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The Weight Distribution of a Class of Cyclic Codes
Related to Hermitian Forms Graphs

Shuxing Li, Sihuang Hu, Tao Feng, and Gennian Ge

Abstract—The determination of weight distribution of cyclic For reducible cyclic codes, the determination of weight
codes involves evaluation of Gauss sums and exponential ssim distribution involves evaluation of exponential sums. [itss
t?\isgg?npcﬁt ;%rneiscgﬁz rz\;\lllge:gthae r”ggrtnpe")gtee%s'?ﬂ t'ﬁisa‘r’l%f‘leableof some cases where a neat expression is available (seB][3], [
we determine the weight distribution of a class of reducibl’e ,[81’ (20], [11], [12], [13], _l14']' 118], (217]), the. computa]u’!
cyclic codes whose dual codes may have arbitrarily many zeso IS generally rather complicated. Although delicate teghes
This goal is achieved by building an unexpected connection were applied to the computation, most of these literature,
between the corresponding exponential sums and the specms to our knowledge, can only obtain the weight distribution
of Hermitian forms graphs. of reducible cyclic codes whose dual codes have two or
three zeros. The exponential sums which have been exylicitl
evaluated seem to share a common feature that they attgin onl
a few distinct values.

In this paper, we determine the weight distribution of a
class of reducible cyclic codes whose dual codes may have
arbitrarily many zeros. This goal is achieved by building a
surprising connection between the involved exponentiaisu
and the spectrums of Hermitian forms graphs. The rest of this
important research subject in coding theory. be¢t) be the paper is organized as follows. The codes we considered will
parity check polynomial ofC. We say thatC is irreducible be introduced in Sectionlll. A brief introduction to Cayley
(resp. reducible) ifz(z) is irreducible (resp. reducible) overgraphs and Hermitian forms graphs is given in Sedfidn I1Il. We
F,. When h(z) = ho(z)hi(z)---hs—1(z) for some distinct build the connection between exponential sums and spestrum
irreducible polynomialg:;(x) overF,, the codeC is the dual of Hermitian forms graphs in SectidnllV. After presenting
of a cyclic code withs zeros. this connection, the weight distribution follows immediigt

An identity due to McEliece[[15] shows that weights ofA brief conclusion will be given in the last section.
irreducible cyclic codes can be expressed via Gauss sums. So
the determination of the weights of irreducible cyclic code
can be tackled using number theoretic techniques (see [7],
[15], [16], [22], [2€]). However, this problem is extremely Fist we fix some notation. Let be a prime and; = p”
difficult in general since the same is true for the evaluatbn \yith ,, — 2m, wherem is odd. Writet = (m —1)/2. Suppose
Gauss sums. When an irreducible cyclic code has exactly opgg 5 primitive element off,. Let ho(z) be the minimal
nonzero weight, a nice characterization has been givein]jn [6olynomial of m— (@™ +1) overF,. Thendeg ho(z) = m. Let
[23], [24]. Besides, the class of two-weight irreduciblecly h;(z) be the minimal polynomial ofr— @'+ over I,
codes was extensively studied. The necessary and sufficight..« | < ; < ¢ For any integerl > 1 with {[2m, V\Z/)e
conditions for an irreducible cyclic code to have at most two, . . (p?'~41)(p*/ 1) £ 1, wherel < i < t. Thus
weights were given by Schmidt and White [19]. And the%egh_(x) —nforl < i< t.’Since forl < i < j<t
conjectured that all irreducible two-weight cyclic codessist therezdoes not exist a_ny &)sitive integesucﬁ that '
of two infinite families and eleven sporadic examples. The
reader can get more information on the weight distributibn o
irreducible cyclic codes in [4].

Index Terms—Cyclic codes, Cayley graphs, Hermitian forms
graphs, weight distribution.

I. INTRODUCTION

For a cyclic codeC of length! over finite fieldF, with p
prime, let A; be the number of codewords h of Hamming
weight i. The weight distribution{ Ay, A;,...,A4;} is an

[I. THE CODECp m)

PPE* T +1)=p¥ 1 +1 (mod g —1),

the elements—®”" '+ and 7= ®*'+1) have distinct min-
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fimal polynomials overF,. So the polynomialsh;(z) are
distinct for0 <i <.

Let C(,,m) be the cyclic code with parity check polynomial
ho(z)hi(z) - - - he(z) overF,. Then the cod€, ) is the dual
of a cyclic code witht + 1 zeros and dim,C,, .,y = m?>. Let
Tr-Z denote the trace mapping frofiy; to IF,;. The codewords
in C(,,m) can be expressed as

Clag,at,.ai] = (€0, €151 Cq—2) (a0 € Fpm,a1,..., 00 € Fy)
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where B. Hermitian forms graphs

t _ LetV = Ffz, wherer is a prime power. For any € F, -,
¢i = T (aprt®"+1) 4 ZTr’f(aJ—wi(szl“)), its conjugatet is defined by = «”. A matrix H overF,:
j=1 is called Hermitian ifH = H , where H is the conjugate
transpose off. Let H denote the abelian group formed by all
for 0 <i < ¢ — 2 (see [2]). Hence the Hamming weight of; » 4 Hermitian matrices oveF, under the matrix addition.
the codeworct(o,,a,.....a.] 18 Clearly, we havé?#| = r¢°. The Hermitian forms grapton V/
is the graph whose vertices are the elementg aind in which
wg(c) =p" Hp—1)— - Z T(acg,aa, ..., aqy), Hy,H, € H are adjacent wheneveunk(H, — Hy) = 1.
a€F Equivalently, the Hermitian forms graph is the Cayley graph
Cay(H,D), whereD = {H € H | rank(H) = 1}. Ad x d
where Hermitian matrix 4 of rank 1 can be written asi = a’37,
T (e ™ ) 43 Trr (a7 ) wherea = (a1,...,aq) € V_anda = (a1,az,...,aq). Since
T(ag, a1, .00)= > G g=1 TReI® . foranya,b e V,aTa=b"bif and only if a = b for some
z€F, (r 4 1)-th root of unity~y, we have|D| = (r2¢ —1)/(r + 1).
It is well known that the Hermitian forms graph dnis a
Generally speaking, it is very difficult to obtain the valugjistance regular graph with classical parameters, o, 3) =
distribution of T'(cv, a1, . . ., ) for ag € Fym, a1,..., a0 € (d, —r,—r — 1, —(—r)¢ — 1) [1} Table 6.1]. The eigenvalues
F,, especially whent is large. In the next section, weof the Hermitian forms graph were first computed by Stanton
will build a surprising connection between the multise21]. Here we quote the more accessible formulas given in
{T(ao,1,...,00) | ap € Fpm, a1,...,a¢ € Fg} and the [I]. For any integersi > i > 0 andb # 0,1, the Gaussian
eigenvalues of Hermitian forms graphs, which can reduce thgomial coefficients with basis are defined by
complexity of computation fof'(«g, a1, . . ., a;) remarkably. _ ,
. i—1 pI —pl e .
Jl _ =0 g—pr 421,
ub_{1 if i =0.

Lemma 3.2:[1] Corollary 8.4.4] LetV = Ffz, wherer is
Now we record some known results on Cayley graphs agdyrime power. The Hermitian forms graph definediomas

IIl. CAYLEY GRAPHS AND HERMITIAN FORMS GRAPHS

Hermitian forms graphs. eigenvalues
2d _ 2d _ .

A. Cayley graphs r+1 ' r+1 L)

Let G be a finite group andD C G be a subset. The for 1 < j < d. Their corresponding multiplicities are
Cayley graphCay(G, D) on G with connection seD is the i1
directe_d1 graph with vertex sét and edge sef(g,h) | g,h € fo=1, fi= [d] [(—1)d+Ld 4 (=1,
G, hg~' € D}. T

Define D=V = {d~! | d € D}. Then Cay(G,D) is R
undirected if D = D). Furthermore Cay(G, D) is k- Wher€L1=J = d
regular withk = |D|. If G is a finite abelian group, it is easy
to compute the spectrum dfay(G, D). For any characteg IV. THE WEIGHT DISTRIBUTION OF THE CODEC(j, )
of G, definex(D) = >4 p x(d). The character group @ Throughout this sectiom, ¢, 7, m, ¢ are defined as in Sec-
is denoted byG, with |G| = |G]. tion[l Consider the abelian group

Lemma 3.1:Let I = Cay(G, D) be a Cayley graph on a
finite abelian groupd with connection setD. Supposed = G =Fpn xFyg x g x - xFg,
A(T) is the adjacency matrix df. Then each charactgrof G t
corresponds to an eigenvector dfwith eigenvaluex(D). In  gnd its subset
particular, the spectrum df is the multiset{ x(D) | x € G}.

m 3 m—2 *
Proof: Let y be a character of. Lete, be the column S = {(z” ThaP™ a1 P ) |2 e Fi}.
vector (x(g))gec- For anyh € G, we have Itis easy to see tha5| = (¢—1)/(p+1). Let W = F7; and
‘H be the abelian group consisting of all x m Hermitian
(Aex)n =Y x(g9) = v(d) | x(h) = x(D)x(h). matrices overF,:. Let D = {H € H | rank(H) = 1}.
* ; % Clearly, the Hermitian forms graph div is the Cayley graph

Cay(H,D). The following lemma shows that the Cayley
Hence, e, is an eigenvector ofA with eigenvaluex (D). graphCay(G,S) shares the same spectrum witluy (7, D).
All characters inG give rise to |G| linearly independent Lemma 4.1:For oddm, the Hermitian forms grapl'; on
eigenvectors, thus one obtains the spectrum of Cayley graph= ]F;; is isomorphic to the Cayley gragh, = Cay(G,S).
T" via the character groug. B In particular,I'y andT'; have the same spectrum.



Proof: SinceT'; is just the Cayley graptCay(#,D), for any u = (ug,u1,...,u;) € G. By Lemma[31, the
the result will follow immediately if we can find a groupeigenvalues of’; are
isomorphismy from #H to G satisfying thatp(D) = S.

Let e1,...,e, be a basis ofF, over F. ande = X(ao,an,a0) (S)
(e1,€2,...,em). ForanyH € H andx,y € F, we define . .
fu(x,y) = xHy™, wherey” is the transpose qof. Now we - Z g;'l (@ou0)+325-1 T (g uy)
construct a mapping from H to G by sendingH € H to wes

m 3 m— 1 T (o sz+1 t o Tpn ajzp2j’1+1
SO(H):(fH(eaep )7fH(eaep)7fH(eaep%)a'"7fH(eaep 2))7 = 7 Zcprl (6o )+Z]71 il )
p+ 1 cEF*

wheree® := (e, €5,...,e5 ) for any integers. It is straight- 1 !
forward to verify thatp(H) € G andy is a group homomor- = m(T(ao, 1y, Q) — 1),
phism.

Now we want to show thap is an isomorphism. First, we for all ag € Fpm, o, ..., oy € Fy. Therefore we have

prove thatp is injective. For a matri¥{ = (h;;) and an integer

T(ag, a1y yn) = (0 + DX(ag.ar..an) (S) + 1.
s, we denotel/® = (hf;). Supposep(H) = (0,0,...,0), (@0, 01 o) = (P + DX(aoar,na)(5)

ie., engpm)T = fu(e,e?™) = 0 and eH(e?” )T = BylLemma3.P, the eigenvalues b are all rational numbers.
fu(e,er” ™) = 0for 1 < i < . By rising all entries of ThUs, we havel'(ao, a1, ..., ) € Q. For anya € I}, there
eH(e?” )T to their p?™—2+1-th power, we have exists an automorphism, € Gal(Q({,)/Q) with o,(¢,) =
¢y Hence
p2m2itl p2m—2i+1 T p?merAlp p
e H ¢ =e He =0, ZT(aao,aal,...,aat) = ZUa(T(OéO,Oél,---,Oét))
which gives a€ky acly
eH(ep27n721+1)T —0. = (p — 1)T(a07 ai, ... ,Oét)-
So we obtaine H¥ = (0,0, ...,0), where Consequently, the Hamming weight of,, ..., IS
m m— m— n— 1
U = ((e”)7, (ePS)T7 N . L (ep2 3)T7 (ep2 1)T)' wg(c)=p " tp—-1)—= Z T(aag,aqq, ..., aq;)
aclFy
By the choice ofe, it can be shown tha¥ is a nonsingular o p—1
matrix [9, Corollary 2.38]. ThereforeH = (0,0,...,0), =p" (p—-1)- o (a0, 00, .., )
which implies thatH is a zero matrix. Consequently, is . p—1
injective. On the other hand, a direct calculation shows tha =p" Hp—1) = ——(1+ @+ DX(ao,a1,..00)(S))-
|H| = |G| = p™ . Henceyp is an isomorphism. P 1)
For any H € D, we have H = aTa? for somea = . o ]
(a1, a2 am) € W, wherea? = (a?,a?,...,a?,). There- Now the weight distribution of the cod®,, ,,,) follows directly
fore, e from Equation[(ll) and Lemnfa3.2. In the following theorem,
B we use[l, k, d] code as the notation for/adimensional linear
o(H) = (eH(e?" )T, eH(e")T,... ,eH(" )T) code of length with minimum distancei.
_ (eaTap(epm)T eaTap(ep)T eaTap(epW2 7y Theorem 4.2:For any odd integefn, the weight distribu-
(2" g T, tion of the codeCy, ) is as follows:
1 ifi=0,
wherez = eal € ;. Thus we obtainp(D) C S. Since A= f; ifi=uwj,
m 0 otherwise
D] = (*" ~1)/(p+1) = (¢ - 1)/(p+1) =S|,
where
we have ¢(D) = S. So we have proved thap is an _2m 2m—1 1
isomorphism fromH to G sending the connection s@ to (—p)

S. Thereforel'; is isomorphic tol's, and they have the samegq

spectrum. [ ] m j—1
From Lemma 4]l and Lemnia 3.2, the eigenvalue§ of fi= { } H (»™ = (-p)")

and their multiplicities are known. On the other hand, the T =p) 150

eigenvalues of’; can be expressed using Lemmal 3.1. for 1 < j < m. In particular, the cod€,,,, is a [p*™ —
Note that 1,m2, (p>™ — p*™=1)(1 — p~2)] cyclic code.

For a codeC with weight distribution{ Ay, 44,..., A4;},
define itsweight enumeratoas

where !

O (aouo) 320, T () > A
X(ao,al,...,at)(u) :Cp R g ) i=0

g = {X(ao,al,...,an) | Qg € Fpmaala N S ]Fq}v



The weight enumerator provides a succinct way to express thg
weight distribution. For the purpose of illustration, wegitwo

[12]
examples below.

Example 4.3:Let p = 3, and m = 3. The codeCs 3
is then a[728,9,432] code over GF3) with the weight [13]
enumerator (14]

1 + 5460532 4 14040279 + 1822548,

Example 4.4:Let p = 2, and m = 5. The codeC(; s [15]
is then a[1023,25,384] code over GE2) with the weight
enumerator

[16]
14 57970254 + 12985280280 4- 188876802°2% 7]
+ 162316027 4 3412768,

(18]

V. CONCLUSION

In the study of cyclic codes, researchers have establisH&d
the connections between their weight distribution and othgg
mathematical objects, such as Gauss sums (seel[6], [17]),
algebraic curves (seé_[20], [22], 125]), as well as quadrati
forms (seel[B],[[10],[[11]). In this paper, we found an elega
connection between the weight distribution of a class oficyc [22]
codes and the spectrums of certain distance regular graphs.
this way, the weight distribution of these codes followsniro o3
the known spectrums of Hermitian forms graphs. The dual
codes of this family of cyclic codes may have arbitrarily man
zeros, while most previously known results are obtainethén t[o4

case where the dual codes have no more than three zeros.
[25]

21]
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