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The Weight Distribution of a Class of Cyclic Codes
Related to Hermitian Forms Graphs

Shuxing Li, Sihuang Hu, Tao Feng, and Gennian Ge

Abstract—The determination of weight distribution of cyclic
codes involves evaluation of Gauss sums and exponential sums.
Despite of some cases where a neat expression is available,
the computation is generally rather complicated. In this note,
we determine the weight distribution of a class of reducible
cyclic codes whose dual codes may have arbitrarily many zeros.
This goal is achieved by building an unexpected connection
between the corresponding exponential sums and the spectrums
of Hermitian forms graphs.

Index Terms—Cyclic codes, Cayley graphs, Hermitian forms
graphs, weight distribution.

I. I NTRODUCTION

For a cyclic codeC of length l over finite fieldFp with p
prime, letAi be the number of codewords inC of Hamming
weight i. The weight distribution{A0, A1, . . . , Al} is an
important research subject in coding theory. Leth(x) be the
parity check polynomial ofC. We say thatC is irreducible
(resp. reducible) ifh(x) is irreducible (resp. reducible) over
Fp. Whenh(x) = h0(x)h1(x) · · · hs−1(x) for some distinct
irreducible polynomialshi(x) overFp, the codeC is the dual
of a cyclic code withs zeros.

An identity due to McEliece [15] shows that weights of
irreducible cyclic codes can be expressed via Gauss sums. So
the determination of the weights of irreducible cyclic codes
can be tackled using number theoretic techniques (see [7],
[15], [16], [22], [26]). However, this problem is extremely
difficult in general since the same is true for the evaluationof
Gauss sums. When an irreducible cyclic code has exactly one
nonzero weight, a nice characterization has been given in [4],
[23], [24]. Besides, the class of two-weight irreducible cyclic
codes was extensively studied. The necessary and sufficient
conditions for an irreducible cyclic code to have at most two
weights were given by Schmidt and White [19]. And they
conjectured that all irreducible two-weight cyclic codes consist
of two infinite families and eleven sporadic examples. The
reader can get more information on the weight distribution of
irreducible cyclic codes in [4].
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For reducible cyclic codes, the determination of weight
distribution involves evaluation of exponential sums. Despite
of some cases where a neat expression is available (see [3], [5],
[8], [10], [11], [12], [13], [14], [18], [27]), the computation
is generally rather complicated. Although delicate techniques
were applied to the computation, most of these literature,
to our knowledge, can only obtain the weight distribution
of reducible cyclic codes whose dual codes have two or
three zeros. The exponential sums which have been explicitly
evaluated seem to share a common feature that they attain only
a few distinct values.

In this paper, we determine the weight distribution of a
class of reducible cyclic codes whose dual codes may have
arbitrarily many zeros. This goal is achieved by building a
surprising connection between the involved exponential sums
and the spectrums of Hermitian forms graphs. The rest of this
paper is organized as follows. The codes we considered will
be introduced in Section II. A brief introduction to Cayley
graphs and Hermitian forms graphs is given in Section III. We
build the connection between exponential sums and spectrums
of Hermitian forms graphs in Section IV. After presenting
this connection, the weight distribution follows immediately.
A brief conclusion will be given in the last section.

II. T HE CODEC(p,m)

First we fix some notation. Letp be a prime andq = pn

with n = 2m, wherem is odd. Writet = (m−1)/2. Suppose
π is a primitive element ofFq. Let h0(x) be the minimal
polynomial ofπ−(pm+1) over Fp. Thendeg h0(x) = m. Let
hi(x) be the minimal polynomial ofπ−(p2i−1+1) over Fp,
where 1 ≤ i ≤ t. For any integerl > 1 with l|2m, we
have π−(p2i−1+1)(p2m/l

−1) 6= 1, where 1 ≤ i ≤ t. Thus
deg hi(x) = n for 1 ≤ i ≤ t. Since for1 ≤ i < j ≤ t,
there does not exist any positive integerk such that

pk(p2i−1 + 1) ≡ p2j−1 + 1 (mod q − 1),

the elementsπ−(p2i−1+1) andπ−(p2j−1+1) have distinct min-
imal polynomials overFp. So the polynomialshi(x) are
distinct for 0 ≤ i ≤ t.

Let C(p,m) be the cyclic code with parity check polynomial
h0(x)h1(x) · · · ht(x) overFp. Then the codeC(p,m) is the dual
of a cyclic code witht+ 1 zeros and dimFpC(p,m) = m2. Let
Trji denote the trace mapping fromFpj to Fpi . The codewords
in C(p,m) can be expressed as

c[α0,α1,...,αt] = (c0, c1, . . . , cq−2) (α0 ∈ Fpm , α1, . . . , αt ∈ Fq)
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where

ci = Trm1 (α0π
i(pm+1)) +

t∑

j=1

Trn1 (αjπ
i(p2j−1+1)),

for 0 ≤ i ≤ q − 2 (see [2]). Hence the Hamming weight of
the codewordc[α0,α1,...,αt] is

wH(c) = pn−1(p− 1)−
1

p

∑

a∈F∗

p

T (aα0, aα1, . . . , aαt),

where

T (α0, α1, . . . , αt) =
∑

x∈Fq

ζ
Trm1 (α0x

pm+1)+
∑t

j=1
Trn1 (αjx

p2j−1+1)
p .

Generally speaking, it is very difficult to obtain the value
distribution ofT (α0, α1, . . . , αt) for α0 ∈ Fpm , α1, . . . , αt ∈
Fq, especially whent is large. In the next section, we
will build a surprising connection between the multiset
{T (α0, α1, . . . , αt) | α0 ∈ Fpm , α1, . . . , αt ∈ Fq} and the
eigenvalues of Hermitian forms graphs, which can reduce the
complexity of computation forT (α0, α1, . . . , αt) remarkably.

III. C AYLEY GRAPHS AND HERMITIAN FORMS GRAPHS

Now we record some known results on Cayley graphs and
Hermitian forms graphs.

A. Cayley graphs

Let G be a finite group andD ⊂ G be a subset. The
Cayley graphCay(G,D) on G with connection setD is the
directed graph with vertex setG and edge set{(g, h) | g, h ∈
G, hg−1 ∈ D}.

Define D(−1) = {d−1 | d ∈ D}. Then Cay(G,D) is
undirected if D = D(−1). Furthermore,Cay(G,D) is k-
regular withk = |D|. If G is a finite abelian group, it is easy
to compute the spectrum ofCay(G,D). For any characterχ
of G, defineχ(D) =

∑
d∈D χ(d). The character group ofG

is denoted byĜ, with |Ĝ| = |G|.
Lemma 3.1:Let Γ = Cay(G,D) be a Cayley graph on a

finite abelian groupG with connection setD. SupposeA =
A(Γ) is the adjacency matrix ofΓ. Then each characterχ of G
corresponds to an eigenvector ofA with eigenvalueχ(D). In
particular, the spectrum ofΓ is the multiset{χ(D) | χ ∈ Ĝ}.

Proof: Let χ be a character ofG. Let eχ be the column
vector(χ(g))g∈G. For anyh ∈ G, we have

(Aeχ)h =
∑

g∼h

χ(g) =

(
∑

d∈D

χ(d)

)
χ(h) = χ(D)χ(h).

Hence, eχ is an eigenvector ofA with eigenvalueχ(D).
All characters in Ĝ give rise to |G| linearly independent
eigenvectors, thus one obtains the spectrum of Cayley graph
Γ via the character group̂G.

B. Hermitian forms graphs

Let V = Fd
r2

, wherer is a prime power. For anyx ∈ Fr2 ,
its conjugatex is defined byx = xr. A matrix H over Fr2

is called Hermitian ifH = H
∗

, whereH
∗

is the conjugate
transpose ofH . Let H denote the abelian group formed by all
d× d Hermitian matrices overFr2 under the matrix addition.
Clearly, we have|H| = rd

2

. TheHermitian forms graphonV
is the graph whose vertices are the elements ofH and in which
H1, H2 ∈ H are adjacent wheneverrank(H1 − H2) = 1.
Equivalently, the Hermitian forms graph is the Cayley graph
Cay(H,D), whereD = {H ∈ H | rank(H) = 1}. A d × d
Hermitian matrixH of rank 1 can be written asH = aTa,
wherea = (a1, . . . , ad) ∈ V anda = (a1, a2, . . . , ad). Since
for anya,b ∈ V , aTa = bTb if and only if a = γb for some
(r + 1)-th root of unityγ, we have|D| = (r2d − 1)/(r + 1).

It is well known that the Hermitian forms graph onV is a
distance regular graph with classical parameters(d, b, α, β) =
(d,−r,−r − 1,−(−r)d − 1) [1, Table 6.1]. The eigenvalues
of the Hermitian forms graph were first computed by Stanton
[21]. Here we quote the more accessible formulas given in
[1]. For any integersj ≥ i ≥ 0 and b 6= 0, 1, the Gaussian
binomial coefficients with basisb are defined by

[
j

i

]

b

=

{ ∏i−1
l=0

bj−bl

bi−bl
if i ≥ 1,

1 if i = 0.

Lemma 3.2:[1, Corollary 8.4.4] LetV = Fd
r2

, wherer is
a prime power. The Hermitian forms graph defined onV has
eigenvalues

θ0 =
r2d − 1

r + 1
, θj =

r2d − 1

r + 1
+ (−r)2d−j

[
j

1

]

(−r)

,

for 1 ≤ j ≤ d. Their corresponding multiplicities are

f0 = 1, fj =

[
d

j

]

(−r)

j−1∏

l=0

[(−1)d+1rd + (−1)l+1rl],

where1 ≤ j ≤ d.

IV. T HE WEIGHT DISTRIBUTION OF THE CODEC(p,m)

Throughout this section,p, q, n,m, t are defined as in Sec-
tion II. Consider the abelian group

G = Fpm × Fq × Fq × · · · × Fq︸ ︷︷ ︸
t

,

and its subset

S =
{
(xpm+1, xp+1, xp3+1, . . . , xpm−2+1) | x ∈ F∗

q

}
.

It is easy to see that|S| = (q− 1)/(p+1). Let W = Fm
p2 and

H be the abelian group consisting of allm × m Hermitian
matrices overFp2 . Let D = {H ∈ H | rank(H) = 1}.
Clearly, the Hermitian forms graph onW is the Cayley graph
Cay(H,D). The following lemma shows that the Cayley
graphCay(G,S) shares the same spectrum withCay(H,D).

Lemma 4.1:For oddm, the Hermitian forms graphΓ1 on
W = Fm

p2 is isomorphic to the Cayley graphΓ2 = Cay(G,S).
In particular,Γ1 andΓ2 have the same spectrum.
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Proof: Since Γ1 is just the Cayley graphCay(H,D),
the result will follow immediately if we can find a group
isomorphismϕ from H to G satisfying thatϕ(D) = S.

Let e1, . . . , em be a basis ofFq over Fp2 and e =
(e1, e2, . . . , em). For anyH ∈ H andx,y ∈ Fm

q , we define
fH(x,y) = xHyT , whereyT is the transpose ofy. Now we
construct a mappingϕ from H to G by sendingH ∈ H to

ϕ(H) = (fH(e, ep
m

), fH(e, ep), fH(e, ep
3

), . . . , fH(e, ep
m−2

)),

wherees := (es1, e
s
2, . . . , e

s
m) for any integers. It is straight-

forward to verify thatϕ(H) ∈ G andϕ is a group homomor-
phism.

Now we want to show thatϕ is an isomorphism. First, we
prove thatϕ is injective. For a matrixH = (hij) and an integer
s, we denoteHs = (hs

ij). Supposeϕ(H) = (0, 0, . . . , 0),

i.e., eH(ep
m

)T = fH(e, ep
m

) = 0 and eH(ep
2i−1

)T =
fH(e, ep

2i−1

) = 0 for 1 ≤ i ≤ t. By rising all entries of
eH(ep

2i−1

)T to their p2m−2i+1-th power, we have

ep
2m−2i+1

H
p2m−2i+1

eT = ep
2m−2i+1

H
p

eT = 0,

which gives

eH(ep
2m−2i+1

)T = 0.

So we obtaineHΨ = (0, 0, . . . , 0), where

Ψ = ((ep)T , (ep
3

)T , · · · , (ep
m

)T , · · · , (ep
2m−3

)T , (ep
2m−1

)T ).

By the choice ofe, it can be shown thatΨ is a nonsingular
matrix [9, Corollary 2.38]. ThereforeeH = (0, 0, . . . , 0),
which implies thatH is a zero matrix. Consequently,ϕ is
injective. On the other hand, a direct calculation shows that
|H| = |G| = pm

2

. Henceϕ is an isomorphism.
For any H ∈ D, we haveH = aTap for some a =

(a1, a2, . . . , am) ∈ W , whereap = (ap1, a
p
2, . . . , a

p
m). There-

fore,

ϕ(H) = (eH(ep
m

)T , eH(ep)T , . . . , eH(ep
m−2

)T )

= (eaTap(ep
m

)T , eaTap(ep)T , . . . , eaTap(ep
m−2

)T )

= (xpm+1, xp+1, . . . , xpm−2+1),

wherex = eaT ∈ F∗
q . Thus we obtainϕ(D) ⊂ S. Since

|D| = (p2m − 1)/(p+ 1) = (q − 1)/(p+ 1) = |S|,

we have ϕ(D) = S. So we have proved thatϕ is an
isomorphism fromH to G sending the connection setD to
S. ThereforeΓ1 is isomorphic toΓ2, and they have the same
spectrum.

From Lemma 4.1 and Lemma 3.2, the eigenvalues ofΓ2

and their multiplicities are known. On the other hand, the
eigenvalues ofΓ2 can be expressed using Lemma 3.1.

Note that

Ĝ = {χ(α0,α1,...,αt) | α0 ∈ Fpm , α1, . . . , αt ∈ Fq},

where

χ(α0,α1,...,αt)(u) = ζ
Trm1 (α0u0)+

∑t
j=1

Trn1 (αjuj)
p ,

for any u = (u0, u1, . . . , ut) ∈ G. By Lemma 3.1, the
eigenvalues ofΓ2 are

χ(α0,α1,...,αt)(S)

=
∑

u∈S

ζ
Trm1 (α0u0)+

∑t
j=1

Trn1 (αjuj)
p

=
1

p+ 1

∑

x∈F∗

q

ζ
Trm1 (α0x

pm+1)+
∑t

j=1
Trn1 (αjx

p2j−1+1)
p

=
1

p+ 1

(
T (α0, α1, . . . , αt)− 1

)
,

for all α0 ∈ Fpm , α1, . . . , αt ∈ Fq. Therefore we have

T (α0, α1, . . . , αt) = (p+ 1)χ(α0,α1,...,αt)(S) + 1.

By Lemma 3.2, the eigenvalues ofΓ2 are all rational numbers.
Thus, we haveT (α0, α1, . . . , αt) ∈ Q. For anya ∈ F∗

p, there
exists an automorphismσa ∈ Gal(Q(ζp)/Q) with σa(ζp) =
ζap . Hence
∑

a∈F∗

p

T (aα0, aα1, . . . , aαt) =
∑

a∈F∗

p

σa

(
T (α0, α1, . . . , αt)

)

= (p− 1)T (α0, α1, . . . , αt).

Consequently, the Hamming weight ofc[α0,α1,...,αt] is

wH(c) = pn−1(p− 1)−
1

p

∑

a∈F∗

q

T (aα0, aα1, . . . , aαt)

= pn−1(p− 1)−
p− 1

p
T (α0, α1, . . . , αt)

= pn−1(p− 1)−
p− 1

p

(
1 + (p+ 1)χ(α0,α1,...,αt)(S)

)
.

(1)

Now the weight distribution of the codeC(p,m) follows directly
from Equation (1) and Lemma 3.2. In the following theorem,
we use[l, k, d] code as the notation for ak-dimensional linear
code of lengthl with minimum distanced.

Theorem 4.2:For any odd integerm, the weight distribu-
tion of the codeC(p,m) is as follows:

Ai =





1 if i = 0,
fj if i = wj ,
0 otherwise,

where

wj = (p2m − p2m−1)

(
1−

1

(−p)j

)
,

and

fj =

[
m

j

]

(−p)

j−1∏

l=0

(
pm − (−p)l

)

for 1 ≤ j ≤ m. In particular, the codeC(p,m) is a [p2m −
1,m2, (p2m − p2m−1)(1− p−2)] cyclic code.

For a codeC with weight distribution{A0, A1, . . . , Al},
define itsweight enumeratoras

l∑

i=0

Aix
i.
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The weight enumerator provides a succinct way to express the
weight distribution. For the purpose of illustration, we give two
examples below.

Example 4.3:Let p = 3, and m = 3. The codeC(3,3)
is then a [728, 9, 432] code over GF(3) with the weight
enumerator

1 + 5460x432 + 14040x504 + 182x648.

Example 4.4:Let p = 2, and m = 5. The codeC(2,5)
is then a [1023, 25, 384] code over GF(2) with the weight
enumerator

1 + 57970x384 + 12985280x480 + 18887680x528

+ 1623160x576 + 341x768.

V. CONCLUSION

In the study of cyclic codes, researchers have established
the connections between their weight distribution and other
mathematical objects, such as Gauss sums (see [6], [17]),
algebraic curves (see [20], [22], [25]), as well as quadratic
forms (see [5], [10], [11]). In this paper, we found an elegant
connection between the weight distribution of a class of cyclic
codes and the spectrums of certain distance regular graphs.In
this way, the weight distribution of these codes follows from
the known spectrums of Hermitian forms graphs. The dual
codes of this family of cyclic codes may have arbitrarily many
zeros, while most previously known results are obtained in the
case where the dual codes have no more than three zeros.
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