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Asynchronous Capacity per Unit Cost
Venkat Chandar, Aslan Tchamkerten, and David Tse

Abstract—The capacity per unit cost, or, equivalently, the
minimum cost to transmit one bit, is a well-studied quantity
under the assumption of full synchrony between the transmitter
and the receiver. In many applications, such as sensor networks,
transmissions are very bursty, with amounts of bits arriving
infrequently at random times. In such scenarios, the cost of
acquiring synchronization is significant and one is interested
in the fundamental limits on communication without assuming
a priori synchronization. In this paper, the minimum cost to
transmit B bits of information asynchronously is shown to
be equal to (B + H̄)ksync, where ksync is the synchronous
minimum cost per bit, and where H̄ is a measure of timing
uncertainty equal to the entropy for most reasonable arrival
time distributions. This result holds when the transmitter can
stay idle at no cost and is a particular case of a general result
which holds for arbitrary cost functions.

Index Terms—asynchronous communication; bursty communi-
cation; capacity; capacity per unit cost; energy; error exponents;
large deviations; sequential decoding; sparse communication;
synchronization

I. I NTRODUCTION

Synchronization is an important component of any commu-
nication system. To understand the cost of synchronization, it
is helpful to divide applications into two rough types. In the
first type, transmission of data happens on a continuous basis.
Examples are voice and video. The cost of initially acquiring
synchronization, say by sending a pilot sequence, is relatively
small in such applications because the cost is amortized over
the many symbols transmitted. In the second type, transmis-
sions are very bursty, with amounts of data transmitted once
in a long while. Examples are sensor networks with sensor
nodes transmitting measured data once in a while. The cost
of acquiring synchronization is relatively more significant in
such applications because the number of bits transmitted per
burst is relatively small.

What is the fundamental limitation due to the lack ofa
priori synchrony between the transmitter and the receiver in
bursty communication? While there has been a lot of research
on specific synchronization algorithms, this question has only
recently been pursued [1], [7], [6]. In their model, transmission
of a message starts at a random time unknown to the receiver.
The performance measure is the data rate: the number of bits
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in the message divided by the elapsed time between the instant
information starts being sent and the instant it is decoded.

The data rate is a sensible performance metric for bursty
communication if the information to be communicated is
delay-sensitive. Then, maximizing the data rate is equivalent
to minimizing the time to transmit the burst of data. In certain
applications, however, the allowable delay may not be so
tightly constrained, so the data rate is less relevant a measure
than theenergyneeded to transmit the information. In this
case, the minimum energy needed to transmit one bit of
information is an appropriate fundamental measure. Thus, we
are led to ask the following question: what is the impact of
asynchrony on the minimum energy needed to transmit one
bit of information?

This type of question falls into the general framework
of capacity per unit cost[5], [8], where one is interested
in characterizing the maximum number of bits that can be
reliably communicated per unit cost of using the channel.
Consider the following modification of the formulation in [7],
[6] to study asynchronous capacity per unit cost.

There areB bits of information which needs to be com-
municated. The numberB can be viewed as the size of a
burst in the above scenario, with consecutive bursts occurring
so infrequently that we can consider each burst in complete
isolation. TheB bits are coded and transmitted over a mem-
oryless channel using a sequence of symbols that have costs
associated with them. The rateR per unit cost is the total
number of bits divided by the cost of the transmitted sequence.

The data burst arrives at arandom symbol timeν, not known
a priori to the receiver. Without knowingν, the goal of the
receiver is to reliably decode the information bits by observing
the outputs of the channel. Although the receiver does not
know ν, we assume that both the transmitter and the receiver
know that ν lies in the range from1 to A. The integerA
characterizes the asynchronism level or the timing uncertainty
between the transmitter and the receiver. At all times before
and after the actual transmission, the receiver observes pure
noise. The noise distribution corresponds to a special “idle
symbol” ⋆ being sent across the channel.

The main result in this paper is a single-letter characteri-
zation of the asynchronous capacity per unit cost, or, equiv-
alently, the minimum cost to transmit one bit of information.
Under the further assumption that the idle symbol⋆ is allowed
to be used in the codewords and has zero cost, the result sim-
plifies and admits a very simple interpretation: the minimum
cost to transmitB bits of information asynchronously is

(B + logA)ksync, (1)

where ksync is the minimum cost to transmit one bit of
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information in the synchronous setting.1 Thus, the timing un-
certainty imposes an additional cost ofksync logA as compared
to the synchronous setting. Note that this result implies that the
additional cost is significant only when the parameterlogA is
at least comparable toB.

Even though we do not have astringentrequirement on the
delay from the time of data arrival to the time of decoding, a
meaningful result cannot be obtained if there isno constraint
at all. This can be seen by noting that the transmitter could
always wait until the end of the arrival time interval (at time
A) to transmit information. Then, there would no price to pay
for the timing uncertainty since communication wouldde facto
be synchronous. However, the delay incurred would be very
large if A is very large. To avoid this undesirable situation,
we impose the constraint that the delay should belinear in B.
A delay linear inB is a natural constraint since it is of the
same order as the delay incurred in the synchronous setting
[8]. The expression (1) is the minimum cost achievable by any
scheme subject to this delay constraint. Given this constraint,
the start time of information transmission is highly random
to the receiver and the additional cost is the cost needed
to construct codewords that allow a decoder to resolve this
uncertainty.

What happens when longer delays are allowed? First, we
show that performance cannot be improved beyond (1) within
the broad class of coding schemes whose delays aresub-
exponentialin B. Second, we show that when the allowable
delayd scales exponentially withB (but is no larger thanA,
for otherwise the situation reduces to the synchronous setting
mentioned above), the minimum cost to transmitB bits can
be further reduced to

(

B + log
A

d

)

ksync.

Thus, in this more general case, the impact of asynchronism
is significant whenlog(A/d) is at least of the order ofB.

The above results are all proved under a uniform distribution
on the arrival timeν. They can be generalized to a broad class
of other distributions, withlogA replaced by a quantitȳH,
which equals the entropy for most reasonable distributions.

It is worth mentioning that the asynchronism studied in this
paper is due entirely to the random arrival time of the data and
the desire to deliver that data within a certain delay constraint.
One can think of this assourceasynchronism. There is another
type of asynchronism due to the lack of a common clock
between the transmitter and the receiver. One can think of this
as an example ofchannelasynchronism. We do not consider
this type of asynchronism here. Hence, throughout the paper,
we will assume both the transmitter and the receiver have
access to a common clock. An interesting future direction
would be to study the combined effect of source and channel
asynchronism.

II. M ODEL AND PERFORMANCECRITERION

Our model captures the following features:

1In this paper, all logarithms are taken to base2.

• Information is available at the transmitter at a random
time;

• The transmitter chooses when to start sending informa-
tion;

• Outside the information transmission period, the trans-
mitter stays idle and the receiver observes noise;

• The receiver decodes without knowing the information
arrival time at the transmitter.

Communication is discrete-time, and carried over a discrete
memoryless channel characterized by its finite input and output
alphabets

X ∪ {⋆} and Y,

respectively, and transition probability matrix

Q(y|x) x ∈ X ∪ {⋆}, y ∈ Y.

Here ⋆ denotes the special idle symbol, andX denotes the
alphabet containing the symbols that can be used in the
actual transmission of the data.X may or may not contain
⋆. We assume that no two different input symbolsx and x′

belonging toX have identical conditional distributionsQ(·|x)
andQ(·|x′).2

Given B information bits to be transmitted, a codebookC

consists of2B codewords of lengthn composed of symbols
from X. The messagem arrives at the transmitter at a random
time ν, independent ofm, and uniformly distributed over
{1, 2, . . . , A}, where the integerA ≥ 1 characterizes the
asynchronism levelbetween the transmitter and the receiver.
Only one message arrives over the period[1, 2, . . . , A+n−1].
If A = 1, the channel is said to be synchronous.

The transmitter chooses a timeσ(ν,m) so that

ν ≤ σ(ν,m) ≤ A almost surely

to begin transmitting the codewordcn(m) ∈ C assigned
to messagem. This means that the transmitter cannot start
transmitting before the message arrives or after the end of the
uncertainty window. It turns out that the possibility to choose
σ as a function of bothν andm directly influences the cost
to deliver this information by allowing to convey information
through timing. In the rest of the paper, we suppress the
argumentsν andm of σ when these arguments are clear from
context.

Before and after codeword transmission,i.e., before time
σ and after timeσ + n − 1, the receiver observes “pure
noise.” Specifically, conditioned on the event{ν = t},
t ∈ {1, 2, . . . , A}, and on the message to be conveyedm,
the receiver observes independent symbols

Y1, Y2, . . . , YA+n−1

distributed as follows. For

1 ≤ i ≤ σ(t,m)− 1

or
σ(t,m) + n ≤ i ≤ A+ n− 1 ,

2This is without loss of generality, as two such symbols are identical for
communication purposes, so we can consider the equivalent channel with one
of these two symbols deleted from the symbol alphabet.
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Y1 Y2 . . .

⋆ ⋆ . . . ⋆ c1(m)

ν

. . .

τN

cN (m) ⋆ ⋆ . . . ⋆

Fig. 1. Time representation of what is sent (upper arrow) andwhat is received
(lower arrow). The “⋆” represents the “idle” symbol. Messagem arrives at
time ν, starts being sent at timeσ, and decoding occurs at timeτ .

the Yi’s are distributed according toQ(·|⋆). At any time i ∈
{σ, σ + 1, . . . , σ + n− 1}, the distribution is

Q(·|ci−σ+1(m)) ,

whereci(m) denotes theith symbol of the codewordcn(m).
Knowing the asynchronism levelA, but not the value of

ν, the receiver decodes by means of a sequential test(τ, φ),
whereτ is a stopping time, bounded byA+n−1, with respect
to the output sequenceY1, Y2, . . . indicating when decoding
happens, and whereφ denotes a decision rule that declares
the decoded message (see Fig. 1). Recall that a (deterministic
or randomized) stopping timeτ with respect to a sequence
of random variablesY1, Y2, . . . is a positive, integer-valued,
random variable such that the event{τ = t}, conditioned
on the realization ofY1, Y2, . . . , Yt, is independent of the
realization ofYt+1, Yt+2, . . ., for all t ≥ 1. Given {τ = t},
t ∈ {1, 2, . . . , A + n − 1}, the functionφ outputs a message
based on the past observations from time1 up to timet.3

A “code” refers to a codebookC together with a decoder,
i.e., a sequential test(τ, φ). Throughout the paper, whenever
clear from context, we often refer to a code using the codebook
symbolC only, leaving out an explicit reference to the decoder.

The maximum (over messages) decoding error probability
for a given codeC is defined as

P(E|C) , max
m

1

A

A
∑

t=1

Pm,t(E|C), (2)

where the subscripts “m, t” indicate conditioning on the event
that messagem arrives at timeν = t, and whereE indicates
the event that the decoded message does not correspond to the
sent codeword,i.e.,

E , {φ(Y τ ) 6= M}

whereM denotes the random message to be transmitted.

Definition 1 (Cost Function). A cost function k: X → [0,∞)
assigns a non-negative value to each channel input.4

Definition 2 (Cost of a Code). The (maximum) cost of a code
C is defined as

K(C) , max
m

n
∑

i=1

k(ci(m)).

3To be more precise,φ is anyFτ -measurable function that takes values in
the message set, whereFt is the sigma field generated byY1, Y2, . . . , Yt.

4“Kost” is cost in German.

Definition 3 (Delay of a Code). Givenε > 0, the (maximum)
delay of a codeC, denoted byd(C, ε), is defined as the smallest
d such that

min
m

Pm(τ − ν ≤ d− 1) ≥ 1− ε,

wherePm denotes the output distribution conditioned on the
sending of messagem.5

Throughout the paper, we often consider delays in the
regime ε → 0. In this case, we omit an explicit reference
to ε. For instance, if{CB} is such thatd(CB , εB) = O(B)
for some{εB} such thatεB → 0 as B → ∞, we simply
say that{CB} achieves a delay that is linear inB—leaving
implicit “with probability asymptotically equal to one.”

A key parameter we shall be concerned with is

β ,
logA

B
,

which we call the timing uncertainty per information bit.
Next, we define the asynchronous capacity per unit cost in

the asymptotic regime whereB → ∞ while β is kept fixed.

Definition 4 (Asynchronous Capacity per Unit Cost). R is
an achievable rate per unit cost at timing uncertainty per
information bit β and delay exponentδ if there exists a
sequence of codes{CB}, and a sequence of numbers{εB}
with εB

B→∞−→ 0, such that

P(E|CB) ≤ εB ,

lim sup
B→∞

log(d(CB , εB))/B ≤ δ ,

and

lim inf
B→∞

B

K(CB)
≥ R.

The asynchronous capacity per unit cost, denoted byC(β, δ),
is the largest achievable rate per unit cost. In the important
case whenδ = 0, we defineC(β) , C(β, 0).

Note that, in Definition 4, the codeword lengthn is a free
parameter that can be optimized, just as for the synchronous
capacity per unit cost (see the comment after [8, Definition
2]). The results in the next section characterize the capacity
per unit cost for arbitraryβ andδ. Similar to the synchronous
case, the results simplify when there is a zero cost symbol,
specifically whenX contains⋆ and⋆ has zero cost.

For simplicity, for the rest of the paper we assume that
the only possible zero cost symbol is⋆—in particular, if
⋆ /∈ X then X contains only non-zero cost symbols. The
other, arguably unnatural, cases can also be addressed by the
arguments in this paper and are briefly discussed in the remark
before the proof of Theorem 3 in Section IV.

5Hence, by definition we have

Pm(·) =
1

A

A∑

t=1

Pm,t(·) .
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III. R ESULTS

Our first result gives the asynchronous capacity per unit cost
whenδ = 0. It can be viewed as the asynchronous analogue of
Theorem 2 in [8], which states that the synchronous capacity
per unit cost is

max
X

I(X ;Y )

E[k(X)]
. (3)

As mentioned above, in stating our results we assume that all
non-⋆ symbols inX have positive cost, and that if⋆ is in X,
then⋆ has zero cost.

Theorem 1 (Asynchronous Capacity per Unit Cost: Sub-ex-
ponential Delay Constraint). The asynchronous capacity per
unit cost at delay exponentδ = 0 is given by

C(β) = max
X

min

{

I(X ;Y )

E[k(X)]
,
I(X ;Y ) +D(Y ||Y⋆)

E[k(X)](1 + β)

}

, (4)

whereX denotes the random input to the channel,Y the cor-
responding output,Y⋆ the random output of the channel when
the idle symbol⋆ is transmitted (i.e.,Y⋆ ∼ Q(·|⋆)), I(X ;Y )
the mutual information betweenX and Y , and D(Y ||Y⋆)
the Kullback-Leibler distance between the distributions of Y
and Y⋆.6

Furthermore, capacity can be achieved by codes whose
delay grows linearly inB.7

The two terms in (4) reflect the two constraints on reli-
able communication. The first term corresponds to the stan-
dard constraint that the number of bits that can reliably be
transmitted per channel use cannot exceed the input-output
mutual information. This constraint applies when the channel
is synchronous, hence also in the absence of synchrony.

The second term in (4) corresponds to the receiver’s ability
to determine the arrival timeν of the data. Indeed, even though
the decoder is only required to produce a message estimate,
because of the delay constraint, there is no loss in terms of
capacity per unit cost to also require the decoder to producean
approximate estimate of the time when transmission begins—
the delay constraint implies that the decoder can locate thesent
message within a time window that is negligible compared to
A. The quantity

I(X ;Y ) +D(Y ||Y⋆) = D(XY ||XY⋆),

whereD(XY ||XY⋆) refers to the Kullback-Leibler distance
between the joint distribution of(X,Y ) and the (product)
distribution of (X,Y⋆), measures how difficult it is for the
receiver to discern a data-carrying transmitted symbol from
pure noise, and thus determines how difficult it is for the
receiver to get the timing correct.

When the alphabetX contains a zero-cost symbol0, the
synchronous result (3) simplifies, and Theorem 3 in [8] says
that the synchronous capacity per unit cost becomes

max
x∈X

D(Yx||Y0)

k(x)
, (5)

6Y⋆ is interpreted as “pure noise.”
7See comment after Definition 3.

an optimization over the input alphabet instead of over the
set of all input distributions, whereYx refers to the output
distribution given thatx is transmitted.

We find an analogous simplification in the asynchronous
setting when⋆ is in X and has zero cost:

Theorem 2 (Asynchronous Capacity per Unit Cost With Zero
Cost Symbol: Sub-exponential Delay Constraint). If ⋆ is in X

and has zero cost, the asynchronous capacity per unit cost at
delay exponentδ = 0 is given by

C(β) =
1

1 + β
max
x∈X

D(Yx||Y⋆)

k(x)
, (6)

and capacity can be achieved by codes whose delay grows
linearly with B.

Hence, a lack of synchronization multiplies the cost of send-
ing one bit of information by1 + β. An intuitive justification
for this is as follows. Suppose there exists an optimal coding
scheme that can both isolate and locate the sent message
with high probability—as alluded to above, the ability to
“locate” the message is a consequence of the decoder’s delay
constraint. Assuming that the delay is negligible,i.e., the delay
grows subexponentially withB, this allows us to consider
message/location pairs as inducing a code of size

≈ 2BA

used for communication across thesynchronous channel.
Hence, sinceA = 2βB we are effectively communicating

≈ βB +B = B(1 + β)

bits reliably over the synchronous channel. Therefore, sending
B bits of information at asynchronism levelβ is at least as
costly as sendingB(1+β) bits over the synchronous channel.
Flipping this reasoning around, the asynchronous channel ef-
fectively induces a codebook for message/location pairs where
the location is encoded viapulse position modulation(PPM).
From [8], optimal coding schemes are similar to PPM in that
the codewords consist almost entirely of the zero cost symbol.
This provides an intuitive justification for why(1+β)ksync is
an achievable rate per unit cost.

Theorem 2 can be extended to the (continuous-valued)
Gaussian channel, where the idle symbol⋆ is the0-symbol:

Theorem 3 (Asynchronous Capacity per Unit Cost for the
Gaussian Channel: Sub-exponential Delay Constraint). The
asynchronous capacity per unit cost for the Gaussian channel
with varianceN0/2, quadratic cost function (i.e.,k(x) = x2),
and delay exponentδ = 0, is given by

C(β) =
1

1 + β

log e

N0
, β ≥ 0 . (7)

Theorem 1 can be extended to the case of a large delay
constraint,i.e., when0 < δ ≤ β. In this case, the formula for
capacity is slightly different depending on whether⋆ is in X

or not, as stated in the following result.

Theorem 4 (Asynchronous Capacity per Unit Cost: Exponen-
tial Delay Constraint). The asynchronous capacity per unit
cost at delay constraintδ, with 0 ≤ δ ≤ β, is given by:
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(a) if ⋆ ∈ X and ⋆ has zero cost then

C(β, δ) = C(β − δ),

i.e., it is the same as the capacity per unit cost with
delay exponentδ = 0, but with asynchronism exponentβ
reduced toβ − δ;

(b) if ⋆ is not inX and all non-⋆ symbols have positive cost
then

C(β, δ)

= max
X

min

{

I(X ;Y )

E[k(X)](1− δ)
,
I(X ;Y ) +D(Y ||Y⋆)

E[k(X)](1 + β − δ)

}

.

(8)

The uniform distribution onν in the model is not critical.
The next result extends Theorem 1 to the case whereν is
non-uniform. For a non-uniform distribution onν, what is
important turns out to be its “smallest” set of mass points
that contains “most” of the probability.

Consider a general arrival timeν (defined over the positive
integers), not necessarily bounded. For a givenε > 0, let S(ε)
denote the smallest subset of the support ofν (i.e., the set of
n such thatP(ν = n) > 0) whose probability is at least1− ε.
Hence,P(ν ∈ S(ε)) ≥ 1− ε by definition.

Theorem 5 (Asynchronous Capacity per Unit Cost With
Non-uniform Arrival Time: Sub-exponential Delay Con-
straint). For a given sequence of arrival times{νB}B≥1,
define

β̄ = inf
{εB}

lim sup
B→∞

log(|S(εB)|)
B

, (9)

where the infimum is with respect to all sequences{εB} of
nonnegative numbers such thatlimB→∞ εB = 0.

Then, the asynchronous capacity per unit cost at delay
exponent0 is given by

C(β̄) = max
X

min

{

I(X ;Y )

E[k(X)]
,
I(X ;Y ) +D(Y ||Y⋆)

E[k(X)](1 + β̄)

}

.

Although the formula for̄β in (9) appears unwieldy, in many
cases it can easily be evaluated. For example, in many cases,
such as the uniform or geometric distributions, the formula
reduces to the normalized entropy

β̄ = lim
B→∞

H(νB)/B .

There are cases, however, where (9) doesn’t reduce to the
normalized entropy. For instance, consider the case when
νB = 1 with probability 1/2, and νB = i with probability
(1/2)2−βB for i = 2, . . . , 2βB + 1. Then, β̄ = β and
H(νB) = 1 + 0.5βB, which yields

β̄ = 2 lim
B→∞

H(νB)/B .

Asynchronous Capacity

The above results focus on characterizing the asynchronous
capacity per unit cost. However, just as the synchronous

capacity per unit cost result (3) immediately implies the
standard (synchronous) capacity result8

C = max
X

I(X ;Y )

by setting the cost functionk(·) = 1, Theorem 1 implies the
asynchronous capacity result

C(β) = max
X

min

{

I(X ;Y );
I(X ;Y ) +D(Y ||Y⋆)

1 + β

}

, (10)

the largest number of information bits pertransmitted symbol
that can be supported reliably by an asynchronous channel, as
a function ofβ.

Instead ofβ, we may alternatively consider the asynchro-
nism parameterα = (logA)/n = βR introduced in [1], [7].
Using (10), we deduce that rateR is achievable if and only
if, for some inputX ,

R ≤ I(X ;Y )

and
R ≤ D(XY ||XY⋆)− α .

Hence, asynchronous capacity is alternatively given by

C(α) = max
{

max
X:D(Y ||Y⋆)≥α

I(X ;Y );

max
X:D(Y ||Y⋆)≤α

D(XY ||XY⋆)− α
}

, (11)

with the convention that the maximum evaluates to0 if the
set being optimized over is empty. Consider the second inner
maximization in (11). SinceD(XY ||XY⋆) is convex inX ,
and the set{X : D(Y ||Y⋆) ≤ α} is convex, the maximum
is achieved for some extreme point of the set,i.e., either for
someX such thatD(Y ||Y⋆) = α, or for a distributionX
concentrated on a single point and such thatD(Y ||Y⋆) < α.
However, in the latter case we have

D(XY ||XY⋆)− α < 0

sinceD(XY ||XY⋆) = D(Y ||Y⋆) < α. Thus, (11) reduces to

C(α) = max
X:D(Y ||Y⋆)≥α

I(X ;Y ) .

Although not explicit in the statement of Theorem 1, the
proof of this theorem shows thatC(α) can be achieved with
codes whose delays are no larger thann. Summarizing the
above discussion, we get:

Corollary. The capacity at delay exponentδ = 0, and with
respect to asynchronism parameterα = (logA)/n, is given
by

C(α) = max
X:D(Y ||Y⋆)≥α

I(X ;Y ) .

Furthermore, capacity is achievable with codes whose delays
are no larger thann.

A closely related problem is determining the capacity when
rate is defined in terms of bits perreceived symbol. For this
problem, we refer the reader to [7], [6], where capacity as a

8Information per symbol and information per unit cost are differentiated by
lightface and boldface characters, respectively, as in [8].
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function ofα is studied, and where rate is defined with respect
to the expected elapsed time between the instant information
is available at the transmitter and the instant it is decoded.

IV. PROOFS OFRESULTS

We usePX to denote the set of distributions over the finite
alphabetX. Recall that the type of a stringxn ∈ Xn, denoted
by P̂xn , is the probability distribution overX that assigns,
to eacha ∈ X, the number of occurrences ofa within xn

divided by n [4, Chapter1.2]. For instance, ifx3 = 010,
then P̂x3(0) = 2/3 and P̂x3(1) = 1/3. The joint typeP̂xn,yn

induced by a pair of strings(xn, yn) ∈ Xn × Yn is defined
similarly. The set of strings of lengthn that have typeP is
denoted byTP , and is called the “type class ofP .” The set
of all types overX of strings of lengthn is denoted byPX

n .
Given a stringxn ∈ Xn and a conditional probability

distribution W = {W (y|x), (x, y) ∈ X × Y}, the set of
stringsyn that have conditional typeW given xn is denoted
by TW (xn), i.e.,

TW (xn) , {yn ∈ Yn : P̂xn,yn = P̂xnW} .

Finally, we use the standard “big-O” Landau notation to
characterize growth rates (see, e.g., [2, Chapter 3]), and use
poly(·) to denote a function that does not grow or decay faster
than polynomially in its argument.

The following two standard results on types are often used
in the analysis:

Fact 1 ([4, Lemma 2.2]).

|PX
n | = poly(n) .

Fact 2 ([4, Lemma 2.6]). If Xn is independent and identically
distributed (i.i.d.) according toX1 ∼ P1, then

poly(n)e−nD(X2‖X1) ≤ P(Xn ∈ TP2) ≤ e−nD(X2‖X1)

for anyX2 ∼ P2 ∈ PX
n .

Achievability of Theorem 1:We first show the existence
of a random code that achieves the asynchronous capacity
per unit cost when the latter is computed with respect to
average error probability. A standard expurgation argument
then shows the existence of a deterministic code achieving
the same (asymptotic) performance as the random code, but
now with respect to maximum error probability.

Fix some arbitrary distributionP on X. Let X be the input
having that distribution, and letY be the corresponding output,
i.e., (X,Y ) ∼ P (·)Q(·|·).

Given B bits of information to be transmitted, the code-
book C is randomly generated as follows. For each message
m ∈ {1, 2, . . . , 2B}, randomly generate a lengthn sequence
xn i.i.d. according toP . If xn belongs to the “constant
composition” set9

A = {xn : ||P̂xn − P || ≤ 1/ logn} , (12)

we let cn(m) = xn. Otherwise, we repeat the procedure
until we generate a sequence sufficiently close toP . From

9|| · || refers to theL1-norm.

Chebyshev’s inequality, for a fixedm, it is very unlikely that
any repetition will be required to generatecn(m), i.e.,

Pn(A) → 1 as n → ∞, (13)

wherePn denotes the ordern product distribution ofP .
The obtained codebook is thus essentially of constant com-

position, i.e., each symbol appears roughly the same number
of times across codewords. Moreover, by construction all
codewords in the random ensemble have cost

nE[k(X)](1 + o(1))

asn → ∞.
The sequential typicality decoder operates as follows. At

time t, for eachm ∈ {1, 2, . . . , 2B}, it computes the empirical
distributions

P̂cn(m),yt
t−n+1

(·, ·)

induced bycn(m) and then output symbolsytt−n+1. If there
is a unique messagem for which

||P̂cn(m),yt
t−n+1

(·, ·)− P (·)Q(·|·)|| ≤ 2/ logn,

the decoder stops and declares that messagem was sent.
If more than one codeword is typical, the decoder stops
and declares one of the corresponding messages uniformly
at random.10 If no codeword is typical at timet, the decoder
moves one step ahead and repeats the procedure based on
Y t+1
t−n+2. If the decoder reaches timeA+n−1 and no codeword

is typical, then it declares a randomly and uniformly chosen
message.

We first compute the error probability averaged over code-
books and messages. Suppose messagem is transmitted. The
error event that the decoder declares some specific message
m′ 6= m can be decomposed as11

{m → m′} = E1 ∪ E2 , (14)

where the error eventsE1 andE2 are defined as

• E1: the decoder stops at a timet betweenν andν+2n−2
(including ν andν + 2n− 2), and declaresm′;

• E2: the decoder stops either at a timet beforeν or from
ν + 2n− 1 onwards, and declaresm′.

For the error eventE1, for some0 ≤ k ≤ n−1 the first or the
lastk symbols ofY n are generated by noise, and the remaining
n− k symbols are generated by the sent codewordCn(m).12

The probability that such aY n together withCn(m′) yields an
empirical distributionJ that is jointly typical withP (·)Q(·|·),
that is,

||J(·, ·)− P (·)Q(·|·)|| ≤ 2/ logn , (15)

10The notion of typicality we use is often referred to as “strong typicality”
in the literature.

11Notice that the decoder outputs a message with probability one by time
A+ n− 1.

12We use a capital letter forCn(m) since codewords are randomly
generated.
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is upper bounded as

Pm(P̂Cn(m′),Y n = J)

=
∑

yn∈Yn

Pm(Y n = yn)
∑

xn:P̂xn,yn=J

Pm(Xn = xn)

≤
∑

yn∈Yn

Pm(Y n = yn)
∑

xn:P̂xn,yn=J

2−n(H(JX)+D(JX||P )−ε)

≤
∑

yn∈Yn

Pm(Y n = yn)2−n(H(JX)−ε)|{xn : P̂xn,yn = J}|

≤
∑

yn∈Yn

Pm(Y n = yn)2−n(H(JX)−ε)2nH(JX|Y)

≤ 2−n(I(J)−ε)

≤ 2−n(I(X;Y )−2ε) (16)

for any ε > 0 and alln large enough, whereH(JX) denotes
the entropy of the left marginal ofJ , where

H(JX|Y) , −
∑

b∈Y

JY(b)
∑

a∈X

JX|Y(a|b) log JX|Y(a|b),

and whereI(J) denotes the mutual information induced byJ .
The first equality in (16) follows from the independence

of Cn(m′) and Y n, sinceY n corresponds to the output of
Cn(m). For the first inequality, note that if the codewords were
randomly generated with each component of each codeword
i.i.d. according toP , we could deduce from [3, Theorem
11.1.2, p. 349] that

Pn(Xn = xn) = 2−n(H(JX)+D(JX||P )) .

The actual (non-i.i.d) codeword distribution is the i.i.d.dis-
tribution, conditioned on the constant composition event (12).
Therefore, we have

Pm(Xn = xn) =

{

Pn(Xn=xn)
Pn(A) ) xn ∈ A

0 otherwise,

and from (13) we get

Pm(Xn = xn) = 2−n(H(JX)+D(JX||P ))(1 + o(1))

asn → ∞, uniformly over the setA. This justifies the first
inequality in (16). The second inequality in (16) follows from
the non-negativity of the Kullback-Leibler distance. The third
inequality in (16) follows from [4, Lemma2.5, p. 31]. The
fourth inequality holds sinceH(JX)−H(JX|Y) = I(J), and
by upperbounding the sum of the probabilities by one. Finally,
the fifth inequality in (16) holds for anyε > 0 and alln large
enough since, by assumption,J is close toPQ (see (15)).

From (16), by taking a union bound over all empirical
distributionsJ that are jointly typical withPQ (poly(n) by
Fact 1) and over all the (less than2n) times involved inE1,
we obtain the upper bound

Pm(E1) ≤ 2−n(I(X;Y )−3ε) (17)

for all n large enough.
For the second error eventE2, pure noise produces some

outputY n that is jointly typical withCn(m′). The probability

that a noise generatedY n together withCn(m′) yields an
empirical typeJ is upper bounded by

2−nD(J||XY⋆)

by [4, Lemma 1.2.6]—recall thatD(J ||XY⋆) refers to the
Kullback-Leibler distance between, on the one hand, the joint
distribution J , and on the other hand, the product of the
distributions ofX and Y⋆. Hence, by taking a union bound
over all typical J ’s that satisfy (15) (poly(n) of them by
Fact 1), and by using the continuity of the Kullback-Leibler
distance,13 the probability that a noise generatedY n is typical
with Cn(m′) is upper bounded by

2−n(D(XY ||XY⋆)−ε) = 2−n(I(X;Y )+D(Y ||Y⋆)−ε) ,

for any ε > 0 and all n large enough. Finally, by taking a
union bound over all (less thanA) times where noise could
produce such an output, we get

Pm(E2) ≤ A · 2−n(I(X;Y )+D(Y ||Y⋆)−ε), (18)

for any ε > 0 and alln large enough.
Combining (14), (17), and (18), we get

Pm(m → m′) = Pm(E1) + Pm(E2)

≤ 2−n(I(X;Y )−3ε)

+A · 2−n(I(X;Y )+D(Y ||Y⋆)−ε),

for any ε > 0 and alln large enough.
Hence, by taking a union bound over all possible wrong

messages, we obtain that for anyε > 0,

Pm(E) ≤ 2B
(

2−n(I(X;Y )−3ε)

+A · 2−n(I(X;Y )+D(Y ||Y⋆)−ε)
)

,

for n large enough and allm. Since the above bound is valid
for a randomly generated code, we deduce that

EC(P̄(E|C)) = Pm(E)

≤ 2B
(

2−n(I(X;Y )−3ε)

+A · 2−n(I(X;Y )+D(Y ||Y⋆)−ε)
)

, ε1(n), (19)

whereP̄(E|C) denotes the error probability of codeC averaged
over the messages.

We now turn to the delay of the code. Suppose messagem
is transmitted with a specific (non-random) codewordcn(m)
that belongs to the setA. If event

{τ ≥ ν + n}

happens, then necessarilyY ν+n−1
ν isn’t typical with cn(m).

By Chebyshev’s inequality, the probability of the latter event
tends to zero asn → ∞, hence

Pm(τ ≤ ν + n) ≥ 1− ε2(n),

13Technically, the divergence is not continuous if, for example, both
distributions are0 at the same point. However, at points of discontinuity,
the discontinuity can only help since the divergence becomes infinite, and it
is easily seen that the corresponding error event has zero probability.
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where ε2(n) is a function that tends to zero asn → ∞.
Since the above inequality holds for any specific codeword
that belongs toA, we get

d(C, ε2(n)) ≤ n (20)

for any codeC whose codewords belong toA.
The proof can now be concluded. From inequality (19),

there exists a specific codeC ⊂ A whose error probability,
averaged over messages, is less thanε1(n). Removing the half
of the codewords with the highest error probability, we end
up with a setC′ of 2B−1 codewords whose maximum error
probabilityP(E) satisfies

P(E) ≤ 2ε1(n) , (21)

and whose delay satisfies

d(C′, ε2(n)) ≤ n

by the previous argument.
Now, fix the ratioB/n, thereby imposing a delay linear in

B, and substituteA = 2βB in the definition ofε1(n) (see
(19)). Then,P(E) goes to zero asB → ∞ whenever

B

n
< min

{

I(X ;Y ),
I(X ;Y ) +D(Y ||Y⋆)

1 + β

}

. (22)

Recall that, by construction, all the codewords have cost
nE[k(X)](1+ o(1)) asn → ∞. Hence, for anyη > 0 and all
n large enough,

k(C′) ≤ nE[k(X)](1 + η) . (23)

Condition (22) is thus implied by condition

B

K(C′)
< min

{

I(X ;Y )

(1 + η)E[k(X)]
,
I(X ;Y ) +D(Y ||Y⋆)

E[k(X)](1 + η)(1 + β)

}

.

(24)

Maximizing over all input distributions, and using the factthat
η > 0 can be chosen arbitrarily, proves that the right-hand side
of (4) is asymptotically achieved by non-random codes with
delay at mostn, which grows linearly withB.

Remark. From (24) it follows that whenever there exists some
input X such thatI(X ;Y ) > 0 while E[k(X)] = 0, and thus
X contains more than one zero cost symbol, the asynchronous
capacity per unit cost is infinite, i.e.,C(β) = ∞, for any
β ≥ 0.

Achievability of Theorem 4:The achievability scheme
for Theorem 4 is similar to the achievability scheme used to
prove Theorem 1 except that we distinguish the cases⋆ ∈ X

and⋆ /∈ X.
(a) ⋆ ∈ X: The main change is that now the transmitter does
not start transmitting at timeν. Instead, the transmitter only
starts transmitting at the first multiple of2δB larger thanν,
so that nowσ takes values over multiples of2δB. Such a
transmission scheme reduces the receiver’s uncertainty aboutσ
from uniformly over2βB time slots to (essentially) uniformly
over only2(β−δ)B time slots.

One proves thatC(β− δ) is achievable with delayO(2δB)
by repeating the arguments for the achievability of Theorem1.
The random codebook is constructed so that each codeword

satisfies the constant composition property. The blocklength
n is still chosen to beO(B) so that, in contrast with the
achievability of Theorem 1, where delay and blocklength are
the same, now the blocklength is exponentially smaller than
the delay.

The rest of the analysis is essentially unchanged. Since
the codewords are constructed in the same way, the cost
is unchanged, and the probability of error analysis is the
same, except thatA is replaced byA/2δB because now
the transmission timing allows the decoder to only consider
A/2δB time slots instead of allA time slots. Therefore,β is
replaced byβ − δ, completing the proof.
(b) ⋆ 6∈ X: The main change is that the transmitter uses
the freedom in the choice ofσ to communicate part of the
information through timing;B(1 − δ) information bits are
contained in each codeword andBδ information bits are
conveyed via timing. To achieve this, we use a space-time
code.

The transmitter generates2B(1−δ) random codewords in the
same way as in the achievability proof of Theorem 1 to obtain
a codebook

{cn(s) with 1 ≤ s ≤ 2(1−δ)B} .

Label each of the2B messages with one of the2(1−δ)B×2δB

pairs of integer indices(s, j), i.e., the message set is given by

{m(s, j) with 1 ≤ s ≤ 2(1−δ)B, 1 ≤ j ≤ 2δB} .

(For simplicity we assume that2B(1−δ) and2δB are integers.)
For any (space) indexs ∈ {1, 2, . . . , 2(1−δ)B}, the set of
messages

{m(s, j), 1 ≤ j ≤ 2δB}

is associated to codewordcn(s).
Transmission always starts at a time that is a multiple ofn.

Suppose messagem arrives at timeν and thatm = m(s̄, j̄).
The transmitter first computes the “offset”

O = j̄ −
⌈ν

n

⌉

mod 2δB.

The transmitter then starts sending codewordcn(s̄) at time

σ(ν,m) =
(⌈ν

n

⌉

+O
)

n. (25)

The receiver uses a sequential typicality decoder to find
the transmitted codeword as in the proof of the achievability
part of Theorem 1—since transmission times are restricted to
be multiples ofn, the sequential typicality decoder can be
restricted to multiples ofn.

Suppose codeword̂s is found to be typical at timet. The
receiver then computes the estimateσ̂ for σ given by

σ̂ = t− n+ 1

and finds the index̂j ∈ {1, 2, . . . , 2(1−δ)B} such that

ĵ =
σ̂

n
mod 2δB .

The receiver then declareŝm = m(ŝ, ĵ).
The rest of the analysis is essentially unchanged. Since

the codewords are constructed in the same way, the cost is
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unchanged, and the probability of error analysis is the same,
except that2B is replaced by2B(1−δ) because the transmission
timing allows the decoder to only consider2B(1−δ) codewords
instead of2B codewords.

Achievability of Theorem 5:To prove the achievability
part of Theorem 5, one applies essentially the same arguments
as for the achievability of Theorem 1. The transmitter’s
strategy is unchanged,i.e., σ = ν, and a random codebook
satisfying the constant composition property is used to encode
the messages. At the receiver, we need a suitable analog of the
set {1, 2, . . . , A} of time slots to consider. A natural choice
is to pick a sequence of nonnegative numbers{εB} such that

εB
B→∞−→ 0, and, for eachB, consider the “typical” setS(εB)

whose probability, under the arrival time distribution, isat least
1− εB by definition. The receiver operates just as before,i.e.,
using a sequential typicality decoder, but only over the setof
times inS(εB).

Since the codewords are constructed in the same way, the
cost of the codebook is unchanged. The probability of error
and delay analysis now breaks into two cases:ν ∈ S(εB) and
ν /∈ S(εB). The caseν ∈ S(εB) is handled as previously,
except thatA is replaced by|S(εB)|. When ν 6∈ S(εB), we
make the worst-case assumption that the message is wrongly
decoded and that the delay is infinite. We can afford to do this
becauseP(ν 6∈ S(εB))

B→∞−→ 0 by definition. Hence, the event
{ν 6∈ S(εB)} has a vanishing effect on the probability of error
and the delay. Optimizing over the choice of sequence{εB}
completes the proof.

Converses of Theorems 1 and 4:
Assume that{CB} achieves a rate per unit costR > 0 at

timing uncertainty per information bitβ and delay exponent
δ with 0 ≤ δ ≤ β. Recall that the delay constraint means that

lim sup
B→∞

log dB(CB , εB)

B
= δ (26)

for some sequence of non-negative numbersεB → 0 asB →
∞. To establish the converses, we use the following concept
of “extended codewords.” To shorten notation, for the rest of
the proof we usedB instead ofd(CB , εB).
Extended codewords:An extended codeword for a given
messagem consists of the sequence of symbols that are
transmitted from timeν until time ν + dB − 1. Hence, for
ν + dB − 1 ≥ σ+ n, the codeword corresponding to message
m consists of⋆’s from time ν until time σ − 1, followed by
cn(m), followed by ⋆’s until time ν + dB − 1. Instead, if
ν + dB ≤ σ + n, the codeword corresponding to messagem
consists of⋆’s from time ν until time σ − 1, followed by the
first ν + dB − σ symbols ofcn(m). The cost of the extended
codeword, which we simply denote byc(m), is defined to be
the same as the cost ofcn(m).

From now on, codewords always refer to extended code-
words, and codebooks always refer to sets of extended code-
words.

To establish the theorems, we show that for anyη > 0 and
all B large enough,R andβ satisfy

RE[k(X)] ≤ I(X ;Y )(1 + η) (27)

if ⋆ ∈ X and⋆ has zero cost, or

RE[k(X)] ≤ I(X ;Y )

1− δ
(1 + η) (28)

if ⋆ 6∈ X and all non-⋆ symbols have positive cost. In either
case, we also show that

RE[k(X)](1 + β − δ − η) ≤ D(XY ||XY⋆), (29)

whereX ∼ PB , and wherePB denotes the distribution of the
type class ofCB which contains the most elements. This type
class is denoted byC′

B in the sequel.
An important observation used to prove (27) and (29) is that

becauseR can be assumed to be strictly positive (or there is
nothing to prove), the set of non-⋆ symbols of each codeword
in CB has at mostO(B) elements.

(Note thatPB may vary as a function ofν. However, for
ease of exposition, we assume thatPB is the same for allν.
This assumption is without loss of generality, because we can
group theν’s together based on their associatedPB , and as
will become apparent from the analysis, our arguments can
be applied to each group separately. SinceA = 2βB, for
subsets containing at leastA2−

√
B ν’s, our arguments will

be valid sincelim infB→∞(1/B) log(A2−
√
B) = β. ForPB ’s

associated with fewer than this manyν’s, since there are only
a polynomial number ofPB ’s, the probability ofν having any
suchPB is o(1).)

A. Proof of (27) and (28)

The intuition for these inequalities is that an asynchronous
code must also be good for the synchronous channel, and
hence a suitable notion of rate is bounded by the synchronous
channel capacity. Formally,C′

B is clearly a good code for
the synchronous channel,i.e., if we revealν to the receiver
and decoding happens at timeν + dB, it is possible to
achieve an error probability bounded away from1 whenever
B is large enough. From the strong converse for synchronous
communication (see,e.g., [4, Corollary 6.4, p. 87]) it follows
that when⋆ ∈ X and⋆ has zero cost, for anyη > 0,

log |C′
B|

dB
≤ I(X ;Y )(1 + η/2) (30)

for all B large enough. Similarly, when⋆ 6∈ X, for anyη > 0,

log |C′
B|

n
≤ I(X ;Y )(1 + η/2) +

δB

n
(31)

for all B large enough, wheren denotes the number of non-⋆
symbols in each codeword. This can be seen by observing that
the codewords can be classified according to the value ofσ,
and for a givenσ, only a rate ofI(X ;Y )(1 + η/2) can be
supported. Because of the delay constraint, only2δB choices
of σ are possible.

Now, since the number of non-⋆ symbols in any codeword
is O(B), the number of possible typesPB grows no faster
than polynomially withB. To see this, note that there are|X|
input symbols, and we haveO(B) choices for the probability
assigned to each non-⋆ symbol. Since there is at most one
zero cost symbol (namely, the⋆ symbol),PB is completely
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determined by the number of occurrences of the non-⋆ sym-
bols. Thus, there are only a total ofO(B|X|) possible types
PB satisfying the constraint of havingO(B) non-⋆ symbols.
This implies that

log |C′
B|

dB
=

log |CB|
dB

(1− o(1))

when ⋆ ∈ X, and similarly for the case when⋆ 6∈ X.
Combining this with (30) and (31), we obtain

log |CB|
dB

≤ I(X ;Y )(1 + η)

when⋆ ∈ X, and

log |CB|
n

≤ I(X ;Y )(1 + η) + δB/n

when ⋆ 6∈ X. Note that log |CB | = B by definition. Thus,
by multiplying and dividing the left-hand sides of the above
inequalities byK(CB), and by noting thatK(C′

B) ≤ K(CB)
by the definition of the cost of a code (see Definition 2 and
recall that by definition, the extended codeword for message
m has the same cost ascn(m)), the above inequalities become

K(C′
B)

dB
R ≤ I(X ;Y )(1 + η)

and

K(C′
B)

n
R ≤ I(X ;Y )

1− δ
(1 + η) .

Since K(C′
B) = dBE[k(X)] when ⋆ ∈ X and K(C′

B) =
nE[k(X)] when ⋆ 6∈ X, inequalities (27) and (28) follow.
Hence, if (27) or (28), as appropriate, doesn’t hold, then the
maximal error probability tends to one.

B. Proof of (29)

We show that if inequality (29) is reversed, then a decoder
that satisfies the delay constraint has an average error over
messages that tends to one. To prove this, we introduce
the concepts of “effective output process” and “augmented
decoder.”
Effective output process:The “effective” output process is
the random output process “viewed” by the sequential de-
coder, i.e., it is generated as if there were pure noise after
the transmission of theextendedcodeword. Specifically, the
distribution of the effective output process is as follows.The
Yi’s for14

i ∈ {1, . . . , ν − 1} ∪ {ν + dB, . . . , An + n− 1}
are i.i.d. according toQ⋆, whereas the block

Yν , Yν+1, . . . , Yν+dB−1

is distributed according to

1

|C′
B |
∑

m

Q(·|c(m)) ,

the output distribution given that arandomly selected(ex-
tended) codeword fromC′

B has been transmitted. With a

14Notice that because of (27),dB is a strictly positive quantity.

y(1) y(2) . . . . . . y(r)

Fig. 2. Parsing of the entire received sequence of sizeA+ n− 1 into rB
blocks of lengthdB , one of which is generated by the sent message, while
the others are generated by pure noise.

slight abuse of notation, in the remainder of the proof we use
Y1, Y2, . . . , YA+n−1 to denote the effective output process.
Augmented decoder:An augmented decoder is a decoder
which is revealed the complete effective output sequence and,
in addition, is informed that the message was sent in one of

rB ,

⌊

A+ n− 1− ν mod dB
dB

⌋

(32)

consecutive (disjoint) blocks of durationdB, as shown in
Fig. 2. Note that15

rB
.
= 2B(β−δ) . (33)

An augmented decoder, in addition to outputting a message,
also outputs an estimate of the block of sizedB corresponding
to the time interval during which the message was sent.

Suppose the decoder ofC′
B achieves (maximum) com-

munication delay less thandB with probability equal to
1 − ε̃B. Further, suppose it can output the correct message
with maximum error probabilityεB. Hence, the corresponding
augmented decoder can both output the block of sizedB which
corresponds to the actual transmission period, and output the
correct message, with maximum error probability at most
εB + ε̃B. We now show that if (29) doesn’t hold, then with
probability approaching one, pure noise will produce many
output blocks that look as if they were generated by some
codeword. This implies thatεB + ε̃B → 1. Therefore, if the
delay constraint is satisfied with̃εB → 0, thenεB → 1. Hence,
if the decoder ofC′

B achieves (maximum) communication
delay less thandB with probability tending to one, its error
probability will tend to one whenever (29) doesn’t hold.

To develop some intuition for proving (29), we first consider
the simpler setting where there is only a single message. We
then generalize to the multiple message case to obtain (29).

1) Single message:Suppose there is only one codeword to
be transmitted. The augmented decoder’s only task is thus to
output the block of sizedB that corresponds to the period
whenc(m) was sent.

For this specific setting, we show that ifβ is sufficiently
large, the decoder will not be able to perform the task reliably,
because the noise is likely to produce several blocks that look
as though they were generated byc(m). More precisely, we
show that the augmented decoder has a large probability of
error (asymptotically equal to one) whenever for someη > 0
and allB large enough,

B(β − δ − η) > dBD(XY ||XY⋆) . (34)

15We use the notationf(B)
.
= g(B) whenever the functionsf andg are

exponentially equal,i.e., if

lim
B→∞

1

B
log f(B) = lim

B→∞

1

B
log g(B) .



11

Let c̄(m) denote the extended codewordc(m) without zero-
cost symbols and let̄Y (m) be its corresponding output. For
instance, if the extended codeword isc(m) = 1, 2, ⋆, 2, ⋆ and
its corresponding random output vectorY (m) takes value
2, 2, 1, ⋆, 1 then c̄(m) = 1, 2, 2 and Ȳ (m) = 2, 2, ⋆. Further,
let Q̂ be the empirical distribution of̄Y (m) conditioned on
c̄(m), i.e., Q̂ satisfies

P̂c̄(m),Ȳ (m)(x, y) = P̄B(x)Q̂(y|x),
whereP̄B denotes the empirical distribution ofc̄(m).

The above restriction to the non-⋆ symbols allows us to
treat the various possible delays—linear inB, subexponential
in B, and exponential inB—in a unified way. Had we been
interested only in the linear case, the argument would also
hold without the restriction to non-⋆ symbols.

For a given fixed conditional probability distributioñQ,
denote byZ(m, Q̃) the binomial random variable which
represents the number of pure noise blocks, out ofrB − 1
of them, whose conditional empirical distribution with respect
to the non-⋆ symbols ofc̄(m) is Q̃. Then the error probability
of the augmented decoder can be lower bounded as

Pm(E)

≥
∑

{Q̃:Q̃≈Q}

Pm(E|Q̂ = Q̃)× Pm(Ȳ (m) ∈ TQ̃(c̄(m))), (35)

where theQ̃’s in the summation are conditional distributions
that are close to the actual channelQ. Specifically,Q̃(·|x) is
such that

||Q̃(·|x) −Q(·|x)|| ≤ 1/ logB (36)

for any symbolx 6= ⋆ that appears appears in̄c at least
√
B

times. And for anyx that appears in̄c(m) less than
√
B times,

Q̃(·|x) is arbitrary.
Now, conditioned on{Q̂ = Q̃}, there areZ(m, Q̃) pure

noise blocks which look statistically identical to the block
corresponding to the sent codeword, because the empirical
conditional distribution of (the non-⋆ codeword symbol po-
sitions of) each block is a sufficient statistic for estimating the
position of the sent codeword. Hence, the augmented decoder
fails with probability at least

E

(

Z(m, Q̃)

Z(m, Q̃) + 1

)

.

Therefore, from (35),

Pm(E)

≥
∑

{Q̃:Q̃≈Q}

E

(

Z(m, Q̃)

Z(m, Q̃) + 1

)

Pm(Ȳ (m) ∈ TQ̃(c̄(m))) .

(37)

From Fact 2, the probability that one single pure noise block
induces the joint typēPBQ̃ with c̄(m) is

.
= 2−d̄BD(X̄Ỹ ||X̄Y⋆) .

= 2−dBD(XY ||XY⋆) (38)

where X̄ ∼ P̄B , where d̄B denotes the number of non-⋆
symbols inc(m). Note that the second equality in (38) holds

uniformly over the set{Q̃ : Q̃ ≈ Q} by the continuity of
divergence.16

Therefore,

E(Z(m, Q̃))
.
=

A

dB
2−dBD(XY ||XY⋆). (39)

SinceA = 2βB, from (26), (34), and (39) we get

Em(Z(m, Q̃))
.
= 2ηB.

SinceZ(m, Q̃) is a binomial random variable, it can easily
be seen from Chebyshev’s inequality (or the Chernoff bound)
thatZ(m, Q̃) must be concentrated near its mean, from which
it follows that

Em

(

Z(m, Q̃)

Z(m, Q̃) + 1

)

= 1− o(1) B → ∞ . (40)

From (37) and (40) we get

Pm(E) ≥ (1− o(1))
∑

{Q̃:Q̃≈Q}

Pm(Ȳ ν+d̄B−1
ν ∈ TQ̃(c̄(m)))

= 1− o(1) (41)

asB → ∞, where the second equality follows from Cheby-
shev’s inequality. We conclude that for the single message
case, the error probability tends to one whenever (34) holds.

2) Multiple messages:The main additional ingredient used
to establish (29) is the fact that the decoder does not know a
priori the transmitted message. Because of this, the augmented
decoder’s task is more difficult to perform; pure noise can
induce an error whenever it generates a block that is typical
with any of the (extended) codewords fromC′

B. The key
element in the analysis consists in showing that the “typicality”
regions associated with different codewords are essentially
disjoint, i.e., that the probability of the noise generating a
block typical with any message is essentially|C′

B| times the
probability for the single message case. This, together with the
above argument for the single message case, yields the desired
result.

Observe that sinceC′
B achieves a maximum error prob-

ability on the asynchronous channel that is less thanεB,
the (extended) codewordsC′

B can also achieve a maximum
error probability on the synchronous channel that is less than
εB—if we reveal ν to the decoder, the channel becomes
synchronous, and the error probability does not increase.
Therefore, assuming that the decoder is deterministic, we can
assigndisjoint decoding regionsD(m) to each codeword of
C′
B such that, with probability at least1 − εB, after trans-

mission over the synchronous channelQ, the channel output
lies in the decoding regionD(m) assigned to the transmitted
codewordc(m). If the decoder ofC′

B is randomized, one
can easily construct an expurgated code with a deterministic
decoder and asymptotically the same rate as follows. Since
the maximum error probability ofC′

B is at most εB, the
average error probability is at mostεB, hence the average
error probability under MAP decoding is also at mostεB (note
that MAP decoding minimizes the average error probability,
not necessarily the maximum error probability). Now, without

16See foonote 13.
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loss of optimality, the MAP decoder can be restricted to
be deterministic. If we remove the half of the codewords
with the largest error probability, we remain with a code
whose maximum error probability is at most2εB under a
deterministic (MAP) decoding. This expurgated code and its
decoding regions{D(m)} can now be used for the argument.

Adapting the argument used for the single message case,
fix a conditional distributionQ̃ ≈ Q (see (36)), and let
Z(m, Q̃) denote the binomial random variable representing
the number of pure noise blocks that induce the conditional
empirical distributionQ̃ with c̄(m). For each messagem, de-
fineD(m, Q̃) as the intersection of the decoding regionD(m)
with TQ̃(c̄(m))—that is the set of sequencesy1, y2, . . . , ydB

in D(m) whoseyi’s corresponding to the non-⋆ symbols of
c(m) have an empirical distributioñQ given c̄(m). Note that
since the decoding regions are disjoint, the setsD(m, Q̃) are
also disjoint.

Define

Z(Q̃) ,
∑

m

Z(m, Q̃),

and

D(Q̃) , ∪mD(m, Q̃) .

Then,

E[Z(Q̃)] =
∑

m

E[Z(m, Q̃)]

= (rB − 1)
∑

m

P⋆(D(m, Q̃))

= (rB − 1)
∑

m

2−dB(D(XY ||XY⋆)+o(1))
Pm(D(Q̃,m))

=
A

dB
2−dBD(XY ||XY⋆)(1+o(1))

∑

m

Pm(D(m, Q̃))

=
A

dB
2−dBD(XY ||XY⋆)(1+o(1))2BP(D(M, Q̃)), (42)

whereP⋆ denotes the output distribution corresponding tod̄B
symbols⋆; and wherePm denotes the output distribution when
the channel input is̄c(m).

The first equality in (42) follows from the definition of
Z(Q̃). The second equality follows from the definition of
Z(m, Q̃) and the fact that there arerB − 1 pure noise
blocks (see (32)). The third equality in (42) holds since the
probability underP⋆ of any sequence inD(Q̃,m) is equal to
2−dB(D(XY ||XY⋆)+o(1)) times the probability of that sequence
underPm. To see this note that for anyy ∈ D(Q̃,m) we have
[4, Lemma 2.6]

Pm(y) = 2−d̄B(H(Ỹ |X̄)+D(X̄Ỹ ||X̄Y ))

and

P⋆(y) = 2−d̄B(H(Ỹ )+D(Ỹ ||Y⋆)) .

Hence,

P⋆(y) = Pm(y)2−d̄B(D(X̄Ỹ ||X̄Y⋆)−D(X̄Ỹ ||X̄Y ))

= Pm(y)2−dB(D(XY ||XY⋆)+o(1)),

since Q̃ ≈ Q, by continuity of divergence.17 The fourth
equality in (42) follows from (33). For the fifth inequality
in (42) we defined

P(D(M, Q̃)) ,
1

|C′
B|
∑

m

Pm(D(m, Q̃)) ,

the average probability of successful decoding of the code
C′
B and having an input/output joint type equal toPBQ̃—in

the above definition,M denotes the random message to be
transmitted.

Now, recall that the probability of successful decoding of
C′
B is at least1− εB (see paragraph after (32)), hence

E
Q̂
P(D(M, Q̂)) ≥ 1− εB .

Therefore, by Markov’s inequality,

P(Q̂ : P
(

D(M, Q̂)) ≥ 1−√
εB
)

≥ 1−√
εB ,

i.e., with probability1−√
εB = 1−o(1), the empirical channel

Q̂ yields a probability of successful decoding1−√
εB = 1−

o(1). Denoting by{Q̃ ∼ Q} the set of conditional distributions
Q̃ such thatQ̃ ≈ Q (see (36)) and such that

P(D(M, Q̂)) ≥ 1−√
εB ,

it follows that

P(Q̂ ∼ Q) = 1− o(1), (43)

sinceP(Q̂ ≈ Q) = 1 − o(1). Hence, from (42) and (33), we
get

E[Z(Q̃)] = 2B(β−δ)2−dBD(XY ||XY⋆)(1+o(1))2B (44)

uniformly over{Q̃ ∼ Q}. Hence, if for someη > 0 we have

B(1 + β − δ − η) > dBD(XY ||XY⋆) , (45)

thenEZ(Q̃)
.
= 2ηB, and using thatZ(Q̃) is a binomial random

variable, we get

E

(

Z(Q̃)

Z(Q̃) + 1

)

= 1− o(1) .

Proceeding as in (37), the error probability (averaged over
messages) of the augmented decoder is lower bounded as

P̄(E) ≥
∑

{Q̃:Q̃∼Q}

P̄(E|Q̂ = Q̃)P(Ȳ (M) ∈ TQ̃(c̄(M)))

≥
∑

{Q̃:Q̃∼Q}

E

(

Z(Q̃)

Z(Q̃) + 1

)

P(Ȳ (M) ∈ TQ̃(c̄(M)))

= (1 − o(1)) . (46)

Hence, if (45) holds for someη > 0, or, equivalently, if

RE(k(X))(1 + β − δ − η) > D(XY ||XY⋆)

sinceB/dB = RE(k(X)), the error probability tends to one
asB → ∞. This implies that if a code achieves rateR > 0 at
timing uncertainty per information bitβ and delay exponent

17See footnote 13.



13

δ then (29) holds. This completes the proof of the converses
for Theorems 1 and 4.

Converse of Theorem 5:The converse proof for The-
orem 5 is almost the same as the the converse proof for
Theorem 1. As for the achievability proofs, the main idea is to
find a suitable replacement for the set{1, 2, . . . , A} of time
slots that the receiver needs to consider. For the proof, we
choose the set of time slots as a function of the coding scheme
under consideration. In more detail, given any reliable coding
scheme,i.e., any coding scheme for which the probability
of error εB → 0 as B → ∞, for each valuet, consider
the probability that the decoder makes an error or has delay
greater thandB conditioned on the eventν = t. We will
replace the set{1, . . . , A} with the setS(

√
εB) of times t

for which this conditional probability is at most
√
εB. Observe

that the conditional probability of error, averaged overν, is by
definition at most2εB, so Markov’s inequality says that the
probability (over the distribution ofν) that this conditional
probability is larger than

√
εB is at most2

√
εB. Thus,ν is in

S(
√
εB) with probability at least1− 2

√
εB. The key property

of this construction is that the decoder for the given coding
scheme can with high probability correctly decode the message
within a delay ofdB for each memberof S(

√
εB).

We now apply the converse proof of Theorem 1 to the
set S(

√
εB). First, we need to parse the output sequence

appropriately,i.e., split the output sequence into disjoint blocks
of length dB. Recall thatrB, the number of such disjoint
blocks, was roughlyA

dB
in the converse proof of Theorem 1.

Now, however, sinceS(
√
εB) can be arbitrary, it is possible

thatS(
√
εB) does not even contain any time slots congruent to,

say,0 moddB . To get around this minor technicality, observe
that by the pigeonhole principle, for at least one valuex mod
dB, S(

√
εB) contains at least|S(

√
εB)|

dB
time slots congruent

to x mod dB. For such anx, we chooseν uniformly from
those elements inS(

√
εB) that are congruent tox mod dB.

Because the decoder for the given coding scheme can with
high probability correctly decode the message within a delay
of dB for each member ofS(

√
εB), it follows that this decoder

can decode the message and determine the value ofν with high
probability even whenν is chosen as above.

From this point, we follow the converse proof of Theorem 1,
with rB replaced by|S(

√
εB)|

dB
(equivalently,A is replaced by

the size ofS(
√
εB)). At the end, we see that a reliable decoder

can exist only if for anyη > 0 andB large enough,

B

(

1 +
log(S(

√
εB))

B

)

≤ dB(D(XY ||XY⋆) + η).

Thus, log(S(
√
εB))

B
has replaced the role played byβ in the

converse proof of Theorem 1. Finally, sinceεB → 0,
√
εB →

0, so by definition ofβ̄

β̄ ≤ lim sup
log(S(

√
εB))

B
,

completing the proof.
Proof of Theorem 2:Starting from Theorem 1,

C(β) = max
X

min

{

I(X ;Y )

E[k(X)]
,
I(X ;Y ) +D(Y ||Y⋆)

E[k(X)](1 + β)

}

. (47)

A simple upper bound is

C(β) ≤ max
X

I(X ;Y ) +D(Y ||Y⋆)

E[k(X)](1 + β)
(48)

=
1

1 + β
max
X

E[f(X)]

E[k(X)]
, (49)

wheref(x) is the divergence between the distribution ofY
conditioned onX = x and the distribution ofY conditioned
on X = ⋆.

Using the fact that for nonnegativea, b, c, and d (with a
suitable convention for the case wherec and/ord is 0)

a+ b

c+ d
≤ max

(

a

c
,
b

d

)

,

we see that the above maximum is achieved for an input
distribution with a point mass ata∗, where

a∗ = argmaxx
f(x)

k(x)
.

However, the maximizing solution is not unique. Since
f(⋆) = k(⋆) = 0,

pf(⋆) + (1 − p)f(a∗)

pk(⋆) + (1 − p)k(a∗)
=

f(x)

k(x)

for anyp ∈ [0, 1]. Hence, any input distribution with two point
masses, one at⋆ and one ata∗, will do. Going back to (49),
we get

C(β) ≤ 1

1 + β
max
x

f(x)

k(x)
.

This upper bound is obtained by choosing the input dis-
tribution to maximize the second term in the minimum of
(47). To prove that this upper bound can be achieved, choose
X to have a distribution with probabilityp of being ⋆, and
probability1− p of beinga∗, wherep → 1. The first term in
the min approaches

max
x

f(x)

k(x)

by Theorem 3 of [8]. The second term is

1

1 + β
max

x

f(x)

k(x)
,

as derived above (true actually for anyp, not only p → 1).
So, the second term is smaller, and we are always limited by
the timing uncertainty. This proves the desired result.

Remark. Our results hold under the assumption that the only
possible zero cost symbol is the⋆ symbol. The other cases,
which we now briefly discuss, can be handled with arguments
similar to the ones used in this paper.

• Two symbols inX have zero cost: the capacity per unit
cost is readily seen to be infinite.

• ⋆ ∈ X and all x ∈ X have positive cost: the analysis in
this paper can be applied, but would require some slightly
cumbersome notation.
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• There is a single zero cost symbolx ∈ X different than⋆:
in this case the asynchronous capacity per unit cost is

C(β, δ) =
C(0, 0)

1− 2δ
0 ≤ δ ≤ β/2, β ≥ 0 ,

i.e., it is the synchronous capacity per unit cost multiplied
by a factor1/(1− 2δ).
The first thing to note in the above capacity expression is
that it does not depend onβ. The reason for this is that
no matter how largeβ is it is always possible to append
to each codeword a long enough zero cost preamble that
guarantees the decoder is able to identifyσ with high
probability.
For an intuitive justification for the1−2δ factor, observe
that in the achievability proof of Theorem 4 caseb.,
δB bits are encoded viaσ, the start information time.
When a symbol different than⋆ has zero cost, not only
it is possible to encode information through the start
information time, but also in the codeword “length.” By
codeword length we mean the time betweenσ and the
time of the last non-zero cost symbol of the sent codeword.
This allows to communicate2δB of information only
through timing.

Proof of Theorem 3: A simple quantization argument
can be used to derive Theorem 3 from Theorem 1. For
achievability, one quantizes the input and the output real values
to a finite alphabet. Then, the achievability part of Theorem1
can be applied to this quantized channel. Finally, take the limit
of infinitely fine quantization to proves that the stated rateis
achievable.

For the converse, one adapts the method of types by
quantizing the set of probability distributions,i.e., one defines
a type as a set of probability distributions that are “close”to
each other. With such a notion of type, the converse part of
Theorem 1 can be applied, and in the limit of infinitely fine
quantization, one obtains the desired converse result.
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