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On the Feedback Capacity of the Fully Connected
K-User Interference Channel

Soheil Mohajer, Ravi Tandon,Member, IEEE, and H. Vincent Poor,Fellow, IEEE

Abstract—The symmetric K user interference channel with
fully connected topology is considered, in which(a) each receiver
suffers interference from all other (K − 1) transmitters, and
(b) each transmitter has causal and noiseless feedback from its
respective receiver. The number of generalized degrees of freedom
(GDoF) is characterized in terms of α, where the interference-
to-noise ratio (INR) is given by INR = SNR

α. It is shown that
the per-user GDoF of this network is the same as that of the
2-user interference channel with feedback, except forα = 1, for
which existence of feedback does not help in terms ofGDoF. The
coding scheme proposed for this network, termed cooperative
interference alignment, is based on two key ingredients, namely,
interference alignment and interference decoding. Moreover, an
approximate characterization is provided for the symmetric
feedback capacity of the network, when theSNR and INR are
far apart from each other.

I. I NTRODUCTION

Wireless networks with multiple pairs of transceivers are
quite common in modern communications, notable examples
being wireless local area networks (WLANs) and cellular
networks. Multiple independent flows of information share a
common medium in such multiple unicast wireless networks.
The broadcast and superposition nature of the wireless medium
introduces complex signal interactions between multiple com-
peting flows. In contrast to the point-to-point wireless channel,
where a noisy version of a single transmitted signal is received
at a given receiver, a combination of various wireless signals
are observed at receivers in multiple unicast systems. In such
scenarios, each decoder has to deal with all interfering signals
in order to decode its intended message. Managing such
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interfering signals in a multi-user network is a long standing
and fundamental problem in wireless communication.

The simplest example in this category is the2-user interfer-
ence channel [1], in which two transmitters with independent
messages wish to communicate with their respective receivers
over the wireless transmission medium. Even for this simple2-
user network, the complete information-theoretic characteriza-
tion of the capacity region has been open for several decades.
To study more general networks, there is a clear need for
a deep understanding and perhaps develop novel interference
management techniques.

Although the exact characterization of the capacity region
of the 2-user Gaussian interference channel is still unknown,
several inner and outer bounds are known. These bounds
are very useful in the sense of providing an approximate
characterization when there exists a guarantee on the gap
between them. This approach has resulted in an approximate
characterization, within one bit, by Etkin, Tse, and Wang in
[2] as well as Telatar and Tse in [3]. This characterization
includes upper bounds for the capacity of the network, as
well as encoding/decoding strategies based on Han-Kobayashi
scheme [1], which perform close to optimal. Moreover, it has
been shown that the gap between the fundamental information-
theoretic bounds and what can be achieved using the proposed
schemes is provably small. Therefore, the capacity can be
approximated within a narrow range, although the exact region
is still unknown.

A similar approximate characterization (with a larger gap)
for this problem is developed in [4], in which both coding
scheme and bounding techniques are devised by studying
the problem under thedeterministicmodel. This framework,
introduced by Avestimehr, Diggavi, and Tse in [5], focuses on
complex signal interactions in a wireless network by ignoring
the randomness of the noise. Recently, it has been successfully
applied to several problems, providing valuable insights for the
more practically relevant Gaussian problems.

Several interference management techniques have been pro-
posed for operating over more complex interference networks.
Completely or partially decoding and removing interference
(interference suppression) when it is strong and treating it
as noise when it is weak are perhaps the most widely used
schemes. More sophisticated schemes such as interference
alignment [6], [7] have been proposed recently. However,
it still remains to be seen whether the capacity of general
interference networks can be achieved with any combination
of these techniques.

It is well known that feedback does not increase the capacity
of point-to-point discrete memoryless channels [8]. However,
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feedback is beneficial in improving the capacity regions of
more complex networks (see [9] and references therein). The
effects of feedback on the capacity region of the interference
channel have been studied in several papers. Feedback coding
schemes forK-user Gaussian interference networks have been
developed by Kramer in [10]. Outer bounds for the2-user
interference channel with generalized feedback have been
derived in [11] and [12]. The effect of feedback on the capacity
of the 2-user interference channel is studied in [13], where
it is shown that feedback provides multiplicative gain in the
capacity at high signal-to-noise ratio (SNR), when the interfer-
ence links are much stronger than the direct links. The entire
feedback capacity region of the2-user Gaussian interference
channel has been characterized within a2 bit gap by Suh
and Tse in [14]. This includes all regimes of interference,
and finite and asymptotic regimes ofSNR. The gap between
the capacity of the channel with and without feedback can
be arbitrarily large for certain channel parameters. The key
technique for the strong interference regime is to use the
feedback links to create an artificial path from each transmitter
to its respective receiver through the other nodes in the net-
work. For instance, the message intended forRx1, can be sent
either through the direct linkTx1 → Rx1, or the cyclic path
Tx1 → Rx2 → Tx2 → Rx1. In particular, the advantage of
such artificial paths can be clearly understood when the cross
links are much stronger than the direct links (e.g., the strong
interference regime). This observation becomes very natural
by studying the problem under the deterministic framework.

The first extension of [14] to a multi-user setting is the
K-user cyclic interference channel with feedback, where each
receiver’s signal is interfered with only one of its neighboring
transmitters, in a cyclic fashion. The effect of feedback onthe
capacity region of this network is addressed in [15]. It is shown
that although feedback improves the symmetric capacity of the
K-user interference channel, the improvement in symmetric
capacity per user vanishes asK grows. The intuitive reason
behind this result is that the configuration of the network
allows only one cyclic path, which has to be shared between
all pair of transceivers. The amount of information that can
be conveyed through this path does not scale withK, and
therefore the gain for each user scales inverse linearly with
K.

In another extreme, each transmit signal may be corrupted
by all the other signals transmitted by the other base stations.
This model is appropriate for a network with densely located
nodes, where everyone hears everyone else. This network,
which we callthe fully connectedK-user interference channel
(FC-IC), is another generalization of the2-user interference
channel. Fig. I shows the fully connected IC with feedback for
K = 3 users. In this paper, we study the FC-IC network with
feedback, and for simplicity, we consider a symmetric network
topology, where all the direct links (from each transmitterto its
respective receiver) have the same gain, and similarly, thegain
of all cross (interfering) links are identical. A similar setting
without feedback has been studied by Jafar and Vishwanath in
[16], where the number of symmetric degrees of freedom is
characterized. An approximate sum capacity of this network
is recently found by Ordentlichet al. in [17]. In this paper,

(a) A cellular interference network.

Delay

Delay

Delay

PSfrag replacements

Tx1

Tx2

Tx3

Rx1

Rx2

Rx3

(b) Interference network with feedback.

Fig. 1. A cellular network with three base stations and threeclients in (a),
simplified and modelled as the network in (b).

the impact of feedback is studied for theK-user FC-IC.
The main contribution of this paper is to show that feedback
can arbitrarily improve the performance of the network, and
in contrast to the cyclic case [15], itdoes scalewith the
number of users in the systems. In particular, except for
the intermediate interference regime where the signal-to-noise
ratio is equal to the interference-to-noise ratio (SNR = INR),
the effect of interference fromK − 1 users is as if there
were only one interfering transmitter in the network. This
is analogous to the result of [7], where it is shown that the
number of per-user degrees of freedom of theK-user fading
interference channel, is the same as if there were only2 users
in the network.

In order to get the maximal benefit of feedback, we pro-
pose a novel encoding scheme, called cooperative interfer-
ence alignment, which combines two well-known interference
management techniques, namely, interference alignment and
interference decoding. More precisely, the encoding at the
transmitters is such that all the interfering signals are aligned
at each receiver. However, a fundamental difference between
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our approach and the standard interference alignment approach
is that we need to decode interference to be able to remove
it from the received signal, while the aligned interference
is usually suppressed in standard approaches. A challenge
here, which makes this problem fundamentally different from
the 2-user inference channel, is that the interference is a
combination of(K − 1) interfering messages, and decoding
all of them induces strict bounds on the rate of the interfering
messages. However, each transmitter does not need to decode
all the interfering messages individually, instead, upon receiv-
ing feedback, it only decodes the combination of them that
corrupts the intended signal of interest. To this end, we propose
using a common structured code, which has the property that
the summation of codewords of different users is still another
codeword from the same codebook. Lattice codes [18] are a
suitable choice to satisfy this desired property. This ideais
similar to that used in [19] and [20].

The rest of this paper is organized as follows. First, we
formally present the model, introduce notation, and state the
problem in Section II. The main result of the paper is presented
in Section III. Before proving the result for the Gaussian
network, we study the problem under the deterministic model
in Section IV, where we characterize the exact feedback
capacity of the deterministic network. Based on the insightand
intuition obtained by analysis of the deterministic network,
we present the converse proof and the coding scheme for
the Gaussian network in Sections V and VI, respectively.
Having the approximate feedback capacity of the network, we
derive the generalized degrees of freedom with feedback in
Section VII. We further extend the result of the paper, and
study the case of global feedback, where each transmitter
receives feedback from all receivers in Section VIII, and
finally, conclude the paper in Section IX. In order to make
the paper easily readable, some of the technical proofs are
postponed to the appendices. Parts of this work have been
presented in [21].

II. PROBLEM STATEMENT

In this work we consider a network withK pairs of
transmitter/receivers. Each transmitterTxk has a messageWk

that it wishes to send to its respective receiverRxk. The signal
transmitted by each transmitter is corrupted by the interfering
signals sent by other transmitters, and received at the receiver.
This can be mathematically modelled as

yk(t) =
√
SNRxk(t) +

K
∑

i=1
i6=k

√
INRxi(t) + zk(t), (1)

wherexk and yk are the signals transmitted and received by
Txk andRxk, respectively, andzk ∼ N (0, 1) is an additive
white Gaussian noise. All transmitting powers are constrained
to 1, i.e., E[x2

k] ≤ 1, for k = 1, . . . ,K. We assume a
symmetric network, where all the cross links have the same
gain (INR), and the gains of the all the direct link (SNR) are
identical.

There is a perfect feedback link from each receiver to
its respective transmitter. Hence, at each time instance, each

transmitter generates each transmitting signal based on its own
message as well as the output sequence observed at its receiver
over the past time instances, i.e.,

xkt = gkt(Wk, yk1, yk2, . . . , yk(t−1)) = gkt(Wk, y
t−1
k ), (2)

where we use shorthand notationyt−1
k =

(yk1, yk2, . . . , yk(t−1)) to indicate the output sequence
observed atRxk up to timet− 1.

A rate tuple(R1, R2, . . . , RK) is called achievable if there
exists a family of codebooks with block lengthT with proper
power and corresponding encoding/decoding functions such
that the average decoding error probability tends to zero for
all users asT increases. We denote the set of all achievable
rate tuples byR. In the high signal to noise ratio regime, the
performance of wireless networks is measured in terms of the
number of degrees of freedom, that is the pre-log factor in the
expression of the capacity in terms ofSNR. We consider the
generalized degrees of freedom (GDoF) for this network in
the presence of feedback. Since the problem is parametrized
in terms of two growing factors1, namelySNR and INR, we
use the standard parameterα (as in [2] and [16]) to capture
the growth rate ofINR in terms ofSNR. More formally, we
define

α =
log INR

log SNR
, (3)

and theper-usergeneralized degrees of freedom as

d(α) =
1

K
lim sup
SNR→∞

max(R,...,R)∈R

∑K
k=1 Rk(SNR, α)

1
2 log SNR

. (4)

It is worth mentioning that the half factor appears in the de-
nominator since we are dealing with real signals. Our primary
goal is to characterize the generalized degrees of freedom of
theK-user interference channel with output feedback.

As mentioned earlier, theGDoF characterizes the per-
formance of the network in the asymptoticSNR regime.
However, in order to study practical networks, capacity is a
more accurate measure to capture the performance. In order
to consider such a high resolution analysis, we define the
symmetric capacity of the network, that is

Rsym = max
(R,...,R)∈R

R.

In this work we are interested in characterizingRsym for the
K-user interference channel with feedback. Although finding
the exact symmetric capacity is extremely difficult, we make
progress on this problem, and approximately characterize the
capacity when theSNR and INR are not close to each other,
that is whenα (defined in (3)) is not equal to1. To this end,
we derive outer bounds and propose coding schemes for the
network, and show that the gap between the achievable rate

1The notion of degrees of freedom (DoF) captures the asymptotic behavior
of the capacity, where the transmit power grows to infinity. However, this
forces all channels to be equally strong, i.e., all the powerof all received
signals from different links grow at the same rate. Therefore, it is not very
insightful towards finding optimal transmission schemes when some signals
are significantly stronger or weaker than others. The generalized degrees of
freedom which allows different rate of growth forSNR andINR is more useful
metric in such scenarios. We refer the reader to [22] for a comprehensive
discussion on these metrics.
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and the outer bound is a functiononly of K, the number of
users in the network, and is independent ofSNR and INR.

III. M AIN RESULTS

In this section we present the main results of this paper. The
first theorem characterizes the generalized degrees of freedom
of theK-user FC-IC with feedback.

Theorem 1. For the K-user fully connected interference
channel (FC-IC) with output feedback, the per-userGDoF is
given by

dFB(α) =







1− α
2 α < 1 (weak interference)

not well-defined α = 1
α
2 α > 1 (strong interference)

We present the proof of Theorem 1 in Section VII. Note
that the theorem above does not characterize theGDoF for
α = 1. In fact for this regime, theGDoF is not well-defined
and can get different values, depending on mutual growth of
SNR and INR. We refer the interested reader to Section VII
for a detailed discussion.

In order to demonstrate the benefit gained by output feed-
back, we present the following theorem from [16], which
characterizes theGDoF for the FC-IC without feedback.

Theorem 2 ( [16], Theorem 3.1). The per-userGDoF for the
K-user interference channel without feedback is given by

dNo FB(α) =































1− α 0 ≤ α ≤ 1
2 (noisy interference)

α 1
2 ≤ α ≤ 2

3 (weak interference)
1− α

2
2
3α < 1 (moderate interference)

1
K α = 1
α
2 1 < α ≤ 2 (strong interference)
1 α > 2 (very strong interference).

The generalized degrees of freedom of theK-user interfer-
ence channel with/without feedback are illustrated in Figure 2.
As derived in [16], theGDoF for theK-user no feedback case,
is similar to that of2-user case [2], except forα = 1. Similarly,
here we show that for the channel with feedback, theGDoF

for theK-user case is the same as that of the2-user channel
[14], except forα = 1. At this particular point, theGDoF can
be bounded from below and above by1K and 1

2 , respectively.
The following theorem characterizes the approximate ca-

pacity of the channel for arbitrary signal-to-noise ratio.

Theorem 3. The symmetric capacity of theK user interfer-
ence channel with feedback with2

INR

SNR
/∈
(

1

2
, 2

)

can be approximated by

C̃sym ,
1

4
log(1 + SNR+ INR)+

1

4
log

(

1 +
SNR

1 + INR

)

. (5)

2A similar result can be shown whenINR/SNR /∈ (1− δ1, 1+ δ2) where
δ1, δ2 > 0 are constants. In that case the gap between the achievable rate
and the upper bound may depend onδ1 and δ2. We refer the interested
reader to the discussion at the end of Section VII on the capacity behavior at
INR ≈ SNR.

More precisely, the symmetric capacity is upper bounded by
Csym ≤ C̃sym + K−1

4 + 1
2 logK. Moreover, there exists a

coding scheme that can support any rate satisfyingRsym ≤
C̃sym − 1

4 log 16K
2(K + 1).

We will present the achievability part of Theorem 3 in
Section V. The proof of the converse part can be found in
Section VI.

IV. T HE DETERMINISTIC MODEL

In this section we study the problem of interest in a
deterministic framework introduced in [5]. The key point in
this model is to focus on signal interactions instead of the
additive noise, and obtain insight about both coding schemes
and outer bounds for the original problem.

The intuition behind this approach is that the noise is
modelled by a deterministic operation on the received signal
which splits the received signal into a completely useless part
and a completely noiseless part. The part of the received
signal below the noise level is completely useless since it is
corrupted by noise. However, the part above the noise level
is assumed to be not affected by noise and can be used to
retrieve information.

Let p be any prime number andF be the finite field over the
set{0, 1, . . . , p− 1} with sum and product operations modulo
p. Moreover, define

n = ⌊logp SNR⌋ and m = ⌊logp INR⌋.
Each received signal can be mapped into ap-ary stream.
Let Xk ∈ F

q and Yk ∈ F
q be thep-ary expansion of the

transmit and received signal by userk, respectively, where
q = max{m,n}. The shift linear deterministic channel model
for this network can be written as

Yk = Dq−nXk +
∑

i6=k

Dq−mXi, (6)

where all the operations are performed modulop. Here,D is
the shift matrix, defined as

D =















0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

. . .
...

0 0 0 · · · 1 0















q×q

.

The following theorem characterizes the symmetric capacity
of the deterministic network introduced above. In the rest of
this section, we prove this theorem by first deriving an upper
bound on the symmetric capacity, and then proposing coding
schemes for different interference regimes. The ideas arising in
this section will be later used when we focus on the Gaussian
network in Sections VI and V.

Theorem 4. The symmetric feedback capacity of the linear
deterministicK-user fully connected interference channel with
parametersn andm is given by

Rsym =







n− m
2 n > m (weak interference),

n
K m = n,
m
2 n < m (strong interference).

(7)
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Fig. 2. The per-user generalized degrees of freedom for theK-user interference channel.

Remark 1. From the rate expression in Theorem 4 one can
easily see that the normalized feedback capacity of the channel
under the linear deterministic model is given by

Rsym

n
=







1− 1
2

(

m
n

)

m
n < 1,

1
K

m
n = 1,

1
2

(

m
n

)

m
n > 1,

which is analogous to theGDoF expression in Theorem 1, by
noting thatm/n is analogous toα for the Gaussian setting.

We may also study a generalized version of the symmetric
model introduced in (6). As we will see in the rest of this
section, the symmetric topology the current model allows
a simple interference alignment at the receivers. A natural
generalization of this model assigns a random sign to each
channels, while channel gains are kept symmetric. More
precisely, in this model, calledquasi-symmetricK-user fully
connected interference channel3, the gain of all the direct links
are identical and all the cross links have identical gains, but
each link has a random sign which captures random phase in
the Gaussian model. Note that, without loss of generality, we
may assume the sign of all direct links are positive, and write
the channel model as

Yk = Dq−nXk +
∑

i

λkiD
q−mXi, (8)

whereλki ∈ {−1,+1} for i 6= k captures the sign of the cross
link from Txi to Rxk. The following theorem states that a
similar result as Theorem 4 holds for3-user network.

Theorem 5. The symmetric feedback capacity of the linear
deterministic quasi-symmetric3-user fully connected interfer-
ence channel introduced in(8) with parametersn and m is

3We wish to thank the anonymous reviewer for suggesting this model.

given by

Rsym =















n− m
2 n > m (weak interference),

n
3 m = n andΛ + I is singular,
n
2 m = n andΛ + I is non-singular,
m
2 n < m (strong interference),

whereΛ is the channel sign matrix withΛij = λij for i 6= j
andΛii = 0 for i = 1, 2, 3.

In the following we present an example to illustrate the
reason for loss inGDoF for singularΛ + I. The proof of
Theorem 5 can be found in Appendix B. We will also show
that this result can be generalized to arbitraryK provided that
Λ satisfies certain conditions. Extension of this result to the
quasi-symmetric Gaussian channel would be straight-forward
from the coding scheme in Section V, and we skip it in sake
of brevity.

Example 1. Consider a network withK = 3 users, and sign
matrix given by

Λ =





0 −1 1
1 0 −1
1 −1 0



 .

It is clear that the first and third rows ofΛ+ I are identical,
and hence this matrix is singular. The channel model for this
network form = n can be written as

Y1 = X1 −X2 +X3,

Y2 = X1 +X2 −X3,

Y3 = X1 −X2 +X3,

in which Y1 = Y3. Consider an arbitrary reliable coding
scheme with block lengthT for this network. Having the output
of Rx1 over the whole block, one can find

Y T
1 → W1 → XT

1 = gT1 (W1, Y
T
1 ).

Similarly

Y T
1 → Y T

3 = Y T
1 → W3 → XT

3 = gT3 (W3, Y
T
3 ).
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Fig. 3. Coding scheme for the linear deterministic model in the weak interference regime, forK = 3, n = 3, andm = 1.

Therefore,
XT

2 = −Y T
1 +XT

1 +XT
3 ,

and
Y T
2 = XT

1 +XT
2 −XT

3

can be found fromY T
1 , and finallyW2 can be decoded from

Y T
2 . In other words, havingY T

1 , all three messages can be
decoded, i.e.,

R1 +R2 +R3 ≤ H(W1,W2,W3)

≤ I(W1 +W2 +W3;Y
T
1 ) + T ǫT

≤ H(Y T
1 ) + T ǫT ≤ T (n+ ǫT ),

which results inRsym ≤ n/3, which is the same rate claimed
in Theorem 5. Achievability of this rate using time-sharing
scheme is clear.

A. Encoding Scheme

In the following we present a transmission scheme that can
achieve the rate claimed in Theorem 4. We first demonstrate
the proposed scheme in two examples with specific
parameters, through which the basic ideas and intuitions
are transparent. Although generalization of the proposed
coding strategy for arbitraryn andm is straight-forward, we
present the scheme and its analysis in Appendix A in sake of
completeness.

a) Weak Interference Regime(m < n): The goal is to
achieveRsym = n− m

2 bits per user. We propose an encoding
that operates on a block of length2. The basic idea can be
seen from Fig. 3, wherein the coding scheme is demonstrated
for n = 3 andm = 1.

For these specific parameters, we haveRsym = 5/2. As
it is shown in Fig. 3, the proposed coding scheme is able
to convey five intended symbols from each transmitter to
its respective receiver in two channel uses. The information
symbols intended forRx1 are denoted bya1, a2, a3, a4, a5.

Each transmitter sends three fresh symbols in its first channel
use. Receivers get two interference-free symbols, and one
more equation, including their intended symbol as well as
interference. The output signals are sent to the transmitters
over the feedback link, in order to be used for the next
transmission. In the second channel use, each transmitter
forwards the interfering parts of its received feedback on its
top level. The two lower levels will be used to transmit the
remaining fresh symbols.

Now, consider the received signals atRx1 in two channel
uses. It has received6 linearly independent equations,
involving 7 variables, which seems to be unsolvable at the
first glance. However, we do not need to decodeb1 and c1
individually. Instead, we can solve the system of linear of
equations ina1, a2, a3, a4, a5, and(b1 + c1), which can be
solved for the intended variables. Hence, a per-user rate of
5/2 symbols/channel-use is achievable with feedback.

b) Strong Interference Regime(m > n): In this section
we present an encoding scheme which can support a symmet-
ric rate ofRsym = m

2 . Again we focus on specific parameters,
n = 1 andm = 3, which impliesRsym = 3/2.

As shown in Fig. 4, the proposed coding strategy delivers
three intended symbols to each receiver in two channel uses.
In the first channel use, each transmitter sends its fresh
symbols to its respective receiver. However, due to the strong
interference, receivers are not able to decode any part of
their intended symbols, and can only send their received
signals to their respective transmitters through the feedback
links. Each transmitter then removes its own contribution
from the received signal, and forwards the remaining over
the second channel use. Similar to the weak interference
regime, at the end of the transmission each receiver has6
equations, involving three intended symbols (a1, a2 and a3
for Rx1), and three interfering symbols (b1 + c1, b2 + c2,
and b3 + c3 for Rx1), which can be solved. Note that the
system of linear equations might not be linearly independent,
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Tx1

Tx2

Tx3

Rx1

Rx2

Rx3

a1
a2
a3

(b1 + c1)

(b2 + c2)

(b3 + c3)

b1

b2
b3

(a1 + c1)

(a2 + c2)

(a3 + c3)

c1

c2
c3

(a1 + b1)

(a2 + b2)

(a3 + b3)

T = 1T = 1T = 2 T = 2

(b1 + c1)
a1 + (b2 + c2)

a2 + (b3 + c3)

2a1 + (b1 + c1)

2a2 + (b2 + c2)
2a3 + (b3 + c3) + (b1 + c1)

(a1 + c1)

b1 + (a2 + c2)
b2 + (a3 + c3)

2b1 + (a1 + c1)

2b2 + (a2 + c2)

2b3 + (a3 + c3) + (a1 + c1)

(a1 + b1)
c1 + (a2 + b2)

c2 + (a3 + b3)

2c1 + (a1 + b1)

2c2 + (a2 + b2)
2c3 + (a3 + b3) + (a1 + b1)

Fig. 4. Coding scheme for the linear deterministic model in the strong interference regime, forK = 3, n = 1, andm = 3.

depending of p, the field size. In particular, for these
specific parameters, operating in the binary field (p = 2),
the coefficient ofa3 becomes zero, and thereforea3 cannot
be decoded from the received equations. However,p is an
arbitrary parameter, which can be carefully chosen to provide
a full-rank coefficient matrix. Therefore, a per-user rate of
3/2 symbols/channel-use is achieved with feedback.

c) Moderate Interference Regime(m = n): As discussed
in the outer bound argument, the capacity curve is discontin-
uous atm = n. A trivial encoding scheme to achieve rate
Rsym = n/K is to perform time-sharing overK blocks: in
block k only Txk transmits its message at rateRk = n while
all the transmitters keep silent. Note that this coding scheme
does not get any benefit from the feedback link.

B. Outer Bound

In this section we derive an outer bound on the sym-
metric feedback capacity of the fully-connected interference
channel. We may use shorthand notationW[2:K] to denote
(W2,W3, . . . ,WK . Similarly Y[2:K]t may be used to denote
(Y2t, Y3t, . . . , YKt).

Assume there exists an encoding scheme with block length
T , which can reliably convey messages of each transmitter to
its intended receiver. We begin with the following chain of
inequalities:

H(W1) +H(W2)
(a)
= H(W1,W2|W[3:K])

≤ H(W1,W2, Y
T
1 , Y T

2 |W[3:K])

= H(Y T
2 |W[3:K]) +H(W2|W[3:K], Y

T
2 )

+H(Y T
1 |W[3:K], Y

T
2 ) +H(W1|W[3:K], Y

T
1 , Y T

2 )

≤ H(Y T
2 ) +H(W2|Y T

2 )

+H(Y T
1 |W[3:K], Y

T
2 ) +H(W1|Y T

1 )

≤ T [max(m,n) + 2ǫT ] +H(Y T
1 |W[3:K], Y

T
2 ), (9)

where(a) holds since messages are assumed to be indepen-
dent, and (9) is due to Fano’s inequality, in whichǫT → 0, as
T grows. We can continue with bounding the remaining term
in (9) as

H(Y T
1 |W[2:K], Y

T
2 )

≤ H(Y T
1 , Y T

[3:K], |W[2:K]Y
T
2 )

=

T
∑

t=1

H(Y1t, Y[3:K]t|W[2:K], Y
T
2 , Y t−1

1 , Y t−1
[3:K])

(b)
=

T
∑

t=1

H(Y1t, Y[3:K]t|W[2:K], Y
T
2 , Y t−1

1 , Y t−1
[3:K], X[2:K]t)

(c)

≤
T
∑

t=1

H(Y1t, Y[3:K]t|Y T
2 , X[2:K]t)

(d)
=

T
∑

t=1

H(Y1t, Y[3:K]t|Y T
2 , X[2:K]t, D

q−mX1t)

(e)
=

T
∑

t=1

H(Dq−nX1t|Y T
2 , X[2:K]t, D

q−mX1t)

(c)

≤
T
∑

t=1

H(Dq−nX1t|Dq−mX1t)

= T (n−m)+, (10)

where (b) is due to the fact thatXjt = fjt(Wj , Y
t−1
j ); (c)

holds because conditioning reduces entropy;(d) follows the
fact thatDq−mX1t = Y2t−Dq−nX2t−Dq−m

∑

j>2 Xjt is a
deterministic function of(Y2t, X[2:K]t); and(e) holds because
given (Dq−mX1t, X[2:K]t), the outputYjt = Dq−nXjt +
Dq−m

∑

i6=j Xit is deterministically known forj = 3, . . . ,K;
moreover, every term inY1t exceptDq−nX1t is know given
the same condition.
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Replacing (10) in (9) we arrive at

R1 +R2 ≤ 1

T
[H(W1) +H(W2)]

≤ max(m,n) + (n−m)+ + 2ǫT

= max(m, 2n−m) + 2ǫT . (11)

Finally, since we are interested in symmetric rate characteri-
zation, we can setR1 = R2, which yields

Rsym ≤ max
(m

2
, n− m

2

)

+ ǫT . (12)

Letting T → ∞ and ǫT → 0, we obtain the upper bound as
claimed in Theorem 4.

The capacity behavior of the network has a discontinuity at
m = n, where the symmetric achievable rate scales inverse
linearly with K. The reason behind this phenomenon is very
apparent by focusing on the deterministic model. This study
reveals that whenm = n the received signals at all the
receivers areexactlythe same. Therefore, each receiver should
be able to decode all the messages, and hence its decoding
capability is shared between all the signals, which resultsin
Rsym = n/K. More formally, we can write

T
K
∑

k=1

Rk = H(W1,W2, . . . ,WK)

≤ I(W[1:K];Y
T
[1:K]) +KTǫ

(f)
= I(W[1:K];Y

T
1 ) +KTǫ

≤ H(Y T
1 ) +KTǫ ≤ Tn+KTǫ, (13)

where (f) is due to the fact thatY T
1 = Y T

2 = · · · = Y T
K .

Dividing (13) by KT and settingR1 = · · · = RK = Rsym,
we arrive atRsym ≤ n/K.

V. THE GAUSSIAN NETWORK: A CODING SCHEME

The encoding scheme we propose for this problem is similar
to that of the2-user case. It is shown in [14] that for the2-user
feedback interference channel, depending on the interference
regime (value ofα), it is (approximately) optimum to decode
the interfering message. Due to existence of the feedback,
decoding the interference is not only useful for its removal
and consequent decoding of the desired message (akin to the
strong interference regime without feedback), but also helps
for decoding a part of the intended message that is conveyed
through the feedback path. In the2-user case, at the end of
the transmission block, each receiver not only decodes its own
message completely, but also partially decodes the messageof
the other receiver.

A fundamental difference here is that in theK-user prob-
lem, there are multiple interfering messages that can be heard
at each receiver. Partial decoding of all interfering messages
would dramatically decrease the maximum rate of the desired
message. Our approach to deal with this is to consider the total
interference received from all other users as a single message
and decode it, without resorting to resolving the individual
component of the interference. There are two key conditions
to be fulfilled that allow us to perform such decoding, namely,
(i) interfering signals should bealigned, and(ii) the summation

of interfering signals should belong to a message set of
proper size which can be decoded at each receiver. Here,
the first condition is satisfied since the network is symmetric
(all the interfering links have the same gain), and therefore
all the interfering messages are received at the same power
level. In order to satisfy the second condition, we can use
a commonlattice codein all transmitters, instead of random
Gaussian codebooks. The structure of a lattice codebook and
its closedness with respect to summation, imply that the
summation of aligned interfering codewords observed at each
receiver is still a codeword from the same codebook. This
allows us to perform decoding by searching over the single
codebook, instead of the Cartesian product of all codebooks.
Due to the fact that the aligned interference is decoded, we
call this coding schemecooperative interference alignment.

Lattice Codes: Lattice codeis a class of codes that can
achieve the capacity of the Gaussian channel [23], [24], with
lower complexity compared to the conventional random codes.
The structural behaviors of lattice codes is very important
property which can also be exploited for interference align-
ment.

In the following we present a brief introduction for lattice
codes which will be used later in our coding strategy.

A T -dimensional latticeΛ is subset ofT -tuples with real
elements, such thatx,y ∈ Λ implies−x ∈ Λ andx+y ∈ Λ.
For an arbitraryx ∈ R

T , we define[x mod Λ] = x−Q(x),
where

Q(x) = argmin
t∈Λ

‖ x− t ‖

is the closet lattice point tox. The Voronoi cell ofΛ denoted
by V is defined as

V = {x ∈ R
T : Q(x) = 0}.

The Voronoi volumeV (V) and the second momentσ2(Λ) of
the lattice are defined as

V (V) =
∫

V

dx, σ2(Λ) =

∫

V ‖ x ‖2 dx

TV (V) .

We further define the normalized second moment ofΛ as

G(Λ) =
σ2(Λ)

V (V)2/T =
1

T

∫

V ‖ x ‖2 dx

V (V)1+ 2

T

.

A sequence of lattices{ΛT} is called good quantization
codeif

lim
T→∞

G(ΛT ) =
1

2πe
.

On the other hand a sequence of lattices is known to begood
for AWGN channel codingif

lim
T→∞

Pr[zT ∈ VT ] = 1,

wherezT ∼ N
(

0, σ2(ΛT )
)

is random zero-mean Gaussian
noise with proper variance. It is shown in [25] that there exist
sequences of lattices{ΛT } which are simultaneously good for
quantization and AWGN channel coding.

In the rest of this section, we prove the direct part of
Theorem 3. The analysis of two cases, namely weak and strong
interference regimes, is separately presented.
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A. Weak Interference Regime2 ≤ INR ≤ SNR/2

The coding scheme we use for this regime is based on the
insight gained from studying the deterministic model. A care-
ful review of the coding scheme illustrated in Appendix A-A
reveals that the set of information symbols of each user can
be split into three subsets:(1) (Sk(1), . . . , Sk(m)) that are
sent over the first channel use and cause interference for other
receivers;(2) (S1(m+1), . . . , Sk(n)) which are corrupted by
interference atRxk, but do not cause interference at other
receivers; and finally(3) (S1(n+1), . . . , Sk(2n−m)) which
are sent on the second channel use on proper levels such that
they do not cause interference at other receivers. The other
m levels of each transmitter in the second channel use send
the interfering signal received atRxk in the previous channel
use. In the decoding process, each receiver first decodes the
total interference from its channel output in the second channel
use, and removes it to decode(S1(n+ 1), . . . , Sk(2n−m)).
Then it also subtract the interference from its channel output
in the first slot in order to decode(S1(1), . . . , Sk(m)) and
(S1(m+ 1), . . . , Sk(n)).

Inspired by the this coding scheme and message splitting,
we consider three messageswk0, wk1, and wk2, for trans-
mitter Txk which will be conveyed to receiverRxk over
two blocks. All similar sub-messages from different users
have the same rates, which are denoted byRk0, Rk1, and
Rk2. Encoding ofwk1 and wk2 (which are counterparts of
(Sk(m + 1), . . . , Sk(n)) and (Sk(n + 1), . . . , Sk(2n − m)),
respectively) is performed using usual random Gaussian code-
books with block lengthT and average power1, which results
in codewordsck1 andck2. The power allocated tock1 andck2
is chosen such that they get received at other receivers at the
noise level.

The third sub-message, wk0 (corresponding to
(Sk(1), . . . , Sk(m))) is the main interfering part from
Txk. Since we need the total interference to be decodable,
we need to use a common lattice code which is shared
between all transmitters.

We need a nested lattice code [18] which is generated using
a good quantization lattice for shaping and a good channel
coding lattice. We start withT -dimensional nested lattices
Λc ⊆ Λf , whereΛc is a good quantization latticeΛc with
σ2(Λc) = 1 andG(Λc) ≈ 1/2πe, andΛf as a good channel
coding lattice. We construct a codebookC = Λf∩Vc, whereVc

is the Voronoi cell of the latticeΛc. The following properties
are fairly standard in the context of lattice coding:

a) CodebookC is a closed set with respect to summation
under the “ mod Λc” operation, i.e., ifx1,x2 ∈ C are
two codewords, then[x1 + x2] mod Λc ∈ C is also a
codeword.

b) Lattice codeC can be used to reliably transmit up to rate4

R = 1
2 log(SNR) over a Gaussian channel modelled by

Y =
√
SNRX + Z with E[Z2] = 1.

In order to encodewk0, we use the common lattice codeC
defined above. Letsk0 be the lattice codeword to whichwk0

4A more sophisticated scheme can achieve ratesR = 1

2
log (1 + SNR).

However, the simple scheme is sufficient for the purpose of approximate
capacity characterization.

is mapped, and defines0 = s10 + s20 + · · ·+ sK0.
Once the encoding process is performed, the signal trans-

mitted byTxk in the first block (of lengthT ) is formed as

xk1 =

√

INR− 1

INR
ck0 +

√

1

INR
ck1.

whereck0 = [sk0 − dk] mod Λc, anddk is a random dither
uniformly distributed overVc, and shared between all the
terminals in the network. Therefore, the signal received atRxk

can be written as

yk1 =
√
SNRxk1 +

√
INR

∑

i6=k

xi1 + zk1

=

√

SNR

INR
(INR − 1)ck0 +

√

SNR

INR
ck1 +

√
INR− 1

∑

i6=k

ci0

+
∑

i6=k

ci1 + zk1.

This received signal is sent to the transmitterTxk over
the feedback link. Havingxk1 and yk1, the transmitter can
compute

ỹk = yk1 − (
√
SNR−

√
INR)xk1 =

√
INR

K
∑

i=1

xi1 + zk1

=
√
INR− 1

K
∑

i=1

ci0 +

K
∑

i=1

ci1 + zk1.

Recall that s0 = [
∑

si0 mod Λc] = [
∑

ci0 +
∑

di

mod Λc] ∈ C. So it can be decoded from̃yk by treating the
rest as noise, provided that

R0 ≤ 1

2
log

(

INR− 1

K + 1

)

. (14)

Note that at this pointRxk cannot decodec0.
In the second block, havings0 decoded,Txk generates

c0 = [s0 − d0] mod Λc and transmits

xk2 =

√

INR− 1

INR
c0 +

√

1

INR
ck2.

The signal received atRxk in the second block can be written
as

yk2 =
√
SNRxk2 +

√
INR

∑

i6=k

xi2 + zk2 (15)

=

√

SNR

INR
(INR− 1)c0 +

√

SNR

INR
ck2 +

√
INR− 1

∑

i6=k

c0

+
∑

i6=k

si2 + zk2

=

(
√

SNR

INR
+K − 1

)

√
INR− 1c0 +

√

SNR

INR
ck2

+
∑

i6=k

ci2 + zk2. (16)
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ReceiverRxk first decodesc0 treating everything else as
noise. This is possible as long as

R0 ≤ 1

2
log





(INR−1)
(√

SNR+ (K−1)
√
INR

)

2

SNR+KINR



. (17)

After decoding and removingc0 from the received signal,Rxk

can decode the Gaussian codewordck2, provided that

R2 ≤ 1

2
log

(

1 +
SNR

KINR

)

. (18)

Next, the decoder usesc0 to remove the interference
∑

i6=k c0i
from yk1 in order to decodeck0 and ck1. To this end,Rxk

first computes

yk1 −
√
INR− 1c0 =

(
√

SNR

INR
− 1

)

√
INR− 1ck0

+

√

SNR

INR
ck1 +

∑

i6=k

ci1 + zk1,

from which codewordsck0 and ck1 can be sequentially
decoded provided that

R0 ≤ 1

2
log







(INR− 1)
(√

SNR−
√
INR

)2

SNR+KINR






, (19)

R1 ≤ 1

2
log

(

1 +
SNR

KINR

)

. (20)

It only remains to chooseR0, R1, and R2 that satisfy all
constraints in (14)–(20). It is easy to verify that the choice of

R⋆
0 =

1

2
log

(

INR− 1

8(K + 1)

)

R⋆
1 = R⋆

2 =
1

2
log

(

1 +
SNR

KINR

) (21)

satisfies all the constraints, and therefore

Rsym =
1

2
(R⋆

0 +R⋆
1 +R⋆

2)

=
1

4
log

(

INR− 1

8(K + 1)

)

+
1

2
log

(

1 +
SNR

KINR

)

can be simultaneously achieved for all theK pairs of trans-
mitters/receivers.

In the following we rephrase this achievable rate in a manner
so that it can be easily compared tõCsym in Theorem 3. It is
easy to verify that for2 ≤ INR ≤ 1

2SNR we have

INR− 1

8(K + 1)

(

1 +
SNR

KINR

)

≥ 1

16K(K + 1)
(1 + INR+ SNR) ,

(22)

which implies

1

4
log

(

INR− 1

8(K + 1)

)

+
1

2
log

(

1 +
SNR

KINR

)

≥ 1

4
log (1 + INR+ SNR) +

1

4
log

(

1 +
SNR

1 + INR

)

− 1

4
log 16K2(K + 1) (23)

Therefore, for this regime the symmetric rate of

Rsym =
1

4
log (1 + INR+ SNR) +

1

4
log

(

1 +
SNR

INR

)

− 1

4
log 16K2(K + 1) (24)

is achievable.

Remark 2. It is worth mentioning that the coding schemes
proposed for the weak interference regimes keep all mes-
sages exceptWk almost secure from receiverRxk, for all
k = 1, . . . ,K. More precisely, one can show that forK ≥ 3,
the leakage rate of information is upper bounded by

1

2T
I(Wk; y

2T
j ) ≤ 1

2
log

K

K − 1
, k 6= j, (25)

where2T is the length of the entire course of communication.
Here the upper bound on the leakage rate is a constant, inde-
pendent ofSNR, INR, and the actual rates of the messages.
However, this secrecy is different from (and weaker than) the
standard notion of secrecy, which imposes a vanishing total
leakage rate in strong secrecy, or a vanishing per-symbol
leakage rate in weak secrecy5.

The main intuition behind this is the following: each
receiver can only decode its own message, as well as
the sum-lattice codeword corresponding to the messages of
other users. For instance, after decodingW1, Rx1 remains
with a codeword that depends onW2,W3, . . . ,WK . Hence,
W3, . . . ,WK act as a mask (encryption key) to hideW2 from
Rx1. Therefore, althoughRx1 receives a certain amount
of information about a function of all other messages, the
amount of information it gets about each unintended individual
message is negligible. This phenomenon is very similar to
the encoding scheme used in [28] to guarantee information-
secrecy. However, here this secrecy is naturally provided by the
coding scheme, without any additional penalty in terms of the
symmetric achievable rate of the network. We will discuss this
property of the encoding scheme in more detail in Appendix C.

B. Strong Interference RegimeINR ≥ 2max(SNR, 1)

The coding scheme for the strong interference regime is
simpler than the last case. It is known that for strong interfer-
ence regime in the usual interference channel (without feed-
back) it is optimum to decode the interference and remove it
from the received signal before decoding the intended message
[1]. Surprisingly, this is not the case when transmitters get
feedback from their respective receivers (as far as approximate
capacity is concerned). In this regime, the receivers do not
need to decode the interference, and can cancel it using a
zero-forcing scheme. This is implemented using Alamouti’s
scheme [29] in [14] forK = 2. The orthogonality of the design
matrix in the 2 × 2 Alamouti’s scheme causes the intended
signal and the interference signal to be orthogonal, and so

5We refer the reader to [26] (and references therein) for details concerning
information-theoretic secrecy. It is worth mentioning that both weak and
strong secrecy are shown to be equivalent in [27], in the sense that substituting
the weak secrecy criterion by the stronger version does not change the secrecy
capacity.
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zero-forcing the interference does not cause a loss in signal
power. However, it is shown in [30] thatK × K orthogonal
designs exist only forK = 2, 4, 8 with real elements, and
K = 2 with complex elements. When such matrices do not
exist for arbitraryK, we may use non-orthogonal coding for
the intended and interference signal. The key point is that if
the transmitters can re-generate the interfering signal ofone
coding block at the receivers over another block, then the
receiver can cancel two copies of interference, and decode
its intended message. Since the transition matrix between
the intended and interference signal on one side and the
channel outputs on the other side is non-orthogonal, zero-
forcing causes a power loss. However, this only affects the
gap between the achievable rate and the upper bound, and
does not cause a major problem when approximate capacity
is concerned. We present this scheme in general detail in the
rest of this section.

As in the previous case, the transmission is performed
over two blocks. First note that since the interfering signals
do not need to be decoded neither at the transmitters nor
receivers, there is no need to use lattice codes to force the
total interference to be a codeword. We associate a randomly
generated Gaussian codebook of rateRsym to each transmitter.
TransmitterTxk maps its messagewk to a codewordck from
its codebook, and sendsxk1 = ck over the first block of
transmission. At the end of the first block, each receiver sends
back its received signal to its respective transmitter. Upon
receivingyk1 from the feedback link,Txk removes its own
signal, and resends the residual over the second block.

xk2 = γ
[

yk1 + (
√
INR−

√
SNR)xk1

]

= γ(
√
INR

K
∑

i=1

ci + zk1),

where γ = 1/
√
KINR+ 1 guarantees the transmit signal

satisfies the power constraint.
At the end of the second transmission block,Rxk has access

to

yk2 =
√
SNRxk2 +

√
INR

∑

i6=k

xi2 + zk2

= γ
(√

SNR+ (K − 1)
√
INR

)√
INR



ck +
∑

i6=k

ci





+ γ
√
SNRzk1 + γ

√
INR

∑

i6=k

zi1 + zk2.

Applying zero-forcing atRxk to remove
∑

i6=k ci, we obtain
an effective channel

ỹk = yk2 − γ
(√

SNR+ (K − 1)
√
INR

)

yk1

= γ
(√

SNR+ (K − 1)
√
INR

)

(
√
INR−

√
SNR)ck

− γ(K − 1)
√
INRzk1 + γ

√
INR

∑

i6=k

zi1 + zk2

= γ
(√

SNR+ (K − 1)
√
INR

)

(
√
INR−

√
SNR)ck + z̃k2

which can be used for decodingck. The power of the total
noise in this effective channel would be

E[z̃2k2] = γ2(K − 1)2INR E[z2k1] + γ2
INR

∑

i6=k

E[z2i1] + E[zk22]

=
INR

KINR+ 1

[

(K − 1)2 + (K − 1)
]

+ 1

=
K2INR+ 1

KINR+ 1
< K.

On the other hand the power of the signal in the effective
channel can be lower bounded by

γ2
(√

SNR+ (K − 1)
√
INR

)2

(
√
INR−

√
SNR)2

≥ γ2
(√

SNR+
√
INR

)2

(
√
INR−

√
SNR)2

=
(INR− SNR)2

KINR+ 1
.

Therefore, since the course of communication is performed
over two blocks, the symmetric rate

Rsym =
1

4
log

(

1 +
(INR− SNR)2

K(KINR+ 1)

)

can be simultaneously achieved for all pair of transmit-
ter/receiver. We can simplify this expression to make it com-
parable to the rate claimed in Theorem 3. First note that

1 +
(INR− SNR)2

K(KINR+ 1)
≥ 1

8K2
(1 + SNR+ INR) (26)

for INR ≥ 2SNR andK ≥ 2. On the other hand, in this regime
we have1 + SNR

1+INR
< 2, which implies

Rsym ≥ 1

4
log (1 + SNR+ INR) +

1

4
log

(

1 +
SNR

1 + INR

)

− 1

4
log 16K2.

C. Negligible Interference RegimeINR < 2

In the discussion of Sections V-A and V-B we excluded the
cases whereINR is small. If this is the case, the standardtreat
interference as noisescheme is close to be optimum. Here we
briefly discuss the achievable rate and its gap from the upper
bound for completeness.

In this regime, each transmitter encodes its message using
a Gaussian codebook, and sends it to the receiver. The course
of communication is performed in a single block, and each
receiver decodes its message at the end of the block by treating
the interference as noise. This can support any positive rate
not exceeding

Rsym =
1

2
log

(

1 +
SNR

1 + (K − 1)INR

)

.
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This expression can be rephrased as

Rsym >
1

2
log

1

K − 1

(

1 +
SNR

1 + INR

)

=
1

4
log (1 + SNR+ INR)− 1

4
log(1 + INR)

+
1

4
log

(

1 +
SNR

INR+ 1

)

− 1

2
log(K − 1)

≥ C̃sym − 1

4
log 3(K − 1)2,

which impliesC̃sym −Rsym ≤ 1
4 log 3(K − 1)2.

VI. T HE GAUSSIAN NETWORK: AN UPPERBOUND

In this section we prove the converse part of Theorem 3.
To this end, we derive an upper bounds on the symmetric rate
of the network. The essence of this bound is the same as the
converse proof for the deterministic network. That is, in the
strong interference regime, given all the messages except for
two of them, the output signal of any of the respective receivers
is not only sufficient to decode its own message, but can also
be used to decode the other missing message. Similarly, in
the weak interference regime, although one receiver cannot
completely decode the message of the other transmitter, it
receives enough information to partially decode that message.

We first definez̃it = zit − z2t for i = 3, 4, . . . ,K and
t = 1, . . . , T . Then, we can write

T (R1 +R2) ≤ H(W1) +H(W2)

(a)
= H

(

W1,W2

∣

∣

∣W[3:K]

)

= H
(

W2

∣

∣

∣W3, . . . ,WK

)

+H
(

W1

∣

∣

∣W[2:K]

)

= I
(

W2; y
T
2

∣

∣

∣
W[3:K]

)

+H
(

W2

∣

∣

∣
yT2 ,W[3:K]

)

+ I
(

W1; y
T
1 y

T
2

∣

∣

∣W[2:K]

)

+H
(

W1

∣

∣

∣yT1 y
T
2 ,W[2:K]

)

≤ I
(

W2; y
T
2 , z̃

T
[3:K]

∣

∣

∣W[3:K]

)

+ I
(

W1; y
T
1 y

T
2 , z̃

T
[3:K]

∣

∣

∣W[2:K]

)

+ 2T ǫT

= h
(

yT2 , z̃
T
[3:K]

∣

∣

∣W[3:K]

)

− h
(

yT2 , z̃
T
[3:K]

∣

∣

∣W[2:K]

)

+ h
(

yT1 y
T
2 , z̃

T
[3:K]

∣

∣

∣W[2:K]

)

− h
(

yT1 y
T
2 , z̃

T
[3:K]

∣

∣

∣W[1:K]

)

+ 2T ǫT

= h
(

yT2 , z̃
T
[3:K]

∣

∣

∣W[3:K]

)

+ h
(

yT1

∣

∣

∣yT2 , z̃
T
[3:K],W[2:K]

)

− h
(

yT1 y
T
2 , z̃

T
[3:K]

∣

∣

∣
W[1:K]

)

+ 2T ǫT , (27)

whereǫT vanishes asT grows. Note that we used indepen-
dence of the messages in(a). We can bound each term in (27)

individually. The first term can be bounded as

h
(

yT2 , z̃
T
[3:K]

∣

∣

∣W3, . . . ,WK

)

≤ h
(

yT2

)

+h
(

z̃T3

)

+ . . .+h
(

z̃TK

)

(b)

≤ Th(y2) +
T (K − 2)

2
log(4πe)

≤ T

2
log

(

1 + SNR+ (K − 1)INR+ 2
√
SNR · INR

∑

j 6=2

ρ2j

+ 2INR
∑

i>j
i,j 6=2

ρij

)

+
T (K − 1)

2
log(4πe)

≤ T

2
log

(

1 +
(√

SNR+ (K − 1)
√
INR

)2
)

+
T (K − 1)

2
log(4πe), (28)

where ρij ∈ [−1, 1] is the correlation coefficient between
channel inputsxi and xj . In (b) we used the fact that
E[z̃2i ] = 2.

Bounding the second term is more involved. First note that

I
(

yT1 ; y
T
[3:K]

∣

∣

∣yT2 , z̃
T
[3:K],W[2:K]

)

=

T
∑

t=1

I
(

yT1 ; y[3:K]t

∣

∣

∣yT2 , z̃
T
[3:K],W[2:K], y

t−1
[3:K]

)

(c)
=

T
∑

t=1

I
(

yT1 ; y[3:K]t

∣

∣

∣yT2 , z̃
T
[3:K],W[2:K], y

t−1
[3:K], x[2:K]t

)

(d)
= 0 (29)

where(c) holds since forj = 2, . . . ,K, xjt = fjt(Wj , y
t−1
j )

is a deterministic function of the message and channel output.
The equality in(d) is due to the fact that forj = 3, . . . ,K,
we have

yjt =
√
SNRxjt +

√
INR

∑

i/∈{2,j}

xit +
√
INRx2t + zjt

=





√
SNRx2t +

√
INR

∑

i/∈{2,j}

xit +
√
INRxjt + z2t





+ (
√
SNR−

√
INR)(x1t − x2t) + (zjt − z2t)

= y2t + (
√
SNR−

√
INR)(xjt − x2t) + z̃jt, (30)

which implies thatyjt can be deterministically recovered from
(y2t, x2t, xjt, z̃jt). Hence, each term in (29) is zero. From (29)
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we can bound the second term in (27) as

h
(

yT1

∣

∣

∣yT2 , z̃
T
[3:K],W[2:K]

)

= h
(

yT1

∣

∣

∣yT[2:K], z̃
T
[3:K],W[2:K]

)

= h
(

yT1

∣

∣

∣
yT[2:K], z̃

T
[3:K],W[2:K], x[2:K]T

)

≤ h

(

√
SNRxT

1 −
√
INR

∑

i6=1

xT
i + zT1

∣

∣

∣

∣

∣

yT2 −
√
SNRxT

2 −
√
INR

∑

j>2

xT
j , x

T
[2:K]

)

≤ h
(√

SNRxT
1 + zT1

∣

∣

∣

√
INRxT

1 + zT2

)

≤ T

2
log

(

1 +
SNR

1 + INR

)

+
T

2
log(2πe). (31)

Finally, we can bound the third term in (27) as follows:

h
(

yT1 , y
T
2 , z̃

T
[3:K]

∣

∣

∣W[1:K]

)

=

T
∑

t=1

h
(

y1t, y2t, z̃[3:K]t

∣

∣

∣yt−1
1 , yt−1

2 , z̃t−1
[3:K],W[1:K]

)

≥
T
∑

t=1

h
(

y1t, y2t, z̃[3:K]t

∣

∣

∣yt−1
1 , yt−1

2 , z̃t−1
[3:K],W[1:K], x[1:K]t

)

=

T
∑

t=1

h
(

z1t, z2t, z̃[3:K]t

∣

∣

∣yt−1
1 , yt−1

2 , z̃t−1
[3:K],W[1:K], x[1:K]t

)

(e)
=

T
∑

t=1

h
(

z1t, z2t, z̃[3:K]t

)

=

T
∑

t=1

h
(

z[1:K]t

)

=
TK

2
log(2πe), (32)

where(e) is due to the facts that the channels are memoryless
and the noise at timet is independent of all the messages and
signals and noises in the past. Substituting (28), (31) and (32)
in (27), and recalling the fact that we are interested in the
maximumR1 = R2 = Rsym, we get

Rsym ≤1

4
log

(

1 +
(√

SNR+ (K − 1)
√
INR

)2
)

+
1

4
log

(

1 +
SNR

1 + INR

)

+
K − 1

4
.

This bound can be further simplified as follows. It is easy to
show that

(√
SNR+ (K − 1)

√
INR

)2

≤ K2(SNR + INR)

which implies

Rsym ≤ 1

4
log
(

1 +K2(SNR+ INR)
)

+
1

4
log

(

1 +
SNR

1 + INR

)

+
K − 1

4

≤ 1

4
log(1 + SNR+ INR) +

1

4
log

(

1 +
SNR

1 + INR

)

+
K − 1

4
+

1

2
logK, (33)

which is the desired bound.

VII. T HE GENERALIZED DEGREES OFFREEDOM

In this section we prove Theorem 1. The proof forα 6=
1 is straight-forward from Theorem 3 as follows. Recall the
achievable symmetric rate in Theorem 3. Hence,

dFB(α) = lim sup
SNR→∞

Rsym(SNR, α)
1
2 log(SNR)

= lim sup
SNR→∞

1
4 log(1 + SNR+ SNR

α) + 1
4 log(1 + SNR

1−α)
1
2 log(SNR)

=
1

2
max{1, α}+ (1− α)+

2

=

{

1− α
2 α < 1

α
2 α > 1.

The concept of generalized degrees of freedom forα = 1
is more involved, and a finer look to the problem is necessary.
For INR = SNR we claim that the degrees of freedom of the
network is1/K. Note that a simple time-sharing scheme, in
which in each block all the transmitters except one are silent,
guarantees a reliable rate ofRsym = 1

2K log(1+SNR), which
results indFB(INR = SNR) ≥ 1/K.

On the other hand we may use a simple cut-set argument
in order to show optimality of thisDoF for INR = SNR.
Recall that in the deterministic model, the received signalof
all the receivers were identical form = n. A similar intuition
can explain this phenomenon: when the gain of the direct and
cross links are the same, the output signals at all receiversare
statistically equivalent, and given any of them, the uncertainty
in the others is small. We can formally write

TKRsym = T

K
∑

k=1

Rk = H
(

W[1:K]

)

≤ I
(

yT[1:K];W[1:K]

)

+KTǫT

= h
(

yT[1:K]

)

− h
(

yT[1:K]

∣

∣

∣
W[1:K]

)

+KTǫT

= h
(

yT1 , z
T
2 − zT1 , . . . , z

T
K − zT1

)

−
T
∑

t=1

h
(

y[1:K]t

∣

∣

∣
yt−1
[1:K],W[1:K]

)

+KTǫT

(a)

≤ h(yT1 ) +
K
∑

k=2

h
(

zTk − zT1

)

−
T
∑

t=1

h
(

y[1:K]t

∣

∣

∣yt−1
[1:K],W[1:K], x[1:K]t

)

+KTǫT

= h(yT1 ) +

K
∑

k=2

h
(

zTk − zT1

)

−
T
∑

t=1

K
∑

k=1

h(zkt) +KTǫT

≤ T

2
log
(

1 + (
√
SNR+ (K − 1)

√
INR)2

)

+
(K − 1)T

2
log 2 +KTǫT

≤ T

2
log
(

1 +K2
SNR

)

+
(K − 1)T

2
+KTǫT ,

where(a) holds sincexkt = fkt(Wk, y
t−1
k ). Dividing by KT ,
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we get

Rsym ≤ 1

K
log(1 +K2

SNR) +
K − 1

2K
, (34)

which impliesdFB(INR = SNR) ≤ 1
K .

However, a more accurate relationship betweenINR and
SNR has to be taken into account whenSNR and INR are
close to each other. The reason is that

lim
SNR→∞

log INR

log SNR
= 1

may include several regimes with different capacity behaviors.
For example, if INR = βSNR with constantβ /∈

(

1
2 , 2
)

,
we still haveα = 1. Nevertheless, the result of Theorem 3
holds for this regime of parameters, and thusdFB = 1

2 can
be achieved. An even more complicated scenario may happen
when6 INR = SNR(1+o(SNR)) with limSNR→∞ o(SNR) = 0.

In other words, one has to be more careful when dealing
with two simultaneous limiting behaviors, namelylog(INR) →
log(SNR) and SNR → ∞, because depending on different
rates of growth ofSNR and convergence ofINR to SNR,
different numbers of degrees of freedom can be achieved.
This discontinuous behavior is similar to the discontinuity of
the DoF of the fully connected interference channel (without
feedback) studied in [31], [32]. It is shown in [32] that the
per-userDoF of the K-user FC-IC is strictly less than12
when INR = βSNR andβ is a non-zero rational coefficient.
However,DoF = 1/2 can be achieved for irrationalβ.

A slightly different (and perhaps more realistic) model to
study DoF (GDoF at α = 1) is to fix the channel gains,
and allow the transmit power of all transmitters to increase
simultaneously, i.e.,P → ∞ whereE[x2

k] ≤ P . Under this
model, instead of having two independently7 growing variables
(SNR and INR), we deal with a single variableP , and the
relationship between the signal-to-noise ratio and interference-
to-noise ratio is controlled by the channel coefficients. A nice
and generic result of Cadambe and Jafar [33] shows that the
per-userDoF of K-user FC-IC with feedback and randomly
chosen channel coefficients (not necessarily symmetric) under
the latter model is1/2, almost surely.

VIII. G AUSSIAN UPPERBOUND FORGLOBAL FEEDBACK

MODEL

In Sections V and VI we demonstrated the effect oflocal
feedback on the symmetric capacity of theK-user fully
connected interference channel. It is shown that providing
each transmitter with the signal observed by its receiver in
the past can be significantly beneficial. In particular, it can
improve theGDoF of the network for certain regimes of
interference. A natural question arises is whether availability
of more information through the feedback can further improve
the symmetric capacity of the network. In the rest of this
section we study the effect ofglobal feedbackon the capacity

6Note that this regime is not included in the statement of Theorem 3. In
fact, the gap between the rate can be achieved by the proposedcoding scheme
and the upper bound is not bounded for this regime. The characterization of
(approximate) capacity remains as an open question.

7Any rate of growth satisfyinglog INR/ logSNR → 1 is feasible in model
in (1) and (3).

of the network, that is when each transmitter has access to
the received signals of not only its respective receiver, but all
other receivers. We will show that for the symmetric topology
which is of interest in this paper, global feedback doesnot
improve symmetric capacity beyond the local feedback (in
approximate sense). This generalizes the result of [34] that
in 2-user interference channel with local feedback providing
additional feedback link does not improve the capacity.

In this model, the transmit signal of each user may depend
on its message and all received signals in the past. Hence, in
general we have

xkt = gkt(Wk, y
t−1
1 , . . . , yt−1

K ). (35)

Theorem 6. The symmetric capacity of theK user interfer-
ence channel with global feedback withINR

SNR
/∈ (0.5, 2) can be

approximated by

C̃sym =
1

4
log(1 + SNR+ INR) +

1

4
log

(

1 +
SNR

1 + INR

)

.

(36)

Note that the coding scheme presented in Section V well
suits this model, and can be applied to achieve similar rates.
We only need to derive an upper bound on the symmetric
capacity for the global feedback model.

Recall the proof of the upper bound of Theorem 3 in
Section VI. It is clear that the initial bound in (27) is still
valid, regardless of the feedback model. Moreover, bounding
inequalities (28) and (32), used to bound the first and third
terms in (27) respectively, would remain the same under the
global feedback model. However, the argument we used to
bound the second bound in (31) is not valid any more. The
reason is that step(c) in (29) does not hold for global feedback
model, because in this model the input signalxjt depends not
only on (Wj , y

t−1
j ), but also on(yt−1

1 , yt−1
2 , . . . , yt−1

K ), and
yt−1
1 is missing in the condition. Alternatively, we can use the

following lemma.

Lemma 1. For any reliable coding scheme of block lengthT ,
the transmit signal of usersk = 2, 3, . . . ,K at time t can be
determined from

Qt = {yt−1
1 , yT2 , z̃

T
3 , . . . , z̃

T
K ,W2,W3, . . . ,WK},

where z̃kt = zkt − z2t for k = 3, 4, . . . ,K. More precisely,
for any family of coding functions{gkt} defined in(35), there
exist corresponding coding functions{g̃kt} such that

xkt = g̃kt(y
t−1
1 , yT2 , z̃

T
3 , . . . , z̃

T
K ,W2,W3, . . . ,WK)

for k = 2, 3, . . . ,K and t = 1, . . . , T .

Proof: We prove this claim by induction ont. For t = 1,
the claim is obvious, since there is no feedback in the system
and xk1 = gk1(Wk). Assume the claim is correct fort =
ℓ− 1. We will show that the claim valid fort = ℓ, i.e.,xkℓ =
g̃kℓ(Qℓ) = g̃kℓ(y1,ℓ−1, Qℓ−1). Similar to (30), we have

yk,ℓ−1 = y2,ℓ−1+(
√
SNR−

√
INR)(xk,ℓ−1−x2,ℓ−1)+ z̃2,ℓ−1.

Note that y2,ℓ−1 and z̃2,ℓ−1 are given inQℓ−1. Moreover,
xk,ℓ−1 = g̃k,ℓ−1(Qℓ−1) and x2,ℓ−1 = g̃2,ℓ−1(Qℓ−1). Hence,
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we can findyk,ℓ−1 from Qℓ−1 for k = 2, . . . ,K. This means
the output of all receivers at timeℓ − 1 (exceptRx1) is
known fromQℓ−1 (and hence fromQℓ). On the other hand
the channel output forRx1 at timeℓ− 1 is explicitly given in
Qℓ. Therefore, all the channel outputsykt for k = 1, . . . ,K
andt = 1, . . . , ℓ−1 are given byQℓ, which together withWk

can uniquely determine the transmit signalsx2ℓ, . . . , xKℓ.
Now, from Lemma 1, we can bound the second term in (27)

as follows.

h
(

yT1

∣

∣

∣yT2 ,z̃
T
[3:K],W[2:K]

)

=

T
∑

t=1

h
(

y1t

∣

∣

∣yt−1
1 , yT2 , z̃

T
[3:K],W[2:K]

)

(a)
=

T
∑

t=1

h
(

y1t

∣

∣

∣yt−1
1 , yT2 , z̃

T
[3:K],W[2:K], x

T
[2:K]

)

≤ T

2
log

(

1 +
SNR

1 + INR

)

+
T

2
log(2πe) (37)

where we used Lemma 1 in(a), and the last inequality follows
the same argument used in (31).

The rest of the proof is similar that in Section VI, since all
the other inequalities still hold under the global feedback. We
skip the details in order to avoid repetition.

IX. CONCLUSION

We have studied the feedback capacity of the fully con-
nectedK-user interference channel under a symmetric topol-
ogy. This is a natural extension of the feedback capacity
characterization for the2-user case in [14], in which it is
shown that channel output feedback can significantly improve
the performance of the2-user interference channel. Rather
surprisingly, it turns out that such an improvement can alsobe
achieved in theK-user case, except if the intended and inter-
fering signals have the same received power at the receivers. In
particular, we have shown that the per-user feedback capacity
of the K-user FC-IC is as if there were only one source of
interference in the network. Compared to the network without
feedback [16], this result shows that feedback can significantly
improve the network capacity.

The coding scheme used to achieve the capacity of the
network combines two well-known interference management
techniques, namely, interference alignment and interference
decoding. In fact, the messages at the transmitters are encoded
such that theK − 1 interfering signals are received aligned
at each receiver. Closedness of lattice codes with respect to
summation implies that the aligned received interference is a
codeword that can be decoded, as in the2-user case. Another
interesting aspect of this scheme is that each message is kept
secret from all receivers, except the intended one. This implies
that an appropriately defined secrecy capacity of the network
coincides with the capacity with no secrecy constraint.

APPENDIX A
CODING SCHEMES FOR THEDETERMINISTIC NETWORK:

ARBITRARY (n,m)

A. Weak Interference Regime (m < n)

In the following, we generalize the coding scheme pre-
sented in Fig. 3 for arbitrary parametersm and n. In the

following, we useA(a : b) to denote a column vector
[

A(a) A(a+ 1) · · · A(b)
]′

, wherea ≤ b are two pos-
itive integer numbers.

Denote the message of userk which will be transmitted in
2 channel uses by ap-ary sequence of length2Rsym, namely,
Sk , Sk(1 : 2n−m) = [Sk(1), . . . , Sk(2n−m)]

′, where[·]′
denote matrix transpose. Each user sendsp = n fresh symbols
over its first channel use, i.e.,

Xk1 = Sk(1 : n) =
[

Sk(1) Sk(2) · · · Sk(n)
]′
.

The signal received at theRxk can be split into two parts,
the part above the interference level which contains(n−m)
interference free symbols, and the lowerm symbols which is
a combination of the intended symbols and interference,

Yk1 =
[

S′
k(1 :n−m),

Sk(n−m+ 1) + S∼k(1), . . . , Sk(n) + S∼k(m)
]′

,

where S∼k(j) =
∑

i6=k Si(j) is the summation of allp-
ary symbols sent by all the base stations exceptTxk. This
received signal is sent to the transmitter via the feedback
link. TransmitterTxk first removes its own signal from this
feedback signal, and then forwards the remaining symbols on
its top mostm levels. It also transmits(n − m) new fresh
symbols over its lower levels:

Xk2 =
[

S∼k(1), . . . , S∼k(m), S′
k(n+ 1 : 2n−m)

]′

.

A similar operation is performed at all other transmitters,
which results in a received signal atRxk of the form

Yk2 = Xk2 +Dn−m
∑

i6=k

Xi2

=





















S∼k(1)
...

S∼k(m)
Sk(n+ 1)

...
Sk(2n−m)





















+





















0
...
0

∑

i6=k S∼i(1)
...

∑

i6=k S∼i(m)





















=





















S∼k(1)
...

S∼k(m)
Sk(n+ 1)

...
Sk(2n−m)





















+(K−1)





















0
...
0

Sk(1)
...

Sk(m)





















+(K−2)





















0
...
0

S∼k(1)
...

S∼k(m)





















.

We used the fact that
∑

i6=k
S∼i(j) = (K − 1)Sk(j) + (K − 2)S∼k(j)

in the last equality. HavingYk1 andYk2, receiverRxk wishes
to decodeSk. Note that we have a linear system with2n
equations and2n variables (includingm variablesS∼k(j) for
j = 1, . . . ,m and2n−m variables includingSk(j) for j =
1, . . . , 2n − m), which can be uniquely solved8. Therefore,

8It is easy to verify that the coefficient matrix is full-rank.
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Rxk can recover all its2n−m symbols transmitted byTxk,
which implies a communication rate ofRk = (2n − m)/2.
Note that the encoding operations at all transmitters are the
same, and hence, a similar rate can be achieved for all pairs
by applying a similar decoding.

B. Strong Interference Regime (m > n)

Similar to the weak interference regime, this scheme is
performed over two consecutive time instances, and provides
a total ofm information symbols for each user. Denote the
message of userk by a Sk = [Sk(1), . . . , Sk(m)], which is
a p-ary sequence of lengthm. In the first time instance, each
user broadcasts its entire message,

Xk1 = Sk(1 : m) =
[

Sk(1) · · · Sk(m)
]′
,

which implies the received signal atRxk to be

Yk1 = Dm−nSk + S∼k

=
[

S∼k(1), . . . , S∼k(m− n),

Sk(1) + S∼k(m− n+ 1), . . . , Sk(n) + S∼k(m)
]′

.

This output is sent to the transmitter through the feedback
link. In the second time slot, the transmitter simply removes
its signal and forwards the remaining, that is,

Xk2 =
[

S∼k(1) . . . S∼k(m)
]′
.

Hence, we have

Yk2 =





















0
...
0

S∼k(1)
...

S∼k(n)





















+



















∑

i6=k S∼i(1)

...

∑

i6=k S∼i(m)



















=





















0
...
0

S∼k(1)
...

S∼k(n)





















+(K−1)



















Sk(1)

...

Sk(m)



















+(K−2)



















S∼k(1)

...

S∼k(m)



















= (K − 1)Sk + (Dm−n + (K − 2)I)S∼k,

whereI is the identity matrix of proper size (m × m in the
equation above). HavingYk1 and Yk2 together,Rxk has a
linear system with2m equation and2m variables (including
m variables inSk andm variables inS∼k):
[

Yk1

YK2

]

=

[

Dm−n I

(K − 1)I Dm−n + (K − 2)I

] [

Sk

S∼k

]

.

This system has a unique solution if and only if the coefficient
matrix is full-rank. Note thatK 6≡ 1( mod q) is a necessary
and sufficient condition for having a unique solution, which

can be easily satisfied for a proper choice9 of p. Fig. 4
pictorially demonstrates this coding scheme for3-user case.

APPENDIX B
QUASI-SYMMETRIC FULLY CONNECTEDK -USER

INTERFERENCECHANNEL UNDER THE DETERMINISTIC

MODEL

Note that the symmetry of the channels in the fully-
symmetric model allows us to align the interfering signals in
the second block and easily reconstruct the same interfering
signal as in the first block at each receiver. This is not possible
in the quasi-symmetric case, since it is not clear whether one
can simultaneously align all interfering signals.

In the following we present a generic coding scheme to-
gether with a sufficient condition which guarantees feasibility
of simultaneous alignment for the quasi-symmetric model.
We will further show that this conditions holds for any
choice of channel signs forK = 3. This scheme is based
on opportunistically choosing the coefficient of the feedback
signal in formation of the transmit signal in the second phase.

Lemma 2. Simultaneous alignment of interference in the
quasi-symmetric fully connectedK-user interference channel
is feasible provided that there exist (non-zero) diagonal ma-
tricesA, B, U andV such that

ΛA+ ΛBΛ = U + V Λ, (38)

whereΛ = {λij} is the network sign matrix with zero diagonal
elements, and{±1} off-diagonal elements.

In the following we prove this lemma, and at the end of
this section we show that (38) can be satisfied with diagonal
matrices for anyΛ of size3× 3.

Proof of Lemma 2:Assume diagonal matricesA, B, U
andV exist such that (38) holds. We present a coding scheme
which guarantees simultaneous interference alignment at all
the receivers.

Case I: Weak Interference Regime (n > m)
We borrow the notation from Appendix A, to denote the

transmit signal of each user in the first block of transmission:

Xk1 = Sk(1 : n) =
[

Sk(1), Sk(2), . . . , Sk(n)
]′

.

Upon receiving feedback, transmitterTxk can subtract its own
contribution from the received signal atRxk and compute

Ik =











Ik(1)
Ik(2)

...
Ik(m)











,











∑

i λkiSi(1)
∑

i λkiSi(2)
...

∑

i λkiSi(m)











.

9Note that this result does not necessarily holds for all values of p and
K. For instance, this approach does not give a set of independent linear
equations for the3-user case over the binary field. However, the encoding
scheme for larger field size (p > 2) still reveals valuable insights for the
Gaussian channel.
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The transmit signal of userk in the second block, will be
formed as

Xk2 =





















AkSk(1) +BkIk(1)
...

AkSk(m) +BkIk(m)
AkSk(m+ 1) +BkSk(n+ 1)

...
AkSk(n) +BkSk(2n−m)





















,

whereAk andBk are thekth diagonal elements of matricesA
andB, respectively. Performing such coding scheme at each
transmitter, the received signal atRxk in the second block
can be written as

Yk2 = Xk2 +Dn−m
∑

i

λkiXi2

= Xk2 +
∑

i

λki





















0
...
0

AiSi(1) +Bi

∑

j λijSj(1)
...

AiSi(m) +Bi

∑

j λijSj(m)





















= Xk2 +





















0
...
0

∑

i[λkiAi +
∑

j λkjBjλji]Si(1)
...

∑

i[λkiAi +
∑

j λkjBjλji]Si(m)





















(39)

Now note thatλkiAi and
∑

j λkjBjλji are (k, i)th elements
of matricesΛA andΛBΛ, respectively, and from (38) we have

λkiAi +
∑

j

λkjBjλji = (ΛA+ ΛBΛ)ki

= (U + V Λ)ki = Uki + Vkλki.

Therefore,
∑

i

[

λkiAi +
∑

j

λkjBjλji

]

Si(ℓ) =
∑

i

[Uki + Vkλki]Si(ℓ)

= UkSk(ℓ) + Vk

∑

i

λkiSi(ℓ)

= UkSk(ℓ) + VkIk(ℓ), (40)

for ℓ = 1, 2, . . . ,m. Replacing this into (39), we get

Yk2 =





















AkSk(1) +BkIk(1)
...

AkSk(m) +BkIk(m)
AkSk(m+1)+BkSk(n+1)

...
AkSk(n) +BkSk(2n−m)





















+





















0
...
0

UkSk(1) + VkIk(1)
...

UkSk(m)+VkIk(m)





















Therefore, all the interfering signals received atRxk in the
second block are scaled version of those received in the first
block, and so it has to decode2n − m information symbols
Sk(1), . . . , Sk(2n − m) as well asm interference symbols

I(1), . . . , I(m) based on its2n equations. This system is given
by
[

Yk1

Yk2

]

=

[

I Dn−m

AkI+ UkD
n−m BkI+ VkD

n−m

]

×





Sk(1 : n)
Ik(1 : m)

Sk(n+ 1 : 2n−m)



.

One can easily verify that the determinant of the coefficient
matrix of this system of equations is

det(I) det
(

BkI+ VkD
n−m − (AkI+ UkD

n−m)I−1Dn−m
)

= det(BkI+ (Vk −Ak)D
n−m − UkD

2(n−m))

= BK
k ,

and hence it is full-rank and so decoding is feasible provided
thatBk 6= 0 for k = 1, . . . ,K.

Case II: Strong Interference Regime (n < m)
Similar to the last case, each transmitter first sendsm infor-
mation symbol in the first block. Upon receiving the feedback,
transmitterTxk subtract its own contribution to find the
interfering symbols atRxk

Ik =











Ik(1)
Ik(2)

...
Ik(m)











,











∑

i λkiSi(1)
∑

i λkiSi(2)
...

∑

i λkiSi(m)











.

It forms a linear combination of its own symbols and the
interfering symbols, and transmits the result over the second
block:

Xk2 =







AkSk(1) +BkIk(1)
...

AkSk(m) +BkIk(m)






.

Using (40), the received signal atRxk in the second block can
be written as (41) given at the top of next page. Note that this
is a function of onlySk(1), . . . , Sk(m) andIk(1), . . . , Ik(m)
variables; so the receiver can can solve the system of available
2m equations for these variables. More precisely, it has to
solve
[

Yk1

Yk2

]

=

[

Dm−n I

UkI+AkD
m−n VkI+BkD

m−n

][

Sk(1 : m)
Ik(1 : m)

]

.

It is easy to verify that the coefficient matrix is non-singular,
since its determinant can be written as

det(I) det
(

(UkI+AkD
m−n)− (VkI+BkD

m−n)I−1Dm−n
)

= det
(

UkI+ (Ak − Vk)D
m−n−BkD

2(m−n)
)

= UK
k

which is non-zero, provided thatUk 6= 0 for k = 1, 2, . . . ,K.

Case III: Moderate Interference Regime (n = m)
The coding scheme and argument for this case is the same
as the previously discussed cases. At the end of the second
channel use,Rxk has to solve
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Yk2 = Dm−nXk2 +
∑

i

λkiXi2 = Dm−nXk2 +
∑

i

λki







AiSi(1) +Bi

∑

j λijSj(1)
...

AiSi(m) +Bi

∑

j λijSj(m)







=





















0
...
0

AkSk(1) +BkIk(1)
...

AkSk(n) +BkIk(n)





















+





















UkSk(1) + VkIk(1)
...

UkSk(m− n) + VkIk(m− n)
UkSk(m− n+ 1) + VkIk(m− n+ 1)

...
UkSk(m) + VkIk(m)





















(41)

[

Yk1

Yk2

]

=

[

I I

(Uk +Ak)I (Vk + Bk)I

] [

Sk(1 : n)
Ik(1 : n)

]

.

for Sk(1 : n). It is clear that this system can be uniquely solved
provided thatBk −Ak + Vk + Uk 6= 0 for k = 1, . . . ,K.

Now we are ready to prove Theorem 5 based on Lemma 2.

A. Proof of Theorem 5

The proof of the converse part is similar to that of Theo-
rem 4 form 6= n, and hence we skip it. Form = n we may
distinguish the following two cases:

Case I:Λ + I is full-rank: In this case we can use the
upper bound (12) presented in Section IV-B, which yields

Rsym ≤ max
(n

2
, n− n

2

)

=
n

2
.

Case II: Λ + I is singular: It is easy to check that if
rank(Λ + I) > 0. If rank(Λ + I) = 1, then λij = 1 for
i 6= j, and therefore the argument in (13) holds, which shows
Rsym ≤ n/3.

Now, assumerank(Λ + I) = 2. It is easy to verify that a
3× 3 matrix with elements in{±1} hasrank = 2 if and only
if it has two (up to negative sign) identical rows. Without loss
of generality, we may assume the first and second rows are
identical, which yieldsY2t can be deterministically recovered
from Y1t.

So, we can write

H(W1,W2,W3|Y T
1 ) = H(W1,W2,W3|Y T

1 , Y T
2 )

= H(W3|W1,W2, Y
T
1 , Y T

2 ) +H(W1,W2|Y T
1 , Y T

2 )

≤ H(W3|W1,W2, Y
T
1 , Y T

2 , XT
1 , X

T
2 ) + T ǫT

= H(W3|W1,W2, Y
T
1 , Y T

2 , XT
1 , X

T
2 , X

T
3 , Y

T
3 ) + T ǫT

≤ 2T ǫT ,

and therefore,

T (R1 +R2 +R3) = H(W1,W2,W3)

≤ I(W1,W2,W3;Y
T
1 ) +H(W1,W2,W3|Y T

1 )

≤ H(Y T
1 ) + 2T ǫT ≤ nT + 2T ǫT

which yields inRsym ≤ n/3.
In order to prove the achievability part of Theorem 5 it

remains to be shown that for any sign matrix of size3 × 3
there exist a solution for (38).

Lemma 3. For any given sign matrixΛ of size3 × 3, there
exist diagonal matricesA, B, U , andV such that

ΛA+ ΛBΛ = U + V Λ.

and one of the following holds:

a) Bk 6= 0, ∀k (for the weak interference regime); or
b) Uk 6= 0, ∀k (for the strong interference regime); or
c) Bk − Ak + Vk − Uk 6= 0, ∀k (for the moderate

interference regime).

Proof of Lemma 3: Note that forK = 3 we are free to
choose12 variables (the diagonal elements of matricesA, B,
U andV ) such that they satisfy9 linear equations. It is clear
that this system of equations has multiple solutions. Hence,
depending in the interference regime of interest, we can choose
3 variables in order to make the overall transition matrix of
two channel uses full rank, i.e., we setBk 6= 0 in the weak
interference regime fork = 1, 2, 3, andUk ≤ 0 for the strong
interference regime.

Regarding the moderate interference regime (m = n), the
constraint to have a solvable system of equation isBk−Ak+
Vk +Uk 6= 0 for k = 1, 2, 3. It can be shown that whenΛ+ I

is a full-rank matrix, these additional constraints are feasible
with the solution for matricesA, B, U , andV , and therefore
Rsym = n/2 can be achieved using cooperative interference
alignment. However, ifΛ + I is a singular matrix,Rsym =
n/3 can be simply achieved by time-sharing scheme. This
completes the proof.

APPENDIX C
WEAK SECRECY PROVIDED BY USING LATTICE CODES

In this section we prove the claim of Remark 2. We can
break the output signal ofRxj into two blocks, and write

I(y2Tj ;Wk) = I(yTj1, y
T
j2;Wk) ≤ I(yTj1, y

T
j2; sk0, ck1, ck2)

≤ I(yTj1, y
T
j2, sj0, cj1, cj2; sk0, ck1, ck2)

= I

(

∑

i6=j

si0,
∑

i6=j

ci1 + zj1,
∑

i6=j

ci2 + zj2; sk0, ck1, ck2

)

= I
(

∑

i6=j

si0; sk0

)

+ I
(

∑

i6=j

ci1 + zj1; ck1

)

+ I
(

∑

i6=j

ci2 + zj2; ck2

)

(42)
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where (42) holds because the three pairs(
∑

i6=j si0, sk0),
(
∑

i6=j ci1 + zj1; ck1) and(
∑

i6=j ci2 + zj2; ck2) are mutually
independent. The first term in (42) is zero forK ≥ 3 due
to the crypto lemma [35]. The second and third terms can be
upper bounded using the mutual information expression for
Gaussian variables. Hence,

I(y2Tj ;Wk) ≤ 2
T

2
log

(

1 +
1

K − 1

)

= T log
K

K − 1

which is constant with respect toSNR.
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