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Generalized Distributive Law for ML Decoding of
Space-Time Block Codes

Lakshmi Prasad Natarajan and B.

Abstract—The problem of designing good Space-Time Block
Codes (STBCs) with low maximum-likelihood (ML) decoding
complexity has gathered much attention in the literature. Al the
known low ML decoding complexity techniques utilize the sam
approach of exploiting either the multigroup decodable or te
fast-decodable (conditionally multigroup decodable) stucture of
a code. We refer to this well known technique of decoding STBE
as Conditional ML (CML) decoding. In this paper we introduce a
new framework to construct ML decoders for STBCs based on
the Generalized Distributive Law (GDL) and the Factor-graph
based Sum-Product Algorithm. We say that an STBC ifast GDL
decodable if the order of GDL decoding complexity of the code
is strictly less than M*, where X is the number of independent
symbols in the STBC, andM is the constellation size. We give
sufficient conditions for an STBC to admit fast GDL decoding,
and show that both multigroup and conditionally multigroup
decodable codes are fast GDL decodable. For any STBC, whethe
fast GDL decodable or not, we show that the GDL decoding
complexity is strictly less than the CML decoding complexiy. For
instance, for any STBC obtained from Cyclic Division Algebias
which is not multigroup or conditionally multigroup decodable,
the GDL decoder provides aboutl 2 times reduction in complexity
compared to the CML decoder. Similarly, for the Golden code,
which is conditionally multigroup decodable, the GDL decocr
is only half as complex as the CML decoder.

I. INTRODUCTION
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complexity. Examples of fast-decodable codes availabthen
literature includel[1l7]-:[24], the Silver code [25], [26]dthe
Golden Codel[27]+[29],[18]. All known low complexity ML
decoders have the same unified approach of exploiting either
the multigroup decodability or the conditional multigroup
decodability of a code. This method is well known and widely
used in the literature, and we will refer to it &onditional

ML (CML) decoding.

The Generalized Distributive Law [30] and its equivalent,
factor graph based approach, known as the Sum-Product
Algorithm [31] are message-passing algorithms that effitye
solve a class of computation problems called Marginalize
a Product Function (MPF) problems. The Generalized Dis-
tributive Law (GDL) includes as special cases the Viterbi's
algorithm [32], the BCJR algorithm [33], the Fast-Fourier
Transform [34], the Turbol[[35] and LDPC decoding algo-
rithms [36], [37]. In this paper, we first identify that the ML
decoding problem of any STBC is equivalent to the problem
of minimizing a multivariate, second degree real polyndmia
where the variables assume values from a finite signal set.
Using this observation we show that the ML decoding of any
STBC is an MPF problem, and hence, the GDL is a natural
choice for constructing low complexity ML decoders. The
contribution and organization of this paper are as follows.

HE complexity with which a Space-Time Block Code

(STBC) can be maximum-likelihood (ML) decoded is an e
important parameter from an implementation point of view.
Consequently, the problem of designing codes with high rate
and good error performance that admit low complexity ML
decoding is of much interest in the literature. This problem
was first attacked by constructimgultigroup decodable codes
which have the property that the information symbols of the
code can be partitioned into several groups, and each group
of symbols can be ML decoded independent of other symbol
groups. Examples include the Orthogonal Designs [1]-[3]
and the higher rate multigroup decodable STBCs constructed
in [4]-[15]. In [16], it was shown that a new class of STBCs
called fast-decodableor conditionally multigroup decodable
codesallow reduced complexity decoding as well. These codes
contain a lower rate multigroup decodable STBC as a subcode,
and this property is leveraged to decode such STBCs with low
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We introduce a new, GDL based framework to design ML
decoders for STBCs (Sectibnllll and SecfionTV-A). Since
the GDL is computationally efficient, this new framework
provides a rich scope for designing low complexity ML
decoders.

We show that the GDL decoding complexity of any
code is strictly less than its CML decoding complexity
(Theorem$ 2 anfl]3, Section W-B). As an application of
our results, we show that for any STBC obtained from
Cyclic Division Algebras|[[38] which is not multigroup
or conditionally multigroup decodable, the GDL decoder
is approximatelyl2 times less complex than the CML
decoder. In case of the Golden code, which is condition-
ally multigroup decodable, the GDL decoder is roughly
half as complex as the CML decoder (Example G.4, Sec-
tion[\V-G). The GDL can lead to reductions in the order
of decoding complexity as well, when compared to the
CML decoder. We give explicit examples of two classes
of STBCs, the Toeplitz code$s [39] and the Overlapped
Alamouti Codes[[40], where the GDL decoder has a lower
complexity order than the CML decoder (Section V-B).
We give sufficient conditions for a code to best GDL
decodablei.e., to admit low complexity GDL decod-
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ing, and show that both multigroup and conditionally8. The Generalized Distributive Law

multigroup decodable codes are amenable to fast GDLThe GDL is a message-passing algorithm that operates on a
decoding (Section IV-B). Using the new GDL frameworkimpie tree (an undirected, unweighted, connébgeelph with
we also provide tools to readily identify multigroup and,, loops, cycles or multiple edge§)= (V, ). Each vertex
conditionally multigroup decodable codes (Secfion IV-B), ¢ y js associated with a functioa, : Az, — R, for some

» When the information symbols of a code are encoded — 11 . N}. The functiona, is called thelocal kernel
using a PAM signal set, we show that the GDL algorithma¢ ;, and the variable lisk7, is called thelocal domainat v.
can exploit the structure of PAM to lead to furthefrhe treeg can be used to solve the MPF problem giver{in (2)

reduction in decoding complexity (Sectipn V-C). using the GDL if it satisfies the following three conditions:
A brief review of the GDL is given in Section]ll, and theC.1 for each? = 1,....L, there exists a € V such that

paper is concluded in SectignlVI. I, =T

Notations- Throughout the paper, matrices (vectors) arg , tﬁe gISI,JaI kerneb — ZL a =3,y a,, and
denoted by bold, uppercase (lowercase) letters. The HemﬂtCS the treeG satisfies thq’ﬁ?&:tion tregecvoné'itioni.e. for
and Frobenius norm of a matriX are denoted byX* and eachn — 1 N, the subgraph of consisting of 'Ehose

l'X l re?)péecltjlvcl-ély. For e(ljsquare mbatr).f(,ttr()i ) ((:ijenof[es. tZ‘? vertices whose local domains contaiy together with
race ol.A. Lniess used as a subscript or to denote Indices, -y, edges connecting these vertices is connected.

i represents/—1. The set of all real and complex numbers o » . .
Z;lre zenoted bR and C, respectively. Then x mpsized null A tree G that satisfies all the three conditions above is said

matrix is denoted byD,,. For any setZ, its complement in to be ajunction treefor the given MPF problem. In general

the corresponding universal set is denotedZby there is no unique junction tree for an MPF prpblem, z.:md
different junction trees may lead to GDL algorithms with

1. A BRIEF REVIEW OF THE GENERALIZED varying complexities of implementation. Various methods t
DISTRIBUTIVE LAW construct/transform junction trees are givenl[in|[30].] [31]

In Section TNl we show that the ML decoding of STBCs is For any two neighboring vertices and v, the directed
an instance of a particular class of MPF problems: the MPRessagefrom v to v is a table of values of a function
problems on the min-sum semiring over the real numiers Hu,» : Az,nz, = R. To send a message ta the vertexu
We now recall the definition of this class of computationdPrms the sum of its local kernel with the messages that it

problems, their GDL solution and some properties of the GDas received from all its neighbors other thanand then
which we use in the later sections. marginalizes this sum with respect to the variables common

to v andw, i.e.,
A. MPF problems on the min-sum semiring oWer

Consider the union of the set of real numb&sand the
element infinity,co. With multiplication defined on this set as o (Xz,01,) = XIZniI; ou(xz,) + Z twu(Xz,0z,) |
the sum of two elements, ardiditiondefined as the operation . wlff; u
of taking the minimum, we get the min-sum semiring over ) .
R. The elementso and0 are theadditiveand multiplicative Wheréw adj u denotes that the verticesandu are neighbors.

identitiesrespectively. The class of MPF problems defined ohhe state of the vertexu is a table of values of a function

this semiring are as follow5 [30]. Let;, ..., xy be variables 7w : Az, — R.Initially o, is set to be equal to the local kernel
that take values independently from finite sefs, ..., Ay at . During the GDL _algor|thm it is updated as the sum of
respectively. For anyZ = {i1,... iz} C {1,..., N} with the Iocal_ kerngl atu W|Fh the messages that has received
iy < iy < -+ < iz, denote byAs the setd;, x -+ x A; from all its neighbors, i.e.,
and denote byxz; the variable list (x;,,...,x;., ). Let _
S = {7, dots, I} be a set ofL subsegts (131{1, ... ﬁ\‘])}, and oulxz,) = auxz,) + w; uuw,u(szmzu)-
foreach/ =1,...,L, let ay : Az, — R be a given function ! )
i.e., a table of values. Define functiois Ay, vy — R and In order to_ so!ve _theall-vertex problemi.e., to compute
Be: Az, R, 0=1,...,L, as follows: Fhe xz,-marginalization ofg for every v ¢ V, every vertex _
I is ma}de to.send a message to a nelghbor when for the first
B(x1,. .., xn) = Zae(xn) and ) time it receives messages from all its other nelghbors. 8o th
= messages begin at the leaves of the junction tree, proceed

Bu(xz,) = min B(x xx) @) inwards into the tree and then travel back outwards. At the
O L) xzg €Aze Lo BN end of this message-passing schedule, each vertex conigsutes

. . state, which is guaranteed to be equal to the objective ifumct

where | denotes addition of real numbers, afifl is the at that vertex[[30]. The objective functiofy given in [2) is

complement ofZ, in {1,..., N}. The MPF problem on the . 2
min-sum semiring oveR is to compute the table of valuesﬂ.1us equal to the state of any vertewith 7, = 7,. To solve a

of the functiong, for one or morel = 1,..., L, given the (s);ngliz;)\:e;tefvzrr?b\lgg?e.i., tgl(l:(:?e nge t:sgf)uf-ﬁaerglﬁ?:ltlif)imt)rr;e
functions a1, ..., ar. The function s is called theglobal B 9 s 9 J

kerneland th? fulnctionﬁg .iS called thexz,-marginalization 15 graph is said to be connected if there exists a path betweery @air
of 8 or the objective function af,. of nodes.



are directed towards th@ot v. Every vertex except sends designsS = ZiK:l s;A;, wheresy, ..., sk are real variables

exactly one message to its neighbor along the unique pathotoinformation symbolsand A; € C**T are theweight or

v when it has received messages from all its other neighbdisear dispersionmatrices([12],[[41]. The rate of the resulting

The state ab is computed once receives messages from allcode is% complex symbols per channel use. Commonly in

its neighbors, and this equals the objective function.at the literature the real variablels;;} are combined pairwise,
The total number of additions and pairwise comparisons (fand the design is represented in terms of the resulting aompl

implementingmin) in the case of single-vertex problem forinformation symbols. Examples include matrix designs vehos

any root vertexv is equal to individual entries are complex linear combinations of cterp
variables and their conjugates.
C(9) = Z dul Az, | - Z Az, . Let the symbolgsy, ..., sk} be partitioned intaV subsets,

uev (wu)e& calledencoding groupssuch that the symbols in different en-

= Z (|.A1'w| +|Az, | — IAzwmzul), (3) coding groups are encoded independently and all the symbols
(w,u)e€ in each encoding group are encoded jointly. RGe 1,..., N,
L let x,, be the vector consisting of the information symbols

. , ;
schedule can be implemented with complexity of at the md¢/onging to thex'" encoding group, and let, be encoded

. - X, )
4C(G). The complexity order for both single and all-verteX!SINd @ finite 5‘224” C R*, where), is the number of real
problems is thusnax,cy [ Az, |. symbols in then*” encoding group. The STBC obtained from

The messages passed during the GDL schedule Cantl?J% desigrS and the signal setsly, ..., Ay is
characterized precisely using the local kernelgjofin both K
C - {

whered, is the degree of the vertex. The all-vertex GD

the single and the all-vertex GDL schedules, the directed ZSiAi
message from a vertex to its neighborv is the xz,z,- =
marginalization of the sum of the local kernels of all the

vertices descending from [31]. More formally, consider the Example T.1:.Consider the Toeplitz codé [39] for, = 2
two disjoint treesj,\ , andg,, ,, obtained fromg by removing antennas and’ = 10 time slots. The number of real symbols
the edge(u,v) € &, such thaiG,, , contains the vertex and K = 18 and the desigr$ =

Gu\« CONtainsv. Then we have

xpn € Ap, n—l,...,N}.

Puw(Xz,nz,) = min Z aw(X7,). s1+7Js2 s3+jsa S5+jse -+  Si7+ jsis 0

X(@untye | £o . 0 s1+js2 s34+ 7jss -+ S5+ 7JS16e Sir+jsis|’

The GDL algorithm capitalizes on the ‘factorization’ gf
as given in[{ll), intoL functions whose domains are smalleket the complex symbolsss,—1 + js2n, n = 1,...,9,
than that of3 itself, and hence are less complex to work witfpe encoded using a HEX constellatidn [42xzx C R*.
compared to3. During the message-passing, partial sums dhis STBC hasN =9 encoding groups and the vectats,

these ‘smaller’ functions are calculated, and these ard use=1,...,9, are given byx,, = [s2n,—1 Szn}T- The number

efficiently to compute the variousz,-marginalizations of3.  of symbols per each encoding groupXs = 2 and the finite
setsA, = Aggpx forn=1,...,9. [ |

I1l. THE GDL DECODING OFSPACE-TIME BLoCK CODES A subset of real information symbol§sy,...,sx} that

In this section, we first introduce the notion eficoding a'€ encoded together using an arbitrary joint signal set mus

groupsin STBCs obtained from linear designs, and then usirfRf® decoded jointly by an ML decoder. The encoding groups
this concept, formulate the ML decoding of such STBCs -+ Xy are the fundgmental units of mformgtlon variables
an MPF problem over the min-sum semiring ofierWe then that any ML decoder will operate on. For a given STBC the
propose a junction tree to decode any STBC obtained frdiioice of the weight matricegA.}, encoding groupgx. }

linear designs using the GDL message-passing algorithm. @nd the signal setgA,, } may not be unique. As illustrated in
the following example, a careful choice of the weight matsic

A Ch | model. desi d di and signal sets can reduce the number of real symbols per
' annel model, designs and encoding groups encoding group. This reduction in encoding complexity may

We consider the block fading MIMO channel with fullget reflected as a reduction in the ML decoding complexity at
channel state information (CSI) at the receiver and no Cje receiver.

at the transmitter. For an; x n, MIMO transmission, we

have Example G.1.Consider the Dayal-Varanasi version of the
Y = HX + N, (4) Golden Codel[28]:
whereX € C**7T s the codeword matrix transmitted over g, _ | 5 +js2 ~(s5+7js6)
1— )

T channel usesN € C"*T is a complex white Gaussian
noise matrix whose entries are i.i.d. with zero mean and unit
variance, andl € C"*™ is the channel matrix with arbitrary where v=+—J and the symbol vectors
probability distribution. An STBQ is a finite set ofn, x T [s1 4+ js2  s3 +j34}T and [ss+jss s7 —|—jss}T are
complex matrices. We consider codes that are obtained fremcoded independently using a constellation from the edtat

Y(s7+jss)  s3+jsa



lattice RZ[j]* with

K K
[ c S] (tan_1(2)) arg min tr <(Y — Z SiHAi)(YH _ Z SZ_Af{HH)>
R= , c=cos | ———= | and i=1 i=1
—s 5 .
5 = sin (M) ) = argmlntr(YYH) + Z SitT(—HAiYH _ YAZHHH)
i=1
K
2 HyrH
. . . “tr(HA;AH
A naive choice for the symbol groups is + ; sitr( i )
K
H Hy\y1H
X| = [51 Sy 83 54}T’ X9 = [55 S¢St Sg]T . + 21¥Slsjtr(H(A1A7 + AJAl )H )
=1 3>
= argmin f(s1,...,8K),

The corresponding weight matrices are _ .
wheretr(-) is the trace of a square matrix, and

K

1 0 i 0 0 0
A= 00 ,Ag = {6 0} JAs = [0 1] , f(sl""’sK):Z(Sigi+S?§i,i)+zsi5jfi,j,
¥ 1 . =1 G>i
S U N P B G~ rHAY YA
[0 0] 0 0 &y = tr(H(A; AT + A;AHHY) for j > i, and
A? = B O_ and AS = |:]’Y O:| . gi,i — tT(HAZAZHHH)

Since the matriceH A, Y? + YAPHY, HA;AFHY and
It is shown in Example G.4 of Sectién W-C that this choice o (A AT + A;A)HY are Hermitian, the coefficients;,
encoding groups leads to GDL based decoders with compléx. &i,; are all real.
ity equal to that of brute-force ML decoding. A better choice The functionf(si,...,sk) is a second degree polynomial
of weight matrices and encoding groups can be obtained b@¥erR. We now partition the terms of this polynomial accord-
simple linear transformation of the symbdls }. The resulting ng to the encoding groupx,, }. The terms inf that consist
designS, is given in [) at the top of the next page. Th&f variables only from then’" encoding group are summed
symbols{s;} of this new design are encoded independentipgether into the function, (x,,). Forn < m, those terms in
of each other using a PAM constellation. Bafy and S, f that contain exactly one variable each from & and the
give the same STBC though they are encoded using differént* encoding groups are summed together to get the function

sets of weight matrices and constellations. The number @#,m (Xn,Xm). FOrn =1,..., N, let¢(n) denote the set of
encoding groups irS» is 8, and each symbas; forms an indices of those real symbols that are in thent” encoding
encoding group by itself, i.ex, = [s,], n=1,...,8. The groupx,. Thenforn=1,..., N, we have
corresponding weight matrices are
P g welg an(xn) = D (& +5760) + D sisi&is,
- i€(n) >
A_fe 0] o _fie 0] 4 _[s 0 bic(n)
L= 0o —s["™2 7 o —js|"™ 7 0 |’ and for alll <n <m < N we have
A4 — -jS 0 ’A5 — 0 e ’AG — 0 ]’YC , an,m(xn7xm) - Z Sisjgi,j- (6)
10 Jjc —vs 0 —jvs 0 iew(n)
[0 4s |0 gys Jevtm)
A7 = |ve 0] andAs = [jvc 0 ] ' Define

N
This choice of encoding groups leads to reduced com- mxl"“’xN):ZO‘"(X")"" Z anm (Xn, Xm). (7)
plexity ML decoding as will be shown in Exam- n=1 m>n

ple G.4. m By definition, 8(x1,...,xn5) = f(s1,...,8x) and the ML
solution is(Xy,...,%y) = argmin 8(x1,...,xy). If the ML
solution is unique then for each =1,..., N, we have
X, = argmin (3, (x,,) where

B. The GDL Decoding of STBCs B (x,) = min  B(x1,...,XN). (8)

X{nye€Afnye
Given then, x T received matrixY in (@), the ML de- The definition of 3 in (@) provides a natural ‘factorization’
coder finds the set of variablgs, ..., sk} that minimizes of the global kernel in terms of the functions, and v, .,

Y — HZfil s;A;||?>. The ML decoding problem is to find whose domains are much smaller than that3pfand hence



. Ss1¢+ 835 + jSa2c+ jsas Y(s5¢+ $78 + jsec+ jsss)
S, = (5)

v(—s58 4 s7¢c — jsgs + jssc) —s$18+ S3¢ — jSas + jsac

are easier to compute. Frofd (2) afndl (8), we see that the M
decoding of an STBC is an MPF problem, and hence it can b
solved using the GDL which efficiently processes the partial
sums ofa,, a,,, to compute thex,-marginalizations of5.

The ML solution forx,, can be obtained by first computing
the x,,-marginalization of the global kerné in (8) and then
finding the argumeng,, that minimizess,,.

When the ML solution is not unique an arbitration |s@>/
required after solving the MPF problem. To illustrate this
consider the caséV =2 and say both(xi,%3) = (a, as)
and (%X1,%2) = (b1,b2) are ML solutions. On solving the
MPF problem [(B) we would obtain a table of values for
the functions$;(x;) and fB2(x2). However, botha; and
a, minimize #;, and bothb; and by minimize 5;. Thus
we only know that the ML solutions belong to the se

{(a1,a2), (a1, b2), (b1,a2), (b1,bs2)}. In order to obtain the
ML solutions, the ML metric||Y — HX||? for each of these

tuples should be calculated. The following lemma says that
for an i.i.d. Rayleigh fading channel the ML solution of an @

lt:ig. 1. Ajunction tree to decode an arbitrary STBC.

STBC is unique with probability, and hence this arbitration
step can be safely ignored.
Lemma 1:Let C be any STBC, and let the entries of the @
channel matriH be i.i.d. complex Gaussian random variables @
with zero mean and unit variance. Then with probabilitshe /
ML solution for the transmitted codeword for the chanimél (4)
is unique. L.
Proof: Let X; and X5 be two distinct codewords. We
will first show that with probability (w.p.)1 HX; # HX,,
and then show that giveH X, # HX, the probability that Fig. 2. Subtree formed by the vertices that contain
bothX; andX, are ML solutions i9). SinceX; # X, there
exists a column ofX; — X3) which is non-zero. Suppose the
4t column of(X; — X3) is non-zero, thé1, j)** entry of the vertices, each of which is connected to a vertex from tier 1
matrix H(X; — X3) is a complex Gaussian random variabl®y a single edge. The local kernel at the core is set ideitical
with zero mean and non-zero variance. Then(the)!" entry equal to zero, the local kernels at the, , x,,) andx,, vertices
of H(X; — X3) is non-zero w.p. 1 and hendX; # HX, are set taw, ,, anda,, respectively. This tree satisfies all the
w.p. 1. three conditions C.1-C.3 (given in Section1lI-B) for it to he
Now supposeX, is the transmitted codeword arid is junction tree for the MPF problem of ML decoding the STBC
such thatHX; # HX.. Let vec(-) denote the vectorization C. Conditions C.1 and C.2 are easy to check. To illustrate
of a matrix. Thenwec (H(Xo — X)) # vec (H(Xo — X3)). the satisfiability of C.3 (the junction tree condition), Fig
Both X; and X, will be ML solutions only if the shows the subtree formed by the vertices whose local domains
n, T-dimensional white Gaussian noise vectarc(N) be- contain the symbok,. Clearly this subtree is a connected
longs to the the set of points i€©"” that are equidis- graph.
tant fromvec (H(Xo — X;)) andvec (H(Xy — X3)). Since
vec (H(Xo — X)) # vec (H(Xo — X2)), this set is a coset |V, FAST GDL DECODABLE SPACE-TIME BLOCK CODES
of an (n, T — 1)-dimensional subspace &f*- and the prob-
ability that vec(N) belongs to this hyperplane i8. This
complete§ the proof. _ | . max | Az, | = |Az,,
A junction tree to solve the MPF probleml (8) is shown in vev
Fig.[d. The tree can be viewed as consisting of three sectiomdich is equal to the complexity order of brute-force ML
At the center of the tree is theore consisting of only the decoding. There exist codes whose weight matricks} are
(x1,...,xn) vertex. The core is surrounded bgr 1: a layer such that the function,, ,,, is identically equal to zero for all
of (x,,x,,) vertices, each of which is connected to the corehannel realization¥l for certain pairsn, m). In such cases
vertex by a single edge. Outermosttier 2: a layer ofx,, a number of ‘factors’ in the MPF formulation ill(7) can be

The junction tree of Fid.J1 has complexity order

Cl,

..... N}|_



dropped, and this can lead to junction trees whose order of ° e
complexity is less thaiC|.

Definition 1: If an STBC C admits GDL decoding with @
complexity order less thajt | then we say that it iSast GDL

decodable e Q
A number of properties of the GDL decoding of an STBC

can be readily inferred from what are known as theral

graph of an STBC and thecore of a junction tree. In the

following subsection we introduce these notions, and in-Sec

tion [V-Blwe give some results on the fast GDL decodability @

of STBCs based on these concepts.

A. The Moral Graph and the Core @
The local kernelsy,, », (x,, X.,) arise from the cross terms

Sisjgi,j @), Where&_’j = t’I’(H(AZAf + AJAfI)HH) It is
well known [9]-[11] that a necessary and sufficient conditio
for & ; = 0 for any channel realizatioH is thatA; and A ;
be Hurwitz-Radon orthogonal, i.eA;A¥ + A;Af" = O,,.
We say that two variables, and x,, interfere with each
other if there exists a symbal; in the encoding group
x, and a symbols; in the encoding groupk,, such that

A AT+ AjAT # O,,. If no such symbolss;, s; exist we

Fig. 3. Moral graph of Examplel 1.

Fig. 4. The core of Examplel 1.

an,m t0 v using a single edge. The set ©f,,, x,,) vertices
thus added to/ form tier 1. Now, for eachh = 1,... N,

find a vertex of tier 1 that contains the variabdg and attach
the vertex(x,,) with the local kerneky,, to that vertex using

) g a single edge. If there exists no tier 1 vertex that contains
say thatx, and x,, are non-interfering The local kernel 9 9

. ) X then connect théx,,) vertex with local kernehy,, to any
Qn,m (%n, Xim) IS identically zero (and hence can be remove ertex of tier 1 using a single edge. The set(®f,) vertices
in the MPF formulation) for all channel realizations if an 9 g ge.

only if x,, andx,, arenon-interfering The moral graph[30] hus added form tier 2. It is straightforward to show that the

of the MPF formulation of ML decoding an STBC is a sinﬂalegr?;))g;:;z ipg‘éﬁi?dz a jur;cUon ér:(jeefor thvsitﬁ-rﬁ?v _5
graph whose vertices are the variablgs n =1,..., N, and ncoding g.roups and moral graph as shown in
in which an edge exists between two vertices if and only &i @. There are five pairs of interfering symbols
the two corresponding variables are interfering. g. L. P 9 sy

e MPE formuion ) e kel x,) arse (XG55 ) (ol A ote
from the terms;s; and¢; ;s?. Recall thaté;; = ||[HA,||% :

. : . tier 1 vertices is shown in Figl 5. Note that tfre, vertex
and hence is non-zero with probability Thus, the kernels ; gl ' X3)
f tier 1 could have been connected to the bottom vertex
an, n = 1,..., N, are almost always non-zero and can ng

be removed from the MPF formulation. On the other hand, of the core as well. The complete junction tree is shown in

. : Ig. [B. The vertex(xs) has been connected to an arbitrarily
we saw in the previous paragraph, some of the cross term) . . L .
chosen tier 1 vertex. The complexity order of this junction

ap,m Can be mgde |dent|cally. zero. This information abOL{tee ismax{|Ag.2.5 ), [ 234/} < [C|, and hence this code
the cross terms is embedded in the moral graph of the o€ <t GDL decodable. =

Thus, all the information required to construct a junctiozet Given the moral graph of an STBC, the problem of con-

for a code is contained in its moral graph. We now show hOV\{ . . . . .
: . . ructing a junction tree is equivalent to the problem of
the problem of constructing a junction tree can be reduced 10

the construction of what we refer to as there Let 7 be a constructing a core. Ther_e IS no unique core for a given
. ) . : STBC/moral graph, and different cores can lead to junction
simple tree such that each vertexof 7 is associated with a

. . trees with different complexities. For instance, the graph
variable listxz, (for someZ, C {1,...,N}) and the kernel _ . . P grap
v with the single vertexxi,xs,...,xy) can always be used
Ay (X mathcallv) =0.

Definition 2: The tree7 is said to be a core for the sTBC2® @ core inrespective O.f the structure qf th? moral grc’?\ph

o i ) : . o see Fig[dl). However this would lead to junction trees with
C if (i) it satisfies the junction tree condition (condition C.3 O%;om lexity order.A | = |c|, which is equal to the order
SectionI[:B), and(ii) for every pair of neighboring vertices —o P oY {1, N} = =1 q

(xn,Xm) In the moral graph, there exists a verterf 7 such of\?vrrl:te—fc;]rce ML Idecodtgn_g complgxn)ll. : h h :
that {x,, %} C xz.. en the moral graph is not edgeless, i.e., when there is

Given a coreT, a junction tree for the STBC can beat least one pair of interfering symbols, the complexityesrd

constructed as follows. For every péit,, x,,.) of neighboring of the junction tree is determined by the core vertices. &inc

. . every pair of interfering vertices must be contained within
vertices in the moral graph, choose a verteaf 7 such that y ‘p , 9 . .
some ‘larger’ vertex of the core, the vertexof the junction
{Xn,%xm} C xz,. If Z, = {n,m} then set the local kernel

. tree with the largestAz,| belongs to the core. Thus, given
atw 10 an,m, €lse attach a verteg,, x,,) with local kernel an STBC/moral graptthe problem of finding an efficient ML
2A graph is said to be simple if it is undirected, unweightedhwio loops decoder is eq.uwalent to one of constructing a core with the
or multiple edges. least complexity
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Fig. 7. Moral graph of the Alamouti Code.

o

Fig. 5. The coreT of Example[1 with tier 1 vertices.

Fig. 8. A junction tree for the Alamouti Code.

e @ @ B. Fast GDL Decodable STBCs
Q We now give a sufficient condition for a code to admit fast
GDL decoding.
Lemma 2:A code admits fast GDL decoding if its moral
graph is not compld%
Proof: We prove the claim by constructing a core for such
a codeC with complexity order less thajt|. Since the moral
@ graph is not complete, there exist a pair of variables,say
andxs,, that are not connected by an edge in the moral graph.
Consider the tree shown in F[g. 9. There & — 1) variables
Q in either of the vertices of this tree. It is straightforwar

@{ e show that this tree satisfies both the conditions of Defin[#o

to be a core for the given STBC. The order of GDL decoding
complexity with this core is

Fig. 6. The junction tree of Examplé 1.
maX{|A{1,3,4,...,N}|7 |A{2,3,...,N}|} < |A{1,2,3,...,N}| =|C|,

When the moral graph is edgeless, i.e., when none of tﬁgd hence this c.ode 'S fgst G[.)L decodable. -
Example T.2:Continuing with Example T.1, the moral

symbols are interfering with each other, any t@evith N . T L
vertices can be transformed into a junction tree by labelieg graph of the_2 x 10 Toeplitz code is given in Fig_10. The
moral graph is not complete and hence this code admits fast

N vertices with the local domains,,) and the local kernels GDL decoding. -

Z”’ ni; tlh’ eh/fli\llz rfisrfniﬁg;/iilri/. ﬁ]lgcl\e/z”fhgreetrire no cross terms Egample G.2_:We now continue with Example Gl First
o ' consider the naive choice of encoding groups with just two
N symbol groups. SincA; A + A; A +£ O,, the two symbol
f(s1,...,8K) = Zan(xn) =p. groups interfere and hence the moral graph is complete.
n=1 Now consider the second choice of weight matrices and
Since every variable,, appears in exactly one of the vertice§nc0ding groups witt8 symbol groups. The moral graph,
of G, the treeg satisfies the junction tree condition as weliShown in Fig.[1l, is not complete and hence with this
Henceg is a junction tree for the given STBC. The complexi&ho'ce_ of weight matrices the Golden code admits fast GDL
order of this junction tree imax?_, | 4,| < |C|. Thus, STBCs decoding. .=
with edgeless moral graphs are fast GDL decodable. Multigroup Decodable STBCsLet G be a junction tree
Example 2:All Orthogonal Designs [[1] have edgelesd®r @ STBCC, and let there be(g — 1) edges (ux, vk),

moral graphs. For example, consider the Alamouti Code *=1:--- (9 —1), of G such thatZ,, N7,, = ¢, the empty
set. LetGy,...,G,, be theg disjoint subtrees ofj obtained

81+ jss —83+ jsa4 by removing theség — 1) edges. Also, denote by(G;) the
83+ jsa s51 —jsal|’ union of the set of variables that appear in the local domains
) of G.
where the real symbols, ..., s, are encoded independently Theorem 1:ForG, Gi,.. ., G, described as above, we have:

using a PAM constellation. This code has = 4 encoding _ .
groupsx,, = [s,], n = 1,...,4. The moral graph, see Figl 7, 1) x(G1),...,x(Gy) is a partition of{xy, ..., xn},

!S queess' A junction tree for the Alamouti code is ShOWn3A simple graph is said to be complete if every pair of distinettices is
in Fig.[8. B connected by an edge.
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Fig. 9. The core used in the proof of Lemina 2.

OG-

Fig. 10. Moral graph of the Toeplitz code in Example T.1.

2) fork =1,...,g, the treeG, satisfies the junction tree 9 @ @
condition, and o @

3) for eachk = 1,...,g, the ML solution of x(Gy)
can be obtained by running the GDL message-passing
algorithm ongGy,.

Proof: The proof is given in AppendikJA. [

We say thatGy,...,G, is a partition of the junction tree @

Fig. 11. Moral graph of the Golden Code.

G, and that the STBC is GDL decodable using these
independent junction trees. Each subtfgas composed only

of a specific subset(Gy) of variables, hence for any vertex
v, of G, we haveZ,, C {1,...,N}. Thus, the complexity
order ofG is @>/

max|Az,| = max max|Az, | <|C|.
veg k{1t vk €G i Fig. 12. The subtree§; andGo of Example[B.
Thus, codes whose junction trees can be partitioned into two

or more subtrees are fast GDL decodable. .

Example 3:Consider the junction tree of Examjile 1 showf'dependent of other symbol groups as
in Fig. [8. Among the1l edges of this tree, the edge
(u,v) between the nodefxs,x4) and (x5) is the only one
such thatZ, NZ, = ¢. Thus, in this casegy =2 and the Thus, in order to decod€, the g subcode<y,...,C, are
two subtrees are shown in Fig.]12. The sets of variabldecoded independently by the CML decoder. A necessary and
x(G1) = {x1,%2,%3,%4} andx(G2) = {x5}. The ML solu- sufficient condition forg-group decodability is that the weight
tions of x(G;) and x(G») can be obtained by running thematrices of the variables belonging to different subsets be
GDL independently orj; and G, respectively. Note that the Hurwitz-Radon orthogonal [9]=[11]. In terms of the GDL for-
corresponding moral graph, shown in Hiy. 3, is a disjoinbani mulation, this translates to the variables belonging ttedit
of g =2 subgraphs. Further, the first subgraph is composedbsets being non-interfering.
of variables from the set(G;) and the second from the set Lemma 3:An STBC isg-group decodable if and only if its
x(Ga). B moral graph is a disjoint union af subgraphs.

Example 4:All the three edges of the junction tree of Proof: The proof is straight forward. ]
the Alamouti code, shown in Fid. 8, satisfy the condi- Using this lemma we see that any code with the moral graph
tion Z, NZ, = ¢. In this caseg = 4, and thek!" subtree of Fig.[d is2-group decodable, and that the Alamouti code is
G consists of a single vertexx;) with the local kernel 4-group decodable.
ak(xx). Note that the moral graph of this code, shown in Lemma 4:An STBC can be GDL decoded using a disjoint
Fig. [@, is disjoint union ofg = 4 subgraphs, and th&' of uniong junction trees if and only if it ig-group decodable.
subgraph of the moral graph is composed of variables from Proof: Suppose an STBC has a junction tree that can

arg min [[Y — HX|[%.

x(Gr). B be be partitioned intag subtreesg,,...,G,. From Theo-
We will see in Lemma$]3 and 4 that the property of eem[1, x(G1),...,x(G,) form a partition of the variables
junction tree to be partitioned into several smaller jumtti {x;,...,xy}. Consider any two variables,, and x,, be-

trees is related tonultigroup decodabilityof a code, and as longing to distinct partitions. From Theorelmh 1, there exist
illustrated in the previous two examples, this property ban no vertex inG whose local domain contains both andx,,.
readily inferred from the moral graph. An STBC is said t@hus, the global kernel does not involve the functigyy,,, and
be multigroupor g-group decodabl€9]-[11] if {xi,...,xx} hencex, andx,, are non-interfering. We have thus shown that
can be partitioned intg subsets such that each subset dhe variables belonging to thesubsetx(G:),...,x(G,) are
symbols can be ML decoded independently of other subsatsutually non-interfering. Hence, the moral graph is a dijo

If the code generated by thig" group of symbols i€}, then union of g-subgraphs, and from Lemrha 3, the codg-group
the k' symbol group is ML decoded by the CML algorithmdecodable.



Suppose an STBC ig-group decodable. Then from
Lemmal3, its moral graph is a disjoint union @fsubgraphs.
Fork=1,...,g,letT'y C {1,..., N} be the set of indices of
the variables in thé*" disjoint subgraph of the moral graph.
One can then construct thiE” disjoint subtreeG, of the
junction treeg similar to the construction in Section 11} B (see
Fig.[). The central node df;, consists of all the variables
Xp, n € I'y. The domains(x,,x,,) and x,, for n,m € Ty
are then attached in two tiers, similar to the tree in Fig. fi9- 13. Toeplitz code: Moral graph of the reduced set ofatHeisxr.
The junction tred; is obtained by arbitrarily connecting these
g Subtrees usindg — 1) edges. It is straightforward to see
that the resulting tree is a junction tree for the code, and
thatG, ..., G, form a partition ofG. Hence from Theoreim 1,
the code can be GDL decoded using a partitiory afisjoint Fig. 14. Golden code: Moral graph of the reduced set of viasair.
junction trees. [ ]

When a code isg-group decodable, thé'” subcode is
generated by the variables associated with tHe disjoint
subgraph of the moral graph. A junction tree partition fasth
code can be obtained by constructingunction trees, one
each for theg subgraphs of the moral graph.

Fast-Decodable STBCsAn STBC is said to befast-
decodable[16] or conditionally g-group decodabld24] if
there exists a subsdf C {1,...,N}, such that the code
generated by the variables,, n € I" is g-group decodable.
The CML decoding algorithm to decode such a code proceeds
as follows. For each of theéAr.| values that the variables V- GDL IS FASTER THAN CONDITIONAL ML DECODING
xre jointly assume, the conditionally optimal values of the In this section we show that the number of computations
remaining variablesx,,, n € I' can be found out viag- involved in the GDL decoding of any STBC is less than that of
group decoding. Note that each of thegesubcodes can CML decoding. As a first step towards this, we show that ML
themselves be fast-decodable (such codes are said fimssbe solutions can be obtained using only the single-vertex GDL
group-decodablg43]). From among theséAr.| values of algorithm followed by a ‘traceback’, rather than the moreneo
X{1,..,N}, the realization ofc; . ny that minimizes the ML plex all-vertex GDL. This reduction is possible since we are
metric |[Y — HX]||% is found out in a brute-force way. Letonly interested in tharg min of the objective functions at the
the g subcodes correspond to the variables with index setsrious vertices, and not the objective functions theneselv
I'y,...,I', and let the complexity order of decoding tk&
subcode_ using CML b&);. For eachk = L,...,9, the A Traceback
complexity orderO;, < |Ar,|. The complexity order of the
CML algorithm is then

X;

X, X

O
O

X: X

Xg
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O

O
©
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Example G.3Consider the moral graph of the Golden code
given in Fig.[11. Fol" = {1,2, 3,4}, the moral graph gener-
ated by the variableéx,, ..., x4}, shown in Fid_IH, is a dis-
joint union of2 subgraphs. The first subgraph consists of vari-
ablesx;, x3 and the second subgraph consists of the variables
X2,X4. Thus the Golden code is conditionaflygroup decod-
able. This fast-decodability property of the Golden code wa
first reported in[[18],[[29]. ]

Let G be any junction tree for the STBCwith the encoding
groupsxy,...,xy. We will now show that the ML solutions
|Are| max Op < |Ape| max |Ap,|<|C|. of {x,} can be obtained by running the single-vertex GDL

ke{l,g} ke{l,.g} with any vertexv, as the root, followed by a traceback step.

Lemma 5:An STBC is conditionallyg-group decodable if This is similar to the Viterbi's algorithm [32], where thetaal
and only if there exists & C {1,..., N} such that the moral ML metric of only the last state of the trellis is calculatettia

graph of the reduced set of variablgs, |n € T'} is a disjoint then the ML path is traced back to the first state.
union of g subgraphs. Consider the single-vertex GDL message-passing schedule

Proof: Follows immediately from Lemm@ 3. m With vy as the root. Every vertex # v sends a message to its

From Lemmasg]2 anfll 5 we see that conditiongHgroup neighborp(u) on the unique path from to vy, when it has
ML decodable codes admit fast GDL decoding. received messages from all its other neighbors. While doing

Example T.3:Consider the Toeplitz code of Example T.2SC it computes its partial state
With T' = {1,...,9}\ {5} we see that the moral graph gen- Mo(x7 ) = an (x5 ) + %
erated byxr is a disjoint union of2 subgraphs (see Fig.113). ulxz,) ulxz) w% uﬂw’u( Lunt.)
The first subgraph consists of the symbgls. .., x4 and the w#p(u)
secoqd subgraph consists %, ..., x9. Hence this code is 54 sends the message () as
conditionally2-group decodable. Note that the code generated '
by the variables, . .., x4 is itself conditionally2-group de- P p(u) (XT, 0T, ,) = N Au(Xz,,).
codable where the two conditional groups &sg } and{x4}. T
Similarly the code generated by, . . ., x9 is conditionally2- Note that this partial stata,, is different from the stater,
group decodable as well. m of u at the end of the all-vertex GDL algorithm. These two

.....
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functions are related as

Ou (XIu) =My (XIu) + Np(u),u(xlp(u)ﬂlu)a

where i) ., is the message from(u) to v during the all-
vertex GDL. However, the messagg, .. is not generated
during the single-vertex schedule. At the end of the single-
vertex GDL, vy calculates its state,,, which is equal to
the xzm-marginalization of 3. The ML solution toxz,, is
obtained astz, = argminaoy,(xz,,)-

Let u be any vertex such that the ML solution of the
local domain ofp(u), i.e.,xz,,, is known. Partitionxz, into
XA(u) = XL A\Tp(uy ande(u) = XZuNLy(uy - Note that both\,,
ando, are functions of bothx 4(,) andxp,). Since the ML
solution atp(u) is known, the valuexp(,) that minimizes

ou(XA(u)), XB(w)) I8 known. Thus, the ML solution ok 4, o _
is Fig. 15. Direction of messages for the single-vertex GDLrfast vertexa.

XA(u) = arg g}%g ou(XA(w) XB(u))
— arg min Au(x Rpo) + %p0) GDL algorlt.hm varies with the 9h0|c§ of the weight matri-
8 iy XA w) XB(w)) T Hp(u),ulXB(u) ces, encoding groups and the junction tree. Gy (C) is
= arg min A\, (Xa(u), XB(w))- meant the_ minimum -among th_e _corr_wplexities_(_the number of
XA(u) mathematical operations: multiplications, additions aoch-

Hence, the ML solution at: can be obtained merely from parisons) of all possible GDL algorithms that can be used to
M. and the ML solution ai(u). This is possible since we Solve the ML decoding problem @f. Similarly for the CML
are only interested iarg min o, rather thans, itself, and as algorithm there can be more than one choice of reduced set
shown aboveargmino, can be obtained from.,, without of variablesxr which generate a multigroup decodable code.
Ca|cu|ating Ou exp||c|t|y At the end of the Sing'e_vertex The Complexity of conditional ML deCOding then varies with
schedule, the solution af, is first found, followed by all its this choice. ByCewi(C) is meant the minimum among all
neighbors, and then the neighbors of these vertices, and,soRPssible conditional ML decoding complexities of cateBy
until the ML solution of all the variables,,, n = 1,...,N, OcpL(C) andOcu(C) we denote the order oiep.(C) and
are obtained. Since the all-vertex GDL is about four times &swmL(C) in terms of the signal set/constellation size.
complex as the single-vertex GDL, this traceback algorith
provides a considerable reduction in complexity.

Example 5:The direction of messages for the single-vertex We now show that the order of GDL complexity of any
GDL problem on the subgrapé; of Example[3 with root code is upper bounded by the order its CML complexity.
at the vertex(xi,x3) is shown in Fig.[Ib. In this ex- Theorem 2:For any code, OcoL(C) < Ocm(C).
ample, p(b) = p(c) = a, p(d) = p(e) =p(9) = ¢, p(f) = ¢, Proof: Proof is given in AppendikB. n
p(h) =p(i) =g, p(u) = h andp(v) = i. At the end of the 1o ¢515ing example shows that there exist codes for
GDL schedu!e t_he _state at the vertexis equal to the which the GDL complexity order is strictly less. Thus the
()fl,>f3)-marg|nallzatlon of the_global kernel. The_ Opt'mabML decoding algorithm is in general suboptimal in terms of
(%1,%3) is found out fromo, using (|.A4;]].A3| — 1) pairwise reducing the ML decoding complexity.

comparisons. Sincg(c) = a, using the knowledge of;, X3 ) .
and )\, the value ofx, can then be found out. This step Example T.4:The 2 x 10 Toeplitz code can be decoded

involves (|As| — 1) comparisons. Finally, giverky, %, and using the junction tree given in Fig. 116 at the top of the
2 S 7 23 next page. If the size of the complex HEX constellation used
A, the value ofx, can be obtained using.A4| — 1) com- ‘ de th bles. — T i M then th
parisons. If|A;| = - -- = |A4| = ¢, then finding the optimal © €Nc0de the variables, = [5.2"*1 52’?} 'S en e
x,, n =1,...,4, using the single-vertex GDL and tracebac omplexity order of this ]unc'u_on tree ifdinn-1y| = M.
involves 7¢® + 4¢ + 2q — 3 operations. On the other hand he_ least complex CML algorithm proceeds_ as follows. The
using the all-vertex GDL would cost8¢® + 122 + 4q — 1 Variables{x,....x,} and {x;,....xo} are independently
operations. Comparing the leading order terms, we see gfigcoded after conditioning ors. To decode{x, ..., x4},

traceback has enabled us to reduce the complexity by mJOLPLné first conditions or{x2,x} and finds the conditionally
times optimal values ofx; and x4 independently. The decoding

Brder of decoding complexity:

of {xg,...,X9} proceeds in a similar way. Thus the CML

complexity order isM#*. On the other hand, the brute-

B. GDL is faster than Conditional ML decoding force decoding complexityC| = M?. Hence, for this code
Before stating the results of this subsection, we defiféeoL < OcmL < [C|. |

the GDL and conditional ML decoding complexities of an We now give two examples of families of STBCs for which
STBC, denoted byCepL(C) and Cemi(C) respectively. The OgpL < OcwmL-
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Fig. 17. The moral graph of thé x 14 OAC.

1) Toeplitz Codes[[39]:Consider a2 x T' Toeplitz Code, ° e
T > 2. This code consists dk = 2(T — 1) real symbols. We
can construct a junction tree for this code similar to the one@ @ @ C
in Example T.4. The chain in this junction tree would extend

till the (xr_2,x7—1) vertex. The complexity order of this
junction tree is stillM?, irrespective of the value df, where
M is the size of the complex constellation used to encode the

symbolsx,. The best ordering for conditional ML decodingdecodable. A junction tree partiton to decode this code
this code is to first condition on the variablgr_. . This s shown in Fig.[IB. Note that this partition consists Df
would result in two conditional ML decoding groups eacBubtrees, each of which is a junction tree for the subcode
of which generates a ‘shorter’ Toeplitz code whose delay dgenerated by the ML decoding groups. The complexity
approximatelyZ. Thus the CML decoding complexity growsorder of this junction tree partition /2. When CML
with M andT as M'*e: . It is interesting that though theredecoding is used, the least achievable complexity order is
is interference among the symbols, the GDL complexity is &3, We explain the CML decoding for the first ML decoding
constant independent of the number of symbols encoded by ggup. The decoding of the second group is similar. On fixing
code. These results can be extended;to- 2. For anyn; xT'  the value ofx;, we get two conditional decoding groups. The
Toeplitz code there exists a junction tree whose complexityst group {x,x3} is jointly decoded with complexity)/>
order isM™". The CML decoding complexity however growsfor each value ofxs. The second group{xr, g, x11}, is
with the delayT". again conditionally2-group decoded with the two conditional
2) Overlapped Alamouti Codes (OACS5) [40These codes groups being{x;} and {xi;}.
are 2-group ML decodable and are available for all choices ) )
of T > n, > 2. They can be GDL decoded with complexityEX@ct decoding complexity:
order '™z, The CML decoding complexity on the other Almost all STBCs of interest have the property that each
hand grows with the number of symbols or equivalently witencoding group has the same number of real symbols, say
the delayT". For example, fom; = 4, the CML complexity ¢, and the signal set size of all the groups are equal, i.e.,
grows asM °¢2(3)1. As an example we construct a junction A;| = |A,| = - -- = |Ay|. If the average number of infor-
tree for the4 x 14 OAC and show that its complexity ordermation bits carried by each real symbol lisg, ¢ then the
less than the CML decoding complexity. signal set sizg.A,,| = ¢*. For example, whem = 2 the real
The 4x14 OAC consists of 24 real symbols symbols{s;} are encoded pairwise, angf is the size of
51,...,824. Define the auxiliary variables:;,...,z12 as the complex constellation used to encode eagh For the
Zn = S2n-1 + js2,. The design in terms of these auxiliarysake of analytical tractability, and considering the wjztesd
variables is given in[{9) at the top of the next page. Therevalence STBCs of this type in the literature, we restriot
variablesz,, n = 1,...,12, are encoded independently usingnalysis of the exact GDL and CML complexities to codes
a complex constellation of sizéd/. Choose the encodingwherein the number of real symbols in each encoding group
groups asc, = [san—1 szn}T forn =1,...,12. The moral is the same and4, | = ¢'.
graph for the code is given in Fig.117. The moral graph is LetC be any code where all the symbals, n =1,..., N,
not complete and hence from Lemrha 2, this code admise mutually interfering. We will refer to such codes as bein
fast GDL decoding. Since the moral graph is a disjoirfully-interfering In Appendix[C we compute the exact CML
union of two subgraphs, from Lemrha 3, this cod@igroup and GDL complexities of such a fully-interfering STBC. The

Fig. 18. A junction tree partition to decode thex 14 OAC.
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CML algorithm performs a brute-force minimization of theduction of the factor of 14 compared to the CML

ML metric over allg™* values of(s1, . .., sn¢). Its complexity decoder. [ |
is The number of computations involved in the GDL decoder
Cem(C) = ¢ (3 (Nt) —|—5Nt) 1 (10) s less than that of the CML decoder not just for fully-
2 interfering codes, but for any STBC.

To GDL decode this STBC, we use the junction tree of Fig. 1 Theorem 3:Let C be any STBC such that the number of
in Section[T-B. We employ a single-vertex GDL schedul&eal symbols per each encoding grouplofs same, and the
with the root at any one of théx,,x,,) vertices followed signal set size for each of the encoding groups is equal. Then
by traceback (using the core vertex as the root will contebuCepL(C) < Cemi(C).

to the leading order termp™¥*, which is avoided here). The  Proof: Proof is given in Appendik D. L
complexity of this GDL decoder is given if_(11) at the From Theoreni]2 and Example T.4, we see that the GDL
top of the next page. Comparing the leading terms[of (18jgorithm can provide improvements over CML decoders in
and m), we see that when the real Symk{@[& are encoded terms of the order of ML deCOding CompleXity as well.
independently of each other i.e., whes 1, the GDL is about

3 times less complex as the CML. When the symbols a® Reduction in complexity with PAM signal sets

encoded pairwi_se using a Comple_x constellation, i.e., whenyhan a real symbol is encoded using a PAM signal set,
t =2, the GDL is approximately2 times less complex than e ontimal value of that variable, conditioned on the value

the CML decoder. For example, for any STBC obtaineg; gher information symbols, can be found by scaling and
from Cyclic Division Algebras[[38] that is not multigroup ory, . jimiting. This technique has been widely used in the

conditionally multigroup decodable, the GDL decoder givge ot re [18], [20], [26], [29], and can lead to gains ireth
roughly a12 times reduction in complexity compared t0 the, qer of the CML decoding complexity. In this subsection we

CML decoder. _ _ show that such a reduction in complexity is possible with GDL
Example 6:Consider the following2 antenna code ob-

) S i as well.
tained from a Cyclic Division Algebra [38] We will now describe how a variabte,,, no € {1,..., N},
51+ 780 +v(s3 4+ jsa) O (s5+ jse — y(s7 + jsg)) (not necessarily a PAM encoded single real symbol) can be
55+ jsg +v(s74+jss)  s14jsa —y(s3+jsa) |’ removedfrom the GDL formulation. The global metrigé can

. _ ~ be splitinto terms involving,,, and terms not involving,,,
where vy =¢’%, and § is any complex number which is gs

transcendental over the fiel@d(,/y). The complex symbols

Son—1+ jSon, n=1,...,4, are encoded using th&-PSK B = oy (xn,) + Z g (Xng » Xm)
signal set. For this code, there ale= 4 encoding groups, meN (no)
X, = [sznfl szn}Tfornz1,...,4,t=2andq=\/§. All + Z an(xp) + Z O (X, Xm ) s
the four symbol groups are mutually interfering, and hehee t n#ng n<m

n,m#ng

STBC is fully-interfering. From(7l0), the CML decoder foigh
code involvess07, 903 mathematical operations. On the othewhere N (no) is the set of indices of those variables that are
hand, using[{T1), we see that the GDL decoder involves orfigighbors ofx,,, in the moral graph of the code. Define the
26, 718 operations, which is aboud times less than the CML functions

complexity. m o .
Example 7:Consider the following Field Extension " (enne)) - = e @no (Xno) + Z @nosm (Xno: Xim ),
R meN (ng)
code [38] forn, = 3 transmit antennas , )
) . ) B (X(noye) = minpB(xq,...,Xn).
s1+7js2 v(ss+jse) V(s3+jsa) o
ss+jsa  s1+jsz  (ss+jse)|, Then we haved’ (x{,,, 1<) =

S5 +j56 S3 +jS4 S1 +j52

hnn(xN(nU))+ Z an(xn)+ Z O‘n,m(xnvxm)a

where v = % and the complex symbolss,, 1 + json, n#ng n<m
n=1,...,3 are encoded using th&PSK signal set. This m,m#no
code has N =3 encoding groupsx, = [s2n—1 SQn}T and the ML solution forx,,, n # ng,

for n=1,...,3, t =2 and ¢ = /8. This STBC is fully-
interfering, and the CML and the GDL decoders for
this code involve 38,399 and 2,758 operations respec- Given the functionh,,(xa(n,)), the ML decoding ofC is
tively. Thus the GDL decoder provides a complexity reequivalent to minimizings’. This minimization can be solved

)A({nu}c = arg min ﬂ/(X{nO}c).
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CepL(C) = ¢! (g) + ¢V =2t g2 Kg) (2t — 1)+ N + 1} +4' Kg) (21> — ) + N(t* + 37:)} —2. (11)

using the GDL. If the functiom,,, can be computed with @
sufficiently low complexity, using3’ rather thang to ML @

decodeC can lead to gains in the decoding complexity.

As we show now, wher,,, is ag-ary PAM encoded single
real symbol,h,,, can be computed with reduced complexity
using scaling and hard-limiting. For eagh(,,) € An,,
hno = min gno,noxio + gno + Z gno,isi Xng

o meN (no)
i€p(m) Fig. 19. A junction tree to computé.

L SRS
= 0 &no.ng | | Xno ~ 5 T e :

’ oo roomo Proof: We will show that7” satisfies both the conditions
where ¢ = &n, + X e n(no) 2oicy(m) Snowisi- The optimal of Definition [2 for minimizing #'. Since 7 satisfies the
valuex,, that minimizesh,,, for a given value ofk(,,,) can junction tree condition for all the variables,, n = 1,..., N,
be found by the scaling and hard-limiting step given[inl (12he tree7”, obtained by removing the only occurrencexgf,,
at the top of the next page, whered(-) is the nearest integer satisfies the junction tree condition fey,,, n # no. For every
function. This step has a constant complexity independent@ m # n, there exists a € V such that{n,m} C Z,, and

q. The value ofh,,, can then be calculated as hence there exists@ € V' such that{n,m} C Z,,. Suppose
9 ) vp € V is the only vertex ofG that contain,,,. Because]

Bng (XA (ng)) = Enoumo (5(% __¢ ) — g _ is a core for the minimization of, ' (ng) C Z,, and hence,

28n0,m0 4€3 0 o this vertex in7’ contains the argument df,,, as a subset

(13) of its local domain. Therefore]” can be used as a core for

- ) minimizing beta’. [ ]
We now use GDL to computg,,, itself. From [18), we see ) ‘ . )
that the function,,, depends om () only through This techmque of removing a PAM encoded_ variable can
be generalized to any s® C {1,...,N} of variables that
P satisfies the condition given in Lemrha 7 below. In this case,
¢ = &nomo +Zwma‘ (Xm; ), where, the variablesx,, n € R, are removed one by one from

=1 the GDL formulation, in an arbitrary order, using the same

N ={my,...,mp} andwp,, (Xm,) = Zi@p(mj) &no.i5:- Now  technique as above.

consider the junction tree for this problem shown in Eig. 19, Lemma 7:The PAM encoded set of variablesz can be
where the local kernel at the central vertexis ,,, and the removed from the GDL formulation using scaling and hard-
local kernel at the vertexx,,,) is wy,;. It is straightforward limiting if and only if the subgraph of the moral graph
to show that¢ is equal to the state of the central vertex oflenerated by these variables is edgeless.
Fig.[19 at the end of the single-vertex GDL schedule rooted at Proof: Let R = {ni,...,nz|}, and let the chosen
this node. Using the table of values@thus obtained, one canorder of removal beu;,na, ..., nz|. The variablex,, can
then computé:,,, using [12) and[(13). Thus, the functidrp, be removed using the technique described in this subsection
can be computed with order of complexitx ()| instead irrespective of the choice ofy, . .., n z|. Suppose there exists
of the brute-force complexity ordef A (,,)|- ann, € R, such that, € N'(ny). Then, while removing,,,,

If G =(V,€) is a junction tree for3, andG’(V’,£’) is a one is faced with the minimization of the function

junction tree fors’, such that
iy (XN (ny)) + O, (X, ) + Z W, sm (Xng, Xm)

max Az, | < max |Az,| and meN (ny)
| AN (no)| < max | Az, |, over the variable,,, . Howeverh,,, is not a quadratic function
veG v

of x,,., and hence minimization of the above expression
then ML decoding the code using the junction t¢Eerovides via completion of squares, scaling and hard-limiting is not
an improvement in the complexity order compared to using tip@ssible. On the other hand, when ¢ N (n), this step of

junction treeg. minimizing h,,, does not arise during the removalxaf_ from
Lemma 6:If the coreT of G has only one vertex containingthe GDL formulation, and hence,,. can be removed using
the variablex,,,, then the tree/”’ obtained by removing,, scaling and hard-limiting. [ |

from this vertex of7 is a core for the GDL minimization of For example, when a conditionaljgroup decodable code
g is to be decoded, one PAM encoded symbol from each of the



14

&no—min{max{rnd <%—2€i7n0>,0}7Q—1}—q;21. (12)

Fig. 20. A junction tree cord to decode the Golden Code.

Fig. 21. A junction tree coreJ”’ for the Golden code that exploits the
structure of PAM signal set.

problem formulation by minimizing8 for each instantia-
tion of this subset of variables. This subset of variables is
chosen in such a way that the reduced problem, obtained
after their removal from3, splits into multiple, independent,
less complex minimization problems. The GDL, on the other
hand, computes various partial sums and marginalizatibns o
B involving the ‘smaller’, less complex functions,, ay, m.
and utilizes these intermediate functions to efficientlgivar
at the ML solution. In this paper, we have introduced this
GDL based ML decoding framework, and shown that the
GDL decoder is superior to the CML decoder in terms of
g conditional groups can be removed via scaling and hargemplexity. The results of this paper have brought to lidet t
limiting. following relevant problems that need to be addressed.
Example G.4:Consider the junction tree corg for the « Proving the optimality or otherwise of GDL based de-
Golden code shown in Fid. P0. From Lemrha 7 and the coders in minimizing the complexity of ML decoding an
moral graph of the Golden code given in Fig] 11, we see STBC.
that the variables; and x, can be removed using scaling « Given an STBCC, finding the optimal choice of weight
and hard-limiting. Using Lemm@l 6 we get the junction tree  matrices, encoding groups and signal sets, which will
core7T’ = (V',&’) shown in Fig[2l. SincéV:| = |N| =5, minimize the GDL decoding complexity of the code.
the functionsh; and hy can be computed with complexity + Constructing codes with better rate-decoding complexity
order ¢°, wheregq is the size of the PAM signal set used to  tradeoff than that of the known codes using the GDL
encode the information symbols. Alseax, ¢y [Az,, | = 7, decoders.
and hence the single-vertex GDL schedule and traceback cas Both GDL and CML decoding algorithms depend on

be implemented with order of complexigy. Hence, the order

of complexity for GDL decoding of the Golden code using

T"is ¢°, whereas the complexity order of usifigis ¢°. The
removal of the variables; andx, has enabled the reduction
of the GDL complexity order fromg® to ¢°. The total number

the Hurwitz-Radon orthogonality of weight matrices to
obtain low complexity ML decoders. Is there any other
algebraic property of a code that can be exploited to de-
sign low complexity ML decoders? Can it lead to further
improvement in the rate-decoding complexity tradeoff?

of mathematical operations involved in the GDL decoding of
the Golden code using” is 42¢° + 6¢* + 21¢* + 52q — 5.

The CML decoder[[18],[129], on the other hand, involves Thi K q v by the DRDO-IIS
76¢° + 43¢* — 1 operations. Comparing the leading order 'S WOrkwas supported partly by the -lloC program

terms. we see that the GDL decoder is abou times as ©" Advanced Research in Mathematical Engineering through
fast a’s the CML decoder. For instance, when= 2 or 4 a research grant, and partly by the INAE Chair Professorship
(corresponding to the rateisand8 bits per channel use), thedrant to B. S. Rajan. The authors thank K. Pavan Srinath for

GDL decoder gives a complexity reduction b® compared useful discussions on this subject.
to the CML decoding algorithm.
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On the other hand, consider the naive choice of symbol APPENDIXA
groups PROOF OFTHEOREMI]
- T 7 T First we will show thatx(G1),...,x(G,) is a partition of
xi=[s1 sz sy s, xe=[s5 s6 s7oss] {x1,...,xn}. It is clear thatu!_,x(Gy) = {x1,...,xn}.

given in Example G.1. The signal set size for each of the§&0Ugh to show that for any # k, x(Gr) Nx(Gr) = ¢.

two symbol groups is¢. Since the two symbol groupsSuppose this is not true. There exists a variakje that

are interfering, any choice of junction tré= (V, &) must appears in the local domains of at least one of the vertices
involve a vertexy, that contains both the variables, x,. The N €ach ofG, and G;. Since § satisfies the junction tree

GDL single-vertex decoding complexity has the complexit?ondition’ the local domains of all the vertices on the uriqu
ordermax; ¢"7¢| > ¢8, which is equal to the order of brute-Path between these two verticesgncontain the variablex,,.
13 - 1

force ML decoding complexity. Further, this unique path contains at least one of the edges
(uk,vr), k=1,...,(¢g —1). Thus, there exists & such that
Ty, NZ,, 2 {n}, and henceZ,, NZ,, # ¢, a contradiction.
Thusx(G1),...,x(G,) is a partition of{xy,...,xn}.

The CML decoding algorithm minimizes the ML metric We will now show that for eaclk =1, ..., g, the treeGy
B(x1,...,xy) via removing a subset of variables from thesatisfies the junction tree condition. L&t, be any variable

VI. CONCLUSION
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from the setx(G;). From the first result of this theorem, @
x,, appears in the local domains of the verticesGaf only.
Thus the subgraph @ formed by vertices containingj,, is a
Fig. 22.  Moral graph of the smallest conditionally multigpo decodable

subgraph ofG;. SinceG satisfies the junction tree condition,Code
this subgraph is a connected graph. Hedgesatisfies the

junction tree condition.
We will now prove the last part of the theorem. Since ° @ %
x(G1),...,x(Gy) is a partition of{x1,...,xnx}, none of the

local domains ofg involve any cross terms betwee‘(gf) Fig. 23. A junction tree for the smallest conditionally nigilbup decodable
andx(Gy) for any ¢ # k. Therefore the global kerngl can code.

be written as

Bx1,..xn) = fi(x(G1)) + fa(x(G2)) + -+ f4(x(F4))»  into g independent CML decoders, one for each of ghaub-
codes. Note that each subcode itself can be either condiiyon
multigroup decodable or fully-interfering. For multignoand
conditionally multigroup decodable codé€3qu. < |C|. For

where, for¢ = 1,...,g, fi(x(Ge)) is the sum of the local
kernels of all the vertices of,. Let v be any vertex ofG
and let it belong to thé'" subtree ofG. Let o, be the state . _ .
of the vertexuv after running the GDL all-vertex mess(,:u‘:]e_fuIIy—mterferlng codes CML reduces to brute-force decayi
passing algorithm org, and o/, be the state of the vertex@d henc&au = [C|.

after running the GDL all-vertex message-passing algarith For each of the three classes of codes we now show that

on G, only. From the discussion in Sectiéi1I-B, is the _(’)GDL g_ Ocwmi. For a fully-interfering STBC th_e junctiqn tree
xz,-marginalization of3, ando’, is the xz,-marginalization 1N Section[Il-B can be used. The complexity of this GDL

of .. We have _decoder is (_)f the order d€| = Ocmi(C). Since this d_ecoder
is only one instance of (possibly) several GDL algorithms fo
ML decoding this code, we hav@gp( (C) < Ocmi(C).

Now consider ag-group decodable code. The complexity
of a CML decoder is sum of the CML complexities of the
Since each offy,..., f, is a function of disjoint sets of sypcodes. As explained in Sectlon1V-B, this code can be GDL
variables, themin and the summation in the above equagecoded using a disjoint union gf junction trees, one tree
tion can be interchanged. Observing that for &l %k, corresponding to each of thesubcodes. Thus, the complexity

oy(xz,) = min § = min Y~ fo(x(Gr).

Xzc X7
v voe=1

xze N x(Gr) = x(Ge), we have of GDL decoding is sum of the complexities of GDL decoding
g each of theg subcodes. Since the subcodes can be either
ou(x7,) = min  fo (x(Ge)) conditionally multigroup decodable or fuIIy—interferin_gve
1= xz5Mx(Ge) only need to show that the theorem is true for conditionally
—  min x(G)) + min f, (x(G multigroup decodable codes and fully-interfering codes in
xzeNx(Gk fi (x(G)) #ka(gz) fe (x(Ge)) order to prove the theorem fgrgroup decodable codes. We
, have already proved the result for fully-interfering codis
=o,(xz,)+ Zaf’ the remaining part of the proof we show thagp, < Ocm
ek for all conditionally multigroup decodable codes.

wherea, denotes the real numbetiny g,) fe (x(G¢)). Thus, The proof for conditionally multigroup decodable codes is
for any vertexv of G, the functionss, ando’, differ only by via induction onN, the number of encoding groups of the
a scalar. Therefore the solution ta, obtained fromo!, is STBC. The smallestV for which such a code exists i3
and its corresponding moral graph is shown in [Eig. 22. The
conditional ML decoder for this code operates with= {1, 2}
)= Zaf and its complexity order i$As3| max{|.A1|, | A2|}. To decode
7k this code using GDL we can use the junction tree given in
= argmin oy, (xz, ), Fig. [23. The complexity order of this junction tree equals
which is the solution obtained from o,, and s maX“Al"f'AQ'} B Ocm(C). Thus we have shown that
hence is the ML solution. This completes thd?eoL < Ocm for N'=3.
proof. _ We now prove th(_e_mductlon st_ep. Assume that the theorem
is true for all conditionally multigroup decodable codes fo
which the number of encoding groups is less tihanwe will
now show that the result is true when the number of encoding
groups isN as well. Consider a CML decoder with complexity
In order to prove this theorem we categorize all STBGzrder Ocmi (C) for a codeC with N variables. Suppose this
into three classegi) multigroup decodablgji) conditionally decoder use§ C {1,..., N}. Let the subcode generated by
multigroup decodable, an@i) codes in which all the symbols xr be g-group decodable, i.e., 1€t be conditionallyg-group
are mutually interfering, which we will callully-interfering decodable for this choice df. If the g conditional groups are
STBCs. Forg-group decodable codes the CML decoder splits,, ..., I'y, then the complexity order of this CML decoder is

argmin o, (xz,) = argmin (UU (xz,

APPENDIXB
PROOF OFTHEOREMI[Z
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T, T, Tlg of Fig.[ to decode this STBC. There aié kernels of the
type a,,(x,,). Using the distributive lawg,, can be expressed
in terms of{s;} as

Fig. 24. The tre€l in the proof of Theoreril2. (%) = Z si (& + si&ii) + Z s; Z si&i |,
i€y (n) i€y (n) j€P(n)
J>1

— g i
Ocwm (C) = [ Ap:| maxi._, Ocw (Ci), whereCy is the subcode where ¢(n) is the set of indices of{s;} that belong to

generated by the variablefs,|n € T'y}. To complete the h : : :
proof of this theorem it is enough to construct a junctioruetrethe " e”COd'?g group. Th% computatlon. of, using the
for this code whose complexity order is at the M6k (C). above expression involveg (t* + 3t) operations. There are

N . .
For k = 1,...,q, the codeC; is either fully-interfering (2) kernels of the typax, . Again, with the help of the

or conditionally multigroup decodable, and the number gflstrlbunve law, we rewritav, ., as
encoding groups iy, is less thanV. Then there exists a GDL
decoder forC, whose comple_xity c_)rder iS upper bour_1ded by o (X, X)) = Z S Z ;& (14)
OcmL(Ck). Let Ty, denote the junction tree core for this GDL i€w(n) jew(m)
decoder. Construct a tréé from T}, by appending the variable
list xr- to the local domain of every vertex @f;,. We now
construct a cord” using7y, ..., T, and one additional vertex
with local domainxr.. For everyk = 1,...,g, arbitrarily
choose a vertex df}, and connect it to the&r. vertex using X o o P )
a single edge. be_ implemented Wlthg (2t — 1)_+ q'(2t* —t) operations. _

It is straight forward to prove thaE is a valid junction tree USing (3), we see tr]‘gt |][]nplem%ent|ng the GDL message-passing
core for ML decoding of the STBC. For every vertex irf,  Schedule takes up (3) + ¢*N operations. Note that the

the local domain size is upper bounded ¥ |Ocpr (Cx). highest o_rder term appearing so farg¥8*. The root vertex
for the single-vertex GDL and traceback must therefore be

Thetq' values of the ter ey (m) 5i&i.;» one for each pair Qf
(i,x,,) are precomputed, and then these values are used|in (14)
to computeqw,, ,,,. This two step method provides complexity
reduction compared to the direct computatiomqf,,, and can

Therefore,

g chosen in such a way that the complexity of this last step

OcpL(C) < max | Are| OgpL(Ck) does not contribute to th¢"V* term. Choosing any vertex of
q the type(x,, x,,) will satisfy this requirement as it leads to a
< miax [Are| Ocm(Ci) = Ocm(€)- traceback complexity 0§V =2t + ¢** — 2. Summing up the
This completes the proof. - :gdd%c];ual terms, we have the expression fogp. (C) given
APPENDIXC A b
PPENDIX

THE CML AND GDL DECODING COMPLEXITIES OF
FULLY-INTERFERINGSTBCs
The CML algorithm for a fully-interfering code reduces to 1he proof of Theorer3 is similar to the proof of Theoleém 2

PROOF OFTHEOREMI[3|

a brute-force search given in Appendix[B. Here too, we consider three cases:
(i) multigroup decodable codei) conditionally multigroup
(81,...,8Nn¢) = argmin f(s1,...,5n¢) decodable codes, an@i) fully interfering codes. From the

Nt discussion in AppendikIB, we see that it is enough to prove
= argmin Z (Si& + Sf&,i) + Z EETISRE the theorem for fully-interfering codes and conditionatiulti-
i=1 i<j group decodable codes. In Appendik C we have derived the
For each of they™* values that(s, ..., sy;) jointly assume, GDL an_d CML complexiti_es of fully-interfering codes, anckth
there areN't terms of types;¢; + s2¢;; to be computed, and comparison of their leading order terms shows that for such
each such term involvesoperations. There ar@;t) terms of codesCep(C) < Cemu(C). N )
the types;s;&.; and each term involves operations. Taking We now prove the result for conditionally multigroup de-

into account the process of summing up these individualgernyedable codes by induction olV. The smallest such code
the total number of operations in computifigfor a given NvolvesV = 3 encoding groups, and its moral graph is shown
(51,...,5n51) IS 3(Nt) 4 5Nt — 1. Finding argmin of the in Fig.[22. The CML decoder minimizes
resultingg™* values of f takes further(g™* — 1) operations. 3 — q,(x,) +ay.3(x1, X3) + az.3(x2, X3) + a1 (x1) + a2 (x2).
Thus, the CML decoding complexity is
Nt by conditioning onxs. For each of they’ values ofa; € As,
Cem(C) = ¢V (3< ) + 5Nt> - 1. the CML decoder computes the scatay(as) and the func-
2 tions oy 3(x1,as3), az3(x2,as). It then independently mini-
The GDL decoding ofC involves three steps: computingmizesa; 3(x1,as) + a1(x1) andasg 3(x2, as) + az(x2), and
the kernelsa,,, an.m, running the GDL message-passinginds the conditionally optimal valueg;(a3) and xz(as).
algorithm, and finally the traceback. We use the junctioe trérom the ¢ resulting values of3(x;(x3), X2(x3), x3), the
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optimal solution is obtained. The complexity of this algionn
can be shown to be

t
¢ (3% +7t) + ¢ (4752 + 3(2) + 5t) ~ 1.

The GDL decoder can be implemented on the junction tree
shown in Fig[ZB. The GDL complexity involves the cost ofi9- 25-
computing the kernels,,, n = 1,2, 3, a1,3 andag 3, running

the single-vertex GDL schedule with root vertex ), and the
traceback to find the optimal solution. The complexity othiz = 1,..., 9. We now construct a junction tree fat using
algorithm is G1,...,Gy. For eachk = 1,...,g, append the variable list

The tre€l” in the proof of Theorerfi]3.

(At +2)+ ¢ (TP + Tt +3) — 3.

xre t0 each of the vertices daf;. and set all the local kernels
to zero. From this resulting tre@; arbitrarily choose a vertex

Comparing the leading terms, we see that the GDL is lesbtype (x,,xr:), n € I';, and connect it to an exterigikr-)
complex than the CML decoder. Hence the theorem is trvertex by a single edge, as shown in Higl 25. Set the local

for N = 3.

kernel at(xpc) to zero as well. We now use this tree as the

Now consider any conditionally multigroup decodable codeore for the STBCQC. For eachn, m € I'y, assign the kernel
with N > 4 encoding groups, and assume that the theoremds ,,, to the vertex(x,,, x,,,xr-) of G}.. For everyn € ',
true for all codes with number of encoding groups less tNan assign the kernek,, to the vertex(x,,, xr-) of G}.. For each

Assume that the variables correspondinglte: {1,..., N}
are g-group decodable conditioned on the variable figt. If
the g conditional groups ar&,...,I'y, the ML metricg can
be expressed as

domt > anmt

nele n,mel*
n<m

g
S, anm+ D o+ > anm

k=1 [ nel'y nel'y n,mely
mel* n<m
The CML decoder proceeds as follows. For each ofghe!*
values (a,|n € T°) € Ar. that the variable listxr: jointly
assumes, the CML decoder computes the scalar

Zan(an)+ Z an,m(an7am)7

nele n,mer®
n<m

and the functionsy,, ,, (x,, a,,) for eachn € I andm € I'“.
It then minimizes the metric

Z an,m(xruam)"" Z Oln(xn)"l‘ Z an,m(xnyxm)

nely n,mely
nm

pairn € I'y, andm € I'¢, attach a new vertexx,,, x,,) with
kernela, ,,, to the vertex(x,,,xr-) of G}, by a single edge.
Attach all the vertices of the typex,,,x,,), n, m € I'¢, with
kernela,, ., and all the verticex,,), n € I'°, with kernela,,,

to the (xr-) vertex using single edges. It is straightforward to
show that this resulting treé = (V, £) is a junction tree for
C.

If each of the code€y, £k = 1,...,g, consists of just
one encoding group each, then eveasy will consist of
just one vertex, and a direct calculation of the number
operations involved in GDL decoding using shows that
CepL(C) < Cemi(C). If otherwise, then there exists at least
one component’;, with two or more encoding groups. Define
s = maxyey |Z,|. Since there is at least one pair of inter-
fering symbols inT", we haves > 2+ |[I'°|. Let S be the
set of ‘largest’ vertices ing, i.e., S ={v e V| |Z,| = s}.
Now consider the contribution of each of the three steps:
computation of kernels.,, & «,, , running the single-vertex
GDL schedule with rootxr-), and traceback, to the leading
term of CgpL(C). The kernels can be computed with the
order of complexityg?’. The complexity of the GDL single-
vertex schedule is of the order @ff, and the traceback
implementation requires a complexity order less thgh
Sinces > 2 + |T'¢|, the only contribution to the leading order

by multigroup decoding. Minimizing each of the terms corrgerm comes from the GDL single-vertex schedule. Recall that
sponding tok = 1,...,g in the above equation is equivalentCepL(C) = >_, ,)ee (Mz,| + Az, | = [Az,nz,[). The con-

to decoding the codé, generated by, by its own CML

tribution to the leading order term dgp (C) comes from

decoder, and hence each of these terms can be minimized wlith set of all the edges i that are incident on the vertices

complexityCcmi (Ck). Thus, corresponding to eaah. € Ar.

belonging toS. Clearly, everyv € S belongs to one of the

we have a listx, (arc), n € T' of conditionally-optimal so- G,, corresponding to a subcode with two or more encoding

lutions. Finally, from theq!""* values of 3(xr(xr), xr-),

groups. From the construction ¢f, we see that the degree

the optimal tuple(xr(xr<),xr<) is chosen. The number ofand the edges associated with any vertex frnin G are
operations involved in this algorithm is given in_{15) at theame as the degree and the edges associated with that vertex
top of the next page. Note that the contribution to the legdiin the corresponding junction tre@y. It is exactly this set of

order term ofCemy (C) comes fromgm 1t 379 Cem (Cu).
Let Gy,...,G4 be the junction trees fo€i,...,C, with

edges in eacld;, that contribute to the leading order terms of
CepL(Ck)- Sinceg is only one of the many possible junction

minimal decoding complexities. Since the number of enapdirtrees forC, we haveCgp. (C) < gl Zizl CepL(Ck), up to
groups in each of the cod€s is less thanV, the result of this the leading order term. From {15) and the assumption made for

theorem is true for these codes, i@p. (Ck) < Cem(Ck), for

induction thatCepr (Ck) < Cem(Cx), k =1,...,g, we have
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Cemu(C) = ¢ 1 <Z Ceme(Cr) + 3

k=1

reft
(' 2' ) +5|Fc|t+2Nt+g> ~-1

(15)

g
CepL(C) < /™Mt Z CepL(Ck)

k=1

g
< ¢l Z Cemi(Cr) < Cemi (0).
=1

This completes the proof.
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