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Abstract—Network tomography aims at inferring internal
network characteristics based on measurements at the edge of the
network. In loss tomography, in particular, the characteristic of
interest is the loss rate of individual links and multicast and/or
unicast end-to-end probes are typically used. Independently,
recent advances in network coding have shown that there are
advantages from allowing intermediate nodes to process and
combine, in addition to just forward, packets. In this paper, we
study the problem of loss tomography in networks with network
coding capabilities. We design a framework for estimating link
loss rates, which leverages network coding capabilities, and we
show that it improves several aspects of tomography, including
the identifiability of links, the trade-off between estimation ac-
curacy and bandwidth efficiency, and the complexity of probe
path selection. We discuss the cases of inferring link loss rates in
a tree topology and in a general topology. In the latter case, the
benefits of our approach are even more pronounced compared
to standard techniques but we also face novel challenges, such
as dealing with cycles and multiple paths between sources and
receivers. Overall, this work makes the connection between active
network tomography and network coding.

Index Terms—Link loss inference, network coding, network
tomography.

I. INTRODUCTION

D ISTRIBUTED Internet applications often need to know
information about the characteristics of the network. For

example, an overlay or peer-to-peer network may want to detect
and recover from failures or degraded performance of the under-
lying Internet infrastructure. A company with several geograph-
ically distributed campuses may want to know the behavior
of one or several Internet service providers (ISPs) connecting
the campuses, in order to optimize traffic engineering decisions
and achieve the best end-to-end performance. To achieve this
high-level goal, it is necessary for the nodes participating in the
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application or overlay to monitor Internet paths, assess and pre-
dict their behavior, and eventually make efficient use of them
by taking appropriate control and traffic engineering decisions
both at the network and at the application layers. Therefore, ac-
curate monitoring at minimum overhead and complexity is of
crucial importance in order to provide the input needed to take
such informed decisions. However, there is currently no incen-
tive for ISPs to provide detailed information about their internal
operation and performance or to collaborate with other ISPs for
this purpose. As a result, distributed applications usually rely on
their own end-to-end measurements between nodes they have
control over, in order to infer performance characteristics of the
network.
Over the past decade, a significant research effort has been

devoted to a class of monitoring problems that aim at inferring
internal network characteristics using measurements at the edge
[1]. This class of problems is commonly referred to as tomog-
raphy due to its analogy to medical tomography. In this work,
we are particularly interested in loss tomography, i.e., inferring
the loss probabilities (or loss rates) of individual links using ac-
tive end-to-end measurements [2]–[6]. The topology is assumed
known and sequences of probes are sent and collected between
a set of sources and a set of receivers at the network edge.
Link-level parameters, in this case loss rates of links, are then
inferred by the observations at the receivers. The bandwidth ef-
ficiency of these methods can be measured by the number of
probes needed to estimate the loss rates of interest within a de-
sired accuracy. Despite its significance and the research effort
invested, loss tomography remains a hard problem for a number
of reasons, including complexity (of optimal probe routing and
of estimation), bandwidth overhead, and identifiability (the fun-
damental fact that tomography is an inverse problem and we
cannot directly observe the parameters of interest). Moreover,
there are some practical limitations such as the lack of cooper-
ation of ISPs, the need for synchronization of sources in some
schemes, etc.
Recently, a new paradigm to routing information has

emerged with the advent of network coding [7]–[9]. The
main idea in network coding is that, if we allow intermediate
nodes to not only forward but also combine packets, we can
obtain significant benefits in terms of throughput, delay, and
robustness of distributed algorithms. Our work is based on the
observation that, in networks equipped with network coding
capabilities, we can leverage these capabilities to significantly
improve several aspects of loss tomography. For example,
with network coding, we can combine probes from different
paths into one, thus reducing the bandwidth needed to cover a
general graph and also increasing the information per packet.
Furthermore, the problem of optimal probe routing, which is
known to be NP-hard, can be solved with linear complexity
when network coding is used.
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This paper proposes a framework for loss tomography (in-
cluding mechanisms for probe routing, probe and code design,
estimation, and identifiability guarantees) in networks that al-
ready have network coding capabilities. Such capabilities do
not exist yet on the Internet today, but are available in wire-
less mesh networks, peer-to-peer and overlay networks, and we
expect them to appear in more environments as network coding
becomes more widely adopted. We show that, in those settings,
our network coding-based approach improves the following as-
pects of the loss tomography problem: how many links of the
network we can infer (identifiability); the tradeoff between how
well we can infer link loss rates (estimation accuracy) and how
many probes we need in order to do so (bandwidth efficiency);
how to select sources and receivers and how to route probes be-
tween them (optimal probe routing). Overall, this is a novel ap-
plication of network coding techniques to a practical networking
problem, and it opens a promising research direction.
The structure of this paper is as follows. Section II discusses

related work. Section III states the problem and summarizes
the challenges and main results. Section IV presents a moti-
vating example and provides the conditions of identifiability.
Sections V and VI present in detail the framework and mecha-
nisms in the cases of trees and general topologies, respectively.
Section VII concludes this paper.

II. RELATED WORK

Network Tomography: The term network tomography typi-
cally refers to a family of problems that aim at inferring in-
ternal network characteristics from measurements at the edge
of the network. Internal characteristics of interest may include
link-level parameters (such as loss and delay metrics) or the net-
work topology. Another type of tomography problem aims at
inferring path-level traffic intensity (e.g., traffic matrices) from
link-level measurements [10]. Our paper focuses on inferring
the loss rates of internal links using active end-to-end measure-
ments and assuming that the topology is known. Therefore, it
is related to the literature on loss tomography, part of which is
discussed in the following.
Caceres et al. considered a single multicast tree (MT) with

a known topology and inferred the link loss rates from the
receivers’ observations [2]. In particular, they developed a
low-complexity algorithm to compute the maximum likelihood
estimator (MLE), by taking into account the dependences
introduced by the tree hierarchy to factorize the likelihood
function and eventually compute the MLE in a recursive way.
Throughout this paper, we refer to the MLE for an MT, devel-
oped in [2], as MINC, and we build on it. Bu et al. used multiple
MTs to cover a general topology and proposed an EM algorithm
for link loss rate estimation [3]. Follow-up approaches have
been developed for unicast probes [5], [6], joint inference of
topology and link loss rates [4], and adaptive tomography and
delay inference [11]. The aforementioned list of references is
not comprehensive. Good surveys of network tomography can
be found in [1] and [12].
Active Versus Passive Tomography: Tomography can be

based either on active (generating probe traffic) or on passive
(monitoring traffic flows and sampling existing traffic) mea-
surements. Passive approaches have been most commonly used

for estimating path-level information, in particular, origin-des-
tination traffic matrices, from data collected at various nodes
of the network [10]. This approach and problem statement
are well suited for the needs of a network provider. For the
problem of inferring link loss rates, active probes are typically
used, and information about individual packets received or lost
is analyzed at the edge of the network. This approach is better
suited for end users that do not have access to the network.
However, there are also papers that study link loss inference by
using existing traffic flows to sample the state of the network
[13], [14]. Once measurements have been collected following
either of the two methods, statistical inference techniques
are applied to determine network characteristics that are not
directly observed.
The passive approach has the advantage that it does not im-

pose additional burden on the network and that it measures the
actual loss experienced by real traffic. However, it must also en-
sure that the characteristics of the traffic (e.g., TCP) do not bias
the sample. In the active approach, one has more control over
designing the probes, which can thus be optimized for efficient
estimation. The downside is that we inject measurement traffic
that may increase the load of the network, may be treated dif-
ferently than regular traffic, or may even be dropped, e.g., due
to security concerns.
Network Coding and Inference: An extensive body of work

on network coding [9], [15] has emerged after the seminal work
of Ahlswede et al. [7] and Li et al. [8]. The main idea in network
coding is that, if we allow intermediate nodes to not only for-
ward but also combine packets, we can realize significant bene-
fits in terms of throughput, delay, and robustness of distributed
algorithms. Within this large body of work, closer to ours are a
few papers that leverage the headers of network coded packets
for passive inference of properties of a network. In [16], Ho et
al. showed how information contained in network codes can be
used for passive inference of possible locations of link failures
or losses. In [17], Sharma et al. considered random intrasession
network coding and showed that nodes can passively infer their
upstream network topology, based on the headers of the received
coded packets they observe (which play essentially the role of
probes). The main idea is that the transfer matrix (i.e., the linear
transform from the sender to the receiver) is distinct for different
networks, with high probability. All possible transfer matrices
are enumerated, and matched to the observed input/output, and
a large finite field is used to ensure that all topologies remain
distinguishable. An extended version of this work to erroneous
networks is provided by Yao et al. in [18], where different (er-
godic or adversarial) failures lead to different transfer functions.
The approach in [17] and [18] has the advantage of keeping the
measurement bandwidth low (not higher than the transmission
of coefficients, which is anyway required for data transfer with
network coding) and the disadvantage of high complexity. In
[19], Jafarisiavoshani et al. considered peer-to-peer systems and
used subspace nesting structures to passively identify local bot-
tlenecks. Similar to these papers, we leverage network coding
operations for inference; in contrast to these papers, which use
the headers of network-coded packets for passive inference of
topology, we use the contents of active probes for inference of
link loss rates.
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Our Work:We make the connection between active network
tomography and network coding capabilities. In [20], we intro-
duced the basic idea of leveraging network coding capabilities
to improve network monitoring. In [21], we studied link loss es-
timation in tree topologies. In [22], we extended the approach
to general graphs. In [23], we built on MINC [2], and we pro-
vided the MLEs of the loss rates for all links simultaneously,
in multiple-source tree topologies with multicast and network
coding; similarly to MINC, we presented an efficient algorithm
for computing the MLEs, we proved the correctness, and we an-
alyzed the rate of convergence. This paper combines ideas from
these preliminary conference papers into a common framework,
and extends them by a more in-depth analysis of identifiability,
routing, estimation, and code design.
Our approach is active in that probes are sent/received

from/to the edge of the network and observations at the re-
ceivers are used for statistical inference. Intermediate nodes
forward packets using unicast, multicast, and simple coding
operations. However, the operations at the intermediate nodes
need to be set up once, fixed for all experiments, and be known
for inference. Therefore, our approach requires more support
from the network than traditional tomography, for the benefit
of more accurate/efficient estimation. Our methods may also
be applicable to passive tomography, where instead of sending
specialized probes, one can view the coding coefficients on a
network coded packet as the “probe,” thus overloading them
with both communication and tomographic goals, as is the case
in [17] and [18]. In this paper, we focus exclusively on the
tomographic goals by taking an active approach i.e., sending,
collecting, and analyzing specialized probes for tomography.

III. PROBLEM STATEMENT

A. Model and Definitions

1) Network and Monitoring Scheme: We consider a network
represented as a graph , where is the set of nodes
and is the set of edges corresponding to logical links.1 We
use the notation for the link connecting vertex
to vertex . We assume that has no self-loops and that there
is a loss rate associated with every edge in .2 The topology

is assumed to be known.
We assume that packet loss on a link is i.i.d Bernoulli

with probability , where , and is
the success probability of link . Losses are assumed to be inde-
pendent across links. Let be the vector of the link
success probabilities.3 In loss tomography, we are interested in
estimating all or a subset of the parameters in . We use addi-
tional notation for the case of tree topologies, as we explain in
Section V-B1.

1A logical link results from combining several consecutive physical links into
a single link. This results in a graph where every intermediate vertex has
degree at least three, and in-degree and out-degree at least one. This is a standard
assumption in the tomography literature, which is imposed for identifiability
purposes, as discussed after Definition 2.
2In general, the loss rates in the two directions of an edge can be different, as

it is the case on the Internet due to different congestion levels.
3Note that the notation refers to the vector of all success probabilities, and
refers to the success probability of an individual edge .

A set of source nodes in the periphery of the
network can inject probe packets, while a set of
receivers can collect such packets. Several problem variations
in the choice of sources and receivers are possible, and we will
discuss the following in this paper: 1) the set of sources and the
set of receivers are given and fixed; 2) a set of nodes that can act
as either sources or receivers is given (and we can select among
them); 3) we are allowed to select any node to act as a source
or a receiver. We assume that intermediate nodes are equipped
with unicast, multicast, and network coding capabilities. Probe
packets are routed and coded inside the network following spe-
cific paths and according to specified coding operations. We as-
sume that the packets incur zero transmission, propagation, and
processing delay as they travel through the network. The routes
selected and the operations the intermediate nodes perform are
part of the design of the tomography scheme: they are chosen
once at setup time and are kept the same throughout all exper-
iments; all operations of intermediate nodes are known during
estimation. For the theoretical results of this paper, we focus on
synchronized acyclic networks with zero delay;4 for cyclic net-
works, we convert them to acyclic networks by a proper choice
of routing and sources/receivers.
In general, a probe packet is a vector of symbols, with

each symbol being in a finite field . This includes as special
cases: scalar network coding (for ), operations over bi-
nary vectors (for ), and more generally, vector network
coding (for ).5 In one experiment, we send probes from
all sources and we collect probes at the receivers: each source

injects one probe packet in the network, and each
receiver receives one probe . The observations at
all receivers is a vector in the
space . For a given set of link success probabilities

, the probability distribution of all observations
will be denoted by . The probability mass function for

a single observation is .
To estimate the success rates of links, we perform a sequence

of independent experiments. Let denote the number of
probes for which the observation is obtained, where

. The probability of independent observa-
tions (each ) is

(1)

It is convenient to work with the log-likelihood function, which
calculates the logarithm of this probability

(2)

4Note that the link delays will only affect where the probe packets would meet
in the network; they will not affect our general model.
5What is important is that a probe can take one of the possible values. We

note, however, that there is an equivalence between operations with elements in
a finite field and operations with vectors of appropriate length. For example, in
[24], the multicast scenario was considered, and scalar network coding over a
finite field of size was used equivalently to vector network coding over the
space of binary vectors of length . Thinking in terms of one of the aforemen-
tioned special cases is appropriate in special topologies, as we will see, e.g., in
tree and reverse tree topologies, where scalars and binary vectors are used, re-
spectively.
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We make two assumptions, which are both realistic in practice
and standard in the tomography literature.
1) We perform sufficient measurements so that each obser-
vation at the receivers occurs at least once, i.e.,

. This ensures that no term in the likelihood func-
tion becomes a constant (due to a zero exponent). Note
that the final equality in (1) and (2) is valid due to this
assumption.

2) The probability of loss on a link is not 1, i.e.,
. This ensures that the log-likelihood function is well

defined and differentiable.
The goal is to use the observations at the receivers, the knowl-

edge of the network topology, and the knowledge of the routing/
coding scheme to estimate the success rates of internal links of
interest. We may be interested in estimating the success rate on
a subset of links, or on all the links.
Definition 1: Amonitoring scheme for a given graph refers

to a set of source nodes, a set of receivers, a set of paths
that connect the sources to the receivers, the probe packets that
sources send, and the operations that intermediate nodes per-
form on these packets.
We use the notion of link identifiability as it was defined in

[2, Th. 3, Condition (i)]:
Definition 2: A link is called identifiable under a given

monitoring scheme iff: and implies
.

To illustrate the concept, consider two consecutive links
and in a row, where node has degree 2, and is

neither a source nor a receiver. These links are not identifiable,
as maximizing the log-likelihood function would only allow us
to identify the value of the product and, thus, would
lead to an infinite number of solutions. This is because, it is
not possible to distinguish whether a packet gets dropped on
link or . Note, however, that the case of having two links
in a row is ruled out by our assumption of working on a graph
with logical links (all vertices in the graph have degree three or
greater). Another case that and are not identifiable, which
is possible even on a graph with logical links, is when both links
belong to every path used from any source to any receiver.
Identifiability is not only a property of the network topology,

but also depends on the monitoring scheme. One of the
main goals of the monitoring scheme design is to maximize
the number of identifiable links. However, our definition of
identifiability does not depend on the estimator employed. Es-
sentially, identifiability depends on the probability distribution
and on whether this uniquely determines .
Estimation: The MLE identifies the parameters

that maximize the probability of the observations

(3)

Candidates for the MLE are the solutions of the likelihood
equation

(4)

We can compute the MLE for tree networks as we see in
Section V-B. However, it becomes computationally hard for

large networks; this creates the need for faster algorithms that
provide good approximate performance in practice.
To measure the per link estimation accuracy, we use the

mean-squared error (MSE): . In order
to measure the estimation performance on all links , we
need a metric that summarizes all links. We use an entropy
measure ENT that captures the residual uncertainty. Since
we expect the scaled estimation errors to be asymptotically
Gaussian (similar to the case in [2]), we define the quality of
the estimation across all links as

(5)

which is a shifted version of the entropy of independent
Gaussian random variables with the given variances [25]. If
the entire error covariance matrix is available, then we can
compute the metric as ENT , which captures also
the correlations among the errors on different links. The metric
ENT defined previously captures only the diagonal elements of
, i.e., the MSE for each link independently of the others.
In some cases, we approximate the error covariance matrix
using the Fisher information matrix . Under mild regularity

conditions (see, for example, [26, Ch. 7]), the scaled asymptotic
covariance matrix of the optimal estimator is lower bounded by
the Cramer–Rao bound . The Fisher information matrix
is a square matrix with element defined as

(6)

where are the success probabilities of two links. In par-
ticular, under the regularity conditions, the MLE is asymptot-
ically efficient, i.e., it asymptotically, in sample size, achieves
this lower bound.

B. Subproblems

Given a certain network topology, a monitoring scheme for
loss tomography can be designed by solving the following sub-
problems.
1) Identifiability: For each link , derive conditions that
the scheme should satisfy so that the edge is identifiable.
Whether the goal is to maximize the number of identifiable
edges, or to measure the link success rate on a particular
set of edges, the identifiability conditions will guide the
routing and code design choices.

2) Routing: Select the sources and receivers of probe packets,
the paths through which probes are routed, and the nodes
where they will be linearly combined.6 The design goals
include minimizing the utilized bandwidth, and improving
the estimation accuracy, while respecting the required
identifiability conditions.

3) Probe and Code Design: Select the contents of the probes
sent by the sources and the operations performed at inter-
mediate nodes. The goal is to use the simplest operations

6Depending on the practical constraints, such flexibility may or may not be
available. If one cannot choose the source/receiver nodes and/or routing, as it is
the case inmost of the tomography literature, then this step can be skipped. If one
can choose some of these parameters, then this can lead to further optimization
of identifiability and estimation accuracy.
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and the smallest finite field, while ensuring that the identi-
fiability conditions are met.

4) Estimation Algorithm: This is the algorithm that processes
the collected probes at the receivers and estimates the link
loss rates. The objective is low complexity with good es-
timation performance. There is clearly a tradeoff between
the estimation error and the measurement bandwidth.

We note that these steps are not independent from each other.
In fact, the design of routing, probe, and code design needs to
be done with identifiability and estimation in mind.

C. Main Results

In this paper, we propose a monitoring scheme for loss to-
mography in networks that have multicast and network coding
capabilities. In Sections V and VI, we present our design for the
cases of trees and general topologies, respectively. We evaluate
all our schemes through extensive simulation results. In the fol-
lowing, we preview the main results, in each subproblem.
1) Identifiability: 1) We provide simple necessary and suffi-
cient conditions for identifying the loss rate of a single link.
In (logical) tree topologies, all links are identifiable, using
a very simple monitoring scheme.7 In general topologies,
where identifiability depends on the routing and code de-
sign as well, these conditions still apply. 2) We also prove
a structural property, which we call reversibility: if a link
is identifiable under a given monitoring scheme, it remains
identifiable if we reverse the directionality of all paths and
exchange the role of sources and receivers (which we call
the dual configuration).

2) Routing: 1) For a given set of sources and receivers over
an arbitrary topology, the problem of selecting a routing
that meets the identifiability conditions while minimizing
the employed bandwidth is NP-hard. We prove that, when
network coding is used, this problem can be solved in poly-
nomial time. 2) Moreover, we demonstrate, via simulation,
that the choice of sources and receivers affects the estima-
tion accuracy. 3) Finally, we present heuristic orientation
algorithms for general graphs, designed to achieve iden-
tifiability, small number of receivers, and high estimation
accuracy.

3) Probe and Code Design: 1) In trees, we show that binary
vectors sent by the sources and deterministic code design
with operations at the intermediate nodes are suffi-
cient. 2) In general graphs, we need to use operations over
higher finite fields. We provide bounds on the required
alphabet size, and we propose and evaluate deterministic
code design.

4) Loss Estimation: 1) In a tree topology (under mild con-
ditions on the selection of sources and receivers), we de-
velop a low-complexity method for computing the MLE
of the loss rates for all links simultaneously. Our algo-
rithm builds on and extends MINC (the well-known ML
estimator [2] for an MT) to multiple-source multiple-des-
tination tree topologies (with multicast at branching points

7This scheme is described in Section V-B1: it selects some leaf nodes as
sources, and the remaining leaf nodes as receivers; the sources send simple bi-
nary vectors, and the intermediate nodes do simple operations or multicast.

and network coding at joining points). We describe the al-
gorithm, prove its correctness, and analyze its rate of con-
vergence. 2) A key property that we formulate, prove, and
extensively use in this work is reversibility, i.e., the fact
that the MLE’s for a configuration and its dual (defined
as the same topology, but with the role of sources and re-
ceivers reversed) have the same functional form. For ex-
ample, the MLE for a reverse multicast tree (RMT) (with
several sources and one receiver) has the same functional
form as MINC for an MT (with the role of the source and
the receivers reversed); we refer to the MLE for the RMT
as RMINC. 3) For topologies other than trees, no efficient
MLE algorithm is known for estimating the loss rates of all
links simultaneously. Therefore, we propose a number of
heuristic algorithms, including belief propagation (BP) and
subtree decomposition algorithms, and we evaluate their
performance through simulation. 4) We provide a simple
algorithm for computing the MLE of a single link at a time
in any topology. This is particularly useful in practice be-
cause 1) a few bottleneck links are typically congested,
thus of interest; and 2) the method is applicable to any
topology, even if it is not of the type (1) above.

The use of network coding at intermediate nodes, in addi-
tion to unicast and multicast, offers several benefits for loss to-
mography: it increases the number of identifiable links; it im-
proves the tradeoff between number of probes and estimation
accuracy; and it reduces the complexity of selecting probe paths
for minimum cost monitoring of a general graph from NP-hard
to linear. The approach gracefully generalizes from trees to gen-
eral topologies (e.g., having the same identifiability conditions,
using the same estimation algorithm, and avoiding the use of
overlapping trees or paths), where its advantages are amplified.

IV. MOTIVATING EXAMPLE

In this section, we present a motivating example to demon-
strate the benefits of network coding in identifying the link loss
rates; we derive the conditions of identifiability for a single link;
and we discuss the identifiability of all links in the network.
Example 1: Consider the five-link topology depicted in

Fig. 1. Nodes and send probes and nodes and re-
ceive them. Every link can drop a packet according to an i.i.d.
Bernoulli distribution, with probability , independently of
other links. We are interested in estimating the success proba-
bilities of all links, namely , , , , and .
The traditional multicast-based tomography approach would

use two MTs rooted at nodes and and ending at and .
This approach is depicted in Fig. 1(a) and (b). At each experi-
ment, source sends packet and source sends packet .
The receivers and infer the link loss rates by keeping track
of how many times they receive packets and . Note that,
due to the overlap of the two trees, for each experiment, links

, , and are used twice, leading to inefficient band-
width usage. Moreover, from this set of experiments, we cannot
calculate , and thus, edge is not identifiable. Indeed, by
observing the outcomes of experiments on each MT, we cannot
distinguish whether packet is dropped on edge or ;
similarly, we cannot distinguish whether packet is dropped
on edges or . (Note that if we restricted ourselves to
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TABLE I
LIST OF TEN POSSIBLE OBSERVED OUTCOMES, THE STATE OF THE LINKS THAT LEAD TO A PARTICULAR OUTCOME, THE PROBABILITY OF OBSERVING THIS
OUTCOME, AND THE NUMBER OF TIMES WE OBSERVE THIS OUTCOME IN A SEQUENCE OF N INDEPENDENT EXPERIMENTS. TEN LEFTMOST COLUMNS REFER TO
THE FIVE-LINK TOPOLOGY IN FIG. 1(C). THEY SHOW THE POSSIBLE PAIRS OF PROBES COLLECTED (I.E., THE OBSERVATIONS ) AT THE RECEIVERS , ,
THEIR PROBABILITIES , AND THE NUMBER OF TIMES EACH OBSERVATION OCCURRED. THESE OBSERVATIONS DEPEND ON THE COMBINATION OF LOSS (0)
AND SUCCESS (1) ON THE FIVE LINKS, WHICH HAPPEN W.P. . THE REMAINING RIGHTMOST COLUMNS SHOW HOW THE SAME PROBES CAN BE INTERPRETED

AS OBSERVATIONS AT THE RECEIVER(S) OF THE REDUCED TOPOLOGIES, NAMELY THE MT AND THE RMT (AS WE DESCRIBE IN SECTION V-B3), AND THEIR
CORRESPONDING PROBABILITIES

Fig. 1. Link loss monitoring for the basic five-link topology. Nodes and
are sources, and nodes and are receivers. Using multicast-based tomog-
raphy, the topology can be covered using two MTs 1 and 2. Alternatively, the
topology can be covered using coded packets, if node can add incoming
packets.

unicast only, four unicast probes from to would be
needed to cover all five links. Not only would the problems of
identifiability and overlap of probe paths still be present, but
they would be further amplified.)
If network coding capabilities are available, they can help al-

leviate these problems. Assume that the intermediate node
can combine incoming packets before forwarding them to out-
going links. Node sends to a probe packet with payload that
contains the binary string . Similarly, node sends
probe packet to node . If node receives only
or only , then it just forwards the received packet to node ; if
receives both packets and , then it creates a new packet,

with payload their linear combination , and forwards
it to node ; more generally, , where is the bit-
wise operation. Node multicasts the incoming packet
to both outgoing links and . The flow of packets in this
experiment is shown in Fig. 1(c). In every experiment, probe
packets are sent from , , and may or may not reach
, , depending on the state of the links. Observe that with the

network coding approach, link becomes identifiable. More-
over, we have avoided the overlap of probes on link CD during
each experiment.
Table I lists the ten possible observed outcomes, the state

of the links that leads to a particular outcome, the probability
of observing this outcome, and the number

of times we observe this outcome in a se-
quence of independent experiments. The probability of ob-
serving an outcome can be computed from the success prob-
abilities of the five links.
For example, for outcomes 1–4

(7)

and we can write similar expressions for the probabilities of the
remaining observations. Thus, we can explicitly write down the
probability distribution of the observations .
In a sequence of independent experi-

ments, the frequency of each event is . After
sending independent probes, the log-likelihood function
of the observations given the set of parameters is

. The
MLE would compute the ’s that maximize .
In general, we may be interested in estimating one of the

variables, some of them, or all five of them. In the next sec-
tion, we discuss a single link, namely link . Note that the
remaining four links can depict the equivalent paths connecting

to the sources and receivers. In Section IV-B, we discuss
the identifiability of all links.

A. Identifiability of One Link

Let us focus on a single link with success probability
. Consider Fig. 2, which generalizes the motivating ex-

ample of the previous section. Note that links other than
can be viewed as summarizing paths: e.g., AC could correspond
to a path from A to C, possibly consisting of the concatenation
of several links.
For a given choice of sources and receivers and a coding

scheme described in Section V-B1 (which is extremely simple:
just pick any leaf or leaves as sources and the remaining leaves
as receivers; sources send binary vectors; intermediate nodes
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Fig. 2. Configurations (i.e., combinations of) Conditions 1) and 2) that allow
us to identify the success rate of a single link (CD). Recall that links, other than
CD, can correspond to paths with the same loss probability. The top of the figure
shows a three-link topology where C is a source (of an MT) or D is a receiver
(of an RMT). The trivial case that C is a source and D is a receiver corresponds
to a single-link topology and is omitted here. The bottom of the figure shows
a five-link topology and four configurations (choices of sources and receivers),
where neither nor are edge nodes and packets are sent and received at
the edge nodes , , , and . Case 1 is our familiar motivating example;
Case 2 is similar to a single MT rooted at ; Case 3 uses sources and and
linear combinations whenever the two flows meet; Case 4 does the same thing
for sources , , and , and is equivalent to an inverse MT (with sink at ).

simply code using bitwise or multicast), we want to trans-
late the conditions for identifiability of link in Definition
2 to graph properties of the network. Our intuition is that a link

is identifiable if is a source, a coding point or a branching
point, and is a receiver, a coding point or a branching point.
These are the structures depicted in Fig. 2, where we want to
identify the link success rate associated with edge , and in-
terpret the remaining edges as corresponding to paths. The top

TABLE II
IDENTIFIABLE LINKS IN THE FOUR CASES (DIFFERENT CHOICES OF
SOURCES AND RECEIVERS, FOR THE SAME FIVE-LINK TOPOLOGY)

DEPICTED AT THE BOTTOM OF FIG. 2

two cases of Fig. 2 depict the simple cases where node is a
source, or node is a receiver; the four bottom cases depict the
cases where and are coding or branching points.
To formalize this intuition, consider the following two

conditions:
1) Condition 1: At least one of the following holds.

a) .
b) There exist two edge-disjoint paths and

that do not employ edge , with distinct
.

c) There exist two paths and that do not
employ edge , with , .

2) Condition 2: At least one of the following holds.
a) .
b) There exist two edge-disjoint paths and

that do not employ edge , with distinct
.

c) There exist two paths and that do
not employ edge , with , .

Theorem 4.1: For a given choice of sources and receivers
and for the simple coding scheme described above, link is
identifiable if and only if both Conditions 1 and 2 hold.
The proof is provided in Appendix A.1.

B. Identifiability of all Links

In fact, we can identify all links at the same time. It is suffi-
cient to ensure that each link is identifiable, according to the con-
ditions of Theorem 4.1. This is true in all directed trees, where
each leaf node is either a source or a receiver, and each inter-
mediate node satisfies the following mild conditions: 1) it has
degree at least three (which is true in all logical topologies);
2) it has in-degree at least one (otherwise, the node should be
a source); and 3) it has out degree at least one (otherwise, the
node should be a receiver).
Example 2: Table II lists which links are identifiable in the

four bottom cases of Fig. 2, if we use our approach versus if
we use multicast tomography. All four configurations depict the
same basic five-link topology, but they differ in the choice of
sources and receivers. Our approach is able to identify all links
for any sets of sources and receivers. This is not always the case
for the multicast tomography.

V. TREE TOPOLOGIES

In this section, we consider tree topologies, and we describe
our design choices in the four subproblems: we have already dis-
cussed identifiability in the previous section. Next, we describe
routing in Section V-A, probe and code design in Section V-B1
(operation of sources and intermediate nodes), and estimation
algorithms in Sections V-B–V-D.
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A. Routing, Selection of Sources and Receivers

Routing in trees is well defined: there exists a single path that
connects a source to a receiver, through which probes flow. For
a tree with leaf nodes, some leaves act as sources and the
remaining leaves act as receivers . Intermediate nodes
simply combine the probes coming on all incoming links
and forward (multicast) to all their outgoing links. This section
looks at situations where we may have some freedom in the
choice of the nodes that act as sources and receivers. If such
flexibility is not available (as it is assumed in most tomography
work), this step can be skipped. We study the effect of the se-
lection of sources and receivers on estimation accuracy and we
come upwith empirical guidelines for source selection, obtained
through a number of examples and simulation scenarios.
In Example 2, we saw that, with network coding, all links

are identifiable, while if we use two MTs, they are not. In
Appendix A.2, we revisit the basic five-link topology of Fig. 2
and we show that, even though with network coding links are
identifiable for all four cases, the estimation accuracy differs
depending on the number of sources and their relative positions
in the tree. This idea also applies to larger topologies. For
example, in [27], we consider a nine-link tree and we run
simulations for different number and location of sources and
we summarize the intuition obtained.
Link loss tomography is essentially a parameter estimation

problem, and different choices of sources and receivers lead to
different estimators. That is, for a fixed number of probes, each
topology leads to a different estimation accuracy; put differ-
ently, to achieve the sameMSE, wemay need a different number
of probes for each topology. In general, the optimal selection
of the number and location of sources depends on the network
topology, the values of link loss rates, and possibly the number
of employed probes. This is currently an open problem.

B. Maximum Likelihood (ML) Estimation of all Link Loss
Rates

In this section, we focus on tree topologies and we develop
an efficient MLE to estimate all link loss rates from the obser-
vations at the receivers. In the special case where the topology
is an MT, i.e., probes are sent between one source and several
receivers, an efficient ML estimator (MINC) has been designed
in the pioneering paper [2]. We build on MINC, and we extend
it to multiple-source multiple-receiver trees, where multicast is
used at all branching points and network coding is used at all
joining points [23]. We propose Algorithm 1 in Section V-B4,
which provides an efficient way to compute the MLE of all links
at the same time.
A key property that we formulate, prove, and extensively use

in this section is reversibility, as discussed in Section III-C, and
as we describe in detail in Section V-B2. In Section V-C, we also
describe how to efficiently compute the MLE for a single link at
a time (in both trees and general topologies). In Section V-D, we
describe heuristic estimation algorithms, some of which apply
to general topologies as well.
1) Model and Framework: We first describe the model of

tree networks for which we derive the MLE.
Logical Tree: We consider a tree topology, like the one de-

picted in Fig. 3, consisting of the set of nodes and

Fig. 3. Tree topology with multiple sources and multiple receivers. All sources
are located at the top leaves, and all receivers are located at the bottom
leaves. Multicast is used in all branching points and network coding is used in all
joining/coding points. All coding points are located above all branching points.
(This is a mild assumption that can be enforced if we are allowed to appropri-
ately pick the sources and receivers.) For this tree topology, we have designed
an algorithm that efficiently computes the MLE for all links simultaneously.

the set of directed links. leaf nodes, shown on top of the
tree, act as sources of probe packets. The remaining leaves,
shown at the bottom of the tree, act as receivers. As typically
assumed in tomography problems (as described in Section III),
this is a “logical” tree topology, i.e., every intermediate node
has degree at least three. An intermediate node is either a coding
point (with multiple incoming links and one outgoing link) or
a branching point (with one incoming link and multiple out-
going links). For each node , we denote the set of its parents
(nodes with a link outgoing to ) by and the set of its chil-
dren (nodes with a link coming from ) by . The source
nodes have no parent and the receiver nodes

have no children. are considered
known and fixed throughout the experiments.
In this section, we focus on the tree topology shown in Fig. 3,

which has the property that all coding points are located above
all branching points. This is actually a mild assumption: starting
from an undirected tree, if one is allowed to choose the sources
among the leaf nodes, then one can always ensure this property.8

Note that this tree model includes all cases in Fig. 2 (except for
Case 3 in the five-link topology, which is treated separately in
Section V-C).
Operation of Sources: Each source sends a probe packet
, which is a vector of length in the form of:

Operation of Intermediate Nodes. Each coding point (bit-
wise) all packets it receives from its parents, and forwards
the result to its child.9 This very simple design effectively keeps
the presence of each source orthogonal from every other source.
This ensures versatility, in the sense that no matter which probe
packets get -ed, they will not cancel each other out. For

8Once the sources are properly chosen, the rest of the leaves are receivers;
the direction of the links is uniquely defined along the paths from the sources
to the receivers; and intermediate nodes perform either coding or multicast, as
uniquely dictated by the direction of their incoming and outgoing edges.
9We assume that the network is delay free and all packet arrivals at a coding

point are synchronized. Link delays only affect where the probe packets would
meet.



1540 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 3, MARCH 2013

most practical purposes, this simple probe design is sufficient:
a single IP packet can be up to 1500 B (including the headers)
and thus, can accommodate roughly 12 000 probe sources (bits).
In large networks, one can also spatially reuse probe packets by
allocating the same probe packet to all sources whose packets
do not meet. Finally, each branching point multicasts the packet
it receives from its parent to all its children.
One can see that there will be a node after which

flows thought the network. We denote this node by .
Node is the last coding point in the tree. Node has parents

, and only one child, which we denote by
node . Node multicasts the packet it receives from node
to all its children .
We use the notation that , when is a

descendant of , and that when is an ancestor of
. Every node has multiple parents and only one child,

while every node has one parent and multiple children.
We are going to treat these two sets of nodes differently in the
rest of Section V-B. We name any link of the tree that is above
node by its starting point, and we name any link that is below
node by its endpoint. In other words, link denotes a link
between nodes if and , while link denotes
a link between nodes if and .
Loss Model: As described in Section III, we model the loss

rate of individual links by an i.i.d. Bernoulli process, indepen-
dent across links. In particular, we use the following notation.
1) A packet that traverses a link above node is lost with
probability and arrives at node with prob-
ability .

2) A packet that traverses a link below node is lost with
probability and arrives at node with prob-
ability .

3) Finally, we denote the loss rate of link by .
In general, we use the notation for any quantity

.
Let denote the packet observed at node , and let
, denote the set of all ’s. is a binary vector of

length . Its th element represents the probe packet of
source : indicates that the probe packet of source
reaches node , and 0 that it does not. For the sources, ;
thus, and , . For any node
, if for a parent of , with probability
, and with probability , independently for all

the parents of . For any node , if (the
all-zero vector), then , for the children of
(and hence for all descendants of ). If ,

then for a child of , with probability , and
with probability , independently for all

the children of .
Data, Likelihood, and Inference: As described in

Section III-A, in each experiment, one probe is dispatched
from each source. The outcome of a single experiment is a
record of whether or not each source probe was received at each
receiver, which is the set of vectors observed at receiver

. It is denoted by and is an element of
the space of all such outcomes. For a
given set of link probabilities , the
distribution of the outcomes on will be denoted by .

The probability mass function for a single outcome is
.

We perform experiments. The probability of independent
observations (each ) is given by (1).
Our task is to estimate using ML, from the data .
Weworkwith the log-likelihood function given in (2). The
MLE of the loss rates is the that maximizes , as given
by (3).
2) Likelihood Equation and its Solution: Candidates for the

MLE are solutions of the likelihood equation:

(8)

We need to define some additional variables to compute the
MLEs. For each node , let be the set of outcomes

such that for at least one source that is
an ancestor of and for any arbitrary set of receivers .
Let ; an estimate of can be com-
puted from:

(9)

is the observed proportion of experiments with outcome .
shows the probability of the set of outcomes in which
link has definitely worked. Note that link may have worked
for some other outcomes as well, but they are not included in

. Also note that can be directly estimated from the
observations at the receivers.
For each node , we define to be the set of

outcomes such that for at least one
receiver which is a descendant of . Let

; an estimate of is:

(10)

where is the probability of the outcomes in which
link has definitely worked; and it can be directly estimated
from the observations at the receivers. Our goal is to compute
from .
Special Case (i): MT (MINC): If , the general model

turns into an MT with a single source, which is the case consid-
ered in [2]. We represent the source node by . Each node
other than the source node has one parent and a set
of children. We denote the link loss rates by , where is the
endpoint. We simply assume that .
The outcome of each experiment is , where

each is a single binary value (instead of a binary vector of
length in the general case), corresponding to whether the
source probe is observed at each receiver or not. The state
space of the observations is . We say that a
link is at level if there is a chain of ancestors

leading back to the
source.
Only is used for each node in the MT; it is the set of

outcomes where for at least one receiver
that is a descendant of . The definition of is like before.
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The MLE for the MT has been computed in [2]: Let
show the probability that the path from the source

to node works, which we denote by . Its estimate
can be computed as follows. For the source node, ,

for the leaf nodes , , and for all other nodes
, is the unique solution in of:

(11)

can then be computed from , i.e., , as
follows:

(12)

We refer to (12) as MINC in the rest of this paper.
Note. Equation (11) is obtained from the following relations,

after some computations in [2], which we repeat here for com-
pleteness. Let denote the condi-
tional probability of given that has observed some-
thing. Failure can be due to either (failure of link ), or all
paths toward the destinations failing. Therefore, the obey
the following recursion:

(13)

(14)

Equation (11) then follows from the following relation between
and :

(15)

Special Case (ii): RMT (RMINC): If , the general
model turns into an RMT with a single receiver, which we de-
note by . Each node other than 0 has one child , and
a set of parents. We denote link loss rates by , where
is the starting point. We assume that .
The outcome of each experiment is a binary vector of

length . Each of its elements represents whether the
probe packet of source is observed at the receiver or not. The
state space of the observations is . We say that
a link is at level if there is a chain of descendants

leading down to the
receiver.
Only is used for each node in the RMT; it is the set

of outcomes where for at least one source
that is an ancestor of . The definition of is like before.
The MLE for the RMT is similar to the MT. Let

show the probability that the path
from node to the receiver node works, which we denote by

. Its estimate can be computed as follows.
For the receiver node, , for the source nodes ,

, and for all other nodes , is the
unique solution in of:

(16)

We can then compute from , i.e., , as
follows:

(17)

We refer to (17) as RMINC in the rest of the paper.
Note. Equation (16) results from the following relations. Let

denote the conditional probability
of given that the path from to the receiver works.We
have that:

(18)

(19)

(20)

Comparison of MINC and RMINC: The reader will notice
that the MLE for the MT and the RMT has the same functional
form. This is a special case of the more general “reversibility”
property, first observed in [22]. Indeed, there is a 1–1 corre-
spondence between the observable outcomes in the two cases;
furthermore, the corresponding outcomes have the same proba-
bility, as a function of ’s, thus leading to the sameMLE. In the
following, we describe the reversibility property in more detail.
Reversibility—A Structural Property: Consider a tree

topology with leaf nodes, some of which act as
sources and the remaining ones, , act as receivers
of probes. Routing from to is given (e.g., determined in
the routing subproblem) and defines a direction on every link

, along which probes flow.
Definition 3: We call the triplet a configuration.
We define as dual the configuration that results from reversing

the orientation of all links in the network, and from having
the sources become receivers, while the receivers act as
sources. More formally, we have the following.
Definition 4: Consider the original configuration .

Consider the graph that has the same nodes but
reversed edges, i.e., iff , and
success rate , associated with every edge .
Select sources and receivers . We call the

the dual configuration of .
For example, an MT is the dual configuration of an RMT

(Cases 2 and 4 in Fig. 2). In Appendix B, we show that the
dual configurations of Fig. 25(a) and (b) result in the sameMSE
bound. In fact, a closer look reveals that not only the values but
also the functional forms of these two ML estimators coincide.
The following theorem generalizes this notion to general trees.
Theorem 5.1: Consider a configuration with ob-

servations at the receivers , and probability distribution
. Consider its dual configuration ,

with observations and probability distribution . Then,
there is a bijection between outcomes and their probabilities in
the original and in the dual configuration

.
Proof: Let be the original tree graph, and
its dual. In every experiment, there exist possible error
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events, depending on which subset of the links fails. Observing
the outcomes at the receivers corresponds to observing unions of
events that occur with the corresponding probability (e.g., as in
the example of Table I). We show that for each observable out-
come, which occurs with probability in , there exists exactly
one observable outcome that occurs with the same probability
in and vice versa. This establishes a bijection.
With every edge of , we can associate a set of sources

that flow through this edge, and a set of receivers
that observe the flow through . Our main observa-

tion is that the pair uniquely identifies , i.e., no
other edge has the same pair. In the dual configuration , edge
is uniquely identified by the pair . If in , edge
fails while all other edges do not, the receivers will not re-
ceive the contribution in the probe packets of the sources .
If in , edge fails while all other edges do not, the receivers

will not receive the contribution in the probe packets of
the sources . Thus, there is a one-to-one mapping between
these events. Using this equivalence, an observable outcome
consisting of a union of events can be mapped to an observable
outcome in the reverse tree.
Corollary 5.2: The MLEs for a configuration and its dual

have the same functional form.
Proof: The bijection established previously implies that a

configuration and its dual have the same set of observable out-
comes, with the same probabilities. Therefore, they have the
same likelihood function and, thus, the same MLE.
We note that this corollary establishes reversibility only for

the ML estimation. The performance of suboptimal algorithms
may differ when applied to a configuration and its dual.
A note on directional networks: It is also important to note

that the notion of dual configurations does not assume that the
loss rates in both directions of a link are the same. Reversibility
means that the two ML estimators for a configuration and its
dual are described by the same function. However, the loss pa-
rameters we try to estimate (using the same estimator function)
in the two directions may have different values.
3) ML Estimation of Loss Rates: We now present how to

“reduce” the original tree to an MT and to an RMT, and how to
estimate . These intermediate results are then used in the
MLE algorithm in Section V-B4.
Reduction to an MT (m): If we take the upper part of the

original tree in Fig. 3 and consider it as an aggregate link, we
obtain the reduced MT in Fig. 4(a). The aggregate link agg
summarizes the operation of all links above node and link

. Node receives a packet if at least one path from the
sources to node works and link works. In other words,
the success probability of the aggregate link agg depends on
the paths from the sources to node , and also link .
More formally, we map the outcomes of the orig-

inal tree to the outcomes of the MT, as follows. Each is a
set of binary vectors, each of length , while each is a
single binary vector of length . Any outcome is obtained
by taking a set of outcomes , in all of which the same re-
ceivers have observed all-zero vectors10 and the same receivers

10Note that if a receiver does not receive any packet, then this is treated as an
all-zero vector.

Fig. 4. Reducing the tree topology in Fig. 3 to an MT and to an RMT.
(a) Reduced MT. (b) Reduced RMT.

have observed nonzero vectors, and by replacing each nonzero
vector (that may contain any of the source probes )
by value 1, and each all-zero vector by value 0, i.e.,

(21)

If the original tree has link success rates and an associated
probability distribution of outcomes , then the MT is defined
with parameters and associated probability distribution ,
such that:

agg (22)

can be directly calculated from , since each event in
is the union of a disjoint subset of events in and has prob-
ability equal to the sum of probabilities of those events in
(such as the five-link example in Table I).
Reduction to an RMT (r): Similarly, if we consider the lower

part of the original tree in Fig. 3 as an aggregate link, we obtain
the reduced RMT in Fig. 4(b), with parameters and associ-
ated probability distribution , such that:

agg (23)

The Relation Between the Two Reduced Trees:
Lemma 5.3: We have that .
The proof directly results from the definitions of in the

reduced MT and in the reduced RMT.
Estimating : The MLE of can be obtained from:

(24)

The proof can be found in Appendix A.2.
4) Analysis of the MLE: In this section, we propose the MLE

algorithm, we discuss its complexity, and we illustrate our re-
sults through the example tree topology in Fig. 1(c).
MLE Algorithm: Algorithm 1 computes the MLE of all link

loss rates in the tree topology of Fig. 3; it proceeds in the fol-
lowing steps: 1) it computes for any link below node
from the reduced MT using (12); 2) it computes for any link
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above node from the reduced RMT using (17); and 3) it
computes from (24). These are indeed the MLEs of the
link loss rates, , for the tree of Fig. 3.

Algorithm 1 Computing the MLE of all Link Loss Rates in the
Original Tree Topology of Fig. 3

1: for all links , where do

2: Reduce the original tree to an MT. Use MINC [2] (12) to
compute the MLEs and agg.

3: Let .

4: end for

5: for all links , where do

6: Reduce the original tree to an RMT. Use RMINC (17) to
compute the MLEs and agg.

7: Let .

8: end for

9: Use (24) to compute the MLE .

Theorem 5.4: The estimates computed by Algorithm 1 are
the MLEs of the link loss rates in the original tree topology in
Fig. 3.
The proof of Theorem 5.4 relies on the following two

lemmas, whose proofs are provided in Appendix A.3. (The-
orem 5.4 is then proved in Appendix A.4.)
Lemma 5.5: The solutions of the likelihood equations of the

original tree and the reduced MT are related via: 1) ,
; and 2) agg .

Lemma 5.6: The solutions of the likelihood equations of the
original tree and the reduced RMT are related via: 1) ,

; and 2) agg . We note
that the likelihood functions of the original tree and the re-
duced multicast (or reverse multicast) tree are different. What
the aforementioned lemmas establish is that these likelihood
functions are maximized for the same values of their common
variables.
Complexity: Algorithm 1 is very efficient. In the first two

steps, it calls MINC and RMINC. MINC (and thus RMINC)
is known to be efficient by exploiting the hierarchy of the tree
topology to factorize the probability distribution and recur-
sively compute the estimates. The computation at each node is
at worst proportional to the depth of the tree [2]. The last step

uses the estimates already computed in the first
two steps.
Rate of Convergence of the MLE: We can provide the rate

of convergence of to the true value . The Fisher informa-
tion matrix at based on is obtained from

[2]. We have the following.
Theorem 5.7: is nonsingular, and as ,
converges in distribution to .
The proof follows from the asymptotic properties of the

MLEs [2], [28]. Therefore, asymptotically for large , with

probability (for confidence interval), lies between
the points:11

(25)

Example 3: We now illustrate our results by revisiting the
example five-link tree topology in Fig. 1(c). Note that here, fol-
lowing the notation described in Section V-B1, we use the no-
tation , , , and , for the four edge links in Fig. 1(c),
instead of , , , and , respectively, which were
used in Example 1.
MLE: The two source nodes and send probe packets

and , respectively. The space consists
of ten possible outcomes shown in Table I. Table I also shows
the corresponding outcomes for the reducedMT and the reduced
RMT. From (9) and (10), we have that:

We then solve (11) for and (16) for , and then we find
and from (17), and from (12), and from (24),
as follows:

(26)

(27)

(28)

Confidence Intervals. Fig. 5 shows for the confidence
intervals in (25). We note that the confidence intervals for pa-
rameters can be obtained by inserting (26)–(28) into Fig. 5.

C. MLE of a Single Link

Section V-B provides a computationally efficient way to es-
timate all link loss rates at the same time, under the mild as-
sumption that the tree is of the form depicted in Fig. 3. If one
is allowed to pick the sources and the receivers in the tree, then
one can ensure that this mild assumption holds.
However, there are practical scenarios where one might not

want to or might not be able to use this scheme. First, if we are
not allowed to choose the sources, e.g., due to practical con-
straints, it is possible that the monitoring scheme does not have
the desired property of Fig. 3, i.e., all coding points may not be
above all branching points. An example is Case 3 in the five-link
topology of Fig. 2: all links are still identifiable, but the assump-
tion does not hold and the MLE provided in the previous section

11 denotes the number that cuts off an area in the right tail of the
standard normal distribution.
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Fig. 5. Inverse of the Fisher information matrix governing the confidence intervals for models in (25). Here, the order of the coordinates is .

does not apply. Second, we are often not even interested in es-
timating the loss rates for all links; it is common that only one
or a few bottleneck/congested links are of interest. In general
topologies, focusing on a few, as opposed to all, links has the
side benefit that we may not need to deal with cycles, if they do
not appear in the paths that go through the links of interest.
In all these cases, we propose that one estimates the loss rate

of one link at a time. Recall the discussion in Section IV-A. The
conditions for identifiability of a link (say link in Theorem
4.1) still apply, while the other four links , , , and

in the five-link topology can be interpreted as paths from/to
the sources/receivers; i.e., we do not care about the individual
link loss rates on these paths. Depending on the constraints on
the selection of sources, any of the four cases in the five-link
topology of Fig. 2 may be possible. We note that Table I and
Algorithm 1 correspond to Case 1 in the five-link topology. Ta-
bles for the other three cases are provided in Appendix B.2.
In fact, similar MLE algorithms can be provided for all other

three cases. For example, MINC and RMINC can be used for
Cases 2 and 4 directly. Only Case 3 needs to be estimated sim-
ilarly to Case 1 using reductions and Table VI. For Case 3, the
reduced MT will consist of , , , and . We use
MINC on this tree to infer the loss rates and . The
reduced RMT will consist of , , , and . We use
RMINC on this tree to infer the loss rates and . We
can then replace these results in the likelihood function and find

by maximizing it. In general, an algorithm similar to Al-
gorithm 1 can be developed to compute the MLE for the single
link of interest: we first compute MINC on the reduced MT,
then RMINC on the reduced RMT, and then we estimate link

using a similar procedure as in Appendix A.2.

1) Remarks: Note that even when we focus on estimating
a single link, the brute force approach appears to be computa-
tionally demanding even though it involves only five variables.
Therefore, the efficient computation of theMLE for a single link
is an important contribution on its own.

D. Heuristic Approaches for Loss Estimation

Beyond tree topologies, there is no known computationally
efficient algorithm to compute the MLE of all link loss rates.
In this section, we propose three heuristic estimation algo-
rithms and evaluate their performance through simulation. The
first two (subtree decomposition and MINC-like heuristic, in
Sections V-D-I and V-D-II, respectively) are specific to trees,
while the third one (BP, in Section V-D-III) applies also to
general graphs.

1) Subtree Decomposition: Algorithm 2 partitions the tree
into multicast subtrees separated by coding points. Each coding
point virtually acts as a receiver for incoming flows and as a
source for outgoing flows. As a result, each subtree will either
have a coding point as its source, or will have at least one coding
point as a receiver. In each subtree, we can then use the ML
estimator (MINC) proposed in [2].

Algorithm 2 Subtree Decomposition Algorithm

Consider a tree , with sources and receivers . Each
source sends one probe packet. Each receiver receives
at most one probe packet.
1) Determine the coding points. These partition into

subtrees.
2) For each of the subtrees:
— If the MT is rooted at a coding point:

* if any of the descendant receivers receives a
probe, use this experiment as a measurement
on the subtree.
* otherwise, w.p. assume no node in
received a probe packet, and w.p.
ignore the experiment.

— If the MT is rooted at a source :
Consider each coding point that acts as a
receiver:

*if no descendant receivers observed a
probe, assume, w.p. , that received a packet,
and w.p. , that it did not.
* otherwise
1 if at least one of observed a linear
combination of , deduce that received
.

Note that we can only observe packets received at the edge
of the network, but not at the coding points. However, we can
still infer that information from the observations at the receivers
downstream from the coding point. The fact that we infer obser-
vations of the coding points from the observations of the leaves
is what makes this algorithm suboptimal, while MINC in each
partition is optimal.
We introduce the probability in order to account for the fact

that if none of the receivers in receives a packet, this might
be attributed to two distinct events: either the coding point
itself did not receive a packet, or did receive a packet, which
got subsequently lost in the descendent edges. For example, in
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Fig. 6. Network topology with nine links. The link orientation depicted corre-
sponds to nodes 1 and 2 acting as sources of probes.

Fig. 7. Bipartite graph corresponding to the nine-link example tree in Fig. 6. It
indicates which edges belong to which observable paths.

Fig. 6, consider the tree rooted at ; if receives or
, we deduce that was received at node 4. If receives ,

we deduce that was not received at node 4. If does not
receive a probe packet, then, with probability , we assume
that node 4 did not receive a probe packet. Ideally, should
match the probability that correctly received a probe packet.
This depends on the graph structure and on the loss probabilities
downstream of , and possibly prior information we may have
about the link loss rates.
2) MINC-Like Heuristic: For every multicast node, we can

use the MINC algorithm described in [2]. For every coding
point, we can use RMINC described in Section V-B2.
Similarly to the subtree decomposition, we infer which

probes have been received by an interior node from obser-
vations at the downstream receivers. In particular, if at least
one receiver downstream of has received a probe with any
content (the probe is from at least one source and potentially
contains the of probes from multiple sources), then we can
infer that received the packet. This can be used to compute
the probability , in the terminology of MINC [2]. If no
downstream receiver got any probe, we decide w.p. whether
the node received a probe or not, exactly the same as in the
subtree decomposition. The reductions shown in Fig. 23 use
similar arguments and can serve as examples.
Different from the subtree decomposition, which estimates

the ’s locally in each subtree, we use the mapping from ’s to
’s provided inMINC [2] to estimate the ’s in the entire graph.
This heuristic is optimal for multicast and reverse multicast con-
figurations, and for configurations that are concatenations of the
two, but suboptimal for any other configuration.
3) BP: We propose to use a BP approach, similar to what

was proposed in [29]. Unlike the previous two heuristics, which
are specific to tree topologies, the BP approach also applies to
general graphs. The first step in the BP approach is to create the
factor graph corresponding to our estimation problem. Fig. 7
shows the factor graph corresponding to the nine-link tree
shown in Fig. 6. This is a bipartite graph: on one side, there are
the links (variable nodes), whose loss rates we want to estimate;
on the other side, there are the paths (function nodes) that are
observed by each received probe. An edge exists in the factor

Fig. 8. Tree with 45 links used for simulating the suboptimal estimators.

Fig. 9. Comparison of one multicast versus two
estimation (subtree decom-

position and MINC-like heuristic). We show the MSE for each link in the
45-link topology.

graph between a link and a path, if the link belongs to this path
in the original graph. Note that in tree topologies, there exists
exactly one path for every source–receiver pair, while this is
not the case in general graphs. Once the factor graph is created
from the original graph, each received probe triggers message
passing and results in an estimate of link success probabilities;
these estimates from different probes are then combined using
standard methods [29]. The result is an estimate of the
actual success probability of every link .

E. Simulation Results

In this section, we evaluate the heuristic estimators via
simulation and we compare them to each other as well as to
multicast-based tomography. The main finding is that using
more than one source helps: using multiple sources and network
coding (even with suboptimal estimation) outperforms a single
MT (even with optimal estimation), thus demonstrating the
usefulness of our approach.12

Consider the 45-link topology shown in Fig. 8, where all links
have the same success rate . We will estimate and compare

12Note that using more than one multicast sources, without network coding,
would traditionally require to combine the observations from the two trees in a
suboptimal way [3], thus further degrading the performance; that is why we skip
the comparison and compare only against a single MT and optimal estimation,
which has the best performance among the baselines.
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Fig. 10. Comparison of one source with MLE, to two sources with subop-
timal estimation (MINC-like and subtree estimation algorithms) for the 45-link
tree. The comparison summarizes the error ENT over all links. (a) ENT versus
number of probes. (b) ENT versus loss probability (same on all links).

different methods in terms of their estimation accuracy. First,
we did simulations for , a large number of probes, and
repeated for many experiments. We looked at the MSE at each
link. The results are shown in Fig. 9 for the following three
algorithms:.
1) a single multicast source and ML estimation (top plot).
2) two sources , network coding at the middle node ,
and the MINC-like heuristic (middle plot).

3) the same two sources and coding point, with the subtree
estimation algorithm (bottom plot).

Notice that in the case of two sources, the 45-link topology is
partitioned into three subtrees: one rooted at (where probe
flows), another rooted at (where flows), and a third one
rooted at (where flows).
One can make several observations from this graph. First,

using two sources and network coding, even with suboptimal
estimators, performs better than using a single multicast source
and an ML estimator. Indeed, the residual entropy (which is the
metric that summarizes the MSE across all 45 links) is lower
for two sources with the MINC-like (ENT ) and for
the subtree-decomposition ENT heuristics, than

Fig. 11. Estimation error for two suboptimal algorithms (BP and MINC-like)
for the 45-link tree. ENT versus number of probes.

it is for the single source MLE ENT . This illus-
trates the benefit of using multiple sources. Second, notice that
the MSE for individual links is smaller in the lower two graphs
than in the top graph, for all links except for links 43, 44, 45, for
which it is significantly higher. This is no coincidence: links 43,
44, 45 are the middle ones (CA, CB, CD in Fig. 8). This is due
to the fact that we cannot directly observe the packets received
at the coding point C and we have to infer them from observa-
tions at the leaves of the subtree rooted at B. The performance
of the heuristics could further improve by using the following
tweak: we could estimate what probes are received at C, using
observations from leaves not only in the subtree rooted at B, but
also from the subtrees rooted at A and D.
The aforementioned simulations were for a single value of

. We then exhaustively considered several values of
(same on all links) and (the number of probes). The results
are shown in Fig. 10. We can see that, even with suboptimal
estimation, using two sources consistently outperforms a single
multicast source, even with MLE estimation. This is apparent in
Fig. 10, where the ENT metric for the single source (drawn in
bold lines) is consistently above the other two algorithms.13

In Fig. 11, we compare the MINC-like and the BP algorithms
over the 45-link network, in terms of the ENT measure, and as a
function of the number of probes . Both algorithms yield better
performance (lower ENT values) as the number of sources in-
creases from one to five. The MINC-like algorithm performs
better for the MT, in which case it coincides with the ML es-
timator, as well as for the two source tree. However, BP offers
significantly better performance for the case of three and five
sources. This trend can be explained by looking at the number
of cycles in the factor graph. A cycle is created in the factor
graph of a network configuration when 1) two different paths
have more than one link in common and 2) a set of paths, say

, covers a set of links, with each of the paths in
containing at least two links in . As the factor graph becomes
more and more cyclic, the performance of the sum–product al-
gorithm degrades.

13Two observations on the ENT metric: First, the differences in the value of
ENT are significant, although this is not visually obvious; recall that ENT is
defined by taking the sum of the of the MSE’s. Second, ENT can be ;
it is the differential entropy that matters.
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Fig. 12. Comparing BP to MLE for the 45-link and 200-link trees. ENTav is
ENT divided by the number of links.

Finally, in Fig. 12, we compare the performance of BP to ML
estimation using a single source. We considered two trees: the
45-link and another, randomly generated 200-link tree. Because
ENT captures the error over all links, and the two topologies
have different numbers of links, we use ENTav (defined as the
ENT value divided by the number of network links) for a fair
comparison of the two topologies. ENTav for the 45-link tree is
better (lower) than that of the 200-link tree for a given number of
probes.We see that the BP algorithm closely follows the optimal
ML estimator, for the range of number of probes and for both
trees considered.

VI. GENERAL TOPOLOGIES

In this section, we extend our approach from trees to general
topologies. The difference in the second case is the presence of
cycles, which poses two challenges: 1) probes may meet more
than once and 2) probes may be trapped in loops. To deal with
these challenges, in this section, we propose 1) an orientation
algorithm for undirected graphs and 2) probe coding schemes,
whose design is more involved than in trees.
The approach followed by prior work on tomography over

general networks was to cover the graph with several multi-
cast [3] and/or unicast probes [4], [6]. This approach faces sev-
eral challenges. 1) The selection of multicast/unicast probes so
as to minimize the total bandwidth (cost) is an NP-complete
problem. 2) Having several probes from different source–des-
tination paths cross the same link leads to bandwidth waste (es-
pecially close to sources or receivers). 3) Finding an optimal
and/or practical method to combine the observations from dif-
ferent multicast/unicast paths is a nontrivial problem, addressed
in a suboptimal way [3].
In contrast, using network coding allows us to measure all

links with a single probe per link and brings the following bene-
fits. 1) It makes the selection of routes so as to minimize the cost
of linear complexity. 2) It eliminates the waste of bandwidth by
having each link traversed by exactly one probe per experiment;
furthermore, each network coded probe brings more informa-
tion, as it observes several paths at the same time. 3) It does not

need to combine observations from different experiments for es-
timation (as all links in the network are probed exactly once in
one pass/experiment).
Because of the aforementioned features, the benefits of the

network coding approach compared to traditional tomographic
approaches are even more pronounced in general topologies
than they were in tree topologies.
In this section, we describe the framework for link loss

tomography in general graphs. In particular, we address the
four subproblems mentioned in Section III-B: 1) identifiability
of links; 2) how to select the routing; 3) how to perform the
code design; and 4) what estimation algorithms to use. We
evaluate our approach through extensive simulations on two
realistic topologies: a small research network (Abilene), used
to illustrate the ideas; and a large commercial ISP topology
(Exodus), used to evaluate the performance in large graphs.

A. Identifiability

The identifiability of an edge given a fixed monitoring
scheme follows from Theorem 4.1 in Section IV-B. CD is the
edge we would like to identify, and we interpret the edges AC,
BC, DE, and DF as paths that connect CD to sources and desti-
nations. In particular, we are able to identify the link loss rate
of edge CD from the probes collected at the receivers, if we can
reconstruct the table associated with one of the cases in Fig. 2
(all tables are provided for completeness in Appendix B.1).
In a general topology, it is desirable to be able to know the

state of all paths that connect the sources to all receivers,
at the end of each experiment. Let denote the set of paths
that are routed from a source to a receiver, and employ an edge
. We refer to path identifiability as the ability to uniquely map
each possible observation (received probes at all receivers) to
the state of the paths , i.e., which paths operated and which
failed during the experiment. For a formal definition, see (29)
and the related discussion. From the state of the paths, we can
tell which links worked (w.p. 1) and which likely failed (with
the associated probability). Moreover, knowing the state of the
paths is particularly well suited for running the BP algorithm
that we use for estimation of general graphs: indeed, message
passing in the BP algorithm is triggered by giving the state of the
paths as input. Therefore, we will attempt to make the maximum
number of path states distinguishable, by appropriate selection
of coding. The following example indicates how the selection
of a coding scheme can allow more or less path states to be
distinguishable at a receiver.
Example 4: Consider the network and edge orientation

shown in Fig. 13; this is based on a real backbone topology
(Abilene [30]), as will be discussed in detail in a later section.
Node 1 acts as a source and node 9 as a receiver; assume that
all intermediate nodes are only allowed to do operations.
Note that paths and overlap twice: on edge , and

later on edge . If all links in both paths function, the op-
erations “cancel” each other out, resulting in exactly the same
observation with both paths being disrupted. More specifically,
the following two events become indistinguishable: 1) all edges
function: node 5 receives packet through edge and packet

through edge , and sends packet through edge
to the receiver; 2) edges and fail, while all other edges
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Fig. 13. Example of a general topology (Abilene). For one source (node 1), we
show the orientation of edges, the resulting receiver (node 9), and the possible
paths from the source to the receiver .

function: node 5 only receives packet from its incoming
links, and again sends packet through edge to the receiver.
On the other hand, if we allow coding operations over a larger
alphabet, as in Example 6, these two events result in observing
the distinct packets 1) and 2) at the receiver.

B. Routing

First, we discuss the case where we want to estimate the suc-
cess rate associated with a specific subset of links, and we ex-
press the corresponding optimization problem as a linear pro-
gramming (LP) that can be solved in polynomial time. Then,
we examine the practical special case where we are interested
in measuring all links, and which will be the main focus of the
rest of the section.
1) Minimum Cost Routing: Consider an arbitrary network

topology, a given set of nodes that can act as sources, a given
set of nodes that can act as receivers, and a set of edges
whose link success rates we want to estimate. Our goal is to
estimate the success probability for all links in at the minimum
bandwidth cost. That is, we assume that a cost is associated
with each edge that is proportional to the flow through the
edge.We are interested in identifying the success rate of edge

. Let be the rate of probes crossing that edge, in a manner
consistent with the identifiability conditions for edge .
Remarks: We note that the flow-based formulation of this

problem does not rely on any major assumption. The accuracy
of estimation depends only on the number of probes and not
on the rate of the probe flows. The rates determine how quickly
those n packets will be collected. For example, for smaller rates,
it will take longer to collect the n packets. We also note that
having flows coded together in an edge does not reduce the es-
timation accuracy. In fact, a coded packet observes more than
one path, thus increasing the estimation accuracy versus band-
width tradeoff.
The minimum cost routing problem was shown to be

NP-hard, when performing tomography with MTs [31]. Indeed,
the problem of even finding a single minimum cost Steiner tree
is NP-hard. In contrast, we show here that if we use network
coding, we can find the minimum cost routing in polynomial

time. In the case of network coding, to ensure identifiability, we
want to route flows so that the conditions in Theorem 4.1 are
satisfied. We will consider the flow interpretation of paths in
Theorem 4.1, i.e., we will think of each path as a flow of fixed
rate . To ensure minimum cost, we want these flows to use the
minimum resources possible.
In the following, we provide an LP formulation that allows us

to solve the minimum cost cover problem in polynomial time,
provided that we allow intermediate nodes to combine probes.
We assume that there are no capacity constraints on the edges
of the network, i.e., we can utilize each edge as much as we
want. This is a realistic assumption, since the rate at which we
send probe packets would be chosen to be a very small fraction
of the network capacity, and nowhere close to consuming the
whole capacity.
Intuition. Following an approach similar to [32], we intro-

duce conceptual flows that can share a link without contending
for the link capacity. We associate with each edge one
such conceptual flow .Wewant each to bring probe packets
to link , in a manner consistent with the condi-
tions of Theorem 4.1 for edge . We allow conceptual flows
corresponding to different edges to share edges of the graph
without contention, and will measure through a total flow
the utilization of edges by probe packets. We use the condition

to express the fact that each packet in might be the
linear combination of several packets of conceptual flows.
Notation. Let be our cost function that

associates a nonnegative cost with each edge . We
are interested in minimizing the total cost ,
where is the flow through edge . We also denote by

in out the total incoming/outgoing flow of vertex
and with in out the total incoming/outgoing flow

to edge . The same notation but with the superscript , e.g.,

in has the same meaning but specifically for conceptual
flow . We connect all nodes in to a common source
node through a set of infinite-capacity and zero-cost edges

. Similarly, we connect the nodes in to
a common node using an infinite-capacity and zero-cost set
of edges .
We summarize the LP program for minimum cost routing in

the following:

in

out

in out

in

in out

out

in out
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The idea is to lower bound the probe rate , in edge ,
given the conceptual flows and the condition .
Solving this LP will give us a set of flows and paths, for each
edge . To ensure identifiability, we need to addition-
ally select a coding scheme so that the flows arriving and leaving
at and utilize distinct packets, i.e., from the observable
events at the sink, we can reconstruct for edge the probability
of the events of one of the cases 1–4 in identifiability.
In summary, theminimum cost routing problem, so as to iden-

tify the loss rates of a predefined set of edges , can be solved in
linear complexity when network coding is used, while the same
problem is NP-hard without network coding.
2) Routing (Including Source Selection and Link Orienta-

tion) for Measuring all Links: If we are interested in estimating
the success rate of all identifiable edges of the graph, as opposed
to just a restricted set as in the previous section, we do not
need to solve the above LP. We can simply have each source
send a probe and each intermediate node forward a combina-
tion of its incoming packets to its outgoing edges. This simple
scheme utilizes each edge of the graph exactly once per time
slot (set of probes sent by the sources) and, thus, requires the
minimum total bandwidth. Moreover, if an edge is identifiable,
there exists a coding scheme that allows it to be so. Example
4 and Fig. 13 demonstrate such a situation: the source (node 1)
sends one probe per experiment, which gets routed and coded
inside the network, crossing each link exactly once, and even-
tually arriving at the receiver (node 9).
Challenge I: Cycles: One novel challenge we face in general

topologies compared to trees is that probes may be trapped in
cycles. Indeed, if network nodes simply combine their incoming
packets and forward them toward their outgoing links, in a
distributed manner and without a global view of the network,
then probes may get trapped in a positive feedback loop (cycle)
that consumes network resources without aiding the estimation
process. The following example illustrates such a situation.
Example 5: Consider again the network shown in Fig. 13,

but now assume that the orientation of edges and was re-
versed. Thus, edges , , , and create a cycle between
nodes 2, 4, 5, and 3. The probe packets injected by nodes 3 and
2 would not exit this loop.
To address this problem, we could potentially equip interme-

diate nodes with additional functionalities, such as removal of
packets that have already visited the same node. This is not prac-
tical because it requires keeping state at intermediate nodes; fur-
thermore, such operations would need to be repeated for every
set of probes, leading to increased processing and complexity.
We take a different approach: we remove cycles. Starting

from an undirected graph , where the degree of
each node is either one (leaves) or at least three (intermediate
nodes), we impose an orientation on the edges of the graph so
as to produce a directed acyclic graph (DAG). Our approach is
only possible if we are given some flexibility to choose nodes
that can act as sources or receivers of probe packets, among all
nodes, or among a set of candidate nodes.
There are many algorithms one can use to produce a DAG. In

the following, we propose our own orientation algorithm, Algo-
rithm 3, that in addition to removing cycles also achieves some

goals related to our problem. In particular, starting from a set
of nodes that act as senders , Algorithm 3 selects an
orientation of the graph and a set of receivers so that 1) the re-
sulting graph is acyclic, 2) a small number of receiver nodes is
selected,14 which is desired for the efficient data collection, and
3) the resulting DAG leads to a factor graph that works well
with BP estimation algorithms. Algorithm 3 guarantees identi-
fiability, but is heuristic with respect to criteria 2) and 3); it is
important to note, however, that optimizing for criterion 3) is an
open research problem (as discussed in Section VI-D).

Algorithm 3 Orientation Algorithm: Given Graph
and Senders , Find Receivers and Orientation

s.t. There are no Cycles and all Edges are Identifiable

1: for all undirected edges do
2: Set outgoing orientation

3: end for
4:

5: ;

6:

7: while do
8: Identify and exclude receivers: find without unset
edges: ;

9: Find nodes that have the smallest number of
edges with unset orientation.

10: Find nodes that have the minimum distance
from the sources . Choose one of them: .

11: Let

12: for all undirected edges do
13: set direction to

14: end for
15: Update

16: Update

17: end while

We now describe Algorithm 3. We sequentially visit the ver-
tices of the graph, starting from the source, and selecting an ori-
entation for all edges of the visited vertex. This orientation can
be thought of as imposing a partial order on the vertices of the
graph: in a sense, no vertex is visited before all its parent ver-
tices in the final directed graph.
Lines 1–3 attempt to set all links attached to the sources as

outgoing. If we allow an arbitrary selection of sources, we may
fall into cases where sources contain links to other sources. In
this case, one of the sources will also need to act as a receiver,
i.e., we allow the set of sources and the set of receivers
to overlap. In the main part of the algorithm, nodes are divided
into three sets.

14Given a set of sources, one can always produce an orientation and a set of
receivers that comprise a DAG, which is what Algorithm 3 does. Conversely,
given a set of receivers, one can always produce an orientation and a set of
sources that comprise a DAG. If both the sets of sources and receivers are fixed,
a DAG may not always exist, depending on the topology.
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1) A set of nodes , which we have already visited and have
already assigned orientation to all their attached edges.
Originally, .

2) A set of nodes , which are one edge away from nodes in
and are the next candidates to be added to .

3) The remaining nodes are either receivers or just nodes
not visited yet .

In each step of the algorithm, one node is selected,
all its edges that do not have an orientation are set to outgoing,
and is added to . Note that the orientation of
the edges going from to is already set. However, a node

may have additional unset edges; if it does not have unset
edges, then it becomes a receiver .We include two
heuristic criteria in the choice of : 1) first, we look at
nodes with the smallest number of unset edges; 2) if there are
many such nodes, then we look for the node with the shortest
distance from the sources ; if there are still many such nodes,
we pick one of them at random. The rationale behind criterion
1) is to avoid creating too many receivers. The rationale behind
criterion 2) is to create a set of paths from sources to receivers
with roughly the same path length. The criteria 1) and 2) are just
optimizations that can affect the estimation performance.15 The
algorithm continues until all nodes are assigned to either or
.
Lemma 6.1: Algorithm 3 produces an acyclic orientation.
Proof: At each step, a node is selected and all its edges

which do not have a direction are set as outgoing. This se-
quence of selected nodes constitutes a topological ordering. At
any point of the algorithm, there are directed paths from nodes
considered earlier to nodes considered later. A cycle would exist
if and only if for some nodes and , is selected at step

and the direction on the undirected edge is set
to . This is not possible since if there were an edge

, it would have been set at the earlier step at the oppo-
site direction . Therefore, the resulting directed graph
has no cycle. It is possible, however, that there are nodes with
no outgoing edges, which become the receivers.
We note that the key point that enables us to create an acyclic

orientation graph for an undirected graph is that we allow the
receivers to be one of the outputs of the algorithm. Note that a
similar algorithm can be formulated for the symmetric problem,
where the receivers are given and the orientation algorithm
produces a (reverse) orientation and a set of sources , s.t. that
there are no cycles. However, if both and are fixed, there
is no orientation algorithm that guarantees the lack of cycles for
all graphs.
Lemma 6.2: Algorithm 3 guarantees identifiability of every

link in a general undirected graph consisting of logical links
(i.e., with degree ), and for any choice of sources.

Proof: The proof follows directly from the fact that the
degree of each node is greater than or equal to three (assuming
logical links only), each edge bringing or removing the same
amount of flow. Thus, either the node is a source or a receiver,
or the conditions of Theorem 4.1 and Fig. 2 are satisfied.

15One could use different criteria to rank the candidates , so as to enforce
additional desirable properties. Here, we used shortest path from the sources to
impose a breath-first progression of the algorithm and paths with roughly the
same length. One could also use other criteria to optimize for the alphabet size
and/or the complexity and performance of the estimation algorithms.

C. Code Design

Challenge II: Code Design affects Identifiability: Another
novel challenge that we face in general topologies compared to
trees is that simple operations do not guarantee path iden-
tifiability, as we saw in Example 4. We deal with this challenge
using linear operations over higher field sizes as the following
example illustrates.
Example 6: Let us revisit the general topology shown in

Fig. 13 and briefly discussed in Example 4. Node 1 acts as
a source: in each experiment, it sends probes , , and
through its outgoing edges , , and , respectively. Nodes
2, 4, 6, 10 simply forward their incoming packets to all their
outgoing links. Node 3 performs coding operations as follows:
if within a predetermined time window it only receives probe
packet , it simply forwards this packet. The same holds if
it only receives probe packet . If, however, it receives both
packets and , it linearly combines them to create the packet

that it then sends through its outgoing edge . Nodes
5, 7, and 8 follow a similar strategy. If all links are functioning,
node 5 sends packet , node 7 sends packet , and,
finally, node 8 sends packet . The receiver node 9 ob-
serves, in each experiment, three incoming probe packets. For
example, if it only observes the incoming packet , it knows
that all paths from the source have failed, apart from path .
Therefore, it infers that no packets were lost on edges , ,
and .
More generally, we are interested in practical code design

schemes that allow for identifiability of all edges in general
topologies.We will achieve this goal by designing for path iden-
tifiability, which is a different condition. In particular, we are
interested in coding schemes that allow us to identify the max-
imum number of path states. This can be achieved by mapping
the failure of each subset of paths to a distinct probe observed at
the receivers. For this to be possible, 1) the alphabet size must be
sufficiently large and (ii) the coding coefficients must be care-
fully assigned to edges.
Recall that receiver nodes only have incoming edges. Let

be an edge adjacent to a receiver and be the set of
paths that connect all source nodes to receiver , and have

as their last edge. We say that a probe coding scheme al-
lows maximum path identifiability if it allows the receiver ,
by observing the received probes from edge at a given ex-
periment, to determine which of the paths have been
functioning during this experiment and which have not.
1) Alphabet Size: There is a tradeoff between the field size

and path identifiability. On one hand, we want a small field size
mainly for low computation (to do linear operations at interme-
diate nodes) and secondarily for bandwidth efficiency (to use a
few bits that can fit in a single probe packet). In practice, the
latter is not a major problem, because for each probe, we can
allocate as many bits as the maximum IP packet size, which
is quite large in the Internet.16 However, for computation pur-
poses, it is still important that we keep the field size as small as
possible. On the other hand, a larger field size makes it easier to
achieve path identifiability.

16The maximum transmission unit on the Internet is at least 575 bytes (4800
bits), and up to 1500 bytes (12 000 bits), including headers. However, in simu-
lation of realistic topologies, we did not need to use more than 18 bits.
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For maximum path identifiability, there is the following loose
lower bound on the required alphabet size.
Lemma 6.3: Let be acyclic and let denote

the maximum number of paths sharing an incoming edge of any
receiver , i.e., . The alphabet size
must be greater than or equal to .

Proof: Assume that one of the paths is functioning,
while all the others are not. Since two paths cannot overlap in
all edges, there exists a set of edge failures such that this event
occurs. For the receiver to determine which of the paths
function and which ones fail, it needs to receive at least
distinct values. Essentially, the field size should be large enough
to allow for distinguishing among all possible paths arriving at
each receiver. Therefore, we need a field size .
What the aforementioned lemma essentially counts is the

number of distinct values that we need to be able to distinguish.
This can be achieved using either scalar network coding over
a finite field of size , or vector linear coding with vectors
of appropriate length. See, e.g., [24] for an application to the
multicast scenario, where scalar network coding over a finite
field of size was treated as equivalent to vector network
coding over the space of binary vectors of length .
The reader will immediately notice that there is an expo-

nential number of paths and failure patterns. We would like
to note that this is not unique to our work, but inherent to to-
mography problems that try to distinguish between exponen-
tially large number of configurations, e.g., transfer matrices and
their failure patterns in the passive tomography [17], [18]. Even
in that case, simulations of large topologies, such as Exodus,
showed that a moderate field size is sufficient in practice. How-
ever, in our case of active tomography, a potentially large al-
phabet size is needed only if one insists to infer the loss rates
on all links simultaneously. In practice, one can infer the loss
rates on links one by one, by carefully selecting the probes and
measuring only the corresponding paths, thus creating the “five-
link” motivating example, where operations are sufficient.
2) Code Design: Having a large alphabet size is necessary

but not sufficient to guarantee path identifiability. We also need
to assign coefficients so that the failure of every subset
of paths leads to a distinct observable outcome (received probe
content). Here, we discuss how to select these coefficients.
Consider a particular incoming edge to a receiver and

let be the number of paths arriving at this edge from source
. Consider one specific path that connects source to

via edges . The contribution from path
to the observed probe is what we call a path monomial, i.e., the
product of coefficients on all edges across the path and of probe

sent by source :

For simplicity, we use to denote both a path and the corre-
sponding path monomial. Note that each path consists of a dis-
tinct subset of edges; as a result, no path monomial is a factor
of any other path monomial. We can collect all the monomials
in a column vector .

If all paths arriving at edge are working (no link fails), the
received probe at that edge is the summation of the contributions

from all paths:

Probe received through when no loss

In practice, however, any subset of these paths may fail
due to loss on some links and the received probe becomes
the summation of the subset of paths that did not fail. Let

be the vector indicating which paths
failed: if path failed and 1 otherwise. Therefore, the
probe received through , in the case of loss, is:

Probe received through

where is the indicator vector corresponding to the loss pat-
tern, i.e., has entry zero if a path fails, and one otherwise. The
vector can take possible values; let denote the th
possible value, . To guarantee identifiability,
no two subsets of failed paths should lead to the same ob-
served probe .
Therefore, a successful code design should lead to dis-

tinct probes, one corresponding to a different subset of paths
failing. In other words, to guarantee identifiability, the coeffi-
cients assigned to edges should be such that

. We can write all
these constraints together as follows, which is essentially the
definition of path identifiability, mentioned in the beginning of
Section VI-A:

(29)

Since each is a monomial, with
variables the coding coefficients , the left-hand side in
(29) is amultivariate polynomial with degree
in each variable at most .
Lemma 6.4: The multivariate polynomial

at the left-hand side of (29) is not identically zero.
Proof: The “grand” polynomial is not identically zero be-

cause each factor in the product is a

nonzero polynomial in Indeed, and differ in at least
one position, say , corresponding to a monomial . Consider
the following assignment for the variables . Assign to all
the variables in this monomial a value equal to one. Assign to
all other variables a value of zero. Since no monomial is a
factor of any other monomial, this implies that the vector
takes value one at position , and zero everywhere else. Thus,
this assignment results in a nonzero evaluation for the polyno-
mial , and as a result, this cannot be
identically zero.
Up to now, we have considered paths that employ the same

incoming edge. We can repeat exactly the same procedure for
all incoming edges, and generate, for each such edge, a poly-
nomial in the variables . Alternatively, we could also find
these polynomials by calculating the transfer matrix between the
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sources and the specific receiver node using the state-space rep-
resentation of the network and the algebraic tools developed in
[33]. Either way, the code design consists of finding values for
the variables so that the product of all polynomials, , eval-
uates to a nonzero value. There are several different ways to find
such assignments, extensively studied in the network coding lit-
erature, e.g., [34]–[36]. One way to select the coefficients is ran-
domly, and this is the approach we follow in the simulations. In
that case, it is well known that we can make the probability that

arbitrarily small, by selecting the coef-
ficients randomly over a large enough field.17

Deterministic Operation:We emphasize that although the co-
efficients may be selected randomly (at setup time), the opera-
tion of intermediate nodes (at run time) is deterministic. At setup
time, we select the coefficients and we verify the identifiability
conditions, and select new coefficients if needed for the con-
ditions to be met. After the selection is finalized, we learn the
coefficients and use the same ones at each time slot. Learning
the coefficients is important in order to be able to infer the state
of the paths and links.
State Table and Complexity Issues: Once the coefficients are

randomly selected, we need to check whether the constraints
summarized in (29) are indeed satisfied. If they are satisfied, the
code design guarantees identifiability; if they are not satisfied,
then we can make another random selection and check again.
One could also start from a small field size and increase it after
a number of failed trials.
The evaluation of (29) above requires to check an exponen-

tial number of constraints, up to , where is the number of
paths for a triplet (source, receiver, edge at receiver). Because
the current orientation algorithm does not exclude any edges in
the process of building the DAG, we might end up with a large
number of paths depending on the connectivity of the topology
and the selection of the sources18. This motivated us to look
into ways for reducing the number of paths per triplet19. Even
putting aside the exponential number of paths for a moment,
the problem is essentially a subset sum: we receive a symbol
at a receiver and we would like to know which combinations
of nonfailed paths add up to this number. This is a well-known
NP-hard problem.
This being said, we do not expect this to be a source of high

complexity in practice for several reasons. First, the algorithm
that maps the received symbol to a state of paths can be run of-

17From the Schwartz–Zippel Lemma [34], which has been instrumental for
network coding [36], we know the following. If is a non-
trivially zero polynomial with degree at most in each variable, and we choose

uniformly at random in with , then the probability that
is at most .

18For example, for the Abilene topology shown in Fig. 13, with one source,
there were at most three paths per triplet, but for the larger Ex-
odus topology (described in Section VI-E) with five sources, the average and
maximum number of paths per triplet were 9 and 25, respectively (for a specific
selection of sources in both topologies).
19For example, if we are willing to accept less than 100% path identifiability,

we can randomly assign coefficients without checking for identifiability con-
ditions. From the observed probes at the receivers, we then infer the subset of
paths that failed by looking up a table which is precomputed by solving a subset
sum problem. If we identify one or more subsets of paths that when failing lead
to the same observed probe, we can use a heuristic, i.e., pick one of the candi-
date subsets, their union or intersection. We then feed the state of the paths to
the BP estimation algorithm. This is the approach we follow in the simulation
section.

Fig. 14. Factor graph corresponding to the Abilene graph (shown in Fig. 13).
It maps the 15 links to the seven observable paths at the single receiver (9). It is
used for the BP estimation algorithm.

fline and the table can be computed and stored. This is a static
scenario, since coding coefficients remain the same across sce-
narios. Therefore, we incur setup complexity once in the begin-
ning, but not during run time. All we need to do every time we
receive a symbol is just a table lookup, which is inexpensive

, when implemented using hash tables. Second, this de-
sign is only necessary if one wants to infer all links at the same
time, which may be an overkill in practice. The most typical use
of our framework in practice will be for inferring the loss rates
of a few congested specific links of interest, in which case we
do not need to keep track of the state of all paths, and the size
of the table reduces.

D. Loss Estimation Using BP

For our approach to be useful in practice, we need to employ
a low complexity algorithm that allows to quickly estimate the
loss rate on every link from all the observations at the receiver.
Because MLE is quite involved for general graphs, especially
large ones, we use a suboptimal algorithm instead; in partic-
ular, we use the BP approach that we also used for trees, see
Section V-D3.
There are two steps involved in the algorithm for each round

of received probes. First, from the observations, we need to de-
duce the state of the paths traversed by these probes, as de-
scribed in Algorithm 4. The second step is to use the BP al-
gorithm, to approximate ML estimation. Once we know which
paths worked and which failed in this round, we feed this in-
formation into the factor graph, which triggers iterations, and
leads to the estimate of the success rate. Similarly to trees, the
factor graph is again a bipartite graph, between links and paths
containing these links. For example, Fig. 14 shows the bipartite
graph corresponding to the Abilene topology of Fig. 13, which
we have been discussing in all the examples in this section.

Algorithm 4 Deduce State of the Paths From the Observations
for all do
for all do
for all incoming links do
Map the observed probe to the state of all paths from

to coming through link .

end for
end for

end for
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Fig. 15. Topologies used in simulations (a) Left: Abilene Backbone Topology (small research network) (b) Right: Exodus POP Topology (large ISP).

The main difference in the general graphs compared to the
trees is that there are multiple (instead of exactly one) paths
between a source and a receiver; this has two implications. The
first implication is that the design of the coding scheme must
allow us to deduce the state of these multiple paths between
a source, a receiver, and an incoming edge at the receiver

; this has been extensively discussed in the pre-
vious section on code design. The second implication is that
there are more cycles in the factor graph of a general graph,
which affects the estimation accuracy of the BP algorithm.
In general, the performance of the BP algorithm depends on

the properties of the factor graph. Several problems have been
identified in the BP literature depending on the existence of cy-
cles, the ratio of factors versus variables (e.g., links per path),
and other structural properties (stopping sets, trapping sets, di-
ameter). Fixing such BP-specific problems are outside the scope
of this paper and is a research topic on its own. However, we did
address two of the aforementioned problems, using existing pro-
posals from the BP literature. First, for performance enhance-
ment in the presence of cycles in the factor graph, we used a
modification of the standard BP, similar to what was proposed in
the context of error correcting codes [37]. The idea is to combat
the overestimation of beliefs by introducing a multiplicative
correction factor for messages passing between variables
(links) and factors (paths).20 Second, we designed the orienta-
tion algorithm to traverse the actual topology in a breadth-first
manner in order to produce short paths and, thus, small ratio of
links per path in the factor graph, which has a good effect on the
BP performance. More generally, we note that the properties of
the factor graph depend on the orientation algorithm. One could
optimize the orientation algorithm to achieve desired properties
of the factor graph. In this paper, we have not done modifica-
tions other than the two aforementioned because 1) the overall
estimation worked well in all the practical cases we tried, and

20In the same way, we could also use an additive correction factor instead.
Making those factors adaptive could give even better results. In the same paper
[37], additional modifications of the factor graph (junction tree algorithm, and
generalized BP) to deal with cycles have been proposed, which we did not im-
plement in this paper. Other possible modifications of the BP include: [38], a
multistage iterative decoding algorithm that combines BP with ordered statistic
decoding, and reaches close to the performance of MLE although with a higher
complexity than BP; and [39], which uses a probabilistic schedule for message
passing between variable nodes and check nodes in the factor graph instead of
simple message flooding at every iteration.

2) the design of a factor graph for better BP performance is a
research topic on its own and outside the scope of this work.

E. Simulation Results

We now present extensive simulation results over two real-
istic topologies.
1) Network Topologies: We used two realistic topologies for

our simulation, namely the backbones of Abilene and Exodus
shown in Fig. 15. Abilene is a high-speed research network op-
erating in the U.S. and information about its backbone is avail-
able online [30]. Exodus is a large commercial ISP, whose back-
bone map was inferred by the Rocketfuel project [40]. Both
topologies were preprocessed to create logical topologies that
have degree at least 3. For Exodus, nodes with degree 2 were
merged to create a logical link between the neighbors of such
nodes, while nodes with degree 1 were filtered; the resulting
logical topology contains 48 nodes and 105 links. For the Abi-
lene topology, due to its small size, in addition to merging some
links in tandem, more links were added; the modified topology
comprises of 10 nodes and 15 links, and is the one shown in
Fig. 13 and used as an example of a general topology throughout
Section VI.
For all simulations, the link losses on different links are

assumed independent, and may take large values as they reflect
losses on logical links, comprising of cascades of physical
links, as well as events related to congestion control within the
network.
2) Results on the Orientation Algorithm: In Fig. 16, we con-

sider the Exodus topology and we run the orientation algorithm
for all possible placements of one and two sources; we call
each placement an “instance.”We are interested in the following
properties of the orientation produced by Algorithm 3 :
1) the number of receivers: a small number allows for local
collection of probes and easier coordination.

2) the number of distinct paths per receiver: this relates to the
alphabet size and it is also desired to be small.

3) the number of paths per link and links per path: these affect
the performance of the BP algorithm.

Fig. 16 shows the aforementioned four metrics, sorting the
instances first in increasing number of receivers and then in
increasing paths/receiver. The following observations can be
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Fig. 16. Running the orientation algorithm on the Exodus topology. (a) All
possible placements of one source. (b) All possible placements of two sources.

TABLE III
PROPERTIES OF THE ORIENTATION GRAPHS PRODUCED BY ALGORITHM 3 FOR

DIFFERENT TOPOLOGIES AND CHOICES OF SOURCES

made. First, the number of receivers produced by our ori-
entation algorithm is indeed very small, as desired. Second,
the number of links per path is almost constant, because by
construction, the orientation algorithm tries to balance the path
lengths. Third, the paths/receiver and paths/link metrics, which
affect the alphabet size and the quality of the estimation, can be
quite large; however, they decrease by orders of magnitude for
configurations with a few receivers; therefore, such configura-
tions should be chosen in practice. Finally, Table III considers
different choices of sources in the (modified) Abilene and
Exodus topologies, and shows some properties of the produced
orientation.
3) Evaluation of Random Code Design for Real Topologies:

In this section, we simulate random code design schemes for the
example topologies of Abilene and Exodus.

Fig. 17. Distribution of the number of paths for all triplets for
the Exodus topology.

Consider a particular incoming edge to a receiver
and let be the number of paths arriving at this edge from
the same source . If two subsets of paths lead to the same
probe, then they are indistinguishable, which leads to lack of
identifiability. In practice, since many of the paths for a triplet

share links between them, we have much less than
possible distinct probes. The exact number depends on the

connectivity of the topology. In the simulations, the content of
the probe from each subset of paths is used as a key to a hash
table. If two subsets lead to the same probe, then they will end
up into the same bucket. The number of unique buckets in the
hash table gives us the number of different combinations of
failed/nonfailed paths that are distinguishable from each other.
We normalize this number by the total number of possible dis-
tinct subsets, and we call this number the probability of success
(path identifiability) of the code design for this particular triplet

.
For the Abilene topology (10 nodes, 15 links), using one

source and the orientation algorithm, we obtained a DAG with
one receiver (see Fig. 13). The maximum number of paths
observed for an incoming edge at the receiver was 3. A random
choice of coding coefficients over a finite field of size was
sufficient to achieve 100% identifiability of all paths on all
edges.
For the Exodus topology (48 nodes, 105 links), we select

five sources, apply the orientation algorithm, and get three re-
ceivers. Fig. 17 shows the distribution of the number of paths
for all triplets . There are 16 incoming edges to all
three receivers, 44 triplets , and 377 paths from the
sources to the receivers in total; this leads to an average of nine
paths and a maximum of 25 paths per triplet . We
visit all nodes in a random order and we assign coefficients from
a finite field with increasing size .
In Fig. 18, we show the probability of success in terms of

path identifiability for five such triplets , with 7,
9, 13, 20, and 25 number of paths, respectively. The values are
averaged over five different runs for each field size value. When
we use random code selection over a field of size or larger,
we get good results: for a field of size or larger, we get almost
100% success for all triplets. These are good results for a large
realistic topology such as Exodus, since almost 100% success
is achieved with much less bits than the 1500 bytes of an IP
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Fig. 18. Random code design for the Exodus topology. The X-axis shows
the field size over which we choose the coding coefficients randomly: finite
fields with different sizes . The Y-axis shows the effect on path
identifiability (probability of success, defined as the of the paths in a triplet

that we can uniquely distinguish from the observed outcome).

Fig. 19. (Modified) Abilene topology. Loss rates ( ’s) are different across
links: they are assigned inversely proportional to the bandwidth of the actual
links, as reported in [30]. The resulting average loss rate is . (a) Estimated
versus real success rate (for 3000 probes). (b) ENT metric versus number of
probes.

packet. Random assignment of coefficients over a set of prime
numbers leads to success probability above 98% when we use
up to prime 907 and field size for the linear operations.

Fig. 20. Abilene topology with the same on all links. (a) One source: node
1. (b) Two sources: nodes 1 and 9.

4) Results on BP Inference: This section presents results on
the quality of the BP estimation for different assignments of loss
rates to the links of the two considered topologies.
In Fig. 19, we consider the Abilene topology with loss rates

inversely proportional to the bandwidth of the actual links; the
intuition for this assignment is that links with high bandwidth
are less likely to be congested. We see that the estimation error
for each link MSE and for all links ENT decreases quickly. In
Fig. 20, the same topology is considered, but with the same
on all links: again, ENT decreases with the number of probes; as
expected, the larger the , the slower the convergence; there is
not a big difference between having one or two sources in this
case. Fig. 21 shows the estimation error ENT for the Exodus
topology with uniform loss rates. Finally, Table IV shows the
results for different numbers and placements of sources in the
(modified) Abilene topology. Unlike Fig. 20, Table IV shows
that the choice of sources matters and that increasing the number
of sources helps in decreasing the ENT.
5) NC-Tomography Versus Multicast Tomography: We fi-

nally compare the network coding approach to traditional mul-
ticast tomography for general topologies [3]. In the traditional
approach, multiple MTs are used to cover the general topology,
and the estimates from different trees are combined into one,
using approaches in [3].
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Fig. 21. Exodus topology, considering different loss rates across links: uni-
formly in .

TABLE IV
QUALITY OF ESTIMATION FOR THE (MODIFIED) ABILENE TOPOLOGY AND

FOR DIFFERENT CHOICES OF SOURCE(S)

Fig. 22(a) shows the topology we used in the comparison,
which is taken from [3]: Nodes are sources, nodes

are receivers, and all remaining nodes (shown as
boxes) are intermediate nodes. When the traditional approach
is used, probes are sent from each of the four sources to all re-
ceivers using an MT, an estimate is computed from every tree,
and then, the four estimates are combined into one using the
minimum variance weighted average [3]. When the network
coding approach is used, the same four sources and the same re-
ceivers are used, but probes are combined at intermediate nodes

. For a fair comparison, the same BP algorithm has been
used for estimation over MTs and using the network coding ap-
proach. Fig. 22(b) shows the performance of both schemes. We
see that the network coding approach achieves a better error
versus number of probes tradeoff. The main benefit in this case
comes from the fact that the network coding approach elimi-
nates the overlap of the MTs below nodes 6 and 7.
There is of course a wealth of other tomographic techniques

that are not simulated here. (For example, we could cover a gen-
eral graph with unicast probes, but this would perform worse
than using multicast probes.) The reason is that [3] is directly
comparable to our approach and thus highlights the intuitive
benefits of network coding, everything else being equal. Net-
work coding ideas could also be developed for and combined
with other tomographic approaches.

Fig. 22. Comparison of the network coding approach to traditional tomog-
raphy. In both cases, the same sources and receivers are used. In the traditional
case, four MTs are used and the estimates are combined using methods from [3].
In the network coding case, probes are combined wherever they meet in the net-
work (nodes 6 and 7). (a) Simulation topology from [3]. Nodes are
sources, nodes are receivers, and all remaining nodes (shown as
boxes) are intermediate nodes. (b) Performance of tomography: error ENT
versus number of probes. Solid and dashed lines correspond to the network
coding approach and the traditional approach, respectively. All links have loss
rate .

VII. CONCLUSION

In this paper, we revisited the well studied and hard problem
of link loss tomography using new techniques in networks
equipped with network coding capabilities. We developed a
novel framework for estimating the loss rates of some or all
links in this setting. We considered trees and general topolo-
gies. We showed that network coding capabilities can improve
virtually all aspects of loss tomography, including identifia-
bility, routing complexity, and the tradeoff between estimation
accuracy and bandwidth overhead.

APPENDIX A
PROOFS OF THEOREMS

A) Proof of Theorem 4.1:
Proof: To prove that conditions 1 and 2 are necessary, con-

sider that condition 1 is not satisfied. Then, can only receive
one stream of probe packets, since it is connected to only one
source. There exists an edge through which this stream of
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Fig. 23. Real topology based on conditions 1(b) and 2(b). The goal is to identify the loss rate of link . are sources and are
receivers. can be either links or paths from/to the sources/receivers. Reduce the real topology to an MT with three links: “aggregate” link

(which transmits some symbol, or , below ), and links (which broadcast that symbol). Reduce the real topology to an RMT
with three links: , and “aggregate” link (which transmits the symbol coming in to at least one receiver). As shown in detail in Table II, the
observations in the reduced topologies are simply unions of disjoint observations in the original topology, and their probabilities are the sum of the probabilities
of the corresponding observations in the original topology.

probe packets arrives at node . The link success rate associ-
ated with link cannot be distinguished from the link success
rate associated with link . More formally, if is the success
probability associated with link and is the success prob-
ability associated with link , then the variables and
appear always together (e.g., in the expression in
the probability function ). Therefore, there are many pairs of
values that lead to the same . According to def-
inition 2, this means that link is not identifiable. Similar
arguments hold for the other conditions and this completes the
forward argument.
Next, we prove that conditions 1 and 2 are sufficient for iden-

tifying link .
First, let us consider Case 1, where Conditions 1(b) and

2(b) are satisfied. The remaining cases are similar and are
discussed at the end of this proof. These conditions mean
that the paths involving link should be as depicted in
Fig. 23(a): can be either links or paths
from/to the sources/receivers, respectively. In the latter case
(when and depict paths), the path suc-
cess probability can be computed from the success rates of
the corresponding links. Essentially, Case 1 (also shown in
Fig. 2– 5-links, Case 1) generalizes the motivating example of
Section IV, where the links are replaced by
paths with the same success probability.
In Definition 2, and consistently with [2], we defined the

links as identifiable iff the probability distribution uniquely
determines the parameters ,21 i.e., iff for ,

implies . To establish the identifiability
of link , we repeatedly apply the identifiability result for
a three-link MT (from [2]) and for an RMT (leveraging the re-
versibility property in Theorem 5.1, Section V-B2). Consider
the two reductions of the actual five-link topology (as described
in Section V-B3), to an MT shown in Fig. 23(b), and to an RMT
shown in Fig. 23(c), respectively.

21Recall that refers to the vector of all success probabilities, and refers
to the success probability of one particular edge .

In the case of the three-link MT consisting of and
, Theorems 2 and 3 in [2] guarantee that , ,

and are identifiable. Namely, implies
.

On the other hand, since the MLE for the RMT has the same
functional form as the MT (as described in Section V-B2), using
again the main result of [2], we have that implies

.
Proving identifiability in the original topology, via contradic-

tion: Consider the five-link tree in Fig. 23(a), and assume that
there exist for which and .
Use the MT reduction to map the success rates to and

associated probabilities to . Similarly, reduce the success
rates to , and associated probabilities to . Since

, we conclude that . Because the topology
in Fig. 23(b) is identifiable [2], we conclude that .
This implies that:

(30)

(31)

(32)

Applying similar arguments for the reduction to an RMT, we
get that , and as a result:

(33)

(34)

(35)

From (30)–(35), we conclude that , which is a con-
tradiction. Therefore, implies that , i.e.,
identifiability.
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TABLE V
CASE 2

The remaining cases (combinations of clauses (a), (b), (c) in
Conditions 1 and 2, other than 1(b) and 2(b)) are shown in Fig. 2.
For example, Condition 1(a) or 2(a) corresponds to the three-
link MT or RMT, and the MINC MLE can then be used directly
on these trees. Condition 1(c) or 2(c) leads to the Cases 2–4 in
Fig. 2, and similar reductions as in Case 1 can be used to prove
identifiability. This completes the proof.

B) Estimating :
Proof: Let us denote the outcomes in which link has

worked by ; the outcomes in which at least one of the up-
stream paths to has worked by up; and the outcomes in
which at least one of the downstream paths after has worked
by dn. For the intersection of any two of these outcomes, e.g.,
up and dn, we use the notation up dn. The independence of
link loss rates indicates that up, dn, and are indepen-
dent. Therefore:

up dn
up dn

up dn
(36)

The numerator equals . Also,
we have that

dn dn up dn

dn (37)

We can derive a similar expression for up . Therefore:

(38)

By writing (13) for in Fig. 4, and by writing (18) for in
Fig. 4, we conclude that:

agg agg
(39)

Equation (24) then follows from replacing these results into
(38).

C) Proof of Lemma 5.5:
Proof: In [2], it has been shown that the likelihood

function of the reduced MT in Fig. 4(a), , can be

TABLE VI
CASE 3

TABLE VII
CASE 4

written as the sum of three distinct parts in which the derivative
is constant. These parts are , the

, which we represent by for sim-
plicity, for , and . The derivative

in these parts is equal to , , and ,

respectively. Thus, the likelihood equation can be written as:

(40)

Similarly, we can split the likelihood function of the original
tree into three parts in which is con-
stant. These parts will be similar to those of an MT, only with

as defined for the original tree in Section V-B2, and
with representing the number of ancestors of node up
to node (instead of the root 0 in the MT). The derivative

over these parts is also similar to the MT, i.e.,

, , and , respectively. Therefore,

we have that:

(41)



SATTARI et al.: NETWORK CODING APPROACH TO LOSS TOMOGRAPHY 1559

1) versus , : We first compare the solutions of
(40) and of (41) for . From (21), we have:

(42)

(43)

(44)

Therefore, for any link located below node , we have that:

(45)

2) agg versus : For agg and , (40) and (41) consist
of only the first and the last terms. We have that:

agg agg agg

(46)

(47)

Thus,
agg

, but the definition of indicates that:

agg (48)

(49)

From (42), (44), (48), and (49), we find out that the solutions

agg of (46) and of (47) are related via:

agg
(50)

Note: The proof of Lemma 5.6 is similar to the proof of
Lemma 5.5 above.

D) Proof of Theorem 5.4:
Proof: In [2], it has been shown that in (12) are the

MLE of theMT. Therefore, , , are also theMLE
of the corresponding links in the original tree. In addition, by
following the same approach as in [2] and due to the reversibility
property, one can show that , , are also the MLE
of the corresponding links in the original tree. For , since

agg and using (39), one can obtain (24) from (50).
Therefore, (24) is a solution of . Furthermore, from
(47) and (49), we have that:

(51)
This is always negative. Therefore, is concave in and
(24) is the unique solution of the likelihood equation. This so-

Fig. 24. Convergence of the ML estimator for cases 1 and 2, (a) Estimator
versus number of probes. (b) Estimation variance versus number of probes.

lution is also in the desired range , because from (38), we
have that:

i.e., not all packets are lost, which is the default assumption in
tomography: no inference can be made without data. Also:

This is asymptotically true for , because as ,
the percentage of packets that are not lost approaches the prob-
ability , which is

. Therefore, (24) is the
MLE of in the original tree.

We now provide additional details and simulation results on
the effect of the number and location of sources.

APPENDIX B
EFFECT OF THE NUMBER AND LOCATION OF SOURCES

A) Various Configurations for the Five-Link Topology: Let
us consider again the four cases shown in Fig. 2 for the basic
five-link topology. The first case, also shown in Fig. 1, has been
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Fig. 25. Comparing the four cases in Fig. 2 in terms of the lower bound of variance. (a) All links have the same . (b) All edge links have the same edge .

Fig. 26. Possible combinations of loss rates on all the five links. We indicate which Case (among the four) performs better (has the lowest Cramer–Rao bound).
(a) All edge links have the same edge. Consider all possible combinations of edge middle (b) , , .
Consider all combinations of .

discussed in length in Table I and in Section IV. The corre-
sponding tables used for estimation in Cases 2–4 of Fig. 2 are
shown for completeness in Tables V–VII.

B) Simulation Results for the Five-Link Topology: Con-
sider again the basic five-link topology of Fig. 2 and focus on
estimating the middle link CD. Here, we show that, even though
with network coding links are identifiable for all four cases, the
estimation accuracy differs.
In Fig. 24, we assume that all five links have and we

look at the convergence of the MLE versus number of probes
for Case 1 (using network coding) and for Case 2 (multicast
probes with source ). Fig. 24(a) shows the estimated value
(for one loss realization). Both estimators converge to the true
value, with the network coding being only slightly faster in this
scenario.
In Fig. 24(b), we plot the MSE of the MLE for Case 1 (using

network coding) and for Case 2 (multicast) across number of
probes. For comparison, we have also plotted the Cramer–Rao
bound for link , which is consistent with the simulation re-

sults. For this scenario, Case 1 does slightly better than Case 2,
but not by a significant amount. This motivated us to exhaus-
tively compare all four cases in Fig. 2, for all combinations of
loss rates on the five links.
Fig. 25 plots the Cramer–Rao bound for the four cases as a

function of the link-loss probability on the middle link. The left
plot assumes that is the same for all five links, while the right
plot looks at the case where the edge links have a fixed loss rate
equal to 0.5. We observe that Case 1 shows to achieve a lower
MSE bound. Interestingly, the curves for Cases 2 (multicast)
andCase 4 (reverse multicast) coincide. The difference between
the performance of different cases is more evident in the right
plot [see Fig. 25(b)].
In Fig. 26, we systematically consider possible combinations

of loss rates on the five links, and we show which case estimates
better the middle link. In the left figure, we assume that all edge
links have the same loss rate and we observe that for most com-
binations of middle edge ,Case 1 (shown in “+”) performs
better. In the right plot, we assume that the middle link is fixed
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at and that , .
Considering all combinations , each one of the four
cases dominates for some scenarios. An interesting observation
is, again, the symmetry between Case 2 (multicast) and Case 4
(reverse multicast).
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