

Lemma 1: The maximal invariant statistic for the test (8) under the group of transformations (9) is given by{
ξ̂12

}
∪
{
LH1l , l = 3, . . . , L

}
∪
{

Q1kĈklQ
H
1l , k = 2, . . . , L, l = 3, . . . , L, l > k

}
, (14)

where ξ̂12 are the canonical correlations between the first and second vectors, and LklQkl is the LQ decomposition

of (k, l)th block of R̂zz.

Although we have been able to obtain an explicit expression for the maximal invariant statistic, it can be seen that

it is a complicated function of the observations. Therefore, deriving its distribution under each hypothesis seems

intractable. Additionally, Lemma 1 also allows us to conclude that, since for N > 1 or L > 2 the maximal invariant

is a vector-valued function of the data, the UMPIT for this problem does not exist in general [40]. Finally, notice

that the maximal invariant statistic does not only depend on the eigenvalues of the coherence matrix (or canonical

correlations), as shown in the following example.

2The determinants will be different with probability one.
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Fig. 2. Structure of Rww (maximal invariant statistic) for the correlation test with L = 5 vectors of size N = 4. The black and white entries

represent zeros and ones, respectively. Real positive and complex values are represented, respectively, by red and green entries.

Example: Consider the following coherence matrices (L = 3, N = 1)

Ĉ1 =


1 0.5 0

0.5 1 0

0 0 1

 , Ĉ2 =


1 0 0.4

0 1 0.3

0.4 0.3 1

 ,
which are not related by one of the transformations in the invariance group G, i.e., they belong to different orbits.

However, it can be easily verified that they share the eigenvalues (canonical correlations), given by 0.5, 1, 1.5.

Due to the difficulties posed by the maximal invariant of this problem, we resort to Wijsman’s theorem to derive

the LMPIT. It is easy to check that DB is a Lie group and, for M ≥ N , the observation space S = CLN×M is a

linear Cartan G-space. On the other hand, the group of permutations is finite and it is not therefore a Lie group.

Then using the results in [30] for finite groups, and taking into account that also the conditions in [12] are fulfilled,

Wijsman’s theorem may be applied. Specifically, the ratio of the densities of the maximal invariant is given by

L =

∑
P
∫
DB

det (R1)
−M |det (G)|2M e−M tr(PTR−1

1 PGR̂GH) dG∑
P
∫
DB

det (D)
−M |det (G)|2M e−M tr(PTD−1PGR̂GH) dG

. (15)

In order to derive the LMPIT, we must factor (15) as a function depending only on the observations and a function

depending on the unknown parameters (R1 and D). Before proceeding, let us introduce the following lemma.

Lemma 2: The ratio of the maximal invariant densities (15) may be simplified as follows

L ∝
∑
P

∫
DB

|det (G)|2M e−M tr(GGH) e−α dG, (16)

where

α = M

L∑
k,l=1
k 6=l

tr
(
S̃klGlĈlkG

H
k

)
. (17)
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Here, the matrix Gk is the kth block of G and S̃kl is the (k, l)th block of S̃ = PTD
−1/2
S SD

−1/2
S P, where

S = R−11 and DS = diagN (S).

Proof: Considering the change of variable G → GD̂−1/2, which belongs to the group of transformations G,

(15) becomes

L ∝
∑

P
∫
DB
|det (G)|2M e−M tr(PTSPGĈGH) dG∑

P
∫
DB
|det (G)|2M e−M tr(PTD−1PGĈGH) dG

. (18)

In words, this transformation shows that the detector does not depend on the individual sample covariances, but

on the sample coherences. Taking into account that the blocks of the main diagonal of Ĉ are equal to the identity

matrix, it is straightforward to prove that the denominator of (18) does not depend on the observations. Finally,

considering a new change of variable from the group of transformations G→ PTD
−1/2
S PG, the result follows.

It can be easily shown that, in general, (16) is a function of the unknown parameters, given by S, which allows us

to conclude again that there does not exist a uniformly most powerful invariant test (UMPIT). The only exception

is presented in the following theorem.

Theorem 1: For L = 2 and N = 1, that is, two scalar observations, the UMPIT3 accepts H0 for small values of

T (x[1], . . . ,x[M ]) = |ĉ12|, (19)

where ĉ12 is the sample correlation coefficient.

Proof: For scalar observations, (16) is an increasing monotone function of the maximal invariant statistic |ĉ12|.

Due to the nonexistence of the UMPIT for vector-valued data, we shall focus on the challenging scenario of

close hypotheses, and derive the locally most powerful invariant test (LMPIT), which is presented in the following

theorem.

Theorem 2: The LMPIT accepts H0 for small values of

T (x[1], . . . ,x[M ]) = ‖Ĉ‖2. (20)

Proof: See Appendix A.

For the particular case of scalar observations, that is N = 1, the Frobenius norm of the coherence matrix has been

previously proposed as an ad-hoc approximation of the GLRT detector [18], [19]. Additionally, in [23] the authors

noticed experimentally that the Frobenius norm presents better performance than the determinant of the coherence

matrix (which is the GLRT for this problem), mainly for close hypotheses and/or low sample sizes. Following a

rigorous approach, in this section we have shown that the Frobenius norm of the coherence matrix is not just a

reasonable approximation of the GLRT, but the LMPIT; that is, the optimal invariant detector for close hypotheses.

3Actually, it is shown in [27], using a different approach, that the sample correlation coefficient is the uniformly most powerful unbiased test.
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B. Latent Signal Model

Many signal processing, communications and econometrics problems use the well known signal-plus-noise or

latent signal model. In these cases, the hypothesis test has further structure that, in principle, could be exploited to

improve the detector performance. In particular, the test in this case is given by

H1 : x ∼ CN (0LN ,HHH + D),

H0 : x ∼ CN (0LN ,D),
(21)

where H ∈ CLN×P is the unknown channel matrix and D ∈ DB+
is the unknown block-diagonal noise covariance

matrix. The main difference with our original problem is that in (21) the covariance matrix under H1 has more

structure than in (8). Specifically, it is the sum of a (possibly) rank-deficient matrix and the noise covariance matrix.

As it turns out, the derivation of the GLRT for this problem is pretty involved, even for the simple case of N = 1

[9]. In particular, the authors of [9], considering scalar observations, showed that there is no closed-form GLRT. On

the other hand, it is easily proved that the additional structure imposed in R1 does not modify the invariances of the

testing problem in (8) and the maximal invariant remains the same, which has the following important consequence.

Remark 1: The LMPIT for the test given in (21) is also the Frobenius norm of the coherence matrix given by

(20), which means that, for close hypotheses, the additional spatial structure in the signal subspace is irrelevant for

optimal detection.

The optimality of ignoring the spatial structure can be explained as a direct consequence of the fact that, for

close hypotheses (e.g., low SNRs or small sample size), errors in the estimation of the signal subspace are likely

to occur, thus degrading the performance of the detector. Consequently, it makes more sense in this situation to

average out the unknown parameters rather than using their maximum likelihood estimates.

IV. THE LMPIT FOR SPHERICITY OF GAUSSIAN VECTORS

In this section, we consider a more restrictive null hypothesis under which the vectors are also identically

distributed. Specifically, we consider the following test

H1 : x ∼ CN (0LN ,R1),

H0 : x ∼ CN (0LN , IL ⊗R0),
(22)

where R1 ∈ S is the LN × LN unknown covariance matrix under H1 and R0 ∈ S is the N × N unknown

covariance matrix under H0. Hence, this hypothesis test generalizes the well-known test for sphericity of Gaussian

variables [22]. For this problem the group of invariant transformations is

G = {g : x→ g(x) = (Q⊗G) x,Q ∈ Q,G ∈ G} , (23)

where Q is the set of L× L unitary matrices and G is the set of N ×N invertible matrices. That is, the problem

is invariant under the same linear transformation of all vectors and any unitary combination of them. The maximal
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invariant for this problem is again a complicated vector-valued function of the observations,4 which does not allow

us to derive the distributions under each hypothesis and also shows that the UMPIT does not exist in general. In

the following we use Wijsman’s theorem to obtain the LMPIT for this problem.

The group of transformations G is a Lie group, and for M ≥ N the observation space S = CLN×M is a linear

Cartan G-space. Hence, the conditions of Wijsman’s theorem are fulfilled, which allows us to express the ratio of

the maximal invariant densities as follows

L ∝
∫
Q
∫
G |det (G)|2LM e−M tr(R−1

1 G̃R̂G̃H) dGdQ∫
Q
∫
G |det (G)|2LM e−M tr((I⊗R−1

0 )G̃R̂G̃H) dGdQ
, (24)

where we have introduced the matrix G̃ = Q⊗G to simplify notation and dropped the size of the identity matrix.

First, let us present a simpler expression for L , given in the following lemma.

Lemma 3: The distribution ratio is given by

L ∝
∫
Q

∫
G
|det (G)|2LM e−α dGdQ, (25)

where

α = M tr
(
S̃G̃ ˆ̃RG̃H

)
. (26)

The normalized sample covariance matrix is

ˆ̃R = (I⊗ R̂0)−1/2 R̂ (I⊗ R̂0)−1/2, (27)

and the matrix S̃ is given by

S̃ = (I⊗ S)−1/2 S (I⊗ S)−1/2, S = R−11 . (28)

R̂0 = 1/L
∑L
k=1 R̂kk is the ML estimate of R0 and S = 1/L

∑L
k=1 Skk is the mean of the diagonal blocks of S.

Proof: After applying the change of variable given by G→ GR̂
−1/2
0 , the ratio (24) becomes

L ∝
∫
Q
∫
G |det (G)|2LM e

−M tr
(
SG̃ ˆ̃RG̃H

)
dGdQ∫

Q
∫
G |det (G)|2LM e

−M tr
(
[I⊗(GHR−1

0 G)] ˆ̃R
)
dGdQ

. (29)

To get rid of the denominator, let us apply in the integral of the denominator the change of variable G→ R
1/2
0 G,

which yields

L ∝
∫
Q

∫
G
|det (G)|2LM e

−M tr
(
SG̃ ˆ̃RG̃H

)
dGdQ. (30)

Finally, applying G→ S
−1/2

G concludes the proof.

Analogously to the previous case, (25) is in general a function of the unknown parameters and, therefore, the

UMPIT does not exist. In this case, the exception is presented in the following theorem, which was previously

proved in [40] following the conventional approach.

4We leave the derivation of the maximal invariant statistic as an exercise for the interested reader.
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Theorem 3: For L = 2 and N = 1, that is two scalar observations, the UMPIT accepts H0 for small values of

T (x[1], . . . ,x[M ]) =
ˆ̃
ξ1, (31)

where ˆ̃
ξ1 is the largest eigenvalue of ˆ̃R, or equivalently, the largest eigenvalue of R̂ normalized by tr(R̂).

Proof: For L = 2 and N = 1, G becomes a scalar, namely g. Therefore, taking into account the eigenvalue

decomposition (EVD) of S̃ and ˆ̃R, the ratio (25) may be rewritten as

L ∝
∫
Q

∫
G
|g|4M e−M |g|

2∑2
s,t λ̃t

ˆ̃
ξs|qt,s|2 dgdQ, (32)

where λ̃t is the tth eigenvalue of S̃ and qt,s denotes the (t, s)th element of Q. Finally, noting that tr( ˆ̃R) =
ˆ̃
ξ1+

ˆ̃
ξ2 =

2, it is easy to show that (32) is an increasing monotone function of ˆ̃
ξ1.

Excluding the particular case presented in the previous theorem, we have to focus on the case of close hypotheses

and derive the LMPIT, which is presented next.

Theorem 4: The LMPIT accepts H0 for small values of

T (x[1], . . . ,x[M ]) = ‖ ˆ̃R‖2. (33)

Proof: See Appendix B.

To conclude this subsection, let us consider again the latent signal model, which results in the following hypothesis

test
H1 : x ∼ CN (0LN ,HHH + IL ⊗R0),

H0 : x ∼ CN (0LN , IL ⊗R0).
(34)

The group of invariant transformations for the above problem is still given by (23). Hence, we can conclude that

the LMPIT for the detection problem (34) is also given by (33). This interesting result shows again that, under

close hypotheses, the additional rank structure of the covariance matrix is irrelevant for optimal detection.

V. NUMERICAL RESULTS

In this section we illustrate the performance of the LMPITs in several scenarios. In all examples the covariance

matrices are as follows
H1 : R =

(
FLΩLFHL

)
⊗ IN ,

H0 : R = ILN ,
(35)

where FL is the Fourier matrix of dimensions L × L and ΩL is an L × L diagonal matrix containing the

canonical correlations, i.e. the singular values of the coherence matrix. In particular, we have considered L canonical

correlations equispaced between 0.5 and 1.5. It is important to point out that, due to the problem invariances, there

is no loss of generality by considering the identity covariance matrix under the null hypothesis.

In the first scenario we consider the performance of the LMPIT given by the Frobenius norm of the coherence

matrix and compare it to that of the GLRT, which accepts H0 for large values of

T (x[1], . . . ,x[M ]) = log det
(
Ĉ
)
. (36)
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Fig. 3. ROC curves for the GLRT and the LMPIT for testing correlation among Gaussian vectors. The parameters of the experiment are:

L = 10, N = 4 and M = 40, 55, 70, 85, and 100.

40 50 60 70 80 90 100
10−4

10−3

10−2

10−1

100

M

p
m

LMPIT
GLRT

Fig. 4. Probability of missed detection vs. M for the GLRT and the LMPIT for testing correlation among Gaussian vectors. The parameters

of the experiment are: L = 10, N = 4 and we fix pfa = 10−3.

Specifically, this example considers L = 10 vector measurements of dimension N = 4, and generates the receiver

operating characteristic (ROC) curves for M = 40, 55, 70, 85, and 100 samples. The ROC curves are shown in

Figure 3, where we can see that the performance of the LMPIT is consistently better than that of the GLRT for

this example with close hypotheses. Moreover, the performance gap increases for small values of M , as Figure 4

clearly shows.

In the second scenario we evaluate the performance of the LMPIT given by (33), and that of the GLRT for the

sphericity test for Gaussian vectors. In particular, the GLRT accepts H0 for large values of

T (x[1], . . . ,x[M ]) = log det
(

ˆ̃R
)
. (37)

For this example, Figures 5 and 6 show the ROC curves and the probability of missed detection, pm, vs. M for
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Fig. 5. ROC curves for the GLRT and the LMPIT for testing sphericity among Gaussian vectors. The parameters of the experiment are:

L = 10, N = 4 and M = 40, 55, 70, 85, and 100.
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Fig. 6. Probability of missed detection vs. M for the GLRT and the LMPIT for testing sphericity among Gaussian vectors. The parameters

of the experiment are: L = 10, N = 4 and we fix pfa = 10−3.

an experiment with L = 10 sets of vectors, N = 4 and M = 40, 55, 70, 85, and 100 observations, where we draw

conclusions similar to those in the previous example.

Finally, let us make some comments on threshold selection. Similarly to [41], and exploiting the invariances of the

problem, the thresholds may be obtained using numerical simulations for the particular case R0 = I. These values

will still be valid for any other choice of R0. As an example, Figure 7 shows the empirical cumulative distribution

function of the LMPIT and the GLRT for the first scenario, where we can see that the distribution of the (normalized)

LMPIT statistic is almost independent of M . Moreover, taking into account that log det(Ĉ) ∝ ‖Ĉ‖2 for Ĉ ≈ I

[18], [23], we may use the results for the asymptotic distribution of the GLRT provided by Wilks’ theorem [11].
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Fig. 7. Empirical CDF for the GLRT and the LMPIT for testing correlation among Gaussian vectors. The parameters of the experiment are:

L = 10, N = 4 and M = 40, 55, 70, 85, and 100. Red solid line: LMPIT. Blue dashed line: GLRT (Curves far away from the Chi-squared

approximation correspond to smaller values of M ). Black dashed-dotted line: Wilks’ approximation.

Then, as M →∞, the distribution of the LMPIT converges to a Chi-squared distribution

(M‖Ĉ‖2 − LNM)
H0∼ χ2

(L2−L)N2 , (38)

(M‖ ˆ̃R‖2 − LNM)
H0∼ χ2

(L2−1)N2 . (39)

In Figure 7 we can see how accurate the approximation is for this example.

VI. CONCLUSIONS

In this paper, we have derived two locally optimal invariant tests for the covariance structure of Gaussian random

vectors. We have focused on the case of close hypotheses, which is of interest in many practical problems such as

cognitive radio sensing, where detection must be performed in low signal-to-noise ratio (SNR) scenarios. Locally

most powerful invariant tests (LMPIT) for this problem were only known for the case of i.i.d. scalar observations

(with the same variance under H0), since in this situation the maximal invariant statistic is a simple function of the

observations and its distributions can be analytically characterized. For vector-valued data, the maximal invariant

statistic is typically a complicated function of the observations. To avoid these difficulties, in this paper we have

applied Wijsman’s theorem to obtain the ratio of the maximal invariant densities by integrating over the group of

transformations defining the invariances of the problem. Based on this theorem, we have proved that the LMPIT for

testing whether a set of Gaussian vector measurements are correlated is given by the Frobenius norm of the sample

coherence matrix. For random vectors identically distributed under the null hypothesis, that is, the sphericity test for

Gaussian vectors, we have also proved that the LMPIT exists, and is given by the Frobenius norm of a normalized

sample covariance matrix. The invariances of the problems and our results do not depend on any additional rank
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structure the covariance matrices might have. In this way, an interesting conclusion from a practical point of view

is that the additional spatial structure is locally irrelevant for optimal detection.

APPENDIX A

PROOF OF THEOREM 2

For close hypotheses (or low correlation), the inverse covariance matrix satisfies S ≈ I ⇒ α ≈ 0. Therefore,

applying a second order Taylor’s series approximation of e−α around α = 0 we get

L ∝
∑
P

∫
DB

β(G)
(
α2 − 2α

)
dG, (40)

where β(G) = |det (G)|2M e−M tr(GGH) is a positive term only depending on G. Let us now consider the linear

term, which is given by

Ll ∝
∑
P

L∑
k,l=1
k 6=l

∫
DB

β(G) tr
(
S̃klGlĈlkG

H
k

)
dG. (41)

Applying the change of variable Gk → −Gk, for all values of k, it is easy to check that all the integrals are equal

to their opposites, so they must be zero. In consequence, the linear term must be zero. Using similar arguments,

we can get rid of the cross-product terms in α2 and rewrite L as follows

L ∝
∑
P

L∑
k,l=1
k 6=l

∫
DB

β(G) tr2
(
S̃klGlĈlkG

H
k

)
dG. (42)

Performing the singular value decomposition (SVD) of S̃k,l and Ĉl,k, the trace may be rewritten (without modifying

the value of the integral) as

tr
(
S̃klGlĈlkG

H
k

)
=

N∑
s,t=1

λ̃klt ξ̂
lk
s g

l
t,s

(
gkt,s
)∗
, (43)

where λ̃klt is the tth singular value of S̃kl and glt,s denotes the (t, s)th element of Gl. Therefore, (42) becomes

L ∝
∑
P

L∑
k,l=1
k 6=l

∫
DB

β(G)

(
N∑

s,t=1

λ̃klt ξ̂
lk
s g

l
t,s

(
gkt,s
)∗)2

dG. (44)

Expanding the square, we get terms proportional to

glt,sg
l
t′,s′

(
gkt,sg

k
t′,s′
)∗
, (45)

and, using again a change of variable glt,s → −glt,s for t 6= t′ or s 6= s′, we can discard the cross terms, yielding

L ∝
∑
P

L∑
k,l=1
k>l

N∑
s,t=1

(
λ̃klt ξ̂

lk
s

)2
∆, (46)

where

∆ =

∫
DB

β(G)Re

[(
glt,s

(
gkt,s
)∗)2]

dG. (47)

December 6, 2012 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY 18

It is easy to see that ∆ takes the same value for every required combination of the values of k, l, s, t and, therefore,

the ratio L becomes

L ∝
∑
P

L∑
k,l=1
k>l

N∑
t=1

(
λ̃klt

)2 N∑
s=1

(
ξ̂lks

)2
=

L∑
k,l=1
k>l

[∑
P

∥∥∥S̃kl∥∥∥2]∥∥∥Ĉlk

∥∥∥2 . (48)

The sum over the set of permutations of the blocks of S cannot depend on the actual indexes, k or l. In particular,

recalling that the blocks of the main diagonal of S̃ are equal to the identity, we have
∑

P ‖S̃kl‖2 ∝ ‖S̃‖2, which

allows us to write (48) as

L ∝
L∑

k,l=1
k>l

‖Ĉlk‖2. (49)

Finally, we conclude the proof noting that ‖Ĉlk‖2 = ‖Ĉkl‖2 and ‖Ĉll‖2 = N .

APPENDIX B

PROOF OF THEOREM 4

Focusing on the case of close hypotheses (S̃ ' I) we can write

L ∝
∫
Q

∫
G
β(G)(α2 − 2α) dGdQ, (50)

where

α = M tr
(
G̃HSG̃ ˆ̃R

)
, (51)

and S = S̃− ILN . Now, we shall consider the linear term, which may be written as∫
Q

∫
G
β(G) tr

(
G̃HSG̃ ˆ̃R

)
dGdQ = tr

(
Ψ ˆ̃R

)
, (52)

where

Ψ =

∫
Q

∫
G
β(G)G̃HSG̃ dGdQ. (53)

Lemma 4: The matrix Ψ is proportional to the identity.

Proof: Consider the change of variable Q→ QD, where D = diag(d) is one out of the 2L different diagonal

matrices with ±1 entries. Then, we can write

Ψ =

∫
Q

∫
G
β(G) (D⊗ IN ) G̃HSG̃ (D⊗ IN ) dGdQ = (D⊗ IN ) Ψ (D⊗ IN ) . (54)

Since the previous expression is valid for all the matrices D, we can conclude that Ψ must be block-diagonal. Let

us now consider the change of variable Q→ QP, where P ∈ P is one out of the L! different permutation matrices,

yielding

Ψ =

∫
Q

∫
G
β(G) (P⊗ IN ) G̃HSG̃ (P⊗ IN )

T
dGdQ = (P⊗ IN ) Ψ (P⊗ IN )

T
, (55)
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and allows us to conclude that the blocks in the diagonal of Ψ are identical. In order to obtain a matrix proportional

to the identity, we follow the previous lines exploiting the transformations G. Therefore, introducing the change of

variable G→ GDP, with D a diagonal matrix with ±1 entries and P a permutation matrix, we have

Ψ =

∫
Q

∫
G
β(G) (IL ⊗DP) G̃HSG̃ (IL ⊗DP)

T
dGdQ = (IL ⊗DP) Ψ (IL ⊗DP)

T
, (56)

and we conclude that Ψ ∝ ILN .

Now, taking into account the previous lemma and that tr( ˆ̃R) = LN , it is easy to see that

tr
(
Ψ ˆ̃R

)
∝ tr

(
ˆ̃R
)

= LN, (57)

and, therefore, the linear term does not depend on data. Hence, the density ratio becomes

L ∝
∫
Q

∫
G
β(G) tr2

(
G̃HSG̃ ˆ̃R

)
dGdQ, (58)

which is simplified in the following lemma.

Lemma 5: The density ratio of the maximal invariant statistic can be rewritten as

L ∝
∫
Q

∫
G
β(G) tr2

(
G̃HSG̃ ˆ̃R

)
dGdQ

=

∫
Q

∫
G
β(G)

[
L∑
k=1

tr
(
Mkk

ˆ̃Rkk

)]2
dGdQ + 4

L∑
k=1

L∑
l=k+1

∫
Q

∫
G
β(G)Re2

{
tr
(
Mlk

ˆ̃Rkl

)}
dGdQ, (59)

where M = G̃HSG̃.

Proof: We shall decompose the trace as follows

tr
(
G̃H S̃G̃ ˆ̃R

)
=

L∑
k=1

tr
(
Mkk

ˆ̃Rkk

)
+ 2

L∑
k=1

L∑
l=k+1

Re
{

tr
(
Mlk

ˆ̃Rkl

)}
, (60)

and we may therefore write ∫
Q

∫
G
β(G) tr2

(
M ˆ̃R

)
dGdQ, (61)

as a linear combination of terms of the form

ψ =

∫
Q

∫
G
β(G)Re

{
tr
(
Mmn

ˆ̃Rnm

)}
Re
{

tr
(
Mlk

ˆ̃Rkl

)}
dGdQ. (62)

The above integrals can be simplified by introducing the change of variable Q→ QD (again with D = diag(d),

and d = [d1, . . . , dL]T a vector with ±1 elements), which yields

ψ = dmdndkdl

∫
Q

∫
G
β(G)Re

{
tr
(
Mmn

ˆ̃Rnm

)}
Re
{

tr
(
Mlk

ˆ̃Rkl

)}
dGdQ. (63)

Finally, the proof concludes by taking into account that the above equation must be valid for any choice of d.

Now, we shall split the proof in two parts, one for each term on the right hand side (RHS) of (59). The first is

given in the following lemma.

Lemma 6: The first integral in the RHS of (59) is given by

Γ ∝ c
L∑
k=1

∥∥∥ ˆ̃Rkk

∥∥∥2 , (64)
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with c ≥ 0 a constant term.

Proof: Considering the change of variable Q → QPπ , where Pπ is the permutation matrix defined by the

re-ordering π, we may write

Γ =

∫
Q

∫
G
β(G)

[
L∑
k=1

tr
(
Mkk

ˆ̃Rkk

)]2
dGdQ =

∫
Q

∫
G
β(G)

[
L∑
k=1

tr
(
Mkk

ˆ̃Rπ[k],π[k]

)]2
dGdQ, (65)

where ˆ̃Rπ[k],π[k] denotes the kth block in the diagonal after permutation π. Let us now expand the square

Γ =

∫
Q

∫
G
β(G)

L∑
k=1

tr2
(
Mkk

ˆ̃Rπ[k],π[k]

)
dGdQ

+

∫
Q

∫
G
β(G)

L∑
k=1

L∑
l=1
l 6=k

tr
(
Mkk

ˆ̃Rπ[k],π[k]

)
tr
(
Mll

ˆ̃Rπ[l],π[l]

)
dGdQ. (66)

Analogously to the previous cases, the value of the integral Γ does not depend on the particular choice of the

permutation. Thus, we can average over the L! possible permutations, and after some simplifications we get

Γ =
1

L

∫
Q

∫
G
β(G)

L∑
k=1

L∑
m=1

tr2
(
Mkk

ˆ̃Rmm

)
dGdQ

+
1

L2 − L

∫
Q

∫
G
β(G)

L∑
k=1

L∑
l=1
l 6=k

L∑
m=1

tr
(
Mkk

ˆ̃Rmm

)
tr
(
Mll

(
LIN − ˆ̃Rmm

))
dGdQ, (67)

where we have used
∑L
k=1

ˆ̃Rkk = LIN . Expanding the second term yields

Γ =
1

L

∫
Q

∫
G
β(G)

L∑
k=1

L∑
m=1

tr2
(
Mkk

ˆ̃Rmm

)
dGdQ

+
1

L− 1

∫
Q

∫
G
β(G)

L∑
k=1

L∑
l=1
l 6=k

L∑
m=1

tr
(
Mkk

ˆ̃Rmm

)
tr (Mll) dGdQ

− 1

L2 − L

∫
Q

∫
G
β(G)

L∑
k=1

L∑
l=1
l 6=k

L∑
m=1

tr
(
Mkk

ˆ̃Rmm

)
tr
(
Mll

ˆ̃Rmm

)
dGdQ, (68)

which, taking into account
∑L
k=1 R̂kk = LIN and defining M = 1/L

∑L
k=1 Mkk, may be rewritten as

Γ ∝ 1

L

∫
Q

∫
G
β(G)

L∑
k=1

L∑
m=1

tr2
(
Mkk

ˆ̃Rmm

)
dGdQ

− 1

L(L− 1)

∫
Q

∫
G
β(G)

L∑
k=1

L∑
m=1

tr
(
Mkk

ˆ̃Rmm

)
tr
(

(LM−Mkk) ˆ̃Rmm

)
dGdQ. (69)

Now, rearranging terms and summing in k, we get

Γ ∝ L

L− 1

∫
Q

∫
G
β(G)

L∑
m=1

[
L∑
k=1

tr2
(
Mkk

ˆ̃Rmm

)
− tr2

(
M ˆ̃Rmm

)]
dGdQ. (70)
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To conclude the proof of this lemma we must solve the above integral. To do so, let us consider the eigenvalue

decomposition (EVD) of ˆ̃Rmm as ˆ̃Rmm = VmΛmVH
m and introduce the change of variables G → GVmPD

with P ∈ P a permutation matrix, and D ∈ RN×N a diagonal matrix with ±1 entries. Thus, we can write

Γ ∝ L

L− 1

∫
Q

∫
G
β(G)

L∑
m=1

[
λTmPD

(
1

L

L∑
k=1

mkm
T
k −mmT

)
DPTλm

]
dGdQ, (71)

where m = diag(M), mk = diag(Mkk), and λm = diag(Λm) contains the eigenvalues of ˆ̃Rmm. Finally, Γ may

be rewritten as

Γ ∝
L∑

m=1

λTmEλm, (72)

where

E = PD

[
L

L− 1

∫
Q

∫
G
β(G)

(
1

L

L∑
k=1

eke
T
k

)
dGdQ

]
DPT , (73)

with ek = mk −m, and we have taken into account that
∑L
k=1 mk = Lm. Thus, since the value of Γ does not

depend on the particular choices of P or D, we have

E = PDEDPT = cIN , (74)

yielding

Γ ∝ c
L∑

m=1

∥∥∥ ˆ̃Rmm

∥∥∥2 . (75)

The following lemma deals with the second integral in the RHS of (59).

Lemma 7: The second integral in the expression of the density ratio can be rewritten as

4

L∑
k=1

L∑
l=k+1

∫
Q

∫
G
β(G)Re2

{
tr
(
Mlk

ˆ̃Rkl

)}
dGdQ = c

L∑
k,l=1

l 6=k

∥∥∥ ˆ̃Rkl

∥∥∥2 , (76)

where c is the same constant as in Lemma 6.

Proof: Consider the integrals

Θk,l = 4

∫
Q

∫
G
β(G)Re2

{
tr
(
Mlk

ˆ̃Rkl

)}
dGdQ, (77)

and the change of variable Q→ QP, with P a permutation matrix. Then, we can write

Θk,l = 4

∫
Q

∫
G
β(G)Re2

{
tr
(
Mπ[l],π[k]

ˆ̃Rkl

)}
dGdQ, (78)

and since the value of the integral cannot depend on the particular choice of the permutation, we may arbitrarily

select

Θk,l = 4

∫
Q

∫
G
β(G)Re2

{
tr
(
M12

ˆ̃Rkl

)}
dGdQ. (79)

Now, let us rewrite the previous integral as

Θk,l =

∫
Q

∫
G
β(G) tr2 (MRkl) dGdQ. (80)
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where

M =

M11 M12

MH
12 M22

 , Rkl =

0N
ˆ̃RH
kl

ˆ̃Rkl 0N

 . (81)

We shall continue by applying the change of variable Q ← QU, where U combines the two first columns of Q

as follows

U =

 Ũ 02×L−2

0L−2×2 IL−2

 , (82)

with

Ũ =
1√
2

1 −1

1 1

 , (83)

and induces the transformation

Rkl ← (Ũ⊗ IN )HRkl(Ũ⊗ IN ) =
1

2

 ˆ̃Rkl + ˆ̃RH
kl

ˆ̃RH
kl −

ˆ̃Rkl

ˆ̃Rkl − ˆ̃RH
kl −

ˆ̃Rkl − ˆ̃RH
kl

 . (84)

The proof now follows the lines in Lemmas 5 and 6. First of all, as a direct consequence of Lemma 5, we may

decompose Θk,l as

Θk,l =
1

4

∫
Q

∫
G
β(G) tr2

(
[M11 −M22]

[
ˆ̃Rkl + ˆ̃RH

kl

])
dGdQ +

1

4

∫
Q

∫
G
β(G) tr2

(
MRkl

)
dGdQ, (85)

with

Rkl =

 0N
ˆ̃RH
kl −

ˆ̃Rkl

ˆ̃Rkl − ˆ̃RH
kl 0N

 . (86)

Moreover, the second integral in the RHS of the previous equation can be simplified by introducing the change of

variable Q← QU′, with U′ combining the two first columns by means of

Ũ′ =
1√
2

j −j

1 1

 . (87)

This change of variable induces the transformation

Rkl ← (Ũ′ ⊗ IN )HRkl(Ũ
′ ⊗ IN ) =

j( ˆ̃Rkl − ˆ̃RH
kl) 0N

0N −j( ˆ̃Rkl − ˆ̃RH
kl)

 , (88)

which yields

Θk,l =
1

4

∫
Q

∫
G
β(G) tr2

(
[M11 −M22]

[
ˆ̃Rkl + ˆ̃RH

kl

])
dGdQ

+
1

4

∫
Q

∫
G
β(G) tr2

(
[M11 −M22] j

[
ˆ̃Rkl − ˆ̃RH

kl

])
dGdQ. (89)

The rest of the proof follows the lines in Lemma 6. The above integrals are almost5 identical in form to those

considered in (70) and therefore the same results apply. In particular, we have

Θk,l =
c

2

[∥∥∥( ˆ̃Rkl + ˆ̃RH
kl)
∥∥∥2 +

∥∥∥j( ˆ̃Rkl − ˆ̃RH
kl)
∥∥∥2] = 2c

∥∥∥ ˆ̃Rkl

∥∥∥2 , (90)

5In this case, the sum of the diagonal blocks is zero, instead of LIN . However, this does not change the results.
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where c ≥ 0 is the constant introduced in Lemma 6. Finally, we can sum over all the off-diagonal blocks (instead

of over those above the main diagonal) to obtain the desired result.

Finally, the proof of the theorem follows from the direct combination of Lemmas 5, 6 and 7.
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