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Asynchronous Capacity per Unit Cost
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Abstract—The capacity per unit cost, or, equivalently, the inthe message divided by the elapsed time between the instan
minimum cost to transmit one bit, is a well-studied quantity jnformation starts being sent and the instant it is decoded.

under the assumption of full synchrony between the transmiter The data rate is a sensible performance metric for burst
and the receiver. In many applications, such as sensor netwis, o _' ; ! p ! . u ; y
transmissions are very bursty, with amounts of bits arriving COMMunication if the information to be communicated is
infrequently at random times. In such scenarios, the cost of delay-sensitive. Then, maximizing the data rate is eqgeival
acquiring synchronization is significant and one is intereeed to minimizing the time to transmit the burst of data. In cirta
in the fundamental limits on communication without assumirg  gppjications, however, the allowable delay may not be so
a priori synchronization. In this paper, the minimum cost to tiahtly constrained. so the data rate is less relevant a meas
transmit B bits of information asynchronously is shown to Ightly : ’ 2 ! : V_ ;
be equal t0 (B + H)Keyne, Where Keyne is the synchronous than theenergyneeded to transmit the information. In this
minimum cost per bit, and where H is a measure of timing case, the minimum energy needed to transmit one bit of
uncertainty equal to the entropy for most reasonable arrivd  information is an appropriate fundamental measure. Thes, w
time distributions. This result holds when the transmitter can  5ra |ed to ask the following question: what is the impact of
stay idle at no cost and is a particular case of a general resul asvnchrony on the minimum enerav needed to transmit one
which holds for arbitrary cost functions. _y . y . inimu ay !

| ndex T H cation: b ~ bit of information?

ndex Terms—asynchronous communication; bursty communi- : . :
cation; capacity; capacity per unit cost; energy; error exmpnents; This type of question falls into the general framework

large deviations; sequential decoding; sparse communidan; Pf capacity per unit COS‘[?J, [8], where one _iS interested
synchronization in characterizing the maximum number of bits that can be

reliably communicated per unit cost of using the channel.
Consider the following modification of the formulation in]]7
S _ [6] to study asynchronous capacity per unit cost.
Synchronization is an important component of any COMMU-There arep bits of information which needs to be com-
nication system. To understand the cost of synchronizationy, \nicated. The numbeB can be viewed as the size of a
is helpful to divide applications into two rough types. Ireth, st in the above scenario, with consecutive bursts oourr
first type, transmission of data happens on a continuous.bagj, infrequently that we can consider each burst in complete
Examples are voice and video. The cost of initially acq@irinisg|ation. TheB bits are coded and transmitted over a mem-

synchronization, say by sending a pilot sequence, is velgti ,vjess channel using a sequence of symbols that have costs
small in such applications because the cost is amortized o¥€sciated with them. The raf per unit cost is the total
the many symbols transmitted. In the second type, transMigsmper of bits divided by the cost of the transmitted seqeenc

sions are very bursty, with amounts of data transmitted ONCer 4 data burst arrives atrandom symbol time, not known

in a long while. Examples are sensor networks with sensgrEriori to the receiver. Without knowing, the goal of the

nodes transmitting measured data once in a while. The cgs eiver is to reliably decode the information bits by oty

- RN : ST €
of acquiring synchronization is relatively more significan the outputs of the channel. Although the receiver does not

such gpplicgtions because the number of bits transmitted %OWV we assume that both the transmitter and the receiver
burst is relatively small. know thatv lies in the range froml to A. The integerA

What is the fundamental limitation due to the lack @f characterizes the asynchronism level or the timing uniceiyta

priori synchrony between the transmitter and the receiverﬂ) tween the transmitter and the receiver. At all times lgefor
bursty communication? While there has been a lot of researc

o N . . : and after the actual transmission, the receiver observes pu
on specific synchronization algorithms, this question hag o

‘ . .7 7 noise. The noise distribution corresponds to a speciak‘idl
recently been pursued [1].I[71.1[6]. I_n their model, transsidn .Sé/mbol"* being sent across the channel.
of a message starts at a random time unknown to the receiver, ) . . . . .
he main result in this paper is a single-letter characteri-

The performance measure is the data rate: the number of bits, ) . .
zation of the asynchronous capacity per unit cost, or, equiv

This work was supported in part by an Excellence Chair Gremnhfthe alently, the minimum cost to transmit one bit of information

French National Research Agency (ACE project). This worls weesented Under the further assumption that the idle symbd allowed
in part at the IEEE International Symposium on Informatiomedry, Austin

I. INTRODUCTION

(Tx), USA, June 2010 to be used in the codewords and has zero cost, the result sim-
V. Chandar is with MIT Lincoln Laboratory, Lexington, MA 020, USA. plifies and admits a very simple interpretation: the minimum
Email: vchandar@mit.edu. cost to transmitB bits of information asynchronously is

A. Tchamkerten is with the Department of Communications and
Electronics, Telecom ParisTech, 75634 Paris Cedex 13,cEraEmail:
aslan.tchamkerten@telecom-paristech.fr. (B + log A)Ksyne, ()
D. Tse is with the Department of Electrical Engineering anoimuter
Sciences, University of California at Berkeley, BerkeleyA ®4729-1770, ) o . )
USA. Email: dtse@eecs.berkeley.edu. where Kgyne is the minimum cost to transmit one bit of


http://arxiv.org/abs/1007.4872v2

information in the synchronous settiﬂg‘[hus, the timing un-  « Information is available at the transmitter at a random

certainty imposes an additional costgf,.. log A as compared time;

to the synchronous setting. Note that this result implies tie « The transmitter chooses when to start sending informa-

additional cost is significant only when the paramétgrA is tion;

at least comparable tB. « Outside the information transmission period, the trans-
Even though we do not haves&ringentrequirement on the mitter stays idle and the receiver observes noise;

delay from the time of data arrival to the time of decoding, a « The receiver decodes without knowing the information

meaningful result cannot be obtained if therensconstraint arrival time at the transmitter.

at all. This can be seen by noting that the transmitter couldCommunication is discrete-time, and carried over a discret

always wait until the end of the arrival time interval (at ém memoryless channel characterized by its finite input anpudut
A) to transmit information. Then, there would no price to pagiphabets

for the timing uncertainty since communication wodle facto XU{x} and Y,

be synchronous. However, the delay incurred would be very

large if A is very large. To avoid this undesirable situationf€spectively, and transition probability matrix

we impose the constraint that the delay shouldifear in B.

A delay linear inB is a natural constraint since it is of the QUylr) vEXU{xhy ey

same order as the delay incurred in the synchronous settiigre x denotes the special idle symbol, abfddenotes the

[8]. The expressiori{1) is the minimum cost achievable by amyphabet containing the symbols that can be used in the

scheme subject to this delay constraint. Given this coms$tra actual transmission of the datd. may or may not contain

the start time of information transmission is highly random. We assume that no two different input symbelsand z’

to the receiver and the additional cost is the cost needeelonging toX have identical conditional distribution@(-|z)

to construct codewords that allow a decoder to resolve thiad Q(-|2')A

uncertainty. Given B information bits to be transmitted, a codebodk
What happens when longer delays are allowed? First, wensists of2” codewords of lengtm composed of symbols

show that performance cannot be improved beyohd (1) withfirom X. The message: arrives at the transmitter at a random

the broad class of coding schemes whose delayssabe time v, independent ofm, and uniformly distributed over

exponentialin B. Second, we show that when the allowablé¢1,2,..., A}, where the integetA > 1 characterizes the

delayd scales exponentially witlB (but is no larger tham, asynchronism levebetween the transmitter and the receiver.

for otherwise the situation reduces to the synchronousgettOnly one message arrives over the perfib@, ..., A+n—1].

mentioned above), the minimum cost to trans@itbits can If A = 1, the channel is said to be synchronous.

be further reduced to The transmitter chooses a tim€r, m) so that

(B + log %) Ksyne- v<o(v,m)<A  almost surely

to begin transmitting the codeword'(m) € € assigned
Thus, in this more general case, the impact of asynchroniggimessagen. This means that the transmitter cannot start
is significant wherlog(A/d) is at least of the order aB. transmitting before the message arrives or after the endeof t
The above results are all proved under a uniform distrilbutiincertainty window. It turns out that the possibility to dse
on the arrival timev. They can be generalized to a broad class as a function of bothy andm directly influences the cost
of other distributions, withlog A replaced by a quantity/, to deliver this information by allowing to convey informaiti
which equals the entropy for most reasonable distributionsthrough timing. In the rest of the paper, we suppress the
It is worth mentioning that the asynchronism studied in thigrguments’ andm of & when these arguments are clear from
paper is due entirely to the random arrival time of the dath agontext.
the desire to deliver that data within a certain delay caiirstr Before and after codeword transmissiom,., before time
One can think of this asourceasynchronism. There is anothels and after times + n — 1, the receiver observes “pure
type of asynchronism due to the lack of a common clodkoise.” Specifically, conditioned on the eveht = t},
between the transmitter and the receiver. One can thinki®f th < {1,2,..., A}, and on the message to be conveyed
as an example ofhannelasynchronism. We do not considetthe receiver observes independent symbols
this type of asynchronism here. Hence, throughout the paper
we will assume both the transmitter and the receiver have 1, Y. Yagn—
access to a common clock. An interesting future directid)siriputed as follows. For
would be to study the combined effect of source and channel
asynchronism. 1<i<o(t,m)—1

or
II. MODEL AND PERFORMANCECRITERION ot,m)+n<i<A+n-1,

Our model captures the following features: 2This is without loss of generality, as two such symbols aemiital for

communication purposes, so we can consider the equivataminel with one
1in this paper, all logarithms are taken to base of these two symbols deleted from the symbol alphabet.
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Definition 3 (Delay of a Code) Givene > 0, the (maximum)
delay of a cod®, denoted byi(C, ), is defined as the smallest
™ d such that

Y

Y1 Ya min]P)m(T—VSd—l)Zl—ff,
m

wherelP,, denotes the output distribution conditioned on the
Fig. 1. Time representation of what is sent (upper arrow)what is received ;
(lower arrow). The %" represents the “idle” symbol. Message arrives at Sendmg of messagﬁﬁ

time v, starts being sent at time, and decoding occurs at time Throughout the paper, we often consider delays in the
regimee — 0. In this case, we omit an explicit reference
to . For instance, if{Cp} is such thatd(Cp,cp) = O(B)

the Y;’s are distributed according tQ(-|*). At any timei € for some{ep} such thatep — 0 as B — oo, we simply

{o,0+1,...,0 +n — 1}, the distribution is say that{Cp} achieves a delay that is linear iB—Ileaving
implicit “with probability asymptotically equal to one.”
Qllei—ota(m)), A key parameter we shall be concerned with is
wherec;(m) denotes théth symbol of the codeword™(m). loo A
Knowing the asynchronism leved, but not the value of B2 i,

v, the receiver decodes by means of a sequential(test), B

wherer is a stopping time, bounded by+n—1, with respect which we call the timing uncertainty per information bit.

to the output sequenck,, Ys, ... indicating when decoding Next, we define the asynchronous capacity per unit cost in
happens, and wheré denotes a decision rule that declarethe asymptotic regime whetB — oo while § is kept fixed.

the decoded message (see Eig. 1). Recall that a (deteriminist .. ... . . .
or randomized) stopping time with respect to a sequenceﬁe}tlmtlon 4 (Asynchronous Capacity per Unit Cast is

an achievable rate per unit cost at timing uncertainty per

of random variableg1,Y5, ... is a positive, integer-valued, . : X : :
random variable such that the evefit — ¢}, conditioned information bit 5 and delay exponend if there exists a
on the realization ofYy,Ys,...,Y;, is independent of the sgquencBe_gz codefCp}, and a sequence of numbefsy}
realization ofY;1,Yiso,..., for all t > 1. Given {r = ¢}, Withes — 0, such that

te{l,2,...,A+n— 1}, the function¢ outputs a message
based on the past observations from timep to timet 3
A “code” refers to a codebooR together with a decoder .
. . ' lim sup log(d B<
i.e, a sequential testr, ¢). Throughout the paper, whenever lén:;lop 08(d(Cp,25))/B <9,
clear from context, we often refer to a code using the codkeboo q
symbolC€ only, leaving out an explicit reference to the decode?" B
The maximum (over messages) decoding error probability liminf —— > R.
. . . B—oo K(GB)
for a given codeC is defined as

]P)(8|GB) <enB,

LA The asynchronous capacity per unit cost, denote@y, J),
P(&|C) £ max — me_t(ae), (2) s the largest achievable rate per unit cost. In the impottan
mo A case wher = 0, we defineC(3) £ C(B,0).

where the subscriptsi, t” indicate conditioning on the event  Note that, in Definitioi 4, the codeword lengthis a free
that messagen arrives at timev = ¢, and wheref indicates parameter that can be optimized, just as for the synchronous
the event that the decoded message does not correspond te:#city per unit cost (see the comment after [8, Definition
sent codewordi.e., 2]). The results in the next section characterize the capacit
Iy T per unit cost for arbitraryy andé. Similar to the synchronous
E={o(YT) # M} L ,
case, the results simplify when there is a zero cost symbol,

where M denotes the random message to be transmitted. specifically whenX containsx andx has zero cost.

For simplicity, for the rest of the paper we assume that
the only possible zero cost symbol is—in particular, if
* ¢ X then X contains only non-zero cost symbols. The
Definition 2 (Cost of a Code) The (maximum) cost of a codeother, arguably unnatural, cases can also be addressee by th
C is defined as arguments in this paper and are briefly discussed in the kemar
before the proof of Theoref 3 in Sectibnl IV.

Definition 1 (Cost Function) A cost function k X — [0, 00)
assigns a non-negative value to each channel iflput.

K(€) £ max Z k(ci(m)).

5Hence, by definition we have

A
1
3To be more precisep is any F,-measurable function that takes values in P () = ) Z]P’m,t(~) .
the message set, whefig is the sigma field generated B, Yo, ..., Y;. t=1

4Kost” is cost in German.



[1l. RESULTS an optimization over the input alphabet instead of over the

Our first result gives the asynchronous capacity per untt cG$t (_)g all input dlshtrlbu_nons, wh_eré(;m refers to the output
whens = 0. It can be viewed as the asynchronous analogue @ftripution given that: is transmitted.

Theorem 2 in[[8], which states that the synchronous capacitZWe find an analogous simplification in the asynchronous

per unit cost is setting whenx is in X and has zero cost:

I(X;Y) Theorem 2 (Asynchronous Capacity per Unit Cost With Zero
max m . (3) Cost Symbol: Sub-exponential Delay Constrairt)x is in X

and has zero cost, the asynchronous capacity per unit cost at
As mentioned above, in stating our results we assume that@diay exponend = 0 is given by
non- symbols inX have positive cost, and that4fis in X,
Y P 1 D(Y,]|Y:)

thenx has zero cost. =

* Cl) = ma— ©
Theorem 1 (Asynchronous Capacity per Unit Cost: Sub-ex- . .
ponential Delay Constraint)The asynchronous capacity perand capacity can be achieved by codes whose delay grows

unit cost at delay exponeit= 0 is given by linearly with 5.

) ) Hence, a lack of synchronization multiplies the cost of send
[X; Y), [(X;Y) + D(Y|[V) } , (4) ing one bit of information byl 4+ 8. An intuitive justification
Ek(X)]"  EkX)](1+8) for this is as follows. Suppose there exists an optimal apdin
where X denotes the random input to the chanriélthe cor- scheme that can both isolate and locate the sent message
responding outputy, the random output of the channel wherwith high probability—as alluded to above, the ability to
the idle symbok is transmitted (i.e.Y, ~ Q(:|%)), I(X;Y) “locate” the message is a consequence of the decoder’s delay
the mutual information betweeX and Y, and D(Y]|Y,) constraint. Assuming that the delay is negligitle, the delay
the Kullback-Leibler distance between the distributiofisso grows subexponentially withB, this allows us to consider
andY, [ message/location pairs as inducing a code of size

Furthermore, capacity can be achieved by codes whose B

) . ~2°A

delay grows linearly inB[1

cp) = m}z{mxmin{

The two terms in[{4) reflect the two constraints on religsed for communication across theynchronous channel

'ms _ . _ o8B . L
able communication. The first term corresponds to the stemgnce’ sinced = 27 we are effectively communicating

dard constraint that the number of bits that can reliably be ~ B+ B=B(1+p)
transmitted per channel use cannot exceed the input-output _
mutual information. This constraint applies when the crmmnB'tS reliably over the synchronous channel. Thereforedisen
is synchronous, hence also in the absence of synchrony. B bits of information at a§ynchronism levgl is at least as
The second term ifi{4) corresponds to the receiver’s abilPStly as sending(1 + 3) bits over the synchronous channel.
to determine the arrival time of the data. Indeed, even thougHliPPINg this reasoning around, the asynchronous charfrel e
the decoder is only required to produce a message estim##étively induces a codebook for message/location pairrah
because of the delay constraint, there is no loss in termstB¢ location is encoded vipulse position modulatio(PPM).
capacity per unit cost to also require the decoder to prodnceFT0m (€], optimal coding schemes are similar to PPM in that
approximate estimate of the time when transmission begindhe codewords consist almost entirely of the zero cost symbo
the delay constraint implies that the decoder can locateghe ThiS provides an intuitive justification for whi + 5)ksync is

message within a time window that is negligible compared & achievable rate per unit cost. _
A. The quantity Theorem[2 can be extended to the (continuous-valued)

Gaussian channel, where the idle symba$ the 0-symbol:

I(X;Y)+ D(Y||Y,) = D(XY||XY,), . .
(X;¥) + DYIYs) (XY XY) Theorem 3 (Asynchronous Capacity per Unit Cost for the

where D(XY || XY,) refers to the Kullback-Leibler distanceGaussian Channel: Sub-exponential Delay Constraifitle
between the joint distribution ofX,Y) and the (product) asynchronous capacity per unit cost for the Gaussian chianne
distribution of (X,Y,), measures how difficult it is for the with varianceN, /2, quadratic cost function (i.ek(z) = z?),
receiver to discern a data-carrying transmitted symbainfroand delay exponent= 0, is given by

pure noise, and thus determines how difficult it is for the 1 loge
receiver to get the timing correct. C(B) = 143 Ny

When the alphabeX contains a zero-cost symbo| the 0

synchronous resulf3) simplifies, and Theorem 3[in [8] says 1heoremil can be extended to the case of a large delay

that the synchronous capacity per unit cost becomes constraintj.e, when0 < § < 3. In this case, the formula for
capacity is slightly different depending on whetheis in X
A D(Yz|Yo) (5) Or not, as stated in the following resut.
zeX k(l’) ’

B=0. (@)

Theorem 4 (Asynchronous Capacity per Unit Cost: Exponen-
6y, is interpreted as “pure noise.” tial Delay Constraint) The asynchronous capacity per unit
7See comment after Definitidd 3. cost at delay constraind, with 0 < § < 3, is given by:



(a) if x € X and* has zero cost then capacity per unit cost resulf](3) immediately implies the
standard (synchronous) capacity rdbult

C=maxI(X;Y)
i.e., it is the same as the capacity per unit cost with _ _ X o
delay exponeni = 0, but with asynchronism exponefit by setting the cost functioh(-) = 1, Theoren{1L implies the

reduced to3 — ¢; asynchronous capacity result
(b) if x is not in X and all nonx symbols have positive cost I(X:Y) + DYY.
then €(8) = mypeanin { 10 v); L BEI, g
X 1+ 5
C(B,9) the largest number of information bits peansmitted symbol
. I(X;Y) I(X;Y)+ D(Y||Ys) that can be supported reliably by an asynchronous chamel, a
B { KOOI —8)" EKCOI(+ 5 - 9) } ' @ function off.

Instead of3, we may alternatively consider the asynchro-
nism parameterx = (log A)/n = SR introduced in [[1], [[7].
The uniform distribution onv in the model is not critical. Using [10), we deduce that rate is achievable if and only
The next result extends Theord 1 to the case wheig if, for some inputX,
non-uniform. For a non-uniform distribution om, what is

important turns out to be its “smallest” set of mass points R<I(X;Y)
that contains “most” of the probability. and
Consider a general arrival time (defined over the positive R < D(XY||XY,) —a.

integers), not necessarily bounded. For a givenO0, let 8(¢) o . _
denote the smallest subset of the support @f.e, the set of Hence, asynchronous capacity is alternatively given by
n such thafP(v = n) > 0) whose prqpabﬂny is at leadt—e. Cla) = max{ max I(X;Y);

Hence,P(v € 8(¢)) > 1 — e by definition. X:D(Y||Y:)>a

Theorem 5 (Asynchronous Capacity per Unit Cost With PRI D(XY|[XY) _a}a (11)
Non-uniform Arrival Time: Sub-exponential Delay Con- ' P
Straint) For a given sequence of arrival timesjB}B>1, with the convention that the maximum evaluatesOtdf the

define set being optimized over is empty. Consider the second inner
- log(|S(e5)|) maximization in [(Il). SinceD(XY||XY;) is convex inX,
p= {ﬁf} hgl_fup — 75 (9 and the se{X : D(Y||Y)) < a} is convex, the maximum

is achieved for some extreme point of the set, either for
where the infimum is with respect to all sequen¢es} of some X such thatD(Y||Y;) = a, or for a distributionX
nonnegative numbers such thabh g, ep = 0. concentrated on a single point and such thgt’||Y;) < a.
Then, the asynchronous capacity per unit cost at deldjowever, in the latter case we have
exponent) is given by

I(X;Y) I(X;Y)+D(Y||Y*)}

D(XY||XY,)—a <0

, _ since D(XY||XY,) = D(Y||Y,) < a. Thus, [11) reduces to
X)) KX+ ) vl = v
_ ] ) Cla) = max I(X;Y).
Although the formula fog3 in (@) appears unwieldy, in many X:DY|[Ys)za
cases it can easily be evaluated. For example, in many case@lthough not explicit in the statement of Theorém 1, the
such as the uniform or geometric distributions, the formulgroof of this theorem shows that(«) can be achieved with
reduces to the normalized entropy codes whose delays are no larger thanSummarizing the
5= ma H(vs)/B. above discussion, we get:
—00

C(B) = max min {

Corollary. The capacity at delay exponefit= 0, and with
There are cases, however, whelfé (9) doesn’t reduce to tespect to asynchronism parameter= (log A)/n, is given
normalized entropy. For instance, consider the case whan
vg = 1 with probability 1/2, andvg = i with probability B _
(1/2)27PB for i = 2,...,2°B + 1. Then,3 = B and Cla) —X:DEEﬁ%*)ZQI(X’Y)'

H(vp) =1+ 0.55B, which yields Furthermore, capacity is achievable with codes whose delay

_ 91 are no larger thamn.
B=2 BlgnooH(VB)/B.

A closely related problem is determining the capacity when
rate is defined in terms of bits peeceived symbolFor this

Asynchronous Capacity problem, we refer the reader tol [7].] [6], where capacity as a

The_ above res_ults focus on CharlaCteriZing the asynchronous,omation per symbol and information per unit cost ardedéntiated by
capacity per unit cost However, just as the synchronousightface and boldface characters, respectively, aslin [8]



function of « is studied, and where rate is defined with respe€@hebyshev’s inequality, for a fixeah, it is very unlikely that
to the expected elapsed time between the instant informatany repetition will be required to generaté(m), i.e.,
is available at the transmitter and the instant it is decoded
P*"(A)—1 as n— oo, (13)
. V. PROOFS OFRES.UL.TS ) ~_where P™ denotes the ordet product distribution ofP.
We useP™ to denote the set of distributions over the finite 1g gphtained codebook is thus essentially of constant com-
alphabetX. Recall that the type of a string" < X", denoted qgition, i.e, each symbol appears roughly the same number

by Py», is the probability distribution ovei that a_ssigr:ls, of times across codewords. Moreover, by construction all
to eacha € X, the number of occurrences af within = codewords in the random ensemble have cost

divided by n [4, Chapterl.2]. For instance, ifz3 = 010,

then P,:(0) = 2/3 and P,z(1) = 1/3. The joint typePyn 4» nE[k(X)](1 + o(1))

induced by a pair of stringéz™,y") € X™ x Y™ is defined

similarly. The set of strings of length that have typeP is asn — oc.

denoted byTp, and is called the “type class d@?.” The set  The sequential typicality decoder operates as follows. At

of all types overX of strings of lengthn is denoted byPY.  timet, for eachm € {1,2,...,2B}, it computes the empirical
Given a stringz™ € X™ and a conditional probability distributions

distribution W = {W(ylx), (z,y) € X x Y}, the set of p . ()
stringsy™ that have conditional typ®” given z" is denoted (M) Yy pa\

by Tw («"), i.e. induced byc"(m) and then output symbolsy;_,, . If there
T (z™) £ {y" € Y sz - PMW}. is a unigue message for which
Finally, we use the standard “big-O” Landau notation to ||Pcn(m),y;7 L) = PORC)I <2/ logn,

characterize growth rates (see, e.gl, [2, Chapter 3]), aed u
poly(+) to denote a function that does not grow or decay fasttre decoder stops and declares that messagaas sent.

than polynomially in its argument. If more than one codeword is typical, the decoder stops
The following two standard results on types are often usedd declares one of the corresponding messages uniformly
in the analysis: at randontd If no codeword is typical at time, the decoder

moves one step ahead and repeats the procedure based on
Fact 1 ([4, Lemma 2.2]) Y1 .. If the decoder reaches time+n—1 and no codeword
|g>795| = poly(n). is typical, then it declares a randomly and uniformly chosen
o _ ) message.
Fact 2 ([4, Lemma 2.6]) If X™ is independent and identically \ye first compute the error probability averaged over code-
distributed (i.i.d.) according taX; ~ Py, then books and messages. Suppose messagetransmitted. The
poly(n)e "PIXD) < p(X™ € Tp ) < e nPX2lIX) error event that the decoder declares some specific message

N m’ # m can be decomposedids
for any Xy ~ Py € P

I

Achievability of Theorerl] 1\We first show the existence {m—m} =& UE, (14)
of a random code that achievgs the asynchrpnous capagiffere the error events,
per unit cost when the latter is computed with respect to .
average error probability. A standard expurgation argumen * &1: the decoder stops at a timéetween andv +2n -2
then shows the existence of a deterministic code achieving (includingr andw +2n — 2), and declaresn’;
the same (asymptotic) performance as the random code, but €2¢ the decoder stops either at a timbeforeu or from
now with respect to maximum error probability. v+ 2n —1 onwards, and declares’.

Fix some arbitrary distributio® on X. Let X be the input For the error event,, for some0 < k < n—1 the first or the
having that distribution, and |&f be the corresponding output,lastk symbols ofY ™ are generated by noise, and the remaining
ie, (X,Y)~ PHQ(|)- n — k symbols are generated by the sent codewdtdm )

Given B bits of information to be transmitted, the codeThe probability that such " together withC™(m/) yields an
book € is randomly generated as follows. For each messagmpirical distributionJ that is jointly typical withP(-)Q(:|-),

and &, are defined as

m € {1,2,...,2B}, randomly generate a length sequence that is,

2™ i.i.d. according toP. If z™ belongs to the “constant

composition” sét I[J(,) = P()Q(])I| < 2/logn, (15)
A= {a":||Pen — P|| < 1/logn}, (12)

10The notion of typicality we use is often referred to as “sgdppicality”

n — i in the literature.
we let ¢"(m) = 2". Otherwise, we repeat the procedurg] INotice that the decoder outputs a message with probabifity by time

until we generate a sequence sufficiently closePtoFrom 4 4, 1.

2We use a capital letter foC™(m) since codewords are randomly
9|| - || refers to theL;-norm. generated.



is upper bounded as that a noise generated™ together withC™(m’) yields an
. empirical typeJ is upper bounded by
Py (P (mry,yn = J)

= > Pu(Y"=y") Y Pu(X"=2z")
yreyn @ Pyn yn=J by [4, Lemma 1.2.6]—recall thaD(J||XY,) refers to the

PV — o o—n(H(Jx)+D(Jx||P)~2) Kullback-Leibler distance between, on the one hand, tha joi

Z m(Y" =y") Z distribution J, and on the other hand, the product of the

yredn @niPyn yn=J distributions of X andY,. Hence, by taking a union bound

< Y P (Y =yt HIOTE g P e = T over all typical J's that satisfy [Ib) j§oly(n) of them by

9-nD(J[|XY.)

IN

yneyn Fact[1), and by using the continuity of the Kullback-Leibler
< Z P, (Y™ = y™)2~n(H(Jx)=e)gnH (Jx|y) distancelld the probability that a noise generated is typical
= " with C™(m’) is upper bounded by
< 9—n(I())=e) 9-T(D(XY[IXY)=e) _ g=n(I(X;¥)+D(Y]|Vs)=e)
< 27 nIXGY)=2e) (16) for anye > 0 and alln large enough. Finally, by taking a

union bound over all (less thad) times where noise could
produce such an output, we get

P (&) < A2 nUXY)+DI[Y)—e) (18)

for anye > 0 and alln large enough, wherél (Jx) denotes
the entropy of the left marginal of, where

H(Jxpy) = =) Jy(b) Y Jxjy(alb)log Jxjy(alb),
| % ;C | | for anye > 0 and alln large enough.

Combining [(I4), [(1I7), and (18), we get

and wherel (J) denotes the mutual information induced By

The first equality in [(16) follows from the independence Pp(m —m') =P (E1) + P (E2)
of C"(m’) andY™, sinceY™ corresponds to the output of < 9—n(I(X;Y)=3e)
C™(m). For the first inequality, note that if the codewords were —;A 9= nI(XY)+D(Y[Y.)—e)

randomly generated with each component of each codeword

i.i.d. according toP, we could deduce from_[3, Theoremfor anye > 0 and alln large enough.

11.1.2, p. 349] that Hence, by taking a union bound over all possible wrong
messages, we obtain that for any- 0,

PY(X™ =2") = o—n(H(Jx)+D(Jx[|P))
P, (€) < 9B (2—n(I(X;Y)—36)

The actual (non-i.i.d) codeword distribution is the i.idis-
tribution, conditioned on the constant composition evaa ( +A- 2‘"(I(X§Y)+D(Y||Y*)_5)) ’
Therefore, we have

for n large enough and ath. Since the above bound is valid

M) " e A for a randomly generated code, we deduce that

P, (X" =2") = { Pn(A)

0 otherwise, =
Ec(P(€]C)) = Pim(€)
and from [I8) we get < 9B (2—n(I(X;Y)—3E)
P (X" = g™) = 2 HU)+DUIP) (1 4 (1)) 1A 2—n(I(X;Y)+D(YHY*)—5))
asn — oo, uniformly over the setd. This justifies the first 2 2 (n), (19)

inequality in [26). The second inequality in_{16) followsin _
the non-negativity of the Kullback-Leibler distance. Thad WhereP(E|C) denotes the error probability of codeaveraged
inequality in [I6) follows from[[4, Lemma.5, p. 31]. The over the messages.
fourth inequality holds sincél (Jx) — H(Jx;y) = I(J), and We now turn to the dela_y_ of the code. Suppose message
by upperbounding the sum of the probabilities by one. Fnallis transmitted with a specific (non-random) codewotdm)
the fifth inequality in [Z6) holds for any > 0 and alln large that belongs to the set. If event
enough since, by assumptias,is close toPQ (see [Ib)). (r>v+n)

From [16), by taking a union bound over all empirical -
distributions.J that are jointly typical withPQ (poly(n) by happens, then necessarity ™"~ isn’t typical with ¢ (m).
Fact[1) and over all the (less tham) times involved in€;, By Chebyshev’s inequality, the probability of the latteeat/

we obtain the upper bound tends to zero as — oo, hence
P, (&1) < 27 nUI(X5Y)=3¢) (17) Pr(r <v+n)>1-es(n),
for all n large enough. 13Technically, the divergence is not continuous if, for exd&npboth

For th d & . d distributions are0 at the same point. However, at points of discontinuity,
or the second error evedb, pure noise produces SOM&pe discontinuity can only help since the divergence becoimfnite, and it

outputY™ that is jointly typical withC™(m’). The probability is easily seen that the corresponding error event has zetsabiity.



where e5(n) is a function that tends to zero as — oo. satisfies the constant composition property. The blockleng
Since the above inequality holds for any specific codeword is still chosen to beO(B) so that, in contrast with the

that belongs toA, we get achievability of Theorerill, where delay and blocklength are
the same, now the blocklength is exponentially smaller than

d(C,e2(n)) <n (20) the delay.
for any codeC whose codewords belong té. The rest of the analysis is essentially unchanged. Since

The proof can now be concluded. From inequallty] (19¥he codewords are constructed in the same way, the cost
there exists a specific cod® C A whose error probability, is unchanged, and the probability of error analysis is the
averaged over messages, is less thdn). Removing the half same, except thatl is replaced byA/2°" because now
of the codewords with the highest error probability, we enidhe transmission timing allows the decoder to only consider
up with a set@’ of 28-! codewords whose maximum errord/2°Z time slots instead of all time slots. Therefore? is
probability P(€) satisfies replaced bys — §, completing the proof.

(b) x ¢ X: The main change is that the transmitter uses

P(E) < 2e1(n), (21) the freedom in the choice af to communicate part of the
and whose delay satisfies information through timing;B(1 — ¢) information bits are
, contained in each codeword an@dé information bits are
(€', e2(n)) <n conveyed via timing. To achieve this, we use a space-time
by the previous argument. code.

Now, fix the ratio 3/, thereby imposing a delay linear in  The transmitter generate&' %) random codewords in the
B, and substituted = 288 in the definition ofe,(n) (see Same way as in the achievability proof of Theolém 1 to obtain

(X39)). Then,P(&) goes to zero a® — oo whenever a codebook
B I(X;Y) + D(Y||Ys n(s) with 1<s<20-9B},
B in 1), LETDOUEIL [ (s) <5< 20798}
" +8 Label each of the” messages with one of tia! —95 x 265

Recall that, by construction, all the codewords have coséirs of integer indicess, j), i.e., the message set is given by
nE[k(X)](1+0(1)) asn — oo. Hence, for any; > 0 and all

n large enough {m(s,j) with 1<s<2070F,1 <5 <20F}.

k(C') < nE[k(X)](1+17). (23) (For simplicity we assume that’(1—%) and2°F are integers.)
For any (space) index € {1,2,...,20-95} the set of
Condition [22) is thus implied by condition messages
. { I(X;Y)  I(X:Y)+D(Y||Ys) } {m(s,j),1<j<2°P}
K(€") (1+nEKX)] EKX)(1+n1+8) ] s associated to codeword (s).

Transmission always starts at a time that is a multiple.of
Maximizing over all input distributions, and using the félcat Suppose message arrives at timev and thatm = m(s, j).
n > 0 can be chosen arbitrarily, proves that the right-hand sidéae transmitter first computes the “offset”
of (4) is asymptotically achieved by non-random codes with

= v 6B
delay at most:, which grows linearly withB. [ O=j~- [ﬂ mod 2°°7.

Remark. From (24)it follows that whenever there exists som&he transmitter then starts sending codewdt(k) at time
input X such that/(X;Y") > 0 while E[£(X)] = 0, and thus v
X contains more than one zero cost symbol, the asynchronous o(v,m) = ([ﬂ + O) n.

capacity per unit cost is infinite, i.eC’(8) = oo, for any The receiver uses a sequential typicality decoder to find
p=0. the transmitted codeword as in the proof of the achievabilit
Achievability of Theorerl]4: The achievability scheme part of Theorenlll—since transmission times are restriaied t

for Theorenl % is similar to the achievability scheme used tee multiples ofrn, the sequential typicality decoder can be
prove Theoreni]l except that we distinguish the casesX restricted to multiples of..
andx ¢ X. Suppose codeword is found to be typical at time¢. The
(a) x € X: The main change is that now the transmitter dogeceiver then computes the estiméatdor o given by
not start transmitting at time. Instead, the transmitter only
starts transmitting at the first multiple @ larger thanv,
so that nowo takes values over multiples &®Z. Such a and finds the indey € {1,2,. __72(175)3} such that
transmission scheme reduces the receiver’'s uncertaiotytab
from uniformly over2”? time slots to (essentially) uniformly j=
over only 2895 time slots.

One proves tha€' (3 — ¢) is achievable with dela@)(2°%)  The receiver then declares = m(3, ).
by repeating the arguments for the achievability of Thediem The rest of the analysis is essentially unchanged. Since
The random codebook is constructed so that each codewtitd codewords are constructed in the same way, the cost is

(25)

c=t—n+1

mod 208 .

S|



unchanged, and the probability of error analysis is the sanifex € X’ andx has zero cost, or

except tha”? is replaced by ?(1~9) because the transmission 1(X;Y)
timing allows the decoder to only consid®¥(! =% codewords REK(X)] < 1 : 5 (I+mn) (28)
instead of2” codewords. [ ] a

Achievability of Theorerfil 5:To prove the achievability if * ¢ X and all nonx symbols have positive cost. In either
part of Theorenil5, one applies essentially the same argsmei@se, we also show that
as for the achievability of Theoreml 1. The transmitter's
strategy is unchangedg. ¢ = v, and a random codebook REKX)](1+ 8 =0 —n) < DXY[|XY,), (29)
satisfying the constant composition property is used t@éac whereX ~ Pz, and wherePs denotes the distribution of the
the messages. At the receiver, we need a suitable analog oftifpe class of2z which contains the most elements. This type
set{1,2,..., A} of time slots to consider. A natural choiceclass is denoted b§’; in the sequel.
is to pick a sequence of nonnegative numbjers} such that  An important observation used to proel(27) dnd (29) is that
€B Boge 0, and, for eachB, consider the “typical” se8(¢z) becauseR can be assumed to be strictly positive (or there is
whose probability, under the arrival time distributionatdeast nothing to prove), the set of noasymbols of each codeword
1 —ep by definition. The receiver operates just as befoes, in Cp has at mosO(B) elements.
using a sequential typicality decoder, but only over theodet (Note thatPgz may vary as a function of. However, for
times in8(ep). ease of exposition, we assume tts is the same for alb.

Since the codewords are constructed in the same way, f@s assumption is without loss of generality, because we ca

cost of the codebook is unchanged. The probability of errgroup thev’s together based on their associated, and as
and delay analysis now breaks into two cases:S(¢z) and will become apparent from the analysis, our arguments can
v ¢ 8(ep). The caser € 8(ep) is handled as previously, be applied to each group separately. Sinte= 2°5, for
except that4 is replaced by|S(c)|. Whenv ¢ $(cp), we subsets containing at least2~V3 v's, our arguments will
make the worst-case assumption that the message is wrorglwalid sincdim inf 5o (1/B)log(A2-VB) = B. For Pg’s
decoded and that the delay is infinite. We can afford to do thassociated with fewer than this man'g, since there are only
becaus®(v ¢ S(ep)) Bzse by definition. Hence, the eventa polynomial number oPp’s, the probability ofv having any
{v ¢ 8(cp)} has a vanishing effect on the probability of errosuch P is o(1).)
and the delay. Optimizing over the choice of sequeficg}

completes the proof. B broof of and &3
Converses of Theorerhs 1 and 4: ' () 23

Assume that{C;} achieves a rate per unit coR > 0 at The intuition for these inequalities is that an asynchranou
timing uncertainty per information bif and delay exponent code must also be good for the synchronous channel, and

§ with 0 < § < 3. Recall that the delay constraint means thdlence a suitable notion of rate is bounded by the synchronous
- channel capacity. Formally¢’; is clearly a good code for

the synchronous channele,, if we revealv to the receiver
and decoding happens at time+ dg, it is possible to
. achieve an error probability bounded away franwhenever
for some sequence of non-negative numhgys— 0 asB — B is large enough. From the strong converse for synchronous

oo. To establish the converses, we use the following concept | unication (see.g, [, Corollary 6.4, p. 87]) it follows
of “extended codewords.” To shorten notation, for the rdst that whenx € X andx has zero cost. for any > 0

the proof we uselp instead ofd(Cp,ep). /

Extended codewordsAn extended codeword for a given log |CF5 | < I(X;Y)(1+7/2) (30)

messagem consists of the sequence of symbols that are dp

transmitted from timev until time v + dp — 1. Hence, for ¢, 411 B large enough. Similarly, wher ¢ X, for anyn > 0,

v+dp —12> o+n, the codeword corresponding to message

m consists ofx’s from time v until time o — 1, followed by log |C| < I(X;Y)(1+1/2) + 0B (31)

c"(m), followed by x’s until time v + dg — 1. Instead, if no - ’ n

v +dp < o +n, the codeword corresponding to message for all B large enough, where denotes the number of non-

consists ofx’s from time v until time o — 1, followed by the symbols in each codeword. This can be seen by observing that

first v + dp — o symbols ofc™(m). The cost of the extendedthe codewords can be classified according to the value, of

codeword, which we simply denote kym), is defined to be and for a giveno, only a rate of/(X;Y)(1 + n/2) can be

the same as the cost of (m). supported. Because of the delay constraint, @ choices
From now on, codewords always refer to extended codef o are possible.

words, and codebooks always refer to sets of extended codeNow, since the number of noasymbols in any codeword

lims 1OgdB(€B,€B)
msup —————

=4 26
B—o0 B ( )

words. is O(B), the number of possible typeBs grows no faster
To establish the theorems, we show that for gny 0 and than polynomially withB. To see this, note that there g
all B large enoughR and 3 satisfy input symbols, and we haw@(B) choices for the probability

assigned to each nohsymbol. Since there is at most one
REKX)] < I(X;Y)(1 +n) (27)  zero cost symbol (namely, the symbol), Pg is completely
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}yu) }y<2) L ‘ }ym }

determined by the number of occurrences of the n@ym-
bols. Thus, there are only a total 6f(B*!) possible types

Pp SatISfymg the constraint of havm@(B) non— SymbOIS' Fig. 2. Parsing of the entire received sequence of gizen — 1 into rp

This implies that blocks of lengthdz, one of which is generated by the sent message, while

the others are generated by pure noise.
log €| _ log €| . ye

Bl = 2R (1 o(1))

when x € X, and similarly for the case wher ¢ X.
Combining this with [[3D) and(31), we obtain

slight abuse of notation, in the remainder of the proof we use

Y1,Ys,..., Y, 1 to denote the effective output process.
log |Cp] < I(X:Y)(1 +1) Augmented decoderAn augmented decoder is a decoder
dg — ’ g which is revealed the complete effective output sequende an
whenx € X. and in addition, is informed that the message was sent in one of
1 e 2 A+n—1—v moddg
sICol < r(x,v)(1 40+ 5B/m s { i (32)

when « ¢ X. Note thatlog |Cg| = B by definition. Thus, consecutive (disjoint) blocks of duratiodz, as shown in

by multiplying and dividing the left-hand sides of the abov€&ig.[2. Note th

inequalities byK (Cz), and by noting that< (C%;) < K(Cp) rp = 2B5-9) (33)

by the definition of the cost of a code (see Definitidn 2 and '

recall that by definition, the extended codeword for messagdn augmented decoder, in addition to outputting a message,
m has the same cost a%(m)), the above inequalities becomealso outputs an estimate of the block of sizg corresponding

to the time interval during which the message was sent.

/
MRﬁ I(X;Y)147n) Suppose the decoder daf; achieves (maximum) com-
dp munication delay less thawp with probability equal to
and 1 — £p. Further, suppose it can output the correct message
K(GjB)R < I(X;Y) 1 with maximum error probability 5. Hence, the corresponding
n = 1-5 (1+mn). augmented decoder can both output the block of gjzavhich

Since K (€);) = dpE[k(X)] whenx € X and K(C;) = corresponds to the actual transmission period, and ouigut t

nE[k(X)] when « ¢ X, inequalities [(27) and[(28) follow correct message, with maximum error probability at most

Hence, if [27) or[(2B), as appropriate, doesn’t hold, then th? +és. We now Sh.OW that if{(29) dqesn’t.hold, then with
maximal error probability tends to one probability approaching one, pure noise will produce many
' output blocks that look as if they were generated by some

codeword. This implies thatg + ég — 1. Therefore, if the
B. Proof of (29) delay constraint is satisfied witfs — 0, thens g — 1. Hence,

We show that if inequality((29) is reversed, then a decodirthe decoder ofC; achieves (maximum) communication
that satisfies the delay constraint has an average error odtelay less thanig with probability tending to one, its error
messages that tends to one. To prove this, we introdys®bability will tend to one whenevel (29) doesn’t hold.
the concepts of “effective output process” and “augmentedTo develop some intuition for provinf(R9), we first consider
decoder.” the simpler setting where there is only a single message. We
Effective output processThe “effective” output process is then generalize to the multiple message case to olftajn (29).
the random output process “viewed” by the sequential de-1) Single messageSuppose there is only one codeword to
coder,i.e, it is generated as if there were pure noise aftée transmitted. The augmented decoder’s only task is thus to
the transmission of thextendedcodeword. Specifically, the output the block of sizeig that corresponds to the period
distribution of the effective output process is as follohe whenc(m) was sent.

Y;'s fof4 For this specific setting, we show that ff is sufficiently
. large, the decoder will not be able to perform the task réliab
re€{lv—1U{vtdp,..., Ay +n -1} begause the noise is likely to producg several blocks tkﬂi lo

are i.i.d. according t@),, whereas the block as though they were generated &iyn). More precisely, we
show that the augmented decoder has a large probability of
Yo, Yoir, o Yoqap 1 error (asymptotically equal to one) whenever for some 0
is distributed according to and all B large enough,

B(B—6—n)>dsD(XY||XY,). (34)

1
m Z Q(|c(m)),

Bl m 15We use the notatiorf (B) = g(B) whenever the functiong and g are

the output distribution given that emndomly selectedex- exponentially equali.e., if
, . ;

tended) codeword front; has been transmitted. With a T log f(B) = lim 1 log g(B) .
B—oo B B—oco B
14Notice that because df (R7)z is a strictly positive quantity.
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Let¢(m) denote the extended codewat(@n) without zero- uniformly over the se{Q : Q ~ Q} by the continuity of
cost symbols and IeY (m) be its corresponding output. Fordivergenc@
instance, if the extended codewordcisn) = 1,2, %,2, x and Therefore,

its corresponding random output vectdi(m) takes value . A

2,2,1,%,1 then&(m) = 1,2,2 and ¥ (m) = 2,2, . Further, E(Z(m, Q)) = ——2~»PEYIXY), (39)

let Q be the empirical distribution oV (m) conditioned on b

é(m), i.e., Q satisfies Since A = 285, from (28), [3%), and[{39) we get
Pty 5 (m) (@,9) = Pp(2)Q(yl), En(Z(m,Q)) = 2"7.

where Pg denotes the empirical distribution &frm). Since Z(m, Q) is a binomial random variable, it can easily

The above restriction to the nonsymbols allows us to P& seen from Chebyshev's inequality (or the Chernoff bound)
treat the various possible delays—linearfn subexponential thatZ(m, Q) must be concentrated near its mean, from which
in B, and exponential iB3—in a unified way. Had we been it follows that
interested only in the linear case, the argument would also Z(m, Q)
hold without the restriction to now-symbols. } m m

For a given fixed conditional probability distributio, ’
denote by Z(m,Q) the binomial random variable whichFrom [3T) and[{40) we get
represents the number of pure noise blocks, out®f— 1 Sytds—1 _
of them, whose conditional empirical distribution with pest Prm(€) = (1 -o(1)) Z P (Y00 € TQ(C(m)))
to the nonx symbols ofé(m) is Q. Then the error probability {Q:Q~Q}
of the augmented decoder can be lower bounded as =1-o0(1) (41)

>—1—0(1) B—oo. (40)

as B — oo, where the second equality follows from Cheby-
P, (&) shev’s inequality. We conclude that for the single message
A _ _ case, the error probability tends to one whenever (34) holds
=z Z Pin(E]Q = Q) x Pn(Y(m) € T5(e(m))), (35) 2) Multiple messagesThe main additional ingredient used
{Q:Q~Q} to establish[{29) is the fact that the decoder does not know a
where theQ’s in the summation are conditional distributiongriori the transmitted message. Because of this, the augien

that are close to the actual chaniggl Specifically,Q(-|z) is decoders task is more difficult to perform; pure noise can
such that induce an error whenever it generates a block that is typical

- with any of the (extended) codewords fro®;. The key
|Q(|z) — Q(|x)|| < 1/log B (36) elementin the analysis consists in showing that the “tyitica
regions associated with different codewords are essbntial

times. And for anyz that appears ia(m) less than/B times, disjoint, i._e., thgt the probability_of the n_ois/e ggnerating a
O(|z) is arbitrary. block typical with any message is essentigi§j;| times the

Now. conditioned on{Q _ Q} there areZ(m Q) pure probability for the single message case. This, togethdr thg
noise blocks which look statistically identical to the Htoc @P0Vve argumentfor the single message case, yields thedesir

corresponding to the sent codeword, because the empiri'i%u“' . i _
conditional distribution of (the nom-codeword symbol po- OPserve that sinc€; achieves a maximum error prob-
sitions of) each block is a sufficient statistic for estimgtthe ability on the asynchronous channel that is less than

position of the sent codeword. Hence, the augmented decoli§ (extended) codewords;; can also achieve a maximum
fails with probability at least error probability on the synchronous channel that is leas th

_ ep—if we reveal v to the decoder, the channel becomes
( Z(m,Q) ) synchronous, and the error probability does not increase.

for any symbolz # « that appears appears inat leastv/B

Z(m, Q) +1 Therefore, assuming that the decoder is deterministic,ame c
assigndisjoint decoding regiond(m) to each codeword of
Therefore, from((35), €5 such that, with probability at least — <5, after trans-

P,.(&) mission over the synchronous chandglthe channel output

Z(m,0) ) lies in the decoding regio®(m) assigned to the transmitted

> Z E <7~’> P (Y(m) € Tg(e(m))) . codewordc(m). If the decoder ofC; is randomized, one
(0:0~0} Z(m, Q) +1 can easily construct an expurgated code with a deternunisti

(37) decoder and asymptotically the same rate as follows. Since
. - P
From Facf®, the probability that one single pure noise bloéﬁe maximum. error p_r_oba_\bmty o is at mostep, the
induces the ioint tvpePrO with is average error probability is at mosiz, hence the average
th ol ) ypﬁ NBC? with &(m) | error probability under MAP decoding is also at megt(note
= 9—dpD(XY||XY,) - 9—dpD(XY[|XY) (38) that MAP decoding minimizes the average error probability,

_ _ - not necessarily the maximum error probability). Now, witho
where X ~ Pg, wheredg denotes the number of non-

symbols inc(m). Note that the second equality in {38) holds 6see foonotg 3.
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loss of optimality, the MAP decoder can be restricted teince Q ~ Q, by continuity of divergenc@ The fourth
be deterministic. If we remove the half of the codewordsquality in [42) follows from [(3B). For the fifth inequality
with the largest error probability, we remain with a cod@ (42) we defined
whose maximum error probability is at mo2tg under a
deterministic (MAP) decoding. This expurgated code and its P(D(M,Q)) £ =~ |€’ | Z]P’ m,Q)),
decoding regiong D(m)} can now be used for the argument.
Adapting the argument used for the single message cage average probability of successful decoding of the code
fix a conditional distribution@ ~ @ (see [3B)), and let €, and having an input/output joint type equal Ry Q—in
Z(m, Q) denote the binomial random variable representlrtge above definition) denotes the random message to be
the number of pure noise blocks that induce the condition@nsmitted.
empirical distribution@ with ¢(m). For each message, de- Now, recall that the probability of successful decoding of
fine D(m, Q) as the intersection of the decoding regibm) €’ is at leastl — ¢ (see paragraph aftdr (32)), hence
with T5(¢(m))—that is the set of sequences, y2, .. ., Ya, .
in D(m) whosey;’s corresponding to the nosn-symbols of EAP( (M,Q)) >1-¢p.

¢(m) have an empirical distributio®) given(m). Note that Therefore, by Markov's inequality
since the decoding regions are disjoint, the dets:, Q) are ’

also disjoint. P(Q:P(D(M,Q)) >1—/E5) >1— 5,
Define . . i.Ae., with probabilityl —, /5 = 1—0(1), the empirical channel
- Z Z(m, Q), Q yields a probability of successful decoding- \/ep =1 —
m o(1). Denoting by{Q ~ Q} the set of conditional distributions
and Q such thatQ ~ Q (see [3B)) and such that
D(Q) £ U D(m, Q). P(D(M, Q) > 1— /5,
Then, it follows that
)= ElZ(m,Q) P(Q~Q)=1-o(1), (43)
" ~ sinceP(Q ~ =1 —0(1). Hence, from an 3), we
= (= 1) (D0, Q) S @E Q= l42) and (52)
TB _ 1 22 dp(D XYHXY*)+0(1))]PJW(D(Q7m)) E[Z(Q)] _ 23(575)27d3D(XY\\XY*)(1+0(1))2B (44)
_ iQ*dBD(XYIIXY*)(lJrO(l)) ZPm(D(m, ) uniformly over{Q ~ Q}. Hence, if for some; > 0 we have
s ™ B+ B —6—1n)>dsD(XY||XY,), (45)
A

= d—2_dBD(XY||XY*)(1+°(1))2BP(D(M, Q)), (42) thenEZ(Q) = 275, and using thaZ (Q) is a binomial random
B variable, we get
whereP, denotes the output distribution corresponding/to ~
symbolsx; and whereP,,, denotes the output distribution when Z~(Q) —
the channel input ig(m). Z(Q)+1

The first equality in [(42) follows from the definition of Proceeding as i {87), the error probability (averaged over

Z(Q).~The second equality follows from the definition of messages) of the augmented decoder is lower bounded as
Z(m,Q) and the fact that there areg — 1 pure noise

blocks (see[(32)). The third equality in"{42) holds since the P(¢&) > Z P(EIQ = QP(Y (M) € To(E(M)))

—o(1).

probability underP, of any sequence i®(Q, m) is equal to (0:0~Q}
2-ds(PXYIIXY.)+e(1)) times the probability of that sequence 28
underP,,. To see this note that for anye D(Q, m) we have > ~(Q) P(Y (M) € T5(e(M)))
[4, Lemma 2.6] - (@) +1 <
’ ) {Q:Q~Q}
P, (y) = 9—ds(H(Y|X)+D(XY||XY)) =(1-0(1)). (46)
and Hence, if [45) holds for some > 0, or, equivalently, if
P, (y) = 2~ 98(HO+DI V) RE(E(X))(1+8—-6—n) > D(XY||XY,)
Hence since B/dp = RE(k(X)), the error probability tends to one

. o o asB — oo. This implies that if a code achieves rdi&> 0 at
m ()27 48 (PXY XY )=DXYIXY) timing uncertainty per information bit and delay exponent

m(y)2—d3(D(XY||XY*)+0(1))7

P.(y) =P
P

17See footnot§ 3.
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§ then [29) holds. This completes the proof of the conversesA simple upper bound is

for Theorem$ 1l andl 4. [ |

Conyerse of Theorel 5:The converse proof for The- I(X:Y) + D(Y||Y,)
orem[B is almost the same as the the converse proof for cB) < max ER(](1+ B) (48)
Theorent. As for the achievability proofs, the main ideais t
find a suitable replacement for the gt 2,..., A} of time — 1 max E[f(X)], (49)
slots that the receiver needs to consider. For the proof, we 1+ X EkX)]

choose the set of time slots as a function of the coding SCheWﬁeref(x) is the divergence between the distribution 6f
under consideration. In more detail, given any reliableingd congditioned onX = x and the distribution ot conditioned
scheme,i.e,, any coding scheme for which the probabilityyn x — 4.

of errorep —+ 0 as B — oo, for each valuet, consider  yging the fact that for nonnegative b, c, and d (with a

the probability that the decoder makes an error or has delgyitable convention for the case wherand/ord is 0)
greater thandg conditioned on the event = ¢. We will

replace the se{l,..., A} with the set8(,/ep) of timest ath < max (2 é)
for which this conditional probability is at mogtz 5. Observe c+d ™~ "d)’

thaF th_e conditional probability of error, aver_aged owers by we see that the above maximum is achieved for an input
definition at most2eg, so Markov’s inequality says that thedistribution with a point mass at*, where

probability (over the distribution of/) that this conditional

probability is larger than/eg is at most2,/eg. Thus,v is in . f(x)
8(y/ep) with probability at least — 2,/z5. The key property a = argmaxm@-

of this construction is that the decoder for the given coding o o _ _
scheme can with high probability correctly decode the ngessa  However, the maximizing solution is not unique. Since

within a delay ofdp for each membeof 8$(\/z5). f(x) =k(x) =0,
We now apply the converse proof of Theoréin 1 to the pfx)+ 1 —pfa)  f)

set 8(,/ep). First, we need to parse the output sequence o~ =

apprér\)/r;élyi.e., split the output sequence into disjoint blocks P(x) + (1 = p)k(a®) k)

of length dg. Recall thatrg, the number of such disjoint for anyp € [0, 1]. Hence, any input distribution with two point

blocks, was roughlyc% in the converse proof of Theoreh 1.masses, one at and one at*, will do. Going back to[(49),

Now, however, since(,/cg) can be arbitrary, it is possible we get

that8(,/25) does not even contain any time slots congruent to,

say,0 moddg. To get around this minor technicality, observe c) < 1 f(@)

that by the pigeonhole principle, for at least one vatueod

dp, 8(y/€B) contains at Ieasis(di\/j‘?)' time slots congruent

to x mod dg. For such anx, we chooser uniformly from

those elements i8(,/c5) that are congruent ta mod dp.

Because the decoder for the given coding scheme can

high probability correctly decode_ the message vyithin ayjel%robabilityl _ p of beinga®, wherep —s 1. The first term in

of dp for each member o8(,/z), it follows that this decoder the min approaches

can decode the message and determine the valugvith high (@)

probability even when is chosen as above. max K2)
From this point, we follow the converse proof of Theofédm 1,

with rp replaced by@ (equivalently,A is replaced by by Theorem 3 of[[B]. The second term is

the size of8(,/2g)). At the end, we see that a reliable decoder

This upper bound is obtained by choosing the input dis-

tribution to maximize the second term in the minimum of
). To prove that this upper bound can be achieved, choose
to have a distribution with probability of being x, and

. . 1 f(z)
t only if f dB | h, — =,
can exist only if for anyy > 0 an arge enoug T3 max ko)
log(8(+/ .
B (1 + M) <dp(D(XY||XY:) + 7). as derived above (true actually for apy not only p — 1).

So, the second term is smaller, and we are always limited by
Thus, log(S(é/ﬁ)) has replaced the role played By in the the timing uncertainty. This proves the desired result. =

converse proof of Theore 1. Finally, sineg — 0, /&5 = Remark. Our results hold under the assumption that the only

0, so by definition of3 possible zero cost symbol is thesymbol. The other cases,
~ loo(S(./FR which we now briefly discuss, can be handled with arguments
p < limsup M, similar to the ones used in this paper.

completing the proof. - « Two symbols il have zero cost: the capacity per unit

cost is readily seen to be infinite.
« x € X and all z € X have positive cost: the analysis in
I(X;Y) I(X;Y)+ D(Y||Yy) (7) this paper can be applied, but would require some slightly
Ek(X)]" EKX)(1+8) ' cumbersome notation.

Proof of Theorenh]2: Starting from Theorer] 1,

c(p) = max min {
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« There is a single zero cost symhokE X different thanx:  His current research interests include coding theory agdrithms, with an

in this case the asynchronous Capacity per unit cost isemphasis on the construction and analysis of sparse graj#s dor various
problems related to communication, compression, sensind,information-

th ti :
C(/B,(S) = ?(_Lé(;) 0 S ) S /8/2, /8 Z 07 eoretic secrecy.

i.e., it is the synchronous capacity per unit cost multighlie
by a factor1/(1 — 26).

The first thing to note in the above capacity expression is
that it does not depend ofl. The reason for this is that
no matter how larges is it is always possible to append
to each codeword a long enough zero cost preamble that
guarantees the decoder is able to identifywith high
probability.

For an intuitive justification for tha — 24 factor, observe

that in the achievability proof of Theorefd 4 case Asian Tehamkert Ced the Engi Bhvsicist Dinl 2000 and th
. - . . . slan Tchamkerten received the Engineer Physicist Diploma in and the
0B bits are encoded via, the startinformation time. Ph.D. degree in Communications in 2005, both from the Ecolgté€chnique

When a symbol different than has zero cost, not only Fédérale de Lausanne (EPFL), Switzerland. Between 2002008, he was

it is possible to encode information through the stam Postdoctoral Associate in the Department of Electricadjifi@ering and
; ; : ; “ ” Computer Science, Massachusetts Institute of Technolbl§y)( Cambridge.
information time, but also in the _COdeword |ength' ByIn 2008 he joined Telecom ParisTech (ex. Ecole NationaleéBemre des
codeword length we mean the time betweeand the Télécommunications, ENST), Paris, France, where he iutiyr Associate

time of the last non-zero cost symbol of the sent codewokdofessor. In 2009, he won a junior excellence chair grasnfthe French

. . . . National Research Agency (ANR). His research interestsraieformation
This alloyvs_ to communicatedB of information only theory, applied Statistics, and algorithms.
through timing.

Proof of Theoreni]3: A simple gquantization argument
can be used to derive Theoreh 3 from Theorgim 1. For
achievability, one quantizes the input and the output rakies
to a finite alphabet. Then, the achievability part of Theofgm
can be applied to this quantized channel. Finally, takeithi |
of infinitely fine quantization to proves that the stated riate
achievable.

For the converse, one adapts the method of types by
guantizing the set of probability distributiorisg., one defines
a type as a set of probability distributions that are “closz”
each other. With such a notion of type, the converse part lpAvid Tse received the B.A.Sc. degree in systems design engineering

. . L f g . from University of Waterloo in 1989, and the M.S. and Ph.Dgrees in
Theoreni 1 can be apphed, and in the limit of 'nflnltely fin lectrical engineering from Massachusetts Institute afhfielogy in 1991

guantization, one obtains the desired converse result. B and 1994 respectively. From 1994 to 1995, he was a post@bateember

of technical staff at A.T. & T. Bell Laboratories. Since 199% has been

at the Department of Electrical Engineering and Computeer8es in the

REFERENCES University of California at Berkeley, where he is currendyProfessor. He

. ! ived a 1967 NSERC graduate fellowship from the govemofCanada
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