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The Principle of Maximum Causal Entropy
for Estimating Interacting Processes

Brian D. Ziebart, J. Andrew Bagnell, and Anind K. Dey

Abstract—The principle of maximum entropy provides a pow-
erful framework for estimating joint, conditional, and marginal
probability distributions. However, there are many important
distributions with elements of interaction and feedback where
its applicability has not been established. This work presents the
principle of maximum causal entropy—an approach based on
directed information theory for estimating an unknown process
based on its interactions with a known process. We demonstrate
the breadth of the approach using two applications: a predictive
solution for inverse optimal control in decision processes and
computing equilibrium strategies in sequential games.

Index Terms—Maximum entropy, statistical estimation, causal
entropy, directed information, inverse optimal control, inverse
reinforcement learning, correlated equilibrium.

I. INTRODUCTION

THE principle of maximum entropy [21] serves a foun-
dational role in the theory and practice of construct-

ing statistical models [55], with applicability to statistical
mechanics [21], [22], natural language processing [3], [47],
[36], [43], econometrics [15], finance [10], [7], ecology [12],
and other fields [26]. It provides robust prediction guarantees
by prescribing the probability distribution estimate that only
commits as far as required to satisfy existing knowledge about
an unknown distribution, and is otherwise as uncertain as
possible [57], [17]. Conditional extensions of the principle that
consider a sequence of provided information (i.e., additional
variables that are not predicted, but are related to random
variables that are predicted), and conditional random fields
[31] specifically, have been applied with remarkable success
in recognition, segmentation, and classification tasks. They are
a preferred tool in natural language processing, [31], [53],
computer vision [30], [48], and activity recognition [32], [59]
applications.

In this work, we extend the maximum entropy approach to
estimating probability distributions in settings characterized
by interaction with a known process. For example, consider
the task of estimating an agent’s interactions with a stochastic
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environment. The agent may know how each of its available
actions in each of its possible states will probabilistically
transition to future states, but, due to stochasticity, it does not
know what value each future state will take until after selecting
the sequence of actions temporally preceding it. Existing
maximum entropy approaches either assume that all of the
values generated by the known process are available a priori
(maximum conditional entropy and conditional random field
[31] models) or treat both the known and unknown processes
with the same degree of ignorance (maximum joint entropy
models). Interaction with a known process lies in between
these two extremes, requiring a new technique to construct
appropriate probability distribution estimates.

Building on the recent advance of the Marko-Massey theory
of directed information [34], [35], we present the principle
of maximum causal entropy. It prescribes a probability distri-
bution by maximizing the entropy of a sequence of random
variables conditioned on the information available from the
known process at each time step. This contribution extends
the maximum entropy framework for statistical estimation to
interacting processes. We motivate and apply this approach
on decision prediction tasks that are characterized by actions
that stochastically influence a system’s sequentially revealed
state. The principle of maximum causal entropy unifies recent
inverse optimal control approaches from computer science
[41], [1], [65], [13], [4] with structural estimation methods
from econometrics [52], providing predictive guarantees for
the former, and a more generalizable formulation to the latter.
We demonstrate the approach’s applicability using examples
from inverse optimal control and multi-player dynamic games.

Though we emphasize the connection to decision making
and sequential games in this work, it is important to note
that the principle of maximum causal entropy is not specific
to decision making domains. It is a general approach that is
applicable to any setting where sequential data is generated
from two interacting processes—one known and one unknown.
Further, maximum causal entropy is compatible with existing
conditional and joint entropy maximization techniques.

II. THE PROCESS ESTIMATION TASK

This work addresses the problem of estimating an unknown
process that is interacting with a known process. Formally,
the unknown process is a probability distribution over a
sequence of random variables Y1:T = (Y1, Y2, . . . , YT ) that
take on values y1:T = (y1, y2, . . . , yT ) from sets Y1:T =
Y1×Y2×. . .×YT (the predicted sequence), given a different
sequence X1:T of symbols from sets X 1:T (the provided
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sequence) generated from the known process. We refer the
reader to Appendix A for a detailed description of the notation
employed throughout this paper.

A. Motivating Example
We consider a simple motivating example with two prob-

abilistic sender-receivers communicating over a noiseless, bi-
directional binary channel. Each receives a one-bit message
from the channel and then sends a one-bit message. We refer
to the mapping from each sender-receiver’s history to its new
message as a response function. The response function of
one sender-receiver is known and the response function of
the other is unknown. However, some properties of their joint
interactions are known: over communication sequences of
infinite length, the number of “0” bits and “1” bits sent over
the channel are equal, and the frequency of five consecutive
“1” bits over the channel is less than 3%.

Given this setting, how should the unknown sender-receiver
response function be estimated? There are two important char-
acteristics of the task to consider. First, the known properties of
the channel’s usage often do not fully constrain the unknown
elements; many different schemes for the unknown encoder
may realize those properties. Second, those known properties
are defined in terms of the interaction between the known and
unknown sender-receivers rather than isolated properties only
of the unknown sender-receiver.

B. Conditional Probability Distribution Estimation
The typical process estimation approach uses available

observations from the unknown process to fit a parametric
conditional probability distribution. For example, a conditional
multinomial distribution, logistic function, or Gaussian dis-
tribution could be employed using a stationarity assumption
to estimate a time-invariant process, P (Yt|Xt, Yt−1). By em-
ploying observations from the interacting known and unknown
processes, this approach allows the unknown process to be
estimated independently of any knowledge of the provided
process (beyond the observations).

As seen by our motivating example (Section II-A), it is quite
natural to consider characteristics of interacting processes that
are defined over the joint distribution of message sequences.
Unfortunately, these types of known characteristics cannot
be appropriately leveraged when independently estimating
conditional probability distributions. For example, the property
of having long-term parity in the communication channel
bits explicitly depends on both the known process and the
unknown process. To overcome these limitations, formulations
that consider the interaction of the known and unknown
processes—rather than treating them separately—are needed.

C. Joint Probability Decompositions
By the chain rule, any joint probability distribution can

be represented as a product of conditional probabilities. The
canonical factorization for a joint distribution of two sequences
of random variables is:

P (X1:T ,Y1:T ) =

T∏
t=1

P (Xt|X1:t−1)

T∏
t=1

P (Yt|Y1:t−1,X1:T ) ,

Fig. 1. Probabilistic graphical model representations [27] for: the canonical
decomposition of the joint probability distribution where the three time step
sequence of Y variables is conditioned on the sequence of X variables (left);
and the decomposition of the three time step joint probability distribution
into two interacting processes (right). The two differ in the direction of three
edges connecting X2:3 variables with Y1:2 variables.

in which the probability distribution for given information,
P (X1:T ), is first formed, and then the probability of the
sequence of predicted random variables Y1:T is multiplied
in using conditional probability distributions that condition
on all of the provided variables to form the joint distribution
(Figure 1, left). Unfortunately, this decomposition for the X1:T

random variables does not coincide with a known process,
since the X1:T random variables should also depend on
previous Y1:T random variables—the other sender-receiver’s
messages in our earlier example. Nor does the distribution for
Yt correspond to a known process; its distribution under this
decomposition violates the properties of temporal processes—
the conditional probabilities P (Yt|Y1:t−1,X1:T ) depend on
future variables, Xt+1:T , as also indicated by the anti-temporal
edges in the left of Figure 1 (e.g., from X3 to Y1).

An alternative application of the chain rule to the joint
sequence distribution factors the provided and the predicted
variables as two interacting temporal processes:

P (X1:T ,Y1:T ) =

provided process︷ ︸︸ ︷
T∏
t=1

P (Xt|X1:t−1,Y1:t−1)× (1)

T∏
t=1

P (Yt|Y1:t−1,X1:t)︸ ︷︷ ︸
unknown process

.

This decomposition coincides with settings having feedback,
such as our simple communications example or sequen-
tial decision making processes. In decision settings, it is
natural to have a model of the state dynamics process,
P (Xt|X1:t−1,Y1:t−1), in which the next state depends on the
previous controls, Y1:t−1, and states, X1:t−1. This feedback
cycle is shown by the directed paths from, e.g., Y1 to X2 to Y2

on the right of Figure 1 and has a causal interpretation: future
state variables are unknown when past controls are selected
and, thus, their values have no direct influence on preceding
control variables.

We make use of this decomposition throughout the re-
mainder of this paper when we are estimating the lat-
ter process of the joint distribution (i.e., the controller’s
decision process),

∏T
t=1 P (Yt|Y1:t−1,X1:t), when the for-

mer process (i.e., the state-transition dynamics process),∏T
t=1 P (Xt|X1:t−1,Y1:t−1), is known.
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III. THE PRINCIPLE OF MAXIMUM CAUSAL ENTROPY

Motivated by the task of estimating a process based on
its interactions with another known process without relying
on local estimations, we introduce the principle of maximum
causal entropy in this section.

A. Directed Information Theory

The Marko-Massey theory of directed information [34], [35]
has investigated the components of the interacting temporal
decomposition of the joint distribution (Equation 1). The
causally conditioned probability [28],

P (Y1:T ||X1:T ) ,
T∏
t=1

P (Yt|Y1:t−1,X1:t), (2)

reflects the causal restriction that future provided variables
(e.g., Xτ+1:T ) do not influence earlier predicted variables (e.g.,
Y1:τ ). In contrast to the conditional probability,

P (Y1:T |X1:T ) ,
T∏
t=1

P (Yt|Y1:t−1,X1:T ), (3)

each Yt variable of the causally conditioned probability (Equa-
tion 2) is only conditioned on previous variables, X1:t, rather
than also being conditioned on future variables, X1:T . This
subtle, but significant, difference from the conditional prob-
ability (Equation 3) serves as the basis for our approach.
Multiplicatively combining with the complementary causally
conditioned distribution,

P (X1:T ||Y1:T−1) ,
T∏
t=1

P (Xt|X1:t−1,Y1:t−1), (4)

yields the joint probability distribution, P (X1:T ,Y1:T ) =
P (Y1:T ||X1:T ) P (X1:T ||Y1:T−1), following the same de-
composition shown in Equation 1.

The uncertainty or “non-committedness” of a prob-
ability distribution is measured by the Shannon en-
tropy [54]. The conditional entropy, H(Y1:T |X1:T ) =
EP (Y1:T ,X1:T )[− logP (y1:T |x1:T )], measures this uncertainty
when provided information, x1:T , is available up front. The
analogous notion of causal entropy (Definition 1) for directed
information theory measures the uncertainty present in the
causally conditioned distribution of the Y1:T variable sequence
given the preceding partial X1:T variable sequence.

Definition 1: The causal entropy [28], [46] of Y1:T given
X1:T is:

H(Y1:T ||X1:T ) , EP (Y1:T ,X1:T )[− logP (y1:T ||x1:T )] (5)

=

T∑
t=1

H(Yt|Y1:t−1,X1:t).

It can be interpreted as the expected number of bits (when
log2 is employed) needed to minimally encode samples from
the sequence Y1:T , iteratively over t ∈ {1, . . . , T}, given
the previous Y1:t−1 variables and sequentially revealed input,
X1:t, up to that point in time, and excluding unrevealed future
provided variables Xt+1:T . It thus measures the compressibil-
ity of information in a feedback channel [28].

Causal entropy can be incorporated with other entropy
measures using its conditional entropy decomposition from
Definition 1—for instance, with joint variables and with tra-
ditional conditioning,

H(W1:T ,Y1:T ||X1:T |Z1:T )

,
T∑
t=1

H(Wt, Yt|W1:t−1,Y1:t−1,X1:t,Z1:T ),

which we discuss in more detail in Appendix A.
Causal entropy has previously been applied in the analysis

of communication channels with feedback [28], decentral-
ized control [56], inferring causal relationships [49], [50],
sequential investment and online compression with provided
information [46]. This work contributes the notion of causal
entropy for estimating probability distributions.

Definition 2: The causal cross entropy or causal log-loss
of Y1:T given X1:T for causal distribution P̂ (Y1:T ||X1:T )
under joint distribution P (Y1:T ,X1:T ) is:

EP (Y1:T ,X1:T )[− log P̂ (Y1:T ||X1:T )]. (6)

The causal log likelihood of data distributed according to
P (Y1:T ,X1:T ) is the negative of the causal log-loss (Defini-
tion 2). The causal log-loss measures the compressibility of a
feedback channel when using a causally conditioned probabil-
ity distribution estimate, P̂ (Y1:T ||X1:T ), rather than the true
causally conditioned distribution. It is a natural measure for
evaluating a causally conditioned probability estimator and can
be directly related to the expected growth rate of gambling on
outcome sequence Y1:T under uniform odds [9], [46].

B. Causally Conditioned Probability Distributions via Affine
Constraints

Unfortunately, the definition of causally conditioned prob-
abilities as products of conditional probabilities (Equation
2) is not well-suited for optimization procedures—it is a
non-linear function of the unknown conditional probabilities,
{P (yt|y1:t−1,x1:t)}t∈{1,...,T},x1:t∈X 1:t,y1:t∈Y1:t

. In this sec-
tion, we introduce an affinely constrained definition of causally
conditioned probabilities that supports convex optimization,
and show that it is equivalent to the previous definition.

Definition 3: The class of causally conditioned prob-
ability distributions, denoted Ξ, is defined by the fol-
lowing causal polytope of affine constraints for any
P (Y1:T ||X1:T ) ∈ Ξ1:

∀x1:T ∈ X 1:T ,y1:T ∈ Y1:T , P (y1:T ||x1:T ) ≥ 0; (7)

∀x1:T ∈ X 1:T ,
∑

y1:T∈Y1:T

P (y1:T ||x1:T ) = 1; and (8)

∀τ ∈ {1, . . . , T}, y1:T ∈ Y1:T , x1:T ∈ X 1:T , x′1:T ∈ X 1:T

such that: x1:τ = x′1:τ ,∑
yτ+1:T∈Yτ+1:T

(P (y1:T ||x1:T )− P (y1:T ||x′1:T )) = 0. (9)

1Though we present the form for discrete-valued random variables, a similar
set of constraints defines the causally conditioned probability distribution over
continuous-valued variables.
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Fig. 2. Three probability distribution estimation tasks of the unknown white
components (given the known gray components): joint distribution estimation
of P (Y1:T ) (left); conditional distribution estimation of P (Y1:T |X1:T )
(center); and causally conditioned distribution estimation of P (Y1:T ||X1:T )
given a known interacting process P (X1:T ||Y1:T−1) (right), which can be
estimated by maximizing the joint entropy, the conditional entropy, and the
causal entropy, respectively.

The final set of constraints (Equation 9) ensures causal
independence—that past conditioned variables y1:τ are not
functions of future conditioning variables xτ+1:T . Without it,
a conditional probability distribution would be defined.

Theorem 1: Using the definition of causally conditioned
probabilities in terms of affine constraints (Definition 3),
interdependent causally conditioned probability distributions
together form valid joint probability distributions2:(
∀x1:T ∈ X 1:T ,y1:T ∈ Y1:T ,

P (y1:T ,x1:T ) = P (y1:T ||x1:T ) P (x1:T ||y1:T−1)
)

⇒
(
∀x1:T ∈ X 1:T ,y1:T ∈ Y1:T , P (y1:T ,x1:T ) ≥ 0 (10)

and
∑

x1:T ∈ X1:T ,
y1:T ∈ Y1:T

P (y1:T ,x1:T ) = 1
)
. (11)

Corollary 1: The causally conditioned probability distribu-
tions defined according to affine constraints (Definition 3) are
equivalent to the causally conditioned probability distributions
defined by the decomposition into a product of conditional
probabilities: P (Y1:T ||X1:T ) =

∏T
t=1 P (Yt|Y1:t−1,X1:t).

This formulation of the causally conditioned probability
distribution using the causal polytope (Definition 3) enables
the efficient optimization for the principle of maximum causal
entropy. Throughout the remainder of this paper, whenever
the variables of an optimization correspond to a causally
conditioned probability distribution, they should be interpreted
to reside within the causal polytope of Definition 3.

C. Maximum Causal Entropy

The principle of maximum entropy [21] prescribes the
probability distribution estimator that is the “least commit-
ted” (or most uncertain) apart from matching known prop-
erties of the distribution being estimated. This is realized
by maximizing the Shannon entropy [54] subject to con-
straints. Many of the fundamental building block distributions

2The proofs of each theorem and corollary are presented in Appendix B.

of statistics (e.g., Gaussians), though often derived by other
means, can be obtained by this approach using moment-
matching constraints. In fact, there is a general duality be-
tween maximum entropy (or conditional entropy) estimation
problems and maximum likelihood (or conditional likeli-
hood) estimation of exponential family probability distribu-
tions [23]. For example, maximizing the conditional entropy,
HP̂ (Y1:T |X1:T ) = EP̂ (Y1:T ,X1:T )[− log P̂ (y1:T |x1:T )], given
constraints on cliques of variables, Ci ⊆ {1, . . . , T},

∀i ∈ {1, . . . ,K}, EP̂ (Y1:T ,X1:T )[fi(yCi , xCi)] (12)

= EP (Y1:T ,X1:T )[fi(yCi , xCi)],

where xCi is a subset of x1:T and P (Y1:T ,X1:T ) denotes the
true distribution being estimated, yields conditional random
fields [31] (Figure 2, center),

P̂ (y1:T |x1:T ) ∝ e
∑K
i=1 θifi(yCi ,xCi ), (13)

a state-of-the-art statistical estimation technique.
We extend the principle of maximum entropy to estimate

(with estimator P̂ (Y1:T ||X1:T )) an unknown causally condi-
tioned probability distribution, P (Y1:T ||X1:T ), that interacts
with a known causally conditioned probability distribution,
P (X1:T ||Y1:T−1), as shown on the right of Figure 2. Together,
these probability distributions satisfy a set of constraints
defined in terms of the joint distribution P̂ (Y1:T ,X1:T ) =
P̂ (Y1:T ||X1:T )P (X1:T ||Y1:T−1) (Definition 4) and the un-
known distribution can be obtained as the result of a convex
optimization problem (Theorem 2).

Definition 4: The principle of maximum causal entropy
prescribes the causally conditioned entropy-maximizing prob-
ability distribution estimator, P̂ (Y1:T ||X1:T ), from the causal
polytope Ξ (Definition 3):

argmax
P̂ (Y1:T ||X1:T )∈Ξ

HP̂ (Y1:T ||X1:T ) (14)

such that: g
(
P̂ (Y1:T ,X1:T )

)
= 0, and

h
(
P̂ (Y1:T ,X1:T )

)
≥ 0,

for affine functions3 g : ∆X1:T ,Y1:T
→ RM and h :

∆X1:T ,Y1:T
→ RN .

More specifically, the two affine constraints can always be
written as expectations of feature functions, Fg : Y1:T ×
X 1:T → RM and Fh : Y1:T × X 1:T → RN (cg ∈ RM ,
ch ∈ RN ):

g
(
P̂ (Y1:T ,X1:T )

)
= EP̂ (Y1:T ,X1:T )[Fg(y1:T , x1:T )] + cg

(15)

h
(
P̂ (Y1:T ,X1:T )

)
= EP̂ (Y1:T ,X1:T )[Fh(y1:T , x1:T )] + ch,

(16)

which we will make use of later in this work. We
note that these constraints are also affine in the unknown

3More generally, h(P (Y1:T ,X1:T )) can be a convex function and the
same strong Lagrangian duality developed in this work applies, subject to
appropriate primal feasibility requirements. An example of this is in estimation
techniques for rationalizing observed game play [60].
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P̂ (Y1:T ||X1:T ) variables, but not in the multiplicative factors
of those variables, e.g., P̂ (Yt|X1:t,Y1:t−1).

Theorem 2: The maximum causal entropy optimization
problem (Equation 14) is a convex optimization problem.

D. Lagrangian Duality

The primal problem of the maximum causal entropy opti-
mization (Equation 14) is a potentially high-dimensional one
in the space of probability distributions. The Lagrangian dual
may be much more compact when the feature function di-
mensionality, M+N , is smaller than the causally conditioned
probability distribution’s dimensionality, |X 1:T ||Y1:T |. As we
shall show, its optimal solution is also an optimal solution for
the primal problem.

Theorem 3: The Lagrangian dual optimization problem of
the primal maximum causal entropy problem (Definition 4) is:

min
λ,γ≥0

∑
x1∈X1

P (x1) logZλ,γ(x1) + λTcg + γTch (17)

where: Zλ,γ(x1:t, y1:t−1) =
∑
yt∈Y

Zλ,γ(yt|x1:t, y1:t−1)

and Zλ,γ(yt|x1:t, y1:t−1) ={
e
∑
xt+1∈X

P (xt+1|x1:t,y1:t) logZλ,γ(x1:t+1,y1:t) t < T

eλ
TFg(x1:T ,y1:T )+γTFh(x1:T ,y1:T ) t = T.

The solution to this problem (i.e., the estimated probability
distribution), can be expressed recursively as:

P̂λ,γ(yt|x1:t, y1:t−1) =
Zλ,γ(yt|x1:t, y1:t−1)

Zλ,γ(x1:t, y1:t−1)
. (18)

Due to convexity (Theorem 2), the optimal values obtained
by the dual and primal optimization problems are equivalent
under mild technical considerations. (Theorem 4).

Theorem 4: Strong Lagrangian duality [6], i.e., no gap be-
tween the primal optimization problem (Equation 14) and the
dual optimization problem (Equation 17), holds for the maxi-
mum causal entropy estimation task when a feasible solution to
the primal optimization (Equation 14) exists on the relative in-
terior, i.e., P (y1:T ||x1:T ) > 0 (∀y1:T ∈ Y1:T ,x1:T ∈ X 1:T ).

Sub-gradient-based optimization4 with adaptive learning
rate ηi ∈ R+ can be employed to obtain optimal parameters
(λ∗,γ∗) = limi→∞(λ(i),γ(i)) using parameter updates:

λ(i+1) ← λ(i) + ηi

(
EP̂ (Y1:T ,X1:T )[Fg(y1:T , x1:T )] + cg

)
γ(i+1) ← max{0, (19)

γ(i) + ηi

(
EP̂ (Y1:T ,X1:T )[Fh(y1:T , x1:T )] + ch

)
},

with expectations calculated according to the Lagrangian
dual’s form of the probability distribution (Equation 18).

4Other convex optimization techniques (e.g., gradient ascent, Newton’s
method, interior-point methods) with guarantees of convergence to a global
optima are also applicable for different sets of constraints.

E. Maximum Causal Likelihood

The equivalency of maximum entropy estimation and max-
imum likelihood estimation in exponential random families
[23] extends to the causally conditioned setting.

Theorem 5: Subject to moment-matching constraints, i.e.,
EP̂ (Y1:T ,X1:T )[Fg(x1:T )] = EP (Y1:T ,X1:T )[Fg(x1:T )] (via
cg = −EP (Y1:T ,X1:T )[Fg(x1:T )] in Equation 15), using
statistics from the true distribution within Definition 4 and no
inequality constraints, maximizing the causal entropy is equiv-
alent to maximizing the (log) causal likelihood (Definition 2)
of the true data distribution,

max
λ

EP (Y1:T ,X1:T )[log P̂λ(Y1:T ||X1:T )]. (20)

Often, moment statistics are estimated from a limited num-
ber of samples, EP̃ (Y1:T ,X1:T )[Fg(x1:T ,y1:T )], where the
sample distribution P̃ (Y1:T ,X1:T ) is obtained from n samples
of the joint distribution. This causes probabilistically bounded
approximation error (Theorem 6) as opposed to using the true
joint distribution as in Theorem 5.

Theorem 6: If f̄g are sample means of the statis-
tic Fg(x1:T ,y1:T ) ∈ [fmin, fmax] (i.e., under distribution
P̃ (Y1:T ,X1:T )), then the difference between sample mean and
expectation is bounded as:

P
(∣∣∣∣f̄g − EP (Y1:T ,X1:T )[Fg(y1:T ,x1:T )]

∣∣∣∣
∞ ≥ ε

)
≤ 2K exp

(
− 2nε2

||fg,max − fg,min||2∞

)
.

The constraints of the maximum causal entropy primal op-
timization problem (Equation 14) can be relaxed to allow a
small amount of slack to address this approximation error. This
leads to regularized maximum causal likelihood estimation
in the dual optimization problem [12], which is a common
statistical estimation technique to avoid overfitting to a small
sample data set.

F. Robust Performance Guarantees

Though the principle of maximum entropy is often justi-
fied with the philosophical argument that no additional as-
sumptions should be made except known constraints [21], it
can instead be derived as a robust estimation procedure for
minimizing the predictive log-loss [57], [17]. We present the
principle of maximum causal entropy’s derivation as a robust
causally conditioned probability estimator in this section.

We consider the setting in which the joint probability
distribution, P (Y1:T ,X1:T ), that is obtained by combining
an unknown causally conditioned probability distribution,
P (Y1:T ||X1:T ), with a known causally conditioned probabil-
ity distribution, P (X1:T ||Y1:T−1), is known to satisfy a set of
convex constraints (e.g., those from Equation 14). We would
like to construct an estimator P̂ (Y1:T ||X1:T ) that minimizes
the causal log-loss (Definition 2) evaluated according to the
joint distribution P (Y1:T ,X1:T ). However, since the joint
distribution is only partially known, our estimator can be made
more robust (i.e., better worst-case performance) compared
to estimators that make unwarranted assumptions, by instead
treating unknown factors of the joint distribution as being
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chosen adversarially (i.e., to maximize the estimator’s log-
loss).

This setting can be viewed as a two-step game in which
the first player chooses an estimate for each possible contin-
gency of the sequence, P̂ (Y1:T ||X1:T ), and then the second
player, with knowledge of this choice, chooses the distribution
P (Y1:T ||X1:T ) from a restricted subset of causally conditioned
probability distributions that satisfy known constraints. The
resulting adversarial causal log-loss minimization task is:

inf
P̂ (Y1:T ||X1:T )

∈ Ξ

sup
P (Y1:T ||X1:T )

∈ Ξ

EP (Y,X)[− log P̂ (y1:T ||x1:T )] (21)

such that: g(P (Y1:T ,X1:T )) = 0 and
h(P (Y1:T ,X1:T )) ≥ 0.

Theorem 7: Adversarial log-loss minimization (Equation
21) is equivalent to maximizing the causal entropy subject
to the same sets of constraints (Equation 14) under the
assumptions of Theorem 4.

G. Generalization and Special Cases

Entropy measures are implicitly relative to a uniform prob-
ability distribution. They can be generalized using the relative
causal entropy or causal Kullback-Leibler divergence [29],

EP (Y1:T ,X1:T )

[
log

P (Y1:T ||X1:T )

P0(Y1:T ||X1:T )

]
, (22)

given baseline causally conditioned probability distribution
P0(Y1:T ||X1:T ). This is generally necessary to ensure in-
variance to variable transformations when estimating con-
tinuous probability distributions [55]. In the causal setting,
this yields log causally conditioned probability distributions
that are in proportion to P0(Y1:T ||X1:T ). While it may be
attractive to incorporate background knowledge by using a
“non-uniform” relative probability distribution, the equiva-
lent model can be learned (possibly from a larger set of
potential baseline distributions {P0(Y1:T ||X1:T )}) by in-
corporating constraint: EP̂ (Y1:T ,X1:T )[logP0(Y1:T ||X1:T )] =
EP (Y1:T ,X1:T )[logP0(Y1:T ||X1:T )] and using a standard “uni-
form” relative probability distribution.

When P (X1:T ||Y1:T−1) is a deterministic probability dis-
tribution (i.e., ∀t ∈ {1, . . . , T},x1:t ∈ X 1:t,y1:t ∈
Y1:t, P (x1:t||y1:t−1) ∈ {0, 1}, in contrast to [0, 1]), there is
no uncertainty in the future provided information given the
sequence of previously occurring predicted variables. In this
case, the causal entropy reduces to the conditional entropy,
where the conditioning information can be thought of as
the variables specifying the next conditioned variable given
a history, Tx1:t−1,y1:t−1

∈ Xt. This special case has been
investigated for modeling decision making [65] and applied
to predicting the driving routes and destinations of drivers
on road networks [66], and the movements of pedestrians for
more intelligent robotic path planning [67], [19].

IV. INVERSE OPTIMAL CONTROL

Stochastic decision problems closely match the causal as-
sumption of our approach. Typically, prescribing the optimal

action to employ given a cost or reward measure has been of
central focus for decision theorists. However, understanding
the inverse problem—the recovery of a reward function that
motivates observed behavior in sequential decision settings—
is also important for a number of behavior forecasting ap-
plications. Though our formulation of the maximum causal
entropy estimation approach does not rely on a control-based
perspective, we show in this section that it provides a general
probabilistic solution to the inverse optimal control problem.

A. Background

Inverse optimal control (also known as inverse reinforce-
ment learning) [25], [5], [41] describes the problem of recov-
ering an agent’s reward function, given a controller or policy,
when the remainder of the decision process is known. We
consider the discrete decision process formulation where the
rewards motivating behavior are linearly parameterized [41],
[1]5.

Definition 5: A parametric-reward Markov decision
problem (θ-MDP) is defined as a tuple, Mθ-MDP =
(S,A, T ,F ,θ), comprising: a set of states, S; a set of actions,
A; state transition dynamics, T : S × A → ∆S , probabilis-
tically mapping state-action pairs, st ∈ S and at ∈ A to
next state st+1 ∈ S according to T (St+1|St, At); a mapping,
F : S × A → RK of state-action pairs to feature vectors,
denoted f(s, a); and a weight vector, θ ∈ RK , compactly
parameterizing the rewards.
The reward received for selecting action a ∈ A when in state
s ∈ S is Rθ(s, a) = θTf(s, a), and the total reward6 received
over time is: EP (S1:T ,A1:T )[

∑T
t=1Rθ(st, at)]. The MDP is

solved for a specific vector of reward weights by finding the
policy, π : S → A (more generally stochastic, π : S → ∆A),
prescribing an action to take in each state, that maximizes the
total reward.

Inverse optimal control techniques that assume behavior is
optimal for some choice of reward weights [41], [8] are often
ill-posed [41]—many reward weights, including degeneracies
(e.g., the all zeros reward vector), will make observed behavior
optimal—and, when observed behavior is noisy and inherently
sub-optimal, degenerate solutions will often be the only reward
parameters that can make observe behavior optimal.

Abbeel & Ng [1] resolve some of these difficulties by
recovering a (mixture of) θ-MDP solution(s) guaranteeing the
same reward (in expectation) as the demonstrated trajectories
for any choice of parameter θ. This reduces to matching the
optimal controller’s expected feature counts, F(s1:T , a1:T ) =∑T
t=1 f(st, at) with those of the demonstrated trajectories:

EP (S1:T ,A1:T ) [F(s1:T , a1:T )] = EP̃ (S1:T ,A1:T ) [F(s1:T , a1:T )] ,

where P (S1:T ,A1:T ) = T (S1:T ||A1:T−1) π(A1:T ||S1:T ).
Unfortunately, when sub-optimal behavior is demonstrated

5The continuous state and control setting has been investigated [62] and
applied to predicting computer cursor pointing targets from partial motion
trajectories [64].

6We consider finite horizons, T , in this work, but infinite horizons can
also be considered by requiring the decision process to terminate with some
probability after each time step, i.e., a discount factor, or that some states are
absorbing to make the total reward received finite.
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(due to the agent’s imperfection or inevitable approximations
of the model), the approach can assign zero probability to
demonstrated training behavior [65]. Other inverse optimal
control approaches can avoid this issue [51], [40], but lack
reward-equivalency performance guarantees.

Structural estimation [52] takes a latent-variable perspective
to the problem. In addition to assuming that the reward func-
tion of a state-action pair is a linear function of known features,
f(st, at), unobservable influences also contribute to the reward.
These are incorporated as exogenous “shock” error terms,
ε(st, at): π̂(st) = argmaxat∈At Q(st, at)+ε(st, at). Only cer-
tain error distributions [37] admit closed-form solutions, which
match the maximum causal entropy’s prescribed distribution
in the discrete choice setting [52]. Unfortunately, establishing
appropriate error term distributions for the influences of latent
variables in other decision settings is difficult. As we show
in this work, the maximum causal entropy approach can be
applied to decision estimation tasks and multi-agent strategic
decision making without requiring explicit construction of
latent variable influences.

B. Maximum Causal Entropy Inverse Optimal Control

We formulate the inverse optimal control problem as a
maximum causal entropy estimation task. Despite the differ-
ences in formulation, a number of important connections to
decision theory result. For control and decision-making do-
mains, the predicted variables, Y1:T , correspond to an agent’s
sequence of employed actions, A1:T . The variables with
known dynamics, X1:T , correspond to the agent’s sequence of
states, S1:T . We assume Markovian state dynamics, denoted
T (S1:T ||A1:T−1) ,

∏T
t=1 T (St|St−1, At−1), that are either

explicitly provided or estimated from data using a separate
procedure. Since future states are only revealed after actions
are selected, they should have no causal influence over earlier
actions. This matches the causal assumptions of the maximum
causal entropy model. We refer to the causally conditioned
action distribution as a stochastic policy, π(A1:T ||S1:T ), with
factors that are often Markovian, π(At|St).

Definition 6: The maximum causal entropy inverse op-
timal control estimator is a special case of the general
maximum causal entropy optimization (Equation 14) problem,
argmaxπ̂(A1:T ||S1:T )Hπ̂(A1:T ||S1:T ), with linear equality con-
straints,

gi(P̂ (S1:T ,A1:T )) = EP̂ (S1:T ,A1:T )[Fi(s1:T , a1:T )] (23)

− EP̃ (S1:T ,A1:T )[Fi(s1:T , a1:T )].

The maximum causal entropy distribution of Equation 18
simplifies greatly when feature functions linearly decompose
over time steps, i.e., F(s1:T , a1:T ) =

∑
t f(st, at).

C. Inference as Softened Optimal Control

Surprisingly, though formulated from information theory,
the maximum causal entropy probability distribution is a gen-
eralization of optimal control laws governing decision theory.
By replacing the log partition functions, logZθ(x1:t,y1:t−1)
and logZθ(yt|x1:t,y1:t−1) with analogs to state-action values,

Qsoft
θ (at, st), and state values, V soft

θ (st), which we will call
value potentials, the connection to the Bellman equation [2]
is established by Corollary 2.

Corollary 2 (of Theorem 3): The maximum causal entropy
distribution constrained to match feature functions (Definition
6) that decompose linearly over time, i.e., F(s1:T ,a1:T ) =∑T
t=1 f(st, at), and with Markovian dynamics, can be re-

expressed as:

Qsoft
θ,t(at, st) = ET (St+1|st,at)[V

soft
θ,t+1(st+1)|st, at]+θTf(st, at)

(24)

V soft
θ,t (st) = softmax

at∈A
Qsoft

θ,t(at, st), (25)

where softmaxx∈X f(x) , log
∑
x∈X e

f(x) provides a
smooth (i.e., differentiable) interpolation of the maximum of
different functions.

The gap between an action’s value potential and the state’s
value potential, Qsoft

θ,t(s, a)− V soft
θ,t (s), determines that action’s

probability within the maximum causal entropy inverse op-
timal control model: π̂θ(a|s) = eQ

soft
θ,t(s,a)−V soft

θ,t(s). When the
gaps of multiple actions approach equality, the probabilities
of those actions become uniform under the distribution. In the
opposite limit, when the gap between one action and all others
grows large, the softmax operation behaves like the maximum
function and the stochastic maximum causal entropy policy
approaches determinism, converging to the optimal policy of
the Bellman equation [2], which only differs in the use of the
max/softmax function in Equation 25.

V. MAXIMUM ENTROPY CORRELATED EQUILIBRIA FOR
MARKOV GAMES

The second setting we consider is the rational behavior
of multiple players in sequential games. In this setting, the
utilities governing players’ decisions are known and obtaining
equilibrium strategies for players is of interest.

A. Games and Equilibria

We consider sequential games with perfect information (i.e.,
each player knows the complete state of the game). Markov
games (Definition 7) formalize this setting, with each player
choosing an action at each point in time based on the known
state of the game, and players receiving some utility based
on the combination of actions in each state. The canonical set
of games studied within game theory—one-shot or normal-
form games—are a special case of Markov game with only
one time step of joint actions.

Definition 7: A Markov game is defined by a set of states
(S) representing the joint states of N agents (from set N ),
a set of joint actions (A1:N ), a probabilistic state transition
function, T (S1:T ||A1:T−1) =

∏T
t=1 T (St|St−1, At−1) and a

utility function, Utilityi(s1:T ,a1:T ) =
∑T
t=1 ui(st, at) ∈ R,

specifying player i’s utility for a sequence of states and
actions.

Players choose strategy profiles, π(A1:T,1:N ||S1:T ), speci-
fying (a distribution of) next actions for each situation. We
consider the most general set of strategy profiles: mixed
(i.e., stochastic) and correlated (i.e., joint functions in which
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Fig. 3. The interacting strategy profile and game dynamics defining the
(expected) utility (left); and the interaction between strategy profile, deviation
policy, and game dynamics defining (expected) deviation utility (right) for
Markov games.

players’ actions can be interdependent) based on a cumulative
expected utility. The rationality of a strategy profile is based
on the relative utility each player obtains by deviating from
the strategy profile in different ways. A deviation policy,
φ(A′1:T,1:N ||A1:T,1:N ,S1:T ) specifies changes to the strat-
egy profile. The utilities obtained under the strategy profile
modified by the deviation policy are based on the interactions
of causally conditioned probability distributions (as shown in
Figure 3):

ExpUtilπ,i ,
∑

s1:T ∈ S1:T ,
a1:T,1:N ∈ A1:T,1:N

π(a1:T,1:N ||s1:T ) T (s1:T ||a1:T,1:N )×

Utilityi(s1:T ,a1:T,1:N ) (26)

DevUtilπ,φ,i ,
∑

s1:T ∈ S1:T ,
a1:T,1:N ∈ A1:T,1:N ,
a′1:T,1:N ∈ A1:T,1:N ,

π(a1:T,1:N ||s1:T ) T (s1:T ||a′1:T,1:N )×

φ(a′1:T,1:N ||a1:T,1:N , s1:T ) Utilityi(s1:T ,a
′
1:T,1:N ). (27)

Often, the set of deviation policies corresponding to switch
functions, Φswitch, are considered, which allow one player to
switch from a provided action, at,i, to an alternate action, at,i′,
(the remaining action mapping does not switch actions, i.e.,
a′t,i = at,i).

Definition 8: A correlated equilibrium (CE) for a Markov
game is a mixed joint strategy profile, πCE(A1:T,1:N ||S1:T ),
where no expected gain is obtained for any agent by employing
a switch deviation policy. This is guaranteed with the following
set of constraints:

∀φj ∈ Φswitch, Regretπ,φj ,i ≤ 0. (28)

where Regretπ,φ,i , DevUtilπ,φ,i − ExpUtilπ,i and φj is a
switch for player i’s action.

Correlated equilibria (Definition 8) generalize Nash equi-
libria [39], which further require agents’ actions in
each state to be independent, i.e., π(A1:T,1:N ||S1:T ) =∏N
i=1 π(A1:T,i||S1:T ). Agents in a CE can coordinate their

actions to obtain higher expected utilities. Conceptually, each
agent is provided an action, at,i, and knows the conditional
distribution of other agents’ actions, P (at,−i|at,i). To be in
correlated equilibrium requires that no agent has an incentive
to switch from action at,i to a deviation action, a′t,i, given
that knowledge. Traffic lights are a canonical example of a
signaling device designed to produce CE strategies. Given
other agents’ prescribed strategies (go on green), an agent will

have incentive (equivalently, non-positive deviation regret) to
obey a prescribed action (stop on red) rather than deviating (go
on red). However, this coordination mechanism is not required
as long as the players have access to a public communications
channel [11]. Past research has shown that many decentralized,
adaptive strategies will converge to some subset of strategies
within the set of CE [42], [14], [18], [16], and not necessarily
to the more restrictive Nash equilibrium.

Fig. 4. A correlated equilibria polytope with: (A) an equilibrium maximizing
social welfare,

∑
i∈N Utilityi(a1:N ), and (B) a maximum entropy correlated

equilibrium.

The deviation regret constraints (Equation 28) define an N-
dimensional convex polytope of CE solutions in the space of
agents’ joint utility payoffs (Figure 4). Exactly representing
this polytope is generally intractable for Markov games, be-
cause the number of corners of the polytope grows exponen-
tially with the game’s time horizon. Efficient approximation
approaches have been employed [38], [33], but tractable appli-
cability has been limited to small games [33]. For the far more
modest goal of finding an arbitrary CE in a range of compact
games, algorithms that are polynomial in the number of agents
have been developed [45], [24] and extended to sequential
games [20].

The maximum entropy correlated equilibria (MaxEntCE)
solution concept for normal-form games [44] selects the
unique joint strategy profile that maximizes the joint entropy
of players’ actions subject to linear deviation regret inequality
constraints (Equation 28). This approach provides the predic-
tive guarantees of maximum entropy [17] in the single time
step (normal-form) multi-agent game setting.

TABLE I
THE GAME OF CHICKEN AND FOUR STRATEGY PROFILES THAT ARE IN

CORRELATED EQUILIBRIUM.

Stay Swerve
Stay 0,0 4,1

Swerve 1,4 3,3

CE 1
0 1
0 0

CE 2
0 0
1 0

CE 3
0 1

3
1
3

1
3

CE 4
1
4

1
4

1
4

1
4

Consider the game of Chicken (where each agent hopes the
other will Swerve) and the correlated equilibria that define
its utility polytope in TABLE I. CE 4 is the maximum entropy
correlated equilibrium and its predictive guarantee is apparent:
all other CE have infinite log-loss when evaluated under the
distribution of at least one other CE; the MaxEntCE is the
only CE that assigns positive probability to the {Stay, Stay}
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action combination. We extend these predictive guarantees to
the Markov game setting in this work.

B. Maximum Causal Entropy Correlated Equilibria

We extend the maximum entropy correlated equilibrium
approach to sequential games by posing it as a maximum
causal entropy problem. The causally conditioned entropy
measure (Equation 5) for this multi-player game setting is:

H(A1:T,1:N ||S1:T ) ,
T∑
t=1

H(At,1:N |A1:t−1,1:N ,S1:t). (29)

For the possible sequences of states and actions in a Markov
game, it corresponds to the uncertainty associated with only
the actions of the players in such sequences.

Definition 9: A maximum causal entropy correlated
equilibrium (MCECE) solution maximizes the causal en-
tropy (Equation 29), while satisfying the correlated equi-
librium constraints (Equation 28) given the game dynamics
T (St+1|St, At,1:N ). The regret constraints can be expressed
in the maximum causal entropy framework as:

Fh,j(a1:T,1:N , s1:T ) = −Utilityi(a1:T,1:N , s1:T ) (30)

+
T (s1:T ||a′1:T,1:N ) φj(a

′
1:T,1:N ||a1:T,1:N , s1:T )

T (s1:T ||a1:T,1:N )
×

Utilityi(a
′
1:T,1:N , s1:T )− ε,

for deviation policies, φj(a
′
1:T,1:N ||a1:T,1:N , s1:T ), corre-

sponding to each switch function for each player i ∈ N .
By including a small amount of slack, ε ≥ 0, to provide

primal feasibility, sub-game equilibria are realized by the
Lagrangian dual solution, meaning that even in states where
the probability of being reached converges towards 0, under
the strategy profile and state dynamics, the strategy profile
satisfies equilibria constraints (Equation 28) in all sub-games
starting from those states.

Theorem 8: Subject to the feasibility requirements of The-
orem 4, the MCECE strategy profile, πMCECE

λ (at|st), has the
recursive form (with λ ≥ 0):

πλ(at,1:N |st) ∝ exp

{
H(at+1:T,1:N ||st+1:T |at,1:N , st)

−
∑

i∈N ,at,i′∈Ai

λt,i,st,at,i,at,i′ Regretπ,i (at,1:N , st, at,i
′)

}
.

where Regretπ,i(at,1:N , st, a
′
t,i) denotes the regret of a partic-

ular switch function from at,i to a′t,i given the other players’
actions at,−i.
Thus, by employing the principle of maximum causal entropy,
we have expanded the maximum entropy correlated equilibria
solution concept [44] to the Markov game setting.

VI. CONCLUSION

In this work, we introduced the principle of maximum
causal entropy for estimating probability distributions where
elements of interaction and feedback exist. We demonstrated
its applicability and effectiveness on two very different statisti-
cal estimation tasks—discrete control and strategic Markovian
games—to illustrate its generality.

APPENDIX A
NOTATIONAL CONVENTIONS

We lowercase values of variables (e.g., xt, yt), capitalize
random variables (e.g., Xt, Yt), embolden sequence multi-
variates (e.g., x1:T , Y1:t), and denote sets with calligraphy
(e.g., Xt, Y1:T ), where temporal ranges, e.g., (1, 2, . . . , T ), are
compactly represented as, e.g., 1:T . We generally employ T as
the index of the last variable of the sequence (multivariate) and
other time indexes, e.g., t and τ , as indexes to other temporal
positions in the sequence.

A probability distribution over random variables, e.g.,
P (Y1:T ), which is a member of the probability simplex
∆Y1:T

, implies the probability for each specific value, e.g.,
P (y1:T ) , P (Y1:T = y1:T ). We denote estimated prob-
ability distributions as P̂ (X1) and sample probability dis-
tributions as P̃ (X1). Expectations over random variables
make the distribution of the random variables explicit, e.g.,
EP (X1:t)[f(x1:t)|x1] =

∑
x2:t∈X 2:t

P (x2:t|x1)f(x1:t).
When the distribution defining the entropy is un-

clear (i.e., not P ), we denote with subscript the defin-
ing distribution, e.g., HP̂ (X) = EP̂ (X)[− log P̂ (x)].
An entropy can be conditioned on specific values,
e.g., H(Y2:T |y1) = EP (Y1:T )[− logP (Y2:T )|y1] or, in
the causal entropy case, H(Yt+1:T ||Xt+1:T |y1:t,x1:t) =
EP (Y1:T ||X1:T )[− logP (Yt+1:T ||Xt+1:T )|y1:t,x1:t].

APPENDIX B
PROOFS OF THE THEOREMS

Proof of Theorem 1: Equation 10 is trivially implied
by the non-negativity constraints on both causally conditioned
probabilities (Equation 7).

To show that the second constraint (Equation 11) is im-
plied, we must first introduce additional notation. We let
[x1:τ ;x′τ+1:T ] denote a partial replacement sequence for x1:T

in which xτ+1:T have been replaced with a different sequence
of symbols, x′τ+1:T . The proof procedure operates by “unzip-
ping” the joint distribution:∑

x1:T ∈ X1:T
y1:T ∈ Y1:T

P (y1:T ||x1:T ) P (x1:T ||y1:T−1)

(a)
=

∑
x1:T ∈ X1:T

y1:T−1 ∈ Y1:T−1

 ∑
yT∈YT

P (y1:T ||x1:T )

 P (x1:T ||y1:T−1)

(b)
=

∑
x1:T ∈ X1:T

y1:T−1 ∈ Y1:T−1

 ∑
yT∈YT

P (y1:T ||[x1:T−1;x′T ])

P (x1:T ||y1:T−1)

(c)
=

∑
x1:T−1 ∈ X1:T−1
y1:T−1 ∈ Y1:T−1

 ∑
yT∈YT

P (y1:T ||[x1:T−1;x′T ])


( ∑
xT∈XT

P (x1:T ||y1:T−1)

)
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(d)
=

∑
x1:T−1 ∈ X1:T−1
y1:T−1 ∈ Y1:T−1

 ∑
yT∈YT

P (y1:T ||[x1:T−1;x′T ])

×
( ∑
xT∈XT

P (x1:T ||[y1:T−2; y′T−1])

)

(e)
=

∑
x1:τ ∈ X1:τ
y1:τ ∈ Y1:τ

 ∑
yτ+1:T∈Yτ+1:T

P (y1:T ||[x1:τ ;x′τ+1:T ])

×
 ∑

xτ+1:T∈X τ+1:T

P (x1:T ||[y1:τ ;y′τ+1:T−1])


(f)
=

 ∑
y1:T∈Y1:T

P (y1:T ||[x′1:T ])

 ( ∑
x1:T∈X 1:T

P (x1:T ||[y′1:T−1])

)
(g)
= 1.

The variable(s) that appear in only one of the causally
conditioned distributions are separately marginalized over (a)
and that independent marginal replaced with a replacement
sequence via the property of Equation 9 (b). Due to this
replacement, one additional variable then only appears in
the other causally conditioned probability distribution and the
procedure can alternate with separate marginalization (c) and
replacement (d). This operation can be repeated to the τ th ele-
ments of the sequences (as shown) (e) and then for the entire
sequence (f). Lastly, using the normalization property of the
two causally conditioned probability distributions (Equation 8)
concludes the proof (g).

Proof of Corollary 1: Using the definition of the condi-
tional probability in terms of the marginalized joint probability
(Theorem 1), and following the same partial replacement
notation and “unzipping” procedure of the proof of Theorem
1, we have:

P (yτ |y1:τ−1,x1:τ ) =

∑
yτ+1:T ∈ Yτ+1:T ,

xτ+1:T ∈ Xτ+1:T

P (y1:T ,x1:T )∑
yτ:T ∈ Yτ:T ,
xτ+1:T ∈ Xτ+1:T

P (y1:T ,x1:T )

=

∑
yτ+1:T ∈ Yτ+1:T ,

xτ+1:T ∈ Xτ+1:T

P (y1:T ||x1:T )P (x1:T ||y1:T−1)∑
yτ:T ∈ Yτ:T ,
xτ+1:T ∈ Xτ+1:T

P (y1:T ||x1:T )P (x1:T ||y1:T−1)

=

(∑
yτ+1:T∈Yτ+1:T

P (y1:T ||[x1:τ ;x′τ+1:T ])
)

(∑
yτ:T∈Yτ:T

P (y1:T ||[x1:τ ;x′τ+1:T ])
) .

Thus,
T∏
τ=1

P (yτ |y1:τ−1,x1:τ )

=

T∏
τ=1

(∑
yτ+1:T∈Yτ+1:T

P (y1:T ||[x1:τ ;x′τ+1:T ])
)

(∑
yτ:T∈Yτ:T

P (y1:T ||[x1:τ ;x′τ+1:T ])
)

=
P (y1:T ||x1:T )(∑

y1:T∈Y1:T
P (y1:T ||[x′1:T ])

) = P (y1:T ||x1:T ).

Similarly, P (x1:T ||y1:T−1) =
∏T
t=1 P (xt|x1:t−1,y1:t−1) fol-

lowing an analogous argument for the causally conditioned
x1:T variables.

To complete the proof, we must show that the product of
conditional probabilities definition (Equation 2) of the causally
conditioned probability satisfies the causal polytope definition
(Definition 3). The non-negativity constraint (Equation 7)
is satisfied by the non-negativity of conditional probability
distributions. The remaining two constraints are satisfied as
a consequence of noting that:

∑
yτ:T∈Yτ:T

T∏
t=τ

P (yt|y1:t−1,x1:t)

=
∑
yτ∈Yτ

P (yτ |y1:τ−1,x1:τ ) · · ·
∑

yT∈YT

P (yT |y1:T−1,x1:T )︸ ︷︷ ︸
T−τ+1 summations

= 1,

because each conditional probability distribution (starting from
the right-most) normalizes to 1. Thus, Equation 8 is satisfied
for τ = 1 and Equation 9 is satisfied as∑

yτ+1:T∈Yτ+1:T

P (y1:T ||x1:T )− P (y1:T ||x′1:T )

=

(
τ∏
t=1

P (yt|y1:t−1,x1:t)

)( ∑
yτ+1:T

∈ Yτ+1:T

T∏
t=τ+1

P (yt|y1:t−1,x1:t)

−
∑

yτ+1:T∈Yτ+1:T

T∏
t=τ+1

P (yt|y1:t−1,x
′
1:t)

)
= 0,

completing the proof.

Proof of Theorem 2: The negative causally condi-
tioned entropy, −HP̂ (Y1:T||X1:T), is a conic combination
of −P̂ (y1:T ||x1:T ) log P̂ (y1:T ||x1:T ) terms, which are each
convex for P̂ (y1:T ||x1:T ) ≥ 0. The optimization constraints
based on the joint probability terms are all affine in the un-
known causally conditioned probability terms. The intersection
with the causal polytope (Definition 3) is also convex. Thus,
the overall optimization is a convex optimization problem.

We now prove two lemmas that are needed for the proof of
Theorem 3.

Lemma 1: The Lagrangian dual optimization problem’s so-
lution is the probability distribution recursively defined ac-
cording to Equation 18.

Proof: We begin by obtaining the form of the probability
distribution in the Lagrangian dual optimization problem. Note
that since the domain of the objective (the causal entropy)
is only on the non-negative causally conditioned probability
terms, P̂ (y1:T ||x1:T ), thus the non-negativity constraints from
the causal polytope are superfluous, and we will suppress
them. Differentiating the Lagrangian of the maximum causal
entropy optimization (Equation 14), where the causal prob-
ability constraints are replaced with the locally normalizing
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constraints (which are equivalent by Corollary 1),

Λ(P̂ ,λ,γ) = HP̂ (Y1:T ||X1:T ) (31)

+ λTg(P̂ (X1:T ,Y1:T )) + γTh(P̂ (X1:T ,Y1:T ))

−
∑

t = 1 : T,
x1:t ∈ X 1:t,

y1:t−1 ∈ Y1:t−1

C(x1:t, y1:t−1)

1−
∑
yt∈Y

P̂ (yt|x1:t, y1:t−1)

 ,

we have (with γ ≥ 0):

∇{P̂ (yt|x1:t,y1:t−1)}Λ(P̂ ,λ,γ) = C(x1:t, y1:t−1) (32)

+ P̂ (x1:t, y1:t−1)

(
− log P̂ (yt|x1:t,y1:t−1)− 1

+HP̂ (Yt+1:T ||Xt+1:T |x1:t,y1:t)

+ λTEP̂ (X1:T ,Y1:T )[Fg(x1:T , y1:T )|x1:t, y1:t]

+ γTEP̂ (X1:T ,Y1:T )[Fh(x1:T , y1:T )|x1:t, y1:t]

)
.

Equating the gradient to 0 and solving for P̂λ,γ(yt|x1:t, y1:t−1)
yields:

P̂λ,γ(yt|x1:t, y1:t−1) ∝ exp

{
HP̂ (Yt+1:T ||Xt+1:T |x1:t,y1:t)

+ λTEP̂ (X1:T ,Y1:T )[Fg(x1:T , y1:T )|x1:t, y1:t]

+ γTEP̂ (X1:T ,Y1:T )[Fh(x1:T , y1:T )|x1:t, y1:t]

}
.

Starting with the recursive relationship constraining the
causally conditioned probability distribution (Equation 32), we
go further to prove the operational recurrence of the theorem
(Equation 18). We begin by factoring out the P̂λ,γ(x1:t, y1:t−1)
multiplier. We prove the lemma by substituting our recursive
definitions (Equation 17 and Equation 18) to show that they
are solutions to the recurrence.

C(x1:t,y1:t−1)

P̂ (x1:t,y1:t−1)
− 1

−

(
T∑
τ=t

EP̂ (X1:T ,Y1:T )

[
log P̂λ,γ(yτ |x1:τ , y1:τ−1)

∣∣∣x1:t, y1:t

])
+ EP̂ (X1:T ,Y1:T )

[
λTFg(x1:T , y1:T ) + γTFh(x1:T , y1:T )

∣∣∣x1:t, y1:t

]
=
C(x1:t,y1:t−1)

P̂ (x1:t,y1:t−1)
− 1−

T−1∑
τ=t

EP̂ (X1:T ,Y1:T )

[
(33)∑

xτ+1∈X

P (xτ+1|x1:τ , y1:τ ) logZλ,γ(x1:τ+1, y1:τ )

− logZλ,γ(x1:τ , y1:τ−1)
∣∣∣x1:t, y1:t

]
− EP̂ (X1:T ,Y1:T )[λ

TFg(x1:T , y1:T ) + γTFh(x1:T , y1:T )

− logZλ,γ(x1:T , y1:T−1)|x1:t, y1:t]

+ EP̂ (X1:T ,Y1:T )

[
λTFg(x1:T , y1:T )

+ γTFh(x1:T , y1:T )
∣∣∣x1:t, y1:t

]

=
C(x1:t,y1:t−1)

P̂ (x1:t,y1:t−1)
− 1

−
T∑
τ=t

EP̂ (X1:T ,Y1:T )

[
logZλ,γ(x1:τ+1, y1:τ )−

logZλ,γ(x1:τ , y1:τ−1)
∣∣∣x1:t, y1:t

]
− EP̂ (X1:T ,Y1:T )[logZλ,γ(x1:T , y1:T−1|x1:t, y1:t)]

=
C(x1:t,y1:t−1)

P̂ (x1:t,y1:t−1)
− 1− logZλ,γ(x1:t, y1:t−1) = 0.

Thus, setting C(x1:t, y1:t−1) = P̂ (x1:t,y1:t−1) +

logZλ,γ(x1:t,y1:t−1)P̂ (x1:t,y1:t−1), which is only a
function of x1:t and y1:t−1 (and, importantly, not yt), proves
the distribution form.

Lemma 2: Under the Lagrangian dual’s form of the
probability distribution (Lemma 1), P̂ (Y1:T ||X1:T ),
and another distribution P (Y1:T ,X1:T ) =
P (Y1:T ||X1:T )P (X1:T ||Y1:T−1), the conditioned causal
log-loss (Definition 2) has the following relationship:

EP (Y1:T ,X1:T )[− log P̂ (Yτ+1:T ||Xτ+1:T |y1:τ ,x1:τ )] =∑
xτ+1∈Xτ+1

P (xτ+1|x1:τ ,y1:τ ) logZλ,γ(x1:τ+1,y1:τ )

− EP (Y1:T ,X1:T )[λ
TFg(x1:T ,y1:T )

+ γTFh(x1:T ,y1:T )|x1:τ ,y1:τ ].

Proof: Using the recursive form under the dual (Equation
17 and Equation 18) obtained in Lemma 1, we have:

EP (X1:T ,Y1:T )

[
T∑

t=τ+1

− log P̂ (yt|x1:t,yt−1)
∣∣∣x1:τ ,y1:τ

]

= EP (X1:T ,Y1:T )

[
− λTFg(x1:T ,y1:T )− γTFh(x1:T ,y1:T )

−
T−1∑
t=τ+1

∑
xt+1∈Xt

P (xt+1|x1:t,y1:t) logZλ,γ(x1:t+1,y1:t)

+

T∑
t=τ+1

logZλ,γ(x1:t,y1:t−1)
∣∣∣x1:τ ,y1:τ

]

= − EP (X1:T ,Y1:T )

[
λTFg(x1:T ,y1:T )

+ γTFh(x1:T ,y1:T )
∣∣∣x1:τ ,y1:τ

]
+

∑
xτ+1∈Xτ+1

P (xτ+1|x1:τ ,y1:τ ) logZλ,γ(x1:τ+1,y1:τ ),

which proves the lemma.

Proof of Theorem 3: Plugging the dual optimization
problem’s optimal solution form (Equation 18) into the La-
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grangian (Equation 31), we have:

inf
λ,γ≥0

sup
P̂ (Y1:T ||X1:T )

Λ(P̂ ,λ,γ)

= inf
λ,γ≥0

Λ(P̂λ,γ(Y1:T ||X1:T ),λ,γ)

= inf
λ,γ≥0

HP̂ (Y1:T ||X1:T ) + EP̂
[
λTg(P̂ (X1:T ,Y1:T ))

+ γTh(P̂ (X1:T ,Y1:T ))
]
.

Substituting in the result of Lemma 2 for HP̂ (Y1:T ||X1:T )

under the special case that P (Y1:T ||X1:T ) = P̂ (Y1:T ||X1:T )
proves the dual optimization form of the theorem. The form
of the distribution is provided by Lemma 1.

Proof of Theorem 4: The primal optimization problem
is convex (Theorem 2), thus by Slater’s condition for affine
inequality constraints [6], as long as there is a feasible solution
satisfying the constraint set in the primal optimization problem
on the relative interior, then strong Lagrangian duality holds—
there is no duality gap between the primal optimization
problem and the dual optimization problem:

sup
P̂ (Y1:T ||X1:T )

inf
λ,γ≥0

Λ(P̂ ,λ,γ)

= inf
λ,γ≥0

sup
P̂ (Y1:T ||X1:T )

Λ(P̂ ,λ,γ).

For our problem, this requires:

∃P (Y1:T ||X1:T ) ∈ Ξ such that:
∀y1:T ∈ Y1:T ,∀x1:T ∈ X 1:T , P (y1:T ||x1:T ) > 0, (34)
g(P (Y1:T ,X1:T )) = 0, and h(P (Y1:T ,X1:T )) ≥ 0.

Note that when the only primal feasible solution violates strict
positivity (Equation 34), non-finite dual parameters would be
required. This can be alleviated by allowing small slack in the
equality and inequality constraints,

∀i ∈ {1, . . . ,M}, |gi(P (Y1:T ,X1:T ))| ≤ ε
∀j ∈ {1, . . . , N}, hj(P (Y1:T ,X1:T )) ≥ −ε,

leading to Lagrangian multiplier regularization in the dual
optimization problem [12]. We also discuss adding slack in
Section III-E to deal with finite sample approximations.

Proof of Theorem 5: Writing the Lagrangian dual (Equa-
tion 17) for these constraints and then relying on Lemma 2,
we have:

min
λ

∑
x1∈X1

P (x1) logZλ(x1)

− λTEP (Y1:T ,X1:T )[Fg(y1:T ,x1:T )]

= min
λ
−EP (Y1:T ,X1:T )[log P̂λ(y1:T ||x1:T )]

= max
λ

EP (Y1:T ,X1:T )[log P̂λ(y1:T ||x1:T )],

completing the proof.

Proof of Theorem 6: Letting each sample’s kth moment
statistic be bounded within [fmin

g,k , f
max
g,k ], by Hoeffding’s in-

equality, we have:

P
(∣∣∣f̄g,k − EP̃ (Y1:T ,X1:T ) [Fg,k(y1:T ,x1:T )]

∣∣∣ ≥ ε)
≤ 2 exp

(
− 2nε2

(fmax
g,k − fmin

g,k )2

)
,

By the union bound:

P

(
K⋃
k=1

∣∣∣f̄g,k − EP̃ (Y1:T ,X1:T ) [Fg,k(y1:T ,x1:T )]
∣∣∣ ≥ ε)

≤
K∑
k=1

P
(∣∣∣f̄g,k − EP̃ (Y1:T ,X1:T ) [Fg,k(y1:T ,x1:T )]

∣∣∣ ≥ ε) .
Combining these, and recognizing that:

P

(
K⋃
k=1

∣∣∣f̄g,k − EP̃ (Y1:T ,X1:T ) [Fg,k(y1:T ,x1:T )]
∣∣∣ ≥ ε) =

P
(∣∣∣∣∣∣f̄g,k − EP̃ (Y1:T ,X1:T ) [Fg,k(y1:T ,x1:T )]

∣∣∣∣∣∣
∞
≥ ε
)
,

while letting fg,max = maxk f
max
g,k and fg,min = mink f

min
g,k ,

proves the theorem.

We now prove an important saddle point existence lemma
needed for Theorem 7.

Lemma 3: Under the restriction that P (Y1:T ||X1:T ) is from
the set Γ ⊆ Ξ of causally conditioned probability distribu-
tions satisfying provided equality and inequality constraints,
g (P (Y1:T ,X1:T )) = 0 and h (P (Y1:T ,X1:T )) ≥ 0 (Equation
14), and assuming strong Lagrangian duality holds (Theorem
4), the causal log-loss (Definition 2),

CLL(P̂ (Y1:T ||X1:T ), P (Y1:T ||X1:T ))

= EP (Y1:T ,X1:T )[− log P̂ (Y1:T ||X1:T )]

= −
∑

P (Y1:T ||X1:T )P (X1:T ||Y1:T−1) log P̂ (Y1:T ||X1:T ),

has a saddle point, P (Y1:T ||X1:T ) = P̂ (Y1:T ||X1:T ) =
P ∗(Y1:T ||X1:T ): the maximum causal entropy distribution
(Definition 4). In other words,

sup
P (Y1:T ||X1:T )∈Γ

CLL(P ∗(Y1:T ||X1:T ), P (Y1:T ||X1:T ))

(a)
= CLL(P ∗(Y1:T ||X1:T ), P ∗(Y1:T ||X1:T ))

(b)
= inf

P̂ (Y1:T ||X1:T )∈Ξ
CLL(P̂ (Y1:T ||X1:T ), P ∗(Y1:T ||X1:T ))

Proof: Equality (a): For any P (Y1:T ||X1:T ) ∈ Γ, as a
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special case of Lemma 2,

CLL(P ∗(Y1:T ||X1:T ), P (Y1:T ||X1:T ))

=
∑
x1∈X1

P (x1) logZλ,γ(x1)

− EP (Y1:T ,X1:T )[λ
TFg(x1:T ,y1:T )]

− EP (Y1:T ,X1:T )[γ
TFh(x1:T ,y1:T )]

≤
∑
x1∈X1

P (x1) logZλ,γ(x1) + λTcg + γTch (35)

= CLL(P ∗(Y1:T ||X1:T ), P ∗(Y1:T ||X1:T )).

The inequality follows from the constraints on the set
Γ: any P (Y1:T ||X1:T ) ∈ Γ satisfies (with equality)
EP (Y1:T ,X1:T )[Fg(x1:T ,y1:T )] = −cg and (with inequality)
EP (Y1:T ,X1:T )[Fh(x1:T ,y1:T )] ≥ −ch. Note that Equation 35
is the dual optimization objective (Equation 17) and it reaches
its optima at P (Y1:T ||X1:T ) = P ∗(Y1:T ||X1:T ).

Equality (b): For any P̂ (Y1:T ||X1:T ),

CLL(P̂ (Y1:T ||X1:T ), P ∗(Y1:T ||X1:T )

= EP∗(Y1:T ,X1:T )[− log P̂ (Y1:T ||X1:T )]

≥ EP∗(Y1:T ,X1:T )[− logP ∗(Y1:T ||X1:T )]

= CLL(P ∗(Y1:T ||X1:T ), P ∗(Y1:T ||X1:T )).

The inequality follows from an “information bound”
on the causal Kullback-Leibler divergence (Equation 22):
EP∗(Y1:T ,X1:T )[log P∗(Y1:T ||X1:T )

P̂ (Y1:T ||X1:T )
] ≥ 0, which is tight when

P̂ (Y1:T ||X1:T ) = P ∗(Y1:T ||X1:T ).

Proof of Theorem 7: In what follows, we let Ξ denote
the causal polytope defining causally conditioned probability
distributions and let Γ denote the subset of Ξ that satisfies:
g(P (Y1:T ,X1:T )) = 0 and h(P (Y1:T ,X1:T )) ≥ 0.

inf
P̂ (Y1:T ||X1:T )

∈ Ξ

sup
P (Y1:T ||X1:T )

∈ Γ

EP (Y1:T ,X1:T )[− log P̂ (y1:T ||x1:T )]

= sup
P (Y1:T ||X1:T )

∈ Γ

inf
P̂ (Y1:T ||X1:T )

∈ Ξ

EP (Y1:T ,X1:T )[− log P̂ (y1:T ||x1:T )]

= sup
P (Y1:T ||X1:T )∈Γ

EP (Y1:T ,X1:T )[− logP (y1:T ||x1:T )]

= sup
P (Y1:T ||X1:T )∈Γ

H(Y1:T ||X1:T ),

The first equality (minimax) follows from the existence of
the saddle point established in Lemma 3. The second follows
from the fact that setting the estimate to the adversarially
chosen distribution P̂ (Y1:T ||X1:T ) = P (Y1:T ||X1:T ) is then
optimal for the minimization. Finally, the result follows from
the definition of causal entropy (Definition 1).

Proof of Corollary 2: Following the proof of Lemma 1,
we substitute the softened maximum causal entropy recurrence
(Equation 24 and Equation 25) into Equation 33 to verify it

is a solution to the Lagrangian dual optimization problem.

−
T−1∑
τ=t

EP̂ (S1:T ,A1:T )

[ ∑
sτ+1∈S

P (sτ+1|sτ , aτ )Vθ(sτ+1)

+ θTf(sτ , aτ )− Vθ(sτ )
∣∣∣st, at]

− EP̂ (S1:T ,A1:T )[θ
Tf(sT , aT )− Vθ(sT )|s1:t, a1:t]

+ EP̂ (S1:T ,A1:T )

[
θTF(s1:T , a1:T )

∣∣∣s1:t, a1:t

]
= EP̂ (S1:T ,A1:T )

[
θTF(s1:T , a1:T )

∣∣∣s1:t, a1:t

]
− EP̂ (St:T ,At:T )

[
θTF(st:T , at:T )

∣∣∣st, at]+ Vθ(st),

where P̂ (S1:T ,A1:T ) = T (S1:T ||A1:T−1) π̂(A1:T ||S1:T ).
Thus, setting C(s1:t, a1:t−1) to the remaining terms,
θT∑t−1

τ=1 f(sτ , aτ ) + Vθ(st), completes the proof.

Proof of Theorem 8: We first re-express the optimization
problem in terms of each of the alternative actions correspond-
ing to the set of switch functions.

argmax
π(A1:T,1:N ||S1:N )∈Ξ

Hπ(A1:T,1:N ||S1:T ) such that: (36)

∀t ∈ {1, . . . , T}, i ∈ N , at,i ∈ Ai, at,i′ ∈ Ai, s1:t ∈ S1:t,

a1:t−1,1:N ∈ A1:t−1,1:N ,

Regretπ,i(at,i, at,i
′, s1:t,a1:t−1,1:N ) ≤ 0,

where Regretπ,i(at,i, at,i
′, s1:t,a1:t−1,1:N ) is the regret corre-

sponding to the switch function for player i from action at,i
to a′t,i at time t given history a1:t−1,1:N and s1:t.

We find the form of the probability distribution by finding
the optimal solution of the Lagrangian dual optimization
problem. We suppress the probabilistic positivity constraints
and normalization constraints with the understanding that the
resulting probability distribution must normalize to 1.

The Lagrangian for the optimization of Equation 36 when
using entire history-dependent probability distributions and
parameters is:

Λ(π, λ) = Hπ(a1:T,1:N ||s1:T )−∑
t ∈ {1, . . . , T}, i ∈ N ,
at,i ∈ Ai, at,i

′ ∈ Ai,
s1:t ∈ S1:t,

a1:t−1,1:N ∈ A1:t−1,1:N

λt,i,at,i,at,i′,s1:t,a1:t−1,1:N
×

Regretπ,i(at,i, at,i
′, s1:t,a1:t−1,1:N ).

Taking the partial derivative with respect to a history-
dependent action probability for a particular state, we have:

∂Λ(π, λ)

∂π(at,1:N |s1:t,a1:t−1,1:N )

= P (a1:t, s1:t)

(
Hπ(At:T ||St:T |a1:t, s1:t)

−
∑

i∈N ,at,i′∈Ai

λt,i,at,i,at,i′,s1:t,a1:t−1,1:N
×

Regretπ,i(at,i
′, s1:t,a1:t,1:N )

)
= P (a1:t, s1:t)

(
− log π(at,1:N |s1:t,a1:t−1,1:N ) (37)

+Hπ(At+1:T ||St+1:T |s1:t,a1:t)
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−
∑

i∈N ,at,i′∈Ai

λt,i,at,i,at,i′,s1:t,a1:t−1,1:N
×

Regretπ,i(at,i
′, s1:t,a1:t,1:N )

)
,

where here the regret is conditioned on the other players’
actions at,−i. The form of the history-dependent distribution,

π(at,1:N |s1:t,a1:t−1,1:N ) ∝ exp
{
Hπ(St+1:T ||At+1:T |a1:t, s1:t)

−
∑

i∈N ,at,i′∈Ai

λt,i,at,i,at,i′,s1:t,a1:t−1,1:N
× (38)

Regretπ,i(at,i
′, s1:t,a1:t,1:N )

}
,

is obtained by equating Equation 37 to zero and dividing off
the (constant) probability term, P (a1:t, s1:t).

APPENDIX C
ALTERNATIVE ENTROPY MAXIMIZATION APPROACHES

Can the same process estimates obtained by maximizing
the causal entropy instead be obtained by maximizing more
familiar entropy measures? The connection to the Bellman
equation [2] established in Section IV-C allows us to answer
this question by illustrating and interpreting the differences
when employing other entropy measures.

Maximizing the conditional entropy of actions given
states, Hπ̂(A1:T |S1:T ), provides a distribution of the form:
π̂θ(a1:T |s1:T ) ∝ exp{

∑T
t=1 θ

Tf(st, at)}. As future states
are latent, a common approach [65], [58] is to marginalize
over the future latent states and actions, yielding a recur-
sive expression for the conditional probability, π̂θ(at|st) =

eQ
cond
θ,t (at,st)−V cond

θ,t (st):

Qcond
θ,t (at, st) = θTf(st, at) + softmax

st+1∈St+1

{
log T (st+1|st, at) + V cond

θ,t+1(st+1)
}

V cond
θ,t (st) = softmax

at∈A
Qcond

θ,t (at, st).

It can be interpreted as allowing the (softmax) selection of the
next state st+1 with the best state value potential with a penalty
of log T (st+1|st, at) incurred for realizing the desired state
dynamics transition. In contrast, under the maximum causal
entropy distribution and the Bellman equation, the expectation
over the next state is taken according to the dynamics model.

Maximizing the joint entropy Hπ̂(A1:T ,S1:T ) subject to
constraints enforcing the dynamics distribution yields the
following recursive definition of the conditional probability
π̂θ(at|st) = eQ

joint
θ,t(at,st)−V

joint
θ,t (st):

Qjoint
θ,t (at, st) = ET (st+1|st,at)[V

joint
θ,t+1(st+1)|st, at]

+ θTf(st, at) +HT (St+1|st, at)
V joint
θ,t (st) = softmax

at∈A
Qjoint

θ,t (at, st).

In contrast to the maximum causal entropy distribution (and
the Bellman equation), more probability mass is assigned to
actions leading towards portions of the state space where
the dynamics are more stochastic. We refer the reader to
our previous work [61] for an illustrative example of these
differences.
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