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Abstract—The problem of designing good Space-Time Block
Codes (STBCs) with low maximum-likelihood (ML) decoding
complexity has gathered much attention in the literature. All the
known low ML decoding complexity techniques utilize the same
approach of exploiting either the multigroup decodable or the
fast-decodable (conditionally multigroup decodable) structure of
a code. We refer to this well known technique of decoding STBCs
as Conditional ML (CML) decoding. In this paper we introduce a
new framework to construct ML decoders for STBCs based on
the Generalized Distributive Law (GDL) and the Factor-graph
based Sum-Product Algorithm. We say that an STBC isfast GDL
decodable if the order of GDL decoding complexity of the code
is strictly less than Mλ, where λ is the number of independent
symbols in the STBC, andM is the constellation size. We give
sufficient conditions for an STBC to admit fast GDL decoding,
and show that both multigroup and conditionally multigroup
decodable codes are fast GDL decodable. For any STBC, whether
fast GDL decodable or not, we show that the GDL decoding
complexity is strictly less than the CML decoding complexity. For
instance, for any STBC obtained from Cyclic Division Algebras
which is not multigroup or conditionally multigroup decodable,
the GDL decoder provides about12 times reduction in complexity
compared to the CML decoder. Similarly, for the Golden code,
which is conditionally multigroup decodable, the GDL decoder
is only half as complex as the CML decoder.

I. I NTRODUCTION

T HE complexity with which a Space-Time Block Code
(STBC) can be maximum-likelihood (ML) decoded is an

important parameter from an implementation point of view.
Consequently, the problem of designing codes with high rate
and good error performance that admit low complexity ML
decoding is of much interest in the literature. This problem
was first attacked by constructingmultigroup decodable codes
which have the property that the information symbols of the
code can be partitioned into several groups, and each group
of symbols can be ML decoded independent of other symbol
groups. Examples include the Orthogonal Designs [1]–[3]
and the higher rate multigroup decodable STBCs constructed
in [4]–[15]. In [16], it was shown that a new class of STBCs
called fast-decodableor conditionally multigroup decodable
codesallow reduced complexity decoding as well. These codes
contain a lower rate multigroup decodable STBC as a subcode,
and this property is leveraged to decode such STBCs with low
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complexity. Examples of fast-decodable codes available inthe
literature include [17]–[24], the Silver code [25], [26] and the
Golden Code [27]–[29], [18]. All known low complexity ML
decoders have the same unified approach of exploiting either
the multigroup decodability or the conditional multigroup
decodability of a code. This method is well known and widely
used in the literature, and we will refer to it asConditional
ML (CML) decoding.

The Generalized Distributive Law [30] and its equivalent,
factor graph based approach, known as the Sum-Product
Algorithm [31] are message-passing algorithms that efficiently
solve a class of computation problems called Marginalize
a Product Function (MPF) problems. The Generalized Dis-
tributive Law (GDL) includes as special cases the Viterbi’s
algorithm [32], the BCJR algorithm [33], the Fast-Fourier
Transform [34], the Turbo [35] and LDPC decoding algo-
rithms [36], [37]. In this paper, we first identify that the ML
decoding problem of any STBC is equivalent to the problem
of minimizing a multivariate, second degree real polynomial,
where the variables assume values from a finite signal set.
Using this observation we show that the ML decoding of any
STBC is an MPF problem, and hence, the GDL is a natural
choice for constructing low complexity ML decoders. The
contribution and organization of this paper are as follows.

• We introduce a new, GDL based framework to design ML
decoders for STBCs (Section III and Section IV-A). Since
the GDL is computationally efficient, this new framework
provides a rich scope for designing low complexity ML
decoders.

• We show that the GDL decoding complexity of any
code is strictly less than its CML decoding complexity
(Theorems 2 and 3, Section V-B). As an application of
our results, we show that for any STBC obtained from
Cyclic Division Algebras [38] which is not multigroup
or conditionally multigroup decodable, the GDL decoder
is approximately12 times less complex than the CML
decoder. In case of the Golden code, which is condition-
ally multigroup decodable, the GDL decoder is roughly
half as complex as the CML decoder (Example G.4, Sec-
tion V-C). The GDL can lead to reductions in the order
of decoding complexity as well, when compared to the
CML decoder. We give explicit examples of two classes
of STBCs, the Toeplitz codes [39] and the Overlapped
Alamouti Codes [40], where the GDL decoder has a lower
complexity order than the CML decoder (Section V-B).

• We give sufficient conditions for a code to befast GDL
decodablei.e., to admit low complexity GDL decod-
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ing, and show that both multigroup and conditionally
multigroup decodable codes are amenable to fast GDL
decoding (Section IV-B). Using the new GDL framework
we also provide tools to readily identify multigroup and
conditionally multigroup decodable codes (Section IV-B).

• When the information symbols of a code are encoded
using a PAM signal set, we show that the GDL algorithm
can exploit the structure of PAM to lead to further
reduction in decoding complexity (Section V-C).

A brief review of the GDL is given in Section II, and the
paper is concluded in Section VI.

Notations - Throughout the paper, matrices (vectors) are
denoted by bold, uppercase (lowercase) letters. The Hermitian
and Frobenius norm of a matrixX are denoted byXH and
||X|| respectively. For a square matrixX, tr(X) denotes the
trace ofX. Unless used as a subscript or to denote indices,
j represents

√
−1. The set of all real and complex numbers

are denoted byR andC, respectively. Them×m sized null
matrix is denoted byOm. For any setI, its complement in
the corresponding universal set is denoted byIc.

II. A B RIEF REVIEW OF THE GENERALIZED

DISTRIBUTIVE LAW

In Section III we show that the ML decoding of STBCs is
an instance of a particular class of MPF problems: the MPF
problems on the min-sum semiring over the real numbersR.
We now recall the definition of this class of computational
problems, their GDL solution and some properties of the GDL
which we use in the later sections.

A. MPF problems on the min-sum semiring overR

Consider the union of the set of real numbersR and the
element infinity,∞. With multiplicationdefined on this set as
the sum of two elements, andadditiondefined as the operation
of taking the minimum, we get the min-sum semiring over
R. The elements∞ and0 are theadditiveandmultiplicative
identitiesrespectively. The class of MPF problems defined on
this semiring are as follows [30]. Letx1, . . . ,xN be variables
that take values independently from finite setsA1, . . . ,AN

respectively. For anyI = {i1, . . . , i|I|} ⊂ {1, . . . , N} with
i1 < i2 < · · · < i|I|, denote byAI the setAi1 × · · · × Ai|I|

,
and denote byxI the variable list (xi1 , . . . ,xi|I|

). Let
S = {I1, dots, IL} be a set ofL subsets of{1, . . . , N}, and
for eachℓ = 1, . . . , L, let αℓ : AIℓ

→ R be a given function
i.e., a table of values. Define functionsβ : A{1,...,N} → R and
βℓ : AIℓ

→ R, ℓ = 1, . . . , L, as follows:

β(x1, . . . ,xN ) =

L
∑

ℓ=1

αℓ(xIℓ
) and (1)

βℓ(xIℓ
) = min

xIc
ℓ
∈AIc

ℓ

β(x1, . . . ,xN ), (2)

where
∑

denotes addition of real numbers, andIcℓ is the
complement ofIℓ in {1, . . . , N}. The MPF problem on the
min-sum semiring overR is to compute the table of values
of the functionβℓ for one or moreℓ = 1, . . . , L, given the
functions α1, . . . , αL. The functionβ is called theglobal
kernel and the functionβℓ is called thexIℓ

-marginalization
of β or theobjective function atIℓ.

B. The Generalized Distributive Law

The GDL is a message-passing algorithm that operates on a
simple tree (an undirected, unweighted, connected1 graph with
no loops, cycles or multiple edges)G = (V , E). Each vertex
v ∈ V is associated with a functionαv : AIv

→ R, for some
Iv ⊂ {1, . . . , N}. The functionαv is called thelocal kernel
at v, and the variable listxIv

is called thelocal domainat v.
The treeG can be used to solve the MPF problem given in (2)
using the GDL if it satisfies the following three conditions:

C.1 for eachℓ = 1, . . . , L, there exists av ∈ V such that
Iℓ = Iv,

C.2 the global kernelβ =
∑L

ℓ=1 αℓ =
∑

v∈V αv, and
C.3 the treeG satisfies thejunction tree condition, i.e., for

eachn = 1, . . . , N , the subgraph ofG consisting of those
vertices whose local domains containxn together with
the edges connecting these vertices is connected.

A tree G that satisfies all the three conditions above is said
to be ajunction treefor the given MPF problem. In general
there is no unique junction tree for an MPF problem, and
different junction trees may lead to GDL algorithms with
varying complexities of implementation. Various methods to
construct/transform junction trees are given in [30], [31].

For any two neighboring verticesu and v, the directed
messagefrom u to v is a table of values of a function
µu,v : AIu∩Iv

→ R. To send a message tov, the vertexu
forms the sum of its local kernel with the messages that it
has received from all its neighbors other thanv, and then
marginalizes this sum with respect to the variables common
to u andv, i.e.,

µu,v(xIu∩Iv
) = min

xIu\Iv









αu(xIu
) +

∑

w adj u
w 6=v

µw,u(xIw∩Iu
)









,

wherew adj u denotes that the verticesw andu are neighbors.
The state of the vertexu is a table of values of a function
σu : AIu

→ R. Initially σu is set to be equal to the local kernel
at u. During the GDL algorithm it is updated as the sum of
the local kernel atu with the messages thatu has received
from all its neighbors, i.e.,

σu(xIu
) = αu(xIu

) +
∑

w adj u

µw,u(xIw∩Iu
).

In order to solve theall-vertex problem, i.e., to compute
the xIv

-marginalization ofβ for every v ∈ V , every vertex
is made to send a message to a neighbor when for the first
time it receives messages from all its other neighbors. So the
messages begin at the leaves of the junction tree, proceed
inwards into the tree and then travel back outwards. At the
end of this message-passing schedule, each vertex computesits
state, which is guaranteed to be equal to the objective function
at that vertex [30]. The objective functionβℓ given in (2) is
thus equal to the state of any vertexv with Iv = Iℓ. To solve a
single-vertex problem, i.e., to compute thexIv

-marginalization
of β for a given vertexv, all the edges of the junction tree

1A graph is said to be connected if there exists a path between every pair
of nodes.
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are directed towards theroot v. Every vertex exceptv sends
exactly one message to its neighbor along the unique path to
v when it has received messages from all its other neighbors.
The state atv is computed oncev receives messages from all
its neighbors, and this equals the objective function atv.

The total number of additions and pairwise comparisons (for
implementingmin) in the case of single-vertex problem for
any root vertexv is equal to

C(G) =
∑

u∈V

du|AIu
| −

∑

(w,u)∈E

|AIw∩Iu
|

=
∑

(w,u)∈E

(

|AIw
|+ |AIu

| − |AIw∩Iu
|
)

, (3)

wheredu is the degree of the vertexu. The all-vertex GDL
schedule can be implemented with complexity of at the most
4C(G). The complexity order for both single and all-vertex
problems is thusmaxu∈V |AIu

|.
The messages passed during the GDL schedule can be

characterized precisely using the local kernels ofG. In both
the single and the all-vertex GDL schedules, the directed
message from a vertexu to its neighborv is the xIu∩Iv

-
marginalization of the sum of the local kernels of all the
vertices descending fromu [31]. More formally, consider the
two disjoint treesGu\v andGv\u obtained fromG by removing
the edge(u, v) ∈ E , such thatGu\v contains the vertexu and
Gv\u containsv. Then we have

µu,v(xIu∩Iv
) = min

x(Iu∩Iv)c

∑

w∈Gu\v

αw(xIw
).

The GDL algorithm capitalizes on the ‘factorization’ ofβ,
as given in (1), intoL functions whose domains are smaller
than that ofβ itself, and hence are less complex to work with
compared toβ. During the message-passing, partial sums of
these ‘smaller’ functions are calculated, and these are used
efficiently to compute the variousxIℓ

-marginalizations ofβ.

III. T HE GDL DECODING OFSPACE-TIME BLOCK CODES

In this section, we first introduce the notion ofencoding
groupsin STBCs obtained from linear designs, and then using
this concept, formulate the ML decoding of such STBCs as
an MPF problem over the min-sum semiring overR. We then
propose a junction tree to decode any STBC obtained from
linear designs using the GDL message-passing algorithm.

A. Channel model, designs and encoding groups

We consider the block fading MIMO channel with full
channel state information (CSI) at the receiver and no CSI
at the transmitter. For annt × nr MIMO transmission, we
have

Y = HX+N, (4)

whereX ∈ Cnt×T is the codeword matrix transmitted over
T channel uses,N ∈ Cnr×T is a complex white Gaussian
noise matrix whose entries are i.i.d. with zero mean and unit
variance, andH ∈ Cnr×nt is the channel matrix with arbitrary
probability distribution. An STBCC is a finite set ofnt × T
complex matrices. We consider codes that are obtained from

designsS =
∑K

i=1 siAi, wheres1, . . . , sK are real variables
or information symbolsand Ai ∈ Cnt×T are theweight or
linear dispersionmatrices [12], [41]. The rate of the resulting
code is K

2T complex symbols per channel use. Commonly in
the literature the real variables{si} are combined pairwise,
and the design is represented in terms of the resulting complex
information symbols. Examples include matrix designs whose
individual entries are complex linear combinations of complex
variables and their conjugates.

Let the symbols{s1, . . . , sK} be partitioned intoN subsets,
calledencoding groups, such that the symbols in different en-
coding groups are encoded independently and all the symbols
in each encoding group are encoded jointly. Forn = 1, . . . , N ,
let xn be the vector consisting of the information symbols
belonging to thenth encoding group, and letxn be encoded
using a finite setAn ⊂ Rλn , whereλn is the number of real
symbols in thenth encoding group. The STBC obtained from
the designS and the signal setsA1, . . . ,AN is

C =

{

K
∑

i=1

siAi

∣

∣

∣

∣

xn ∈ An, n = 1, . . . , N

}

.

Example T.1:Consider the Toeplitz code [39] fornt = 2
antennas andT = 10 time slots. The number of real symbols
K = 18 and the designS =

[

s1 + js2 s3 + js4 s5 + js6 · · · s17 + js18 0
0 s1 + js2 s3 + js4 · · · s15 + js16 s17 + js18

]

.

Let the complex symbolss2n−1 + js2n, n = 1, . . . , 9,
be encoded using a HEX constellation [42]AHEX ⊂ R2.
This STBC hasN = 9 encoding groups and the vectorsxn,
n = 1, . . . , 9, are given byxn =

[

s2n−1 s2n
]T

. The number
of symbols per each encoding group isλn = 2 and the finite
setsAn = AHEX for n = 1, . . . , 9.

A subset of real information symbols{s1, . . . , sK} that
are encoded together using an arbitrary joint signal set must
be decoded jointly by an ML decoder. The encoding groups
x1, . . . ,xN are the fundamental units of information variables
that any ML decoder will operate on. For a given STBC the
choice of the weight matrices{Ai}, encoding groups{xn}
and the signal sets{An} may not be unique. As illustrated in
the following example, a careful choice of the weight matrices
and signal sets can reduce the number of real symbols per
encoding group. This reduction in encoding complexity may
get reflected as a reduction in the ML decoding complexity at
the receiver.

Example G.1:Consider the Dayal-Varanasi version of the
Golden Code [28]:

S1 =

[

s1 + js2 γ(s5 + js6)
γ(s7 + js8) s3 + js4

]

,

where γ =
√−j and the symbol vectors

[

s1 + js2 s3 + js4
]T

and
[

s5 + js6 s7 + js8
]T

are
encoded independently using a constellation from the rotated
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latticeRZ[j]2 with

R =

[

c s
−s c

]

, c = cos

(

tan−1(2)

2

)

and

s = sin

(

tan−1(2)

2

)

.

A naive choice for the symbol groups is

x1 =
[

s1 s2 s3 s4
]T
, x2 =

[

s5 s6 s7 s8
]T
.

The corresponding weight matrices are

A1 =

[

1 0
0 0

]

,A2 =

[

j 0
0 0

]

,A3 =

[

0 0
0 1

]

,

A4 =

[

0 0
0 j

]

,A5 =

[

0 γ
0 0

]

,A6 =

[

0 jγ
0 0

]

,

A7 =

[

0 0
γ 0

]

andA8 =

[

0 0
jγ 0

]

.

It is shown in Example G.4 of Section V-C that this choice of
encoding groups leads to GDL based decoders with complex-
ity equal to that of brute-force ML decoding. A better choice
of weight matrices and encoding groups can be obtained by a
simple linear transformation of the symbols{si}. The resulting
designS2 is given in (5) at the top of the next page. The
symbols{si} of this new design are encoded independently
of each other using a PAM constellation. BothS1 and S2

give the same STBC though they are encoded using different
sets of weight matrices and constellations. The number of
encoding groups inS2 is 8, and each symbolsi forms an
encoding group by itself, i.e.,xn = [sn], n = 1, . . . , 8. The
corresponding weight matrices are

A1 =

[

c 0
0 −s

]

,A2 =

[

jc 0
0 −js

]

,A3 =

[

s 0
0 c

]

,

A4 =

[

js 0
0 jc

]

,A5 =

[

0 γc
−γs 0

]

,A6 =

[

0 jγc
−jγs 0

]

,

A7 =

[

0 γs
γc 0

]

andA8 =

[

0 jγs
jγc 0

]

.

This choice of encoding groups leads to reduced com-
plexity ML decoding as will be shown in Exam-
ple G.4.

B. The GDL Decoding of STBCs

Given thenr × T received matrixY in (4), the ML de-
coder finds the set of variables{s1, . . . , sK} that minimizes
||Y −H

∑K

i=1 siAi||2. The ML decoding problem is to find

argmin tr

(

(Y −
K
∑

i=1

siHAi)(Y
H −

K
∑

i=1

siA
H
i H

H)

)

= argmin tr(YY
H ) +

K
∑

i=1

sitr(−HAiY
H −YA

H
i H

H)

+

K
∑

i=1

s2i tr(HAiA
H
i H

H)

+

K
∑

i=1

∑

j>i

sisjtr(H(AiA
H
j +AjA

H
i )HH)

= argmin f(s1, . . . , sK),

wheretr(·) is the trace of a square matrix, and

f(s1, . . . , sK) =

K
∑

i=1

(siξi + s2i ξi,i) +
∑

j>i

sisjξi,j ,

ξi = tr(−HAiY
H −YA

H
i H

H),

ξi,j = tr(H(AiA
H
j +AjA

H
i )HH) for j > i, and

ξi,i = tr(HAiA
H
i H

H).

Since the matricesHAiY
H +YA

H
i H

H , HAiA
H
i H

H and
H(AiA

H
j +AjA

H
i )HH are Hermitian, the coefficientsξi,

ξi,i, ξi,j are all real.
The functionf(s1, . . . , sK) is a second degree polynomial

overR. We now partition the terms of this polynomial accord-
ing to the encoding groups{xn}. The terms inf that consist
of variables only from thenth encoding group are summed
together into the functionαn(xn). Forn < m, those terms in
f that contain exactly one variable each from thenth and the
mth encoding groups are summed together to get the function
αn,m (xn,xm). For n = 1, . . . , N , let ψ(n) denote the set of
indices of those real symbolssi that are in thenth encoding
groupxn. Then forn = 1, . . . , N , we have

αn(xn) =
∑

i∈ψ(n)

(

siξi + s2i ξi,i
)

+
∑

j>i
i,j∈ψ(n)

sisjξi,j ,

and for all1 ≤ n < m ≤ N we have

αn,m(xn,xm) =
∑

i∈ψ(n)
j∈ψ(m)

sisjξi,j . (6)

Define

β(x1, . . . ,xN ) =
N
∑

n=1

αn(xn) +
∑

m>n

αn,m(xn,xm). (7)

By definition, β(x1, . . . ,xN ) = f(s1, . . . , sK) and the ML
solution is(x̂1, . . . , x̂N ) = argminβ(x1, . . . ,xN ). If the ML
solution is unique then for eachn = 1, . . . , N , we have
x̂n = argminβn(xn) where

βn(xn) = min
x{n}c∈A{n}c

β(x1, . . . ,xN ). (8)

The definition ofβ in (7) provides a natural ‘factorization’
of the global kernel in terms of the functionsαn andαn,m
whose domains are much smaller than that ofβ, and hence
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S2 =

[

s1c+ s3s+ js2c+ js4s γ(s5c+ s7s+ js6c+ js8s)
γ(−s5s+ s7c− js6s+ js8c) −s1s+ s3c− js2s+ js4c

]

(5)

are easier to compute. From (2) and (8), we see that the ML
decoding of an STBC is an MPF problem, and hence it can be
solved using the GDL which efficiently processes the partial
sums ofαn, αn,m to compute thexn-marginalizations ofβ.
The ML solution forxn can be obtained by first computing
thexn-marginalization of the global kernelβ in (8) and then
finding the argumentxn that minimizesβn.

When the ML solution is not unique an arbitration is
required after solving the MPF problem. To illustrate this,
consider the caseN = 2 and say both(x̂1, x̂2) = (a1, a2)
and (x̂1, x̂2) = (b1,b2) are ML solutions. On solving the
MPF problem (8) we would obtain a table of values for
the functionsβ1(x1) and β2(x2). However, botha1 and
a2 minimize β1, and bothb1 and b2 minimize β2. Thus
we only know that the ML solutions belong to the set
{(a1, a2), (a1,b2), (b1, a2), (b1,b2)}. In order to obtain the
ML solutions, the ML metric||Y −HX||2 for each of these
tuples should be calculated. The following lemma says that
for an i.i.d. Rayleigh fading channel the ML solution of an
STBC is unique with probability1, and hence this arbitration
step can be safely ignored.

Lemma 1:Let C be any STBC, and let the entries of the
channel matrixH be i.i.d. complex Gaussian random variables
with zero mean and unit variance. Then with probability1 the
ML solution for the transmitted codeword for the channel (4)
is unique.

Proof: Let X1 and X2 be two distinct codewords. We
will first show that with probability (w.p.)1 HX1 6= HX2,
and then show that givenHX1 6= HX2 the probability that
bothX1 andX2 are ML solutions is0. SinceX1 6= X2, there
exists a column of(X1 −X2) which is non-zero. Suppose the
jth column of(X1 −X2) is non-zero, the(1, j)th entry of the
matrix H(X1 −X2) is a complex Gaussian random variable
with zero mean and non-zero variance. Then the(1, j)th entry
of H(X1 −X2) is non-zero w.p. 1 and henceHX1 6= HX2

w.p. 1.
Now supposeX0 is the transmitted codeword andH is

such thatHX1 6= HX2. Let vec(·) denote the vectorization
of a matrix. Thenvec (H(X0 −X1)) 6= vec (H(X0 −X2)).
Both X1 and X2 will be ML solutions only if the
nrT -dimensional white Gaussian noise vectorvec(N) be-
longs to the the set of points inCnrT that are equidis-
tant from vec (H(X0 −X1)) and vec (H(X0 −X2)). Since
vec (H(X0 −X1)) 6= vec (H(X0 −X2)), this set is a coset
of an (nrT − 1)-dimensional subspace ofCnrT and the prob-
ability that vec(N) belongs to this hyperplane is0. This
completes the proof.

A junction tree to solve the MPF problem (8) is shown in
Fig. 1. The tree can be viewed as consisting of three sections.
At the center of the tree is thecore consisting of only the
(x1, . . . ,xN ) vertex. The core is surrounded bytier 1: a layer
of (xn,xm) vertices, each of which is connected to the core
vertex by a single edge. Outermost istier 2: a layer ofxn

1 2 N
x , x , . . . , x 

x  x

x

 x

1 2

x1 1x  x
3

x  x1

2x  x
3

2

2x  x

N

4

x  x
2 N3

x   x
4

3

x   x

x
N N−1

N

. . .

.
. ....

Fig. 1. A junction tree to decode an arbitrary STBC.

1 2 N
x , x , . . . , x 

x  x

x

1 2
2x  x

3

2

2x  x4

x  x
2 N

. . . x  x2 5

Fig. 2. Subtree formed by the vertices that containx2.

vertices, each of which is connected to a vertex from tier 1
by a single edge. The local kernel at the core is set identically
equal to zero, the local kernels at the(xn,xm) andxn vertices
are set toαn,m andαn respectively. This tree satisfies all the
three conditions C.1-C.3 (given in Section II-B) for it to bea
junction tree for the MPF problem of ML decoding the STBC
C. Conditions C.1 and C.2 are easy to check. To illustrate
the satisfiability of C.3 (the junction tree condition), Fig. 2
shows the subtree formed by the vertices whose local domains
contain the symbolx2. Clearly this subtree is a connected
graph.

IV. FAST GDL DECODABLE SPACE-TIME BLOCK CODES

The junction tree of Fig. 1 has complexity order

max
v∈V

|AIv
| = |AI{1,...,N}

| = |C|,

which is equal to the complexity order of brute-force ML
decoding. There exist codes whose weight matrices{Ai} are
such that the functionαn,m is identically equal to zero for all
channel realizationsH for certain pairs(n,m). In such cases
a number of ‘factors’ in the MPF formulation in (7) can be
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dropped, and this can lead to junction trees whose order of
complexity is less than|C|.

Definition 1: If an STBC C admits GDL decoding with
complexity order less than|C| then we say that it isfast GDL
decodable.

A number of properties of the GDL decoding of an STBC
can be readily inferred from what are known as themoral
graph of an STBC and thecore of a junction tree. In the
following subsection we introduce these notions, and in Sec-
tion IV-B we give some results on the fast GDL decodability
of STBCs based on these concepts.

A. The Moral Graph and the Core

The local kernelsαn,m(xn,xm) arise from the cross terms
sisjξi,j (6), whereξi,j = tr(H(AiA

H
j +AjA

H
i )HH). It is

well known [9]–[11] that a necessary and sufficient condition
for ξi,j = 0 for any channel realizationH is thatAi andAj

be Hurwitz-Radon orthogonal, i.e.,AiA
H
j +AjA

H
i = Ont

.
We say that two variablesxn and xm interfere with each
other if there exists a symbolsi in the encoding group
xn and a symbolsj in the encoding groupxm such that
AiA

H
j +AjA

H
i 6= Ont

. If no such symbolssi, sj exist we
say thatxn and xm are non-interfering. The local kernel
αn,m(xn,xm) is identically zero (and hence can be removed
in the MPF formulation) for all channel realizations if and
only if xn andxm arenon-interfering. The moral graph [30]
of the MPF formulation of ML decoding an STBC is a simple2

graph whose vertices are the variablesxn, n = 1, . . . , N , and
in which an edge exists between two vertices if and only if
the two corresponding variables are interfering.

In the MPF formulation in (7) the kernelsαn(xn) arise
from the termsξisi and ξi,is2i . Recall thatξi,i = ||HAi||2F
and hence is non-zero with probability1. Thus, the kernels
αn, n = 1, . . . , N , are almost always non-zero and can not
be removed from the MPF formulation. On the other hand, as
we saw in the previous paragraph, some of the cross terms
αn,m can be made identically zero. This information about
the cross terms is embedded in the moral graph of the code.
Thus, all the information required to construct a junction tree
for a code is contained in its moral graph. We now show how
the problem of constructing a junction tree can be reduced to
the construction of what we refer to as thecore. Let T be a
simple tree such that each vertexv of T is associated with a
variable listxIv

(for someIv ⊂ {1, . . . , N}) and the kernel
αv(x mathcalIv ) = 0.

Definition 2: The treeT is said to be a core for the STBC
C if (i) it satisfies the junction tree condition (condition C.3 of
Section II-B), and(ii) for every pair of neighboring vertices
(xn,xm) in the moral graph, there exists a vertexv of T such
that {xn,xm} ⊆ xIv

.
Given a coreT , a junction tree for the STBC can be

constructed as follows. For every pair(xn,xm) of neighboring
vertices in the moral graph, choose a vertexv of T such that
{xn,xm} ⊆ xIv

. If Iv = {n,m} then set the local kernel
at v to αn,m, else attach a vertex(xn,xm) with local kernel

2A graph is said to be simple if it is undirected, unweighted with no loops
or multiple edges.

x x

x x

1 2

3 4

x5

Fig. 3. Moral graph of Example 1.

x x x

x x x

1 2 3

2 3 4

Fig. 4. The core of Example 1.

αn,m to v using a single edge. The set of(xn,xm) vertices
thus added toT form tier 1. Now, for eachn = 1, . . . , N ,
find a vertex of tier 1 that contains the variablexn and attach
the vertex(xn) with the local kernelαn to that vertex using
a single edge. If there exists no tier 1 vertex that contains
xn then connect the(xn) vertex with local kernelαn to any
vertex of tier 1 using a single edge. The set of(xn) vertices
thus added form tier 2. It is straightforward to show that the
graph thus obtained is a junction tree for the STBCC.

Example 1:Consider a code with N = 5
encoding groups and moral graph as shown in
Fig. 3. There are five pairs of interfering symbols
{(x1,x2), (x1,x3), (x2,x3), (x2,x4), (x3,x4)}. A core
for this code is shown in Fig. 4. The core together with the
tier 1 vertices is shown in Fig. 5. Note that the(x2,x3) vertex
of tier 1 could have been connected to the bottom vertex
of the core as well. The complete junction tree is shown in
Fig. 6. The vertex(x5) has been connected to an arbitrarily
chosen tier 1 vertex. The complexity order of this junction
tree ismax{|A{1,2,3}|, |A{2,3,4}|} < |C|, and hence this code
is fast GDL decodable.

Given the moral graph of an STBC, the problem of con-
structing a junction tree is equivalent to the problem of
constructing a core. There is no unique core for a given
STBC/moral graph, and different cores can lead to junction
trees with different complexities. For instance, the graph
with the single vertex(x1,x2, . . . ,xN ) can always be used
as a core irrespective of the structure of the moral graph
(see Fig. 1). However this would lead to junction trees with
complexity order|A{1,...,N}| = |C|, which is equal to the order
of brute-force ML decoding complexity.

When the moral graph is not edgeless, i.e., when there is
at least one pair of interfering symbols, the complexity order
of the junction tree is determined by the core vertices. Since
every pair of interfering vertices must be contained within
some ‘larger’ vertex of the core, the vertexv of the junction
tree with the largest|AIv

| belongs to the core. Thus, given
an STBC/moral graph,the problem of finding an efficient ML
decoder is equivalent to one of constructing a core with the
least complexity.
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x x x

x x x

x x x x

x x

x x

x x

1 2 3

2 3 4

1 2

2 3

1

2 4 3 4

3

Fig. 5. The coreT of Example 1 with tier 1 vertices.
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x x x
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2 3 4
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2 3

1

2 4 3 4

3

x x
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x

1

2

3

4
5

Fig. 6. The junction tree of Example 1.

When the moral graph is edgeless, i.e., when none of the
symbols are interfering with each other, any treeG with N
vertices can be transformed into a junction tree by labelingthe
N vertices with the local domains(xn) and the local kernels
αn, n = 1, . . . , N respectively. Since there are no cross terms
αn,m in the MPF formulation, the ML metric

f(s1, . . . , sK) =

N
∑

n=1

αn(xn) = β.

Since every variablexn appears in exactly one of the vertices
of G, the treeG satisfies the junction tree condition as well.
HenceG is a junction tree for the given STBC. The complexity
order of this junction tree ismaxNn=1 |An| < |C|. Thus, STBCs
with edgeless moral graphs are fast GDL decodable.

Example 2:All Orthogonal Designs [1] have edgeless
moral graphs. For example, consider the Alamouti Code

[

s1 + js2 −s3 + js4
s3 + js4 s1 − js2

]

,

where the real symbolss1, . . . , s4 are encoded independently
using a PAM constellation. This code hasN = 4 encoding
groupsxn = [sn], n = 1, . . . , 4. The moral graph, see Fig. 7,
is edgeless. A junction tree for the Alamouti code is shown
in Fig. 8.

x x

x x

1 2

3 4

Fig. 7. Moral graph of the Alamouti Code.

x x

x x

1 2

3 4

Fig. 8. A junction tree for the Alamouti Code.

B. Fast GDL Decodable STBCs

We now give a sufficient condition for a code to admit fast
GDL decoding.

Lemma 2:A code admits fast GDL decoding if its moral
graph is not complete3.

Proof: We prove the claim by constructing a core for such
a codeC with complexity order less than|C|. Since the moral
graph is not complete, there exist a pair of variables, sayx1

andx2, that are not connected by an edge in the moral graph.
Consider the tree shown in Fig. 9. There are(N − 1) variables
in either of the vertices of this tree. It is straightforwardto
show that this tree satisfies both the conditions of Definition 2
to be a core for the given STBC. The order of GDL decoding
complexity with this core is

max{|A{1,3,4,...,N}|, |A{2,3,...,N}|} < |A{1,2,3,...,N}| = |C|,
and hence this code is fast GDL decodable.

Example T.2:Continuing with Example T.1, the moral
graph of the2× 10 Toeplitz code is given in Fig 10. The
moral graph is not complete and hence this code admits fast
GDL decoding.

Example G.2:We now continue with Example G.1. First
consider the naive choice of encoding groups with just two
symbol groups. SinceA1A

H
5 +A5A

H
1 6= O2, the two symbol

groups interfere and hence the moral graph is complete.
Now consider the second choice of weight matrices and
encoding groups with8 symbol groups. The moral graph,
shown in Fig. 11, is not complete and hence with this
choice of weight matrices the Golden code admits fast GDL
decoding.

Multigroup Decodable STBCs:Let G be a junction tree
for an STBC C, and let there be(g − 1) edges(uk, vk),
k = 1, . . . , (g − 1), of G such thatIuk

∩ Ivk = φ, the empty
set. LetG1, . . . ,Gg, be theg disjoint subtrees ofG obtained
by removing these(g − 1) edges. Also, denote byx(Gk) the
union of the set of variables that appear in the local domains
of Gk.

Theorem 1:ForG, G1, . . . ,Gg described as above, we have:

1) x(G1), . . . ,x(Gg) is a partition of{x1, . . . ,xN},

3A simple graph is said to be complete if every pair of distinctvertices is
connected by an edge.



8

x  x  x . . .  x x  x  x . . .  x1 3 4 N 4 N2 3

Fig. 9. The core used in the proof of Lemma 2.

x x x x1 2 3
9

. . .

Fig. 10. Moral graph of the Toeplitz code in Example T.1.

2) for k = 1, . . . , g, the treeGk satisfies the junction tree
condition, and

3) for each k = 1, . . . , g, the ML solution of x(Gk)
can be obtained by running the GDL message-passing
algorithm onGk.

Proof: The proof is given in Appendix A.
We say thatG1, . . . ,Gg is a partition of the junction tree

G, and that the STBC is GDL decodable using theseg
independent junction trees. Each subtreeGk is composed only
of a specific subsetx(Gk) of variables, hence for any vertex
vk of Gk we haveIvk ( {1, . . . , N}. Thus, the complexity
order ofG is

max
v∈G

|AIv
| = max

k∈{1,...,g}
max
vk∈G

|AIvk
| < |C|.

Thus, codes whose junction trees can be partitioned into two
or more subtrees are fast GDL decodable.

Example 3:Consider the junction tree of Example 1 shown
in Fig. 6. Among the 11 edges of this tree, the edge
(u, v) between the nodes(x2,x4) and (x5) is the only one
such thatIu ∩ Iv = φ. Thus, in this caseg = 2 and the
two subtrees are shown in Fig. 12. The sets of variables
x(G1) = {x1,x2,x3,x4} and x(G2) = {x5}. The ML solu-
tions of x(G1) and x(G2) can be obtained by running the
GDL independently onG1 andG2 respectively. Note that the
corresponding moral graph, shown in Fig. 3, is a disjoint union
of g = 2 subgraphs. Further, the first subgraph is composed
of variables from the setx(G1) and the second from the set
x(G2).

Example 4:All the three edges of the junction tree of
the Alamouti code, shown in Fig. 8, satisfy the condi-
tion Iu ∩ Iv = φ. In this caseg = 4, and thekth subtree
Gk consists of a single vertex(xk) with the local kernel
αk(xk). Note that the moral graph of this code, shown in
Fig. 7, is disjoint union ofg = 4 subgraphs, and thekth

subgraph of the moral graph is composed of variables from
x(Gk).

We will see in Lemmas 3 and 4 that the property of a
junction tree to be partitioned into several smaller junction
trees is related tomultigroup decodabilityof a code, and as
illustrated in the previous two examples, this property canbe
readily inferred from the moral graph. An STBC is said to
bemultigroupor g-group decodable[9]–[11] if {x1, . . . ,xN}
can be partitioned intog subsets such that each subset of
symbols can be ML decoded independently of other subsets.
If the code generated by thekth group of symbols isCk, then
the kth symbol group is ML decoded by the CML algorithm

x x x

x x x x

x
1 3 2 4

5 7 6 8

Fig. 11. Moral graph of the Golden Code.

x x x

x x x

x x x x

x x

x x

x x

1 2 3

2 3 4

1 2

2 3

1

2 4 3 4

3

x x

x
x

1

2

3

4

x5

Fig. 12. The subtreesG1 andG2 of Example 3.

independent of other symbol groups as

arg min
Xk∈Ck

||Y −HXk||2F .

Thus, in order to decodeC, the g subcodesC1, . . . , Cg are
decoded independently by the CML decoder. A necessary and
sufficient condition forg-group decodability is that the weight
matrices of the variables belonging to different subsets be
Hurwitz-Radon orthogonal [9]–[11]. In terms of the GDL for-
mulation, this translates to the variables belonging to different
subsets being non-interfering.

Lemma 3:An STBC isg-group decodable if and only if its
moral graph is a disjoint union ofg subgraphs.

Proof: The proof is straight forward.
Using this lemma we see that any code with the moral graph

of Fig. 3 is2-group decodable, and that the Alamouti code is
4-group decodable.

Lemma 4:An STBC can be GDL decoded using a disjoint
of uniong junction trees if and only if it isg-group decodable.

Proof: Suppose an STBC has a junction tree that can
be be partitioned intog subtreesG1, . . . ,Gg. From Theo-
rem 1, x(G1), . . . ,x(Gg) form a partition of the variables
{x1, . . . ,xN}. Consider any two variablesxn and xm be-
longing to distinct partitions. From Theorem 1, there exists
no vertex inG whose local domain contains bothxn andxm.
Thus, the global kernel does not involve the functionαn,m, and
hencexn andxm are non-interfering. We have thus shown that
the variables belonging to theg subsetsx(G1), . . . ,x(Gg) are
mutually non-interfering. Hence, the moral graph is a disjoint
union ofg-subgraphs, and from Lemma 3, the code isg-group
decodable.
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Suppose an STBC isg-group decodable. Then from
Lemma 3, its moral graph is a disjoint union ofg subgraphs.
For k = 1, . . . , g, let Γk ⊂ {1, . . . , N} be the set of indices of
the variables in thekth disjoint subgraph of the moral graph.
One can then construct thekth disjoint subtreeGk of the
junction treeG similar to the construction in Section III-B (see
Fig. 1). The central node ofGk consists of all the variables
xn, n ∈ Γk. The domains(xn,xm) and xn, for n,m ∈ Γk
are then attached in two tiers, similar to the tree in Fig. 1.
The junction treeG is obtained by arbitrarily connecting these
g subtrees using(g − 1) edges. It is straightforward to see
that the resulting tree is a junction tree for the code, and
thatG1, . . . ,Gg form a partition ofG. Hence from Theorem 1,
the code can be GDL decoded using a partition ofg disjoint
junction trees.

When a code isg-group decodable, thekth subcode is
generated by the variables associated with thekth disjoint
subgraph of the moral graph. A junction tree partition for this
code can be obtained by constructingg junction trees, one
each for theg subgraphs of the moral graph.

Fast-Decodable STBCs:An STBC is said to befast-
decodable[16] or conditionally g-group decodable[24] if
there exists a subsetΓ ( {1, . . . , N}, such that the code
generated by the variablesxn, n ∈ Γ is g-group decodable.
The CML decoding algorithm to decode such a code proceeds
as follows. For each of the|AΓc | values that the variables
xΓc jointly assume, the conditionally optimal values of the
remaining variablesxn, n ∈ Γ can be found out viag-
group decoding. Note that each of theseg subcodes can
themselves be fast-decodable (such codes are said to befast-
group-decodable[43]). From among these|AΓc | values of
x{1,...,N}, the realization ofx{1,...,N} that minimizes the ML
metric ||Y − HX||2F is found out in a brute-force way. Let
the g subcodes correspond to the variables with index sets
Γ1, . . . ,Γg and let the complexity order of decoding thekth

subcode using CML beOk. For eachk = 1, . . . , g, the
complexity orderOk ≤ |AΓk

|. The complexity order of the
CML algorithm is then

|AΓc | max
k∈{1,...,g}

Ok ≤ |AΓc | max
k∈{1,...,g}

|AΓk
| < |C|.

Lemma 5:An STBC is conditionallyg-group decodable if
and only if there exists aΓ ( {1, . . . , N} such that the moral
graph of the reduced set of variables{xn|n ∈ Γ} is a disjoint
union of g subgraphs.

Proof: Follows immediately from Lemma 3.
From Lemmas 2 and 5 we see that conditionallyg-group

ML decodable codes admit fast GDL decoding.
Example T.3:Consider the Toeplitz code of Example T.2.

With Γ = {1, . . . , 9} \ {5} we see that the moral graph gen-
erated byxΓ is a disjoint union of2 subgraphs (see Fig. 13).
The first subgraph consists of the symbolsx1, . . . ,x4 and the
second subgraph consists ofx6, . . . ,x9. Hence this code is
conditionally2-group decodable. Note that the code generated
by the variablesx1, . . . ,x4 is itself conditionally2-group de-
codable where the two conditional groups are{x1} and{x4}.
Similarly the code generated byx6, . . . ,x9 is conditionally2-
group decodable as well.

x x x

x x x x

1 2 3 x4

6 7 8 9

Fig. 13. Toeplitz code: Moral graph of the reduced set of variablesxΓ.

x x x1 x43 2

Fig. 14. Golden code: Moral graph of the reduced set of variables xΓ.

Example G.3:Consider the moral graph of the Golden code
given in Fig. 11. ForΓ = {1, 2, 3, 4}, the moral graph gener-
ated by the variables{x1, . . . ,x4}, shown in Fig 14, is a dis-
joint union of2 subgraphs. The first subgraph consists of vari-
ablesx1,x3 and the second subgraph consists of the variables
x2,x4. Thus the Golden code is conditionally2-group decod-
able. This fast-decodability property of the Golden code was
first reported in [18], [29].

V. GDL IS FASTER THAN CONDITIONAL ML D ECODING

In this section we show that the number of computations
involved in the GDL decoding of any STBC is less than that of
CML decoding. As a first step towards this, we show that ML
solutions can be obtained using only the single-vertex GDL
algorithm followed by a ‘traceback’, rather than the more com-
plex all-vertex GDL. This reduction is possible since we are
only interested in theargmin of the objective functions at the
various vertices, and not the objective functions themselves.

A. Traceback

Let G be any junction tree for the STBCC with the encoding
groupsx1, . . . ,xN . We will now show that the ML solutions
of {xn} can be obtained by running the single-vertex GDL
with any vertexv0 as the root, followed by a traceback step.
This is similar to the Viterbi’s algorithm [32], where the actual
ML metric of only the last state of the trellis is calculated and
then the ML path is traced back to the first state.

Consider the single-vertex GDL message-passing schedule
with v0 as the root. Every vertexu 6= v sends a message to its
neighborp(u) on the unique path fromu to v0, when it has
received messages from all its other neighbors. While doing
so it computes its partial state

λu(xIu
) = αu(xIu

) +
∑

w adj u
w 6=p(u)

µw,u(xIw∩Iu
),

and sends the messageµu,p(u) as

µu,p(u)(xIu∩Ip(u)
) = min

xIu\Ip(u)

λu(xIu
).

Note that this partial stateλu is different from the stateσu
of u at the end of the all-vertex GDL algorithm. These two
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functions are related as

σu(xIu
) = λu(xIu

) + µp(u),u(xIp(u)∩Iu
),

whereµp(u),u is the message fromp(u) to u during the all-
vertex GDL. However, the messageµp(u),u is not generated
during the single-vertex schedule. At the end of the single-
vertex GDL, v0 calculates its stateσv0 , which is equal to
the xIv0

-marginalization ofβ. The ML solution toxIv0
is

obtained aŝxIv0
= argminσv0(xIv0

).
Let u be any vertex such that the ML solution of the

local domain ofp(u), i.e., x̂Ip(u)
is known. PartitionxIu

into
xA(u) = xIu\Ip(u)

andxB(u) = xIu∩Ip(u)
. Note that bothλu

andσu are functions of bothxA(u) andxB(u). Since the ML
solution atp(u) is known, the valuêxB(u) that minimizes
σu(xA(u)),xB(u)) is known. Thus, the ML solution ofxA(u)

is

x̂A(u) = arg min
xA(u)

σu(xA(u), x̂B(u))

= arg min
xA(u)

λu(xA(u), x̂B(u)) + µp(u),u(x̂B(u))

= arg min
xA(u)

λu(xA(u), x̂B(u)).

Hence, the ML solution atu can be obtained merely from
λu and the ML solution atp(u). This is possible since we
are only interested inargmin σu rather thanσu itself, and as
shown above,argminσu can be obtained fromλu without
calculating σu explicitly. At the end of the single-vertex
schedule, the solution atv0 is first found, followed by all its
neighbors, and then the neighbors of these vertices, and so on,
until the ML solution of all the variablesxn, n = 1, . . . , N ,
are obtained. Since the all-vertex GDL is about four times as
complex as the single-vertex GDL, this traceback algorithm
provides a considerable reduction in complexity.

Example 5:The direction of messages for the single-vertex
GDL problem on the subgraphG1 of Example 3 with root
at the vertex(x1,x3) is shown in Fig. 15. In this ex-
ample, p(b) = p(c) = a, p(d) = p(e) = p(g) = c, p(f) = e,
p(h) = p(i) = g, p(u) = h and p(v) = i. At the end of the
GDL schedule the state at the vertexa is equal to the
(x1,x3)-marginalization of the global kernel. The optimal
(x̂1, x̂3) is found out fromσa using (|A1||A3| − 1) pairwise
comparisons. Sincep(c) = a, using the knowledge of̂x1, x̂3

and λc, the value ofx̂2 can then be found out. This step
involves (|A2| − 1) comparisons. Finally, given̂x2, x̂3 and
λg the value ofx̂4 can be obtained using(|A4| − 1) com-
parisons. If|A1| = · · · = |A4| = q, then finding the optimal
xn, n = 1, . . . , 4, using the single-vertex GDL and traceback
involves 7q3 + 4q2 + 2q − 3 operations. On the other hand,
using the all-vertex GDL would cost28q3 + 12q2 + 4q − 1
operations. Comparing the leading order terms, we see that,
traceback has enabled us to reduce the complexity by about4
times.

B. GDL is faster than Conditional ML decoding

Before stating the results of this subsection, we define
the GDL and conditional ML decoding complexities of an
STBC, denoted byCGDL(C) and CCML(C) respectively. The

x x x

x x x

x x x x

x x
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x x
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2 3 4
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2 4 3 4
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Fig. 15. Direction of messages for the single-vertex GDL forroot vertexa.

GDL algorithm varies with the choice of the weight matri-
ces, encoding groups and the junction tree. ByCGDL(C) is
meant the minimum among the complexities (the number of
mathematical operations: multiplications, additions andcom-
parisons) of all possible GDL algorithms that can be used to
solve the ML decoding problem ofC. Similarly for the CML
algorithm there can be more than one choice of reduced set
of variablesxΓ which generate a multigroup decodable code.
The complexity of conditional ML decoding then varies with
this choice. ByCCML(C) is meant the minimum among all
possible conditional ML decoding complexities of codeC. By
OGDL(C) andOCML(C) we denote the order ofCGDL(C) and
CCML(C) in terms of the signal set/constellation size.

Order of decoding complexity:

We now show that the order of GDL complexity of any
code is upper bounded by the order its CML complexity.

Theorem 2:For any codeC, OGDL(C) ≤ OCML(C).
Proof: Proof is given in Appendix B.

The following example shows that there exist codes for
which the GDL complexity order is strictly less. Thus the
CML decoding algorithm is in general suboptimal in terms of
reducing the ML decoding complexity.

Example T.4:The 2 × 10 Toeplitz code can be decoded
using the junction tree given in Fig. 16 at the top of the
next page. If the size of the complex HEX constellation used
to encode the variablesxn =

[

s2n−1 s2n
]T

is M then the
complexity order of this junction tree is|A{n,n−1}| =M2.
The least complex CML algorithm proceeds as follows. The
variables{x1, . . . ,x4} and {x6, . . . ,x9} are independently
decoded after conditioning onx5. To decode{x1, . . . ,x4},
one first conditions on{x2,x3} and finds the conditionally
optimal values ofx1 and x4 independently. The decoding
of {x6, . . . ,x9} proceeds in a similar way. Thus the CML
complexity order isM4. On the other hand, the brute-
force decoding complexity,|C| = M9. Hence, for this code
OGDL < OCML < |C|.

We now give two examples of families of STBCs for which
OGDL < OCML.
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x x   x x   x

x x x

1 1 2 2 3 3x   x
4 x   x8 9

2 x3 4 9

. ..

Fig. 16. Junction tree to decode the2× 10 Toeplitz code

x x x x x

x x x x x x

x1 3 5 7 9 11

2 4 6 8 10 12

Fig. 17. The moral graph of the4× 14 OAC.

1) Toeplitz Codes [39]:Consider a2× T Toeplitz Code,
T ≥ 2. This code consists ofK = 2(T − 1) real symbols. We
can construct a junction tree for this code similar to the one
in Example T.4. The chain in this junction tree would extend
till the (xT−2,xT−1) vertex. The complexity order of this
junction tree is stillM2, irrespective of the value ofT , where
M is the size of the complex constellation used to encode the
symbolsxn. The best ordering for conditional ML decoding
this code is to first condition on the variablex⌊ T−1

2 ⌋. This
would result in two conditional ML decoding groups each
of which generates a ‘shorter’ Toeplitz code whose delay is
approximatelyT2 . Thus the CML decoding complexity grows
with M andT asM log2 T . It is interesting that though there
is interference among the symbols, the GDL complexity is a
constant independent of the number of symbols encoded by the
code. These results can be extended tont > 2. For anynt×T
Toeplitz code there exists a junction tree whose complexity
order isMnt . The CML decoding complexity however grows
with the delayT .

2) Overlapped Alamouti Codes (OACs) [40]:These codes
are 2-group ML decodable and are available for all choices
of T ≥ nt ≥ 2. They can be GDL decoded with complexity
orderM ⌊

nt+1
2 ⌋. The CML decoding complexity on the other

hand grows with the number of symbols or equivalently with
the delayT . For example, fornt = 4, the CML complexity
grows asM ⌈log2(

T
2 )⌉. As an example we construct a junction

tree for the4× 14 OAC and show that its complexity order
less than the CML decoding complexity.

The 4× 14 OAC consists of 24 real symbols
s1, . . . , s24. Define the auxiliary variablesz1, . . . , z12 as
zn = s2n−1 + js2n. The design in terms of these auxiliary
variables is given in (9) at the top of the next page. The
variableszn, n = 1, . . . , 12, are encoded independently using
a complex constellation of sizeM . Choose the encoding
groups asxn =

[

s2n−1 s2n
]T

for n = 1, . . . , 12. The moral
graph for the code is given in Fig. 17. The moral graph is
not complete and hence from Lemma 2, this code admits
fast GDL decoding. Since the moral graph is a disjoint
union of two subgraphs, from Lemma 3, this code is2-group

x x   x x   x

x

1 1

x

. . .

x

x   x3

3

3 5

5

9 11

11

x x x

 

x   x x   x. . .x2 x   x2 4 4 10 126

4 6 12

Fig. 18. A junction tree partition to decode the4× 14 OAC.

decodable. A junction tree partition to decode this code
is shown in Fig. 18. Note that this partition consists of2
subtrees, each of which is a junction tree for the subcode
generated by the2 ML decoding groups. The complexity
order of this junction tree partition isM2. When CML
decoding is used, the least achievable complexity order is
M3. We explain the CML decoding for the first ML decoding
group. The decoding of the second group is similar. On fixing
the value ofx5, we get two conditional decoding groups. The
first group{x1,x3} is jointly decoded with complexityM2

for each value ofx5. The second group,{x7,x9,x11}, is
again conditionally2-group decoded with the two conditional
groups being{x7} and{x11}.

Exact decoding complexity:

Almost all STBCs of interest have the property that each
encoding group has the same number of real symbols, say
t, and the signal set size of all the groups are equal, i.e.,
|A1| = |A2| = · · · = |AN |. If the average number of infor-
mation bits carried by each real symbol islog2 q then the
signal set size|An| = qt. For example, whent = 2 the real
symbols {si} are encoded pairwise, andq2 is the size of
the complex constellation used to encode eachxn. For the
sake of analytical tractability, and considering the widespread
prevalence STBCs of this type in the literature, we restrictour
analysis of the exact GDL and CML complexities to codes
wherein the number of real symbols in each encoding group
is the same and|An| = qt.

Let C be any code where all the symbolsxn, n = 1, . . . , N ,
are mutually interfering. We will refer to such codes as being
fully-interfering. In Appendix C we compute the exact CML
and GDL complexities of such a fully-interfering STBC. The
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S =









z1 0 z3 −z∗2 z5 −z∗4 z7 −z∗6 z9 −z∗8 z11 −z∗10 0 −z∗12
0 z∗1 z2 z∗3 z4 z∗5 z6 z∗7 z8 z∗9 z10 z∗11 z12 0
0 −z∗2 z1 −z∗4 z3 −z∗6 z5 −z∗8 z7 −z∗10 z9 −z∗12 z11 0
z2 0 z4 z∗1 z6 z∗3 z8 z∗5 z10 z∗7 z12 z∗9 0 z∗11









. (9)

CML algorithm performs a brute-force minimization of the
ML metric over allqNt values of(s1, . . . , sNt). Its complexity
is

CCML(C) = qNt
(

3

(

Nt

2

)

+ 5Nt

)

− 1. (10)

To GDL decode this STBC, we use the junction tree of Fig. 1
in Section III-B. We employ a single-vertex GDL schedule
with the root at any one of the(xn,xm) vertices followed
by traceback (using the core vertex as the root will contribute
to the leading order termqNt, which is avoided here). The
complexity of this GDL decoder is given in (11) at the
top of the next page. Comparing the leading terms of (10)
and (11), we see that when the real symbols{si} are encoded
independently of each other i.e., whent = 1, the GDL is about
3 times less complex as the CML. When the symbols are
encoded pairwise using a complex constellation, i.e., when
t = 2, the GDL is approximately12 times less complex than
the CML decoder. For example, for any STBC obtained
from Cyclic Division Algebras [38] that is not multigroup or
conditionally multigroup decodable, the GDL decoder gives
roughly a12 times reduction in complexity compared to the
CML decoder.

Example 6:Consider the following2 antenna code ob-
tained from a Cyclic Division Algebra [38]
[

s1 + js2 + γ(s3 + js4) δ (s5 + js6 − γ(s7 + js8))
s5 + js6 + γ(s7 + js8) s1 + js2 − γ(s3 + js4)

]

,

where γ = ej
2π
8 , and δ is any complex number which is

transcendental over the fieldQ(
√
γ). The complex symbols

s2n−1 + js2n, n = 1, . . . , 4, are encoded using the8-PSK
signal set. For this code, there areN = 4 encoding groups,
xn =

[

s2n−1 s2n
]T

for n = 1, . . . , 4, t = 2 andq =
√
8. All

the four symbol groups are mutually interfering, and hence this
STBC is fully-interfering. From (10), the CML decoder for this
code involves507, 903 mathematical operations. On the other
hand, using (11), we see that the GDL decoder involves only
26, 718 operations, which is about19 times less than the CML
complexity.

Example 7:Consider the following Field Extension
code [38] fornt = 3 transmit antennas





s1 + js2 γ(s5 + js6) γ(s3 + js4)
s3 + js4 s1 + js2 γ(s5 + js6)
s5 + js6 s3 + js4 s1 + js2



 ,

where γ = ej
2π
6 and the complex symbolss2n−1 + js2n,

n = 1, . . . , 3 are encoded using the8-PSK signal set. This
code hasN = 3 encoding groups,xn =

[

s2n−1 s2n
]T

for n = 1, . . . , 3, t = 2 and q =
√
8. This STBC is fully-

interfering, and the CML and the GDL decoders for
this code involve 38, 399 and 2, 758 operations respec-
tively. Thus the GDL decoder provides a complexity re-

duction of the factor of 14 compared to the CML
decoder.

The number of computations involved in the GDL decoder
is less than that of the CML decoder not just for fully-
interfering codes, but for any STBC.

Theorem 3:Let C be any STBC such that the number of
real symbols per each encoding group ofC is same, and the
signal set size for each of the encoding groups is equal. Then
CGDL(C) < CCML(C).

Proof: Proof is given in Appendix D.
From Theorem 2 and Example T.4, we see that the GDL

algorithm can provide improvements over CML decoders in
terms of the order of ML decoding complexity as well.

C. Reduction in complexity with PAM signal sets

When a real symbol is encoded using a PAM signal set,
the optimal value of that variable, conditioned on the values
of other information symbols, can be found by scaling and
hard-limiting. This technique has been widely used in the
literature [18], [20], [26], [29], and can lead to gains in the
order of the CML decoding complexity. In this subsection we
show that such a reduction in complexity is possible with GDL
as well.

We will now describe how a variablexn0 , n0 ∈ {1, . . . , N},
(not necessarily a PAM encoded single real symbol) can be
removedfrom the GDL formulation. The global metricβ can
be split into terms involvingxn0 and terms not involvingxn0

as

β = αn0(xn0) +
∑

m∈N (n0)

αn0,m(xn0 ,xm)

+
∑

n6=n0

αn(xn) +
∑

n<m
n,m 6=n0

αn,m(xn,xm),

whereN (n0) is the set of indices of those variables that are
neighbors ofxn0 in the moral graph of the code. Define the
functions

hn0(xN (n0)) = min
xn0

αn0(xn0 ) +
∑

m∈N (n0)

αn0,m(xn0 ,xm),

β′(x{n0}c) = min
xn0

β(x1, . . . ,xN ).

Then we haveβ′(x{n0}c) =

hn0(xN (n0)) +
∑

n6=n0

αn(xn) +
∑

n<m
n,m 6=n0

αn,m(xn,xm),

and the ML solution forxn, n 6= n0,

x̂{n0}c = argminβ′(x{n0}c).

Given the functionhn0(xN (n0)), the ML decoding ofC is
equivalent to minimizingβ′. This minimization can be solved
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CGDL(C) = qNt
(

N

2

)

+ q(N−2)t + q2t
[(

N

2

)

(2t− 1) +N + 1

]

+ qt
[(

N

2

)

(2t2 − t) +N(t2 + 3t)

]

− 2. (11)

using the GDL. If the functionhn0 can be computed with
sufficiently low complexity, usingβ′ rather thanβ to ML
decodeC can lead to gains in the decoding complexity.

As we show now, whenxn0 is a q-ary PAM encoded single
real symbol,hn0 can be computed with reduced complexity
using scaling and hard-limiting. For eachxN (n0) ∈ An0 ,

hn0 = min
xn0









ξn0,n0x
2
n0

+









ξn0 +
∑

m∈N (n0)
i∈ψ(m)

ξn0,isi









xn0









= min
xn0

ξn0,n0

[

(

xn0 −
ζ

2ξn0,n0

)2

− ζ2

4ξ2n0,n0

]

,

where ζ = ξn0 +
∑

m∈N (n0)

∑

i∈ψ(m) ξn0,isi. The optimal
valuex̂n0 that minimizeshn0 for a given value ofxN (n0) can
be found by the scaling and hard-limiting step given in (12)
at the top of the next page, wherernd(·) is the nearest integer
function. This step has a constant complexity independent of
q. The value ofhn0 can then be calculated as

hn0(xN (n0)) = ξn0,n0

[

(

x̂n0 −
ζ

2ξn0,n0

)2

− ζ2

4ξ2n0,n0

]

.

(13)

We now use GDL to computehn0 itself. From (13), we see
that the functionhn0 depends onxN (n0) only through

ζ = ξn0,n0 +

p
∑

j=1

ωmj
(xmj

), where,

N = {m1, . . . ,mp} andωmj
(xmj

) =
∑

i∈ψ(mj)
ξn0,isi. Now

consider the junction tree for this problem shown in Fig. 19,
where the local kernel at the central vertex isξn0,n0 , and the
local kernel at the vertex(xmj

) is ωmj
. It is straightforward

to show thatζ is equal to the state of the central vertex of
Fig. 19 at the end of the single-vertex GDL schedule rooted at
this node. Using the table of values ofζ thus obtained, one can
then computehn0 using (12) and (13). Thus, the functionhn0

can be computed with order of complexity|AN (n0)| instead
of the brute-force complexity orderq|AN (n0)|.

If G = (V , E) is a junction tree forβ, andG′(V ′, E ′) is a
junction tree forβ′, such that

max
v′∈G′

|AIv′
| < max

v∈G
|AIv

| and

|AN (n0)| < max
v∈G

|AIv
|,

then ML decoding the code using the junction treeG′ provides
an improvement in the complexity order compared to using the
junction treeG.

Lemma 6: If the coreT of G has only one vertex containing
the variablexn0 , then the treeT ′ obtained by removingxn0

from this vertex ofT is a core for the GDL minimization of
β′.

, , . . ,xmpxm21mx

xm1

xm2

xm3

xmj

xmp . ..

.
.
.

Fig. 19. A junction tree to computeζ.

Proof: We will show thatT ′ satisfies both the conditions
of Definition 2 for minimizing β′. Since T satisfies the
junction tree condition for all the variablesxn, n = 1, . . . , N ,
the treeT ′, obtained by removing the only occurrence ofxn0 ,
satisfies the junction tree condition forxn0 , n 6= n0. For every
n,m 6= n0 there exists av ∈ V such that{n,m} ⊆ Iv, and
hence there exists av′ ∈ V ′ such that{n,m} ⊆ Iv′ . Suppose
v0 ∈ V is the only vertex ofG that containsxn0 . BecauseT
is a core for the minimization ofβ, N (n0) ⊆ Iv0 and hence,
this vertex inT ′ contains the argument ofhn0 as a subset
of its local domain. Therefore,T ′ can be used as a core for
minimizing beta′.

This technique of removing a PAM encoded variable can
be generalized to any setR ⊆ {1, . . . , N} of variables that
satisfies the condition given in Lemma 7 below. In this case,
the variablesxn, n ∈ R, are removed one by one from
the GDL formulation, in an arbitrary order, using the same
technique as above.

Lemma 7:The PAM encoded set of variablesxR can be
removed from the GDL formulation using scaling and hard-
limiting if and only if the subgraph of the moral graph
generated by these variables is edgeless.

Proof: Let R = {n1, . . . , n|R|}, and let the chosen
order of removal ben1, n2, . . . , n|R|. The variablexn1 can
be removed using the technique described in this subsection,
irrespective of the choice ofn2, . . . , n|R|. Suppose there exists
annr ∈ R, such thatnr ∈ N (n1). Then, while removingxnr

,
one is faced with the minimization of the function

hn1(xN (n1)) + αnr
(xnr

) +
∑

m∈N (nr)

αnr ,m(xn0 ,xm)

over the variablexnr
. However,hn1 is not a quadratic function

of xnr
, and hence minimization of the above expression

via completion of squares, scaling and hard-limiting is not
possible. On the other hand, whennr /∈ N (n1), this step of
minimizinghn1 does not arise during the removal ofxnr

from
the GDL formulation, and hencexnr

can be removed using
scaling and hard-limiting.

For example, when a conditionallyg-group decodable code
is to be decoded, one PAM encoded symbol from each of the
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x̂n0 = min

{

max

{

rnd

(

q − 1

2
− ζ

2ξn0,n0

)

, 0

}

, q − 1

}

− q − 1

2
. (12)

x   x   x   x   x   x1 3 5 6 7 8 x   x   x   x   x   x876542x   x   x   x5 6 7 8

Fig. 20. A junction tree coreT to decode the Golden Code.

3 5 6 7 8    x   x   x   x   x x   x   x   x
5 6 7 8

    x   x   x   x   x4 5 6 7 8

Fig. 21. A junction tree coreT ′ for the Golden code that exploits the
structure of PAM signal set.

g conditional groups can be removed via scaling and hard-
limiting.

Example G.4:Consider the junction tree coreT for the
Golden code shown in Fig. 20. From Lemma 7 and the
moral graph of the Golden code given in Fig. 11, we see
that the variablesx1 and x2 can be removed using scaling
and hard-limiting. Using Lemma 6 we get the junction tree
coreT ′ = (V ′, E ′) shown in Fig. 21. Since|N1| = |N2| = 5,
the functionsh1 and h2 can be computed with complexity
order q5, whereq is the size of the PAM signal set used to
encode the information symbols. Also,maxv′∈V′ |AIv′

| = q5,
and hence the single-vertex GDL schedule and traceback can
be implemented with order of complexityq5. Hence, the order
of complexity for GDL decoding of the Golden code using
T ′ is q5, whereas the complexity order of usingT is q6. The
removal of the variablesx1 andx2 has enabled the reduction
of the GDL complexity order fromq6 to q5. The total number
of mathematical operations involved in the GDL decoding of
the Golden code usingT ′ is 42q5 + 6q4 + 21q2 + 52q − 5.
The CML decoder [18], [29], on the other hand, involves
76q5 + 43q4 − 1 operations. Comparing the leading order
terms, we see that the GDL decoder is about1.8 times as
fast as the CML decoder. For instance, whenq = 2 or 4
(corresponding to the rates4 and8 bits per channel use), the
GDL decoder gives a complexity reduction of1.9 compared
to the CML decoding algorithm.

On the other hand, consider the naive choice of symbol
groups

x1 =
[

s1 s2 s3 s4
]T
, x2 =

[

s5 s6 s7 s8
]T
,

given in Example G.1. The signal set size for each of these
two symbol groups isq4. Since the two symbol groups
are interfering, any choice of junction treẽG = (Ṽ , Ẽ) must
involve a vertexv0 that contains both the variablesx1,x2. The
GDL single-vertex decoding complexity has the complexity
ordermaxṽ∈Ṽ q

4|Iṽ| ≥ q8, which is equal to the order of brute-
force ML decoding complexity.

VI. CONCLUSION

The CML decoding algorithm minimizes the ML metric
β(x1, . . . ,xN ) via removing a subset of variables from the

problem formulation by minimizingβ for each instantia-
tion of this subset of variables. This subset of variables is
chosen in such a way that the reduced problem, obtained
after their removal fromβ, splits into multiple, independent,
less complex minimization problems. The GDL, on the other
hand, computes various partial sums and marginalizations of
β involving the ‘smaller’, less complex functionsαn, αn,m,
and utilizes these intermediate functions to efficiently arrive
at the ML solution. In this paper, we have introduced this
GDL based ML decoding framework, and shown that the
GDL decoder is superior to the CML decoder in terms of
complexity. The results of this paper have brought to light the
following relevant problems that need to be addressed.

• Proving the optimality or otherwise of GDL based de-
coders in minimizing the complexity of ML decoding an
STBC.

• Given an STBCC, finding the optimal choice of weight
matrices, encoding groups and signal sets, which will
minimize the GDL decoding complexity of the code.

• Constructing codes with better rate-decoding complexity
tradeoff than that of the known codes using the GDL
decoders.

• Both GDL and CML decoding algorithms depend on
the Hurwitz-Radon orthogonality of weight matrices to
obtain low complexity ML decoders. Is there any other
algebraic property of a code that can be exploited to de-
sign low complexity ML decoders? Can it lead to further
improvement in the rate-decoding complexity tradeoff?
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APPENDIX A
PROOF OFTHEOREM 1

First we will show thatx(G1), . . . ,x(Gg) is a partition of
{x1, . . . ,xN}. It is clear that∪gk=1x(Gk) = {x1, . . . ,xN}.
Enough to show that for anyℓ 6= k, x(Gℓ) ∩ x(Gk) = φ.
Suppose this is not true. There exists a variablexn that
appears in the local domains of at least one of the vertices
in each of Gℓ and Gk. Since G satisfies the junction tree
condition, the local domains of all the vertices on the unique
path between these two vertices inG contain the variablexn.
Further, this unique path contains at least one of the edges
(uk, vk), k = 1, . . . , (g − 1). Thus, there exists ak such that
Iuk

∩ Ivk ⊇ {n}, and henceIuk
∩ Ivk 6= φ, a contradiction.

Thusx(G1), . . . ,x(Gg) is a partition of{x1, . . . ,xN}.
We will now show that for eachk = 1, . . . , g, the treeGk

satisfies the junction tree condition. Letxn be any variable
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from the setx(Gk). From the first result of this theorem,
xn appears in the local domains of the vertices ofGk only.
Thus the subgraph ofG formed by vertices containingxn is a
subgraph ofGk. SinceG satisfies the junction tree condition,
this subgraph is a connected graph. HenceGk satisfies the
junction tree condition.

We will now prove the last part of the theorem. Since
x(G1), . . . ,x(Gg) is a partition of{x1, . . . ,xN}, none of the
local domains ofG involve any cross terms betweenx(Gℓ)
andx(Gk) for any ℓ 6= k. Therefore the global kernelβ can
be written as

β(x1, . . . ,xN ) = f1(x (G1))+ f2(x (G2))+ · · ·+ fg(x (Gg)) ,

where, forℓ = 1, . . . , g, fℓ(x (Gℓ)) is the sum of the local
kernels of all the vertices ofGℓ. Let v be any vertex ofG
and let it belong to thekth subtree ofG. Let σv be the state
of the vertexv after running the GDL all-vertex message-
passing algorithm onG, and σ′

v be the state of the vertex
after running the GDL all-vertex message-passing algorithm
on Gk only. From the discussion in Section II-B,σv is the
xIv

-marginalization ofβ, andσ′
v is thexIv

-marginalization
of fk. We have

σv(xIv
) = min

xIc
v

β = min
xIc

v

g
∑

ℓ=1

fℓ(x (Gℓ)) .

Since each off1, . . . , fg is a function of disjoint sets of
variables, themin and the summation in the above equa-
tion can be interchanged. Observing that for allℓ 6= k,
xIc

v
∩ x(Gℓ) = x(Gℓ), we have

σv(xIv
) =

g
∑

ℓ=1

min
xIc

v
∩x(Gℓ)

fℓ (x(Gℓ))

= min
xIc

v
∩x(Gk)

fk (x(Gk)) +
∑

ℓ 6=k

min
x(Gℓ)

fℓ (x(Gℓ))

= σ′
v(xIv

) +
∑

ℓ 6=k

aℓ,

whereaℓ denotes the real numberminx(Gℓ) fℓ (x(Gℓ)). Thus,
for any vertexv of G, the functionsσv andσ′

v differ only by
a scalar. Therefore the solution toxIv

obtained fromσ′
v is

argminσ′
v(xIv

) = argmin



σv(xIv
)−

∑

ℓ 6=k

aℓ





= argminσv(xIv
),

which is the solution obtained from σv, and
hence is the ML solution. This completes the
proof.

APPENDIX B
PROOF OFTHEOREM 2

In order to prove this theorem we categorize all STBCs
into three classes:(i) multigroup decodable,(ii) conditionally
multigroup decodable, and(iii) codes in which all the symbols
are mutually interfering, which we will callfully-interfering
STBCs. Forg-group decodable codes the CML decoder splits

x x x1 3 2

Fig. 22. Moral graph of the smallest conditionally multigroup decodable
code.

x  x1 3x1 x3
x  x2 3 x2

Fig. 23. A junction tree for the smallest conditionally multigroup decodable
code.

into g independent CML decoders, one for each of theg sub-
codes. Note that each subcode itself can be either conditionally
multigroup decodable or fully-interfering. For multigroup and
conditionally multigroup decodable codesOCML < |C|. For
fully-interfering codes CML reduces to brute-force decoding
and henceOCML = |C|.

For each of the three classes of codes we now show that
OGDL ≤ OCML. For a fully-interfering STBC the junction tree
in Section III-B can be used. The complexity of this GDL
decoder is of the order of|C| = OCML(C). Since this decoder
is only one instance of (possibly) several GDL algorithms for
ML decoding this code, we haveOGDL(C) ≤ OCML(C).

Now consider ag-group decodable code. The complexity
of a CML decoder is sum of the CML complexities of theg
subcodes. As explained in Section IV-B, this code can be GDL
decoded using a disjoint union ofg junction trees, one tree
corresponding to each of theg subcodes. Thus, the complexity
of GDL decoding is sum of the complexities of GDL decoding
each of theg subcodes. Since the subcodes can be either
conditionally multigroup decodable or fully-interfering, we
only need to show that the theorem is true for conditionally
multigroup decodable codes and fully-interfering codes in
order to prove the theorem forg-group decodable codes. We
have already proved the result for fully-interfering codes. In
the remaining part of the proof we show thatOGDL ≤ OCML

for all conditionally multigroup decodable codes.
The proof for conditionally multigroup decodable codes is

via induction onN , the number of encoding groups of the
STBC. The smallestN for which such a code exists is3
and its corresponding moral graph is shown in Fig. 22. The
conditional ML decoder for this code operates withΓ = {1, 2}
and its complexity order is|A3|max{|A1|, |A2|}. To decode
this code using GDL we can use the junction tree given in
Fig. 23. The complexity order of this junction tree equals
|A3|max{|A1|, |A2|} = OCML(C). Thus we have shown that
OGDL ≤ OCML for N = 3.

We now prove the induction step. Assume that the theorem
is true for all conditionally multigroup decodable codes for
which the number of encoding groups is less thanN . We will
now show that the result is true when the number of encoding
groups isN as well. Consider a CML decoder with complexity
orderOCML(C) for a codeC with N variables. Suppose this
decoder usesΓ ( {1, . . . , N}. Let the subcode generated by
xΓ be g-group decodable, i.e., letC be conditionallyg-group
decodable for this choice ofΓ. If the g conditional groups are
Γ1, . . . ,Γg, then the complexity order of this CML decoder is
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Fig. 24. The treeT in the proof of Theorem 2.

OCML(C) = |AΓc |maxgk=1 OCML(Ck), whereCk is the subcode
generated by the variables{xn|n ∈ Γk}. To complete the
proof of this theorem it is enough to construct a junction tree
for this code whose complexity order is at the mostOCML(C).
For k = 1, . . . , g, the codeCk is either fully-interfering
or conditionally multigroup decodable, and the number of
encoding groups inCk is less thanN . Then there exists a GDL
decoder forCk whose complexity order is upper bounded by
OCML(Ck). Let Tk denote the junction tree core for this GDL
decoder. Construct a treeT ′

k fromTk by appending the variable
list xΓc to the local domain of every vertex ofTk. We now
construct a coreT usingT ′

1, . . . , T
′
g and one additional vertex

with local domainxΓc . For everyk = 1, . . . , g, arbitrarily
choose a vertex ofT ′

k and connect it to thexΓc vertex using
a single edge.

It is straight forward to prove thatT is a valid junction tree
core for ML decoding of the STBCC. For every vertex inT ′

k

the local domain size is upper bounded by|AΓc |OGDL(Ck).
Therefore,

OGDL(C) ≤
g

max
k=1

|AΓc | OGDL(Ck)

≤ g
max
k=1

|AΓc | OCML(Ck) = OCML(C).

This completes the proof.

APPENDIX C
THE CML AND GDL DECODING COMPLEXITIES OF

FULLY-INTERFERINGSTBCS

The CML algorithm for a fully-interfering code reduces to
a brute-force search

(ŝ1, . . . , ŝNt) = argmin f(s1, . . . , sNt)

= argmin
Nt
∑

i=1

(

siξi + s2i ξi,i
)

+
∑

i<j

sisjξi,j .

For each of theqNt values that(s1, . . . , sNt) jointly assume,
there areNt terms of typesiξi + s2i ξi,i to be computed, and
each such term involves4 operations. There are

(

Nt
2

)

terms of
the typesisjξi,j and each term involves2 operations. Taking
into account the process of summing up these individual terms,
the total number of operations in computingf for a given
(s1, . . . , sNt) is 3

(

Nt
2

)

+ 5Nt− 1. Finding argmin of the
resultingqNt values off takes further(qNt − 1) operations.
Thus, the CML decoding complexity is

CCML(C) = qNt
(

3

(

Nt

2

)

+ 5Nt

)

− 1.

The GDL decoding ofC involves three steps: computing
the kernelsαn, αn,m, running the GDL message-passing
algorithm, and finally the traceback. We use the junction tree

of Fig. 1 to decode this STBC. There areN kernels of the
typeαn(xn). Using the distributive law,αn can be expressed
in terms of{si} as

αn(xn) =
∑

i∈ψ(n)

si (ξi + siξi,i) +
∑

i∈ψ(n)

si









∑

j∈ψ(n)
j>i

sjξi,j









,

where ψ(n) is the set of indices of{si} that belong to
the nth encoding group. The computation ofαn using the
above expression involvesqt(t2 + 3t) operations. There are
(

N
2

)

kernels of the typeαn,m. Again, with the help of the
distributive law, we rewriteαn,m as

αn,m(xn,xm) =
∑

i∈ψ(n)

si





∑

j∈ψ(m)

sjξi,j



 . (14)

Thetqt values of the term
∑

j∈ψ(m) sjξi,j , one for each pair of
(i,xm) are precomputed, and then these values are used in (14)
to computeαn,m. This two step method provides complexity
reduction compared to the direct computation ofαn,m, and can
be implemented withq2t(2t− 1) + qt(2t2 − t) operations.
Using (3), we see that implementing the GDL message-passing
schedule takes upqNt

(

N
2

)

+ q2tN operations. Note that the
highest order term appearing so far isqNt. The root vertex
for the single-vertex GDL and traceback must therefore be
chosen in such a way that the complexity of this last step
does not contribute to theqNt term. Choosing any vertex of
the type(xn,xm) will satisfy this requirement as it leads to a
traceback complexity ofq(N−2)t + q2t − 2. Summing up the
individual terms, we have the expression forCGDL(C) given
in (11).

APPENDIX D
PROOF OFTHEOREM 3

The proof of Theorem 3 is similar to the proof of Theorem 2
given in Appendix B. Here too, we consider three cases:
(i) multigroup decodable codes,(ii) conditionally multigroup
decodable codes, and(iii) fully interfering codes. From the
discussion in Appendix B, we see that it is enough to prove
the theorem for fully-interfering codes and conditionallymulti-
group decodable codes. In Appendix C we have derived the
GDL and CML complexities of fully-interfering codes, and the
comparison of their leading order terms shows that for such
codesCGDL(C) < CCML(C).

We now prove the result for conditionally multigroup de-
codable codes by induction onN . The smallest such code
involvesN = 3 encoding groups, and its moral graph is shown
in Fig. 22. The CML decoder minimizes

β = α3(x3)+α1,3(x1,x3)+α2,3(x2,x3)+α1(x1)+α2(x2),

by conditioning onx3. For each of theqt values ofa3 ∈ A3,
the CML decoder computes the scalarα3(a3) and the func-
tions α1,3(x1, a3), α2,3(x2, a3). It then independently mini-
mizesα1,3(x1, a3) + α1(x1) andα2,3(x2, a3) + α2(x2), and
finds the conditionally optimal valueŝx1(a3) and x̂2(a3).
From the qt resulting values ofβ(x̂1(x3), x̂2(x3),x3), the
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optimal solution is obtained. The complexity of this algorithm
can be shown to be

q2t
(

3t2 + 7t
)

+ qt
(

4t2 + 3

(

t

2

)

+ 5t

)

− 1.

The GDL decoder can be implemented on the junction tree
shown in Fig. 23. The GDL complexity involves the cost of
computing the kernelsαn, n = 1, 2, 3, α1,3 andα2,3, running
the single-vertex GDL schedule with root vertex(x3), and the
traceback to find the optimal solution. The complexity of this
algorithm is

q2t (4t+ 2) + qt
(

7t2 + 7t+ 3
)

− 3.

Comparing the leading terms, we see that the GDL is less
complex than the CML decoder. Hence the theorem is true
for N = 3.

Now consider any conditionally multigroup decodable code
with N ≥ 4 encoding groups, and assume that the theorem is
true for all codes with number of encoding groups less thanN .
Assume that the variables corresponding toΓ ( {1, . . . , N}
areg-group decodable conditioned on the variable listxΓc . If
theg conditional groups areΓ1, . . . ,Γg, the ML metricβ can
be expressed as

∑

n∈Γc

αn +
∑

n,m∈Γc

n<m

αn,m+

g
∑

k=1







∑

n∈Γk

m∈Γc

αn,m +
∑

n∈Γk

αn +
∑

n,m∈Γk
n<m

αn,m






.

The CML decoder proceeds as follows. For each of theq|Γ
c|t

values (an|n ∈ Γc) ∈ AΓc that the variable listxΓc jointly
assumes, the CML decoder computes the scalar

∑

n∈Γc

αn(an) +
∑

n,m∈Γc

n<m

αn,m(an, am),

and the functionsαn,m(xn, am) for eachn ∈ Γ andm ∈ Γc.
It then minimizes the metric

g
∑

k=1









∑

n∈Γk
m∈Γ

c

αn,m(xn, am) +
∑

n∈Γk

αn(xn) +
∑

n,m∈Γk
n<m

αn,m(xn,xm)









by multigroup decoding. Minimizing each of the terms corre-
sponding tok = 1, . . . , g in the above equation is equivalent
to decoding the codeCk generated byxΓk

by its own CML
decoder, and hence each of these terms can be minimized with
complexityCCML(Ck). Thus, corresponding to eachaΓc ∈ AΓc

we have a listx̂n(aΓc), n ∈ Γ of conditionally-optimal so-
lutions. Finally, from theq|Γ

c|t values ofβ(x̂Γ(xΓc),xΓc),
the optimal tuple(x̂Γ(xΓc),xΓc) is chosen. The number of
operations involved in this algorithm is given in (15) at the
top of the next page. Note that the contribution to the leading
order term ofCCML(C) comes fromq|Γ

c|t
∑g

k=1 CCML(Ck).
Let G1, . . . , Gg be the junction trees forC1, . . . , Cg with

minimal decoding complexities. Since the number of encoding
groups in each of the codesCk is less thanN , the result of this
theorem is true for these codes, i.e.,CGDL(Ck) < CCML(Ck), for

Fig. 25. The treeT in the proof of Theorem 3.

k = 1, . . . , g. We now construct a junction tree forC using
G1, . . . , Gg. For eachk = 1, . . . , g, append the variable list
xΓc to each of the vertices ofGk and set all the local kernels
to zero. From this resulting treeG′

k arbitrarily choose a vertex
of type (xn,xΓc), n ∈ Γk and connect it to an exterior(xΓc)
vertex by a single edge, as shown in Fig. 25. Set the local
kernel at(xΓc) to zero as well. We now use this tree as the
core for the STBCC. For eachn,m ∈ Γk, assign the kernel
αn,m to the vertex(xn,xm,xΓc) of G′

k. For everyn ∈ Γk,
assign the kernelαn to the vertex(xn,xΓc) of G′

k. For each
pair n ∈ Γk andm ∈ Γc, attach a new vertex(xn,xm) with
kernelαn,m to the vertex(xn,xΓc) of G′

k by a single edge.
Attach all the vertices of the type(xn,xm), n,m ∈ Γc, with
kernelαn,m, and all the vertices(xn), n ∈ Γc, with kernelαn,
to the(xΓc) vertex using single edges. It is straightforward to
show that this resulting treeG = (V , E) is a junction tree for
C.

If each of the codesCk, k = 1, . . . , g, consists of just
one encoding group each, then everyGk will consist of
just one vertex, and a direct calculation of the number
operations involved in GDL decoding usingG shows that
CGDL(C) < CCML(C). If otherwise, then there exists at least
one componentGk with two or more encoding groups. Define
s = maxv∈V |Iv|. Since there is at least one pair of inter-
fering symbols inΓ, we haves ≥ 2 + |Γc|. Let S be the
set of ‘largest’ vertices inG, i.e., S = {v ∈ V| |Iv| = s}.
Now consider the contribution of each of the three steps:
computation of kernelsαn & αn,m, running the single-vertex
GDL schedule with root(xΓc), and traceback, to the leading
term of CGDL(C). The kernels can be computed with the
order of complexityq2t. The complexity of the GDL single-
vertex schedule is of the order ofqst, and the traceback
implementation requires a complexity order less thanqst.
Sinces ≥ 2 + |Γc|, the only contribution to the leading order
term comes from the GDL single-vertex schedule. Recall that
CGDL(C) =

∑

(u,v)∈E (|AIu
|+ |AIv

| − |AIu∩Iv
|). The con-

tribution to the leading order term ofCGDL(C) comes from
the set of all the edges inE that are incident on the vertices
belonging toS. Clearly, everyv ∈ S belongs to one of the
G′
k, corresponding to a subcode with two or more encoding

groups. From the construction ofG, we see that the degree
and the edges associated with any vertex fromS in G are
same as the degree and the edges associated with that vertex
in the corresponding junction treeGk. It is exactly this set of
edges in eachGk that contribute to the leading order terms of
CGDL(Ck). SinceG is only one of the many possible junction
trees forC, we haveCGDL(C) ≤ q|Γ

c|t
∑g

k=1 CGDL(Ck), up to
the leading order term. From (15) and the assumption made for
induction thatCGDL(Ck) < CCML(Ck), k = 1, . . . , g, we have



18

CCML(C) = q
|Γc|t

(

g
∑

k=1

CCML(Ck) + 3

(

|Γc|t

2

)

+ 5|Γc|t+ 2Nt+ g

)

− 1. (15)

CGDL(C) ≤ q|Γ
c|t

g
∑

k=1

CGDL(Ck)

< q|Γ
c|t

g
∑

k=1

CCML(Ck) ≤ CCML(C).

This completes the proof.
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