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Coset Sum: an alternative to the tensor product in
wavelet construction

Youngmi Hur and Fang Zheng

Abstract—A multivariate biorthogonal wavelet system can be
obtained from a pair of multivariate biorthogonal refinement
masks in Multiresolution Analysis setup. Some multivariate
refinement masks may be decomposed into lower dimensional
refinement masks. Tensor product is a popular way to construct
a decomposable multivariate refinement mask from lower dimen-
sional refinement masks.

We present an alternative method, which we call coset sum,
for constructing multivariate refinement masks from univar iate
refinement masks. The coset sum shares many essential features
of the tensor product that make it attractive in practice: (1) it
preserves the biorthogonality of univariate refinement masks, (2)
it preserves the accuracy number of the univariate refinement
mask, and (3) the wavelet system associated with it has fast
algorithms for computing and inverting the wavelet coefficients.
The coset sum can even provide a wavelet system with faster
algorithms in certain cases than the tensor product. These
features of the coset sum suggest that it is worthwhile to develop
and practice alternative methods to the tensor product for
constructing multivariate wavelet systems. Some experimental
results using 2-D images are presented to illustrate our findings.

Index Terms—Coset sum, fast algorithm, interpolatory mask,
refinement mask, tensor product, wavelet mask, wavelet system.

I. I NTRODUCTION

One of the most common tools for constructing wavelets is
Multiresolution Analysis (MRA) [1]. In MRA, a multivariate
biorthogonal wavelet system can be obtained from a pair
of multivariate biorthogonal refinement masks. The tensor
product has been the prevailing method for deriving a pair
of multivariate biorthogonal refinement masks from a pair of
biorthogonal univariate refinement masks.

In this paper we are interested in studying the operators that
map lower dimensional refinement masks to higher dimen-
sional refinement masks. Throughout this paper, the multidi-
mensional (multi-D) refinement masks that can be decomposed
into lower dimensional refinement masks by such operators are
referred to asdecomposable. One such operator is the tensor
product. The multi-D refinement masks obtained via tensor
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product are calledtensor product (or separable) refinement
masks. Since the word “separable” is reserved for the tensor
product by the definition in the literature, we use the word
“decomposable” to indicate more general case than the tensor
product. It should be noted that a “nonseparable” refinement
mask only means it is not a tensor product refinement mask,
and it can still be a “decomposable” refinement mask. Tensor
product can also be used to construct multi-D wavelet masks,
which are calledtensor product (or separable) wavelet masks
(cf. §II-B).

In MRA setup, construction of multi-D biorthogonal
wavelet systems can be done by two steps: (i) construction
of multi-D biorthogonal refinement masks (or refinable func-
tions); (ii) construction of multi-D wavelet masks. To construct
a nonseparable multi-D wavelet system, one can try making
the refinement masks nonseparable in step (i) or making
wavelet masks nonseparable in step (ii). Since, once a pair
of multivariate biorthogonal refinement masks are given, the
matrix extension problem of finding wavelet masks can always
be solved by using Quillen-Suslin theorem (see, for example,
[2]), the main effort so far for constructing nonseparable
wavelets has been made in step (i). However, we note that
Quillen-Suslin theorem serves only as a guide since in the
process of determining the wavelet masks, some parameters
still need to be specified.

Although there have been many methods for constructing
nonseparable multi-D wavelets [3]–[16], constructing nonsep-
arable multi-D wavelet systems is highly nontrivial. Many of
these methods work only for low spatial dimensions (2-D or
3-D) and they cannot be easily extended to other dimensions.
Others assume that the wavelets or refinable functions have
a special form (e.g. the refinable function has a box spline
factor) and cannot be easily generalized to other cases.

One of the disadvantages of the above approaches for
constructing nonseparable wavelets is that they constructa
pair of multi-D biorthogonal refinement masks essentially
from scratch, which can be quite complicated, especially for
high spatial dimensions. A simpler way to obtain multi-D
biorthogonal refinement masks is to use an operator that maps
1-D biorthogonal refinement masks to multi-D biorthogonal
decomposable refinement masks. Most of the existing non-
separable wavelet construction methods (e.g. [17]–[23]) that
use decomposable refinement masks employ operators such
as the McClellan transform for quincunx or other2-channel
sampling lattices.

Most multi-D wavelet systems that are used in practice
nowadays are separable wavelet systems constructed by the
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TABLE I
COMPARISON BETWEEN TENSOR PRODUCT AND COSET SUM(SPATIAL DIMENSIONn ≥ 2)

Tensor product Tn (R, R̃: univariate refinement masks) Coset sumCn (R, R̃: univariate refinement masks;̃R: interpolatory)

Tn[R] can be decomposed into theproduct of R Cn[R] can be decomposed into thesumof R

Tn[R] is interpolatory iffR is interpolatory Cn[R] is interpolatory iffR is interpolatory

Tn[R] andTn[R̃] are biorthogonal iffR and R̃ are biorthogonal Cn[R] andCn[R̃] are biorthogonal iffR and R̃ are biorthogonal

Tn[R] andR have the same accuracy number Cn[R̃] and R̃ have the same accuracy number

Tn[R] can be decomposed intonon-univariaterefinement masks Cn[R] can be decomposedonly into univariate refinement masks

Complexity constant in associated wavelet algorithmincreases withn Complexity constant in associated wavelet algorithm isindependent ofn

tensor product of 1-D wavelet systems. In§II-B we briefly
discuss the use of tensor product in constructing biorthogonal
wavelet systems. As we can see from there, the tensor product
construction of wavelet systems is extremely simple. This
is one of the major reasons the tensor product has been so
popular in constructing multi-D wavelets in practice. However
the separable wavelet systems have limitations: (i) they have
a strong directional bias along lines parallel to the coordinate
directions, (ii) they are not very local1.

Our goal in this paper is to present an alternative method
to the tensor product for constructing decomposable multi-D
refinement masks. We call the new method ascoset sum. We
show that, under an appropriate circumstance, the coset sum
shares many attractive features of the tensor product. First, it
preserves the biorthogonality of univariate refinement masks.
Second, it preserves the accuracy number of the univariate
refinement mask. Third, it has a corresponding wavelet system
which has fast algorithms for computing and inverting the
wavelet coefficients. In fact, it turns out that these algorithms
are faster, in certain cases, than the known algorithms based
on tensor product wavelet systems.

Let us elaborate on the last point in more detail. Suppose
that we consider two wavelet systems that are constructed from
the same pair of1-D biorthogonal refinement masks, by using
tensor product and coset sum. For the tensor product wavelet
system, the associated algorithm has complexity(α + β)nN
(cf. §II-B), where α and β are the number of nonzero co-
efficients of the1-D lowpass filters for decomposition and
reconstruction, respectively,n is the spatial dimension, and
N is the size of an initial data to be analyzed. Thus, the
constant in the complexity bound (cf. Complexity discussion
in §IV-B for the definition) in this case is(α + β)n and it
grows linearly with the spatial dimension. On the other hand,
as we can see from§IV-B, the complexity constant of the
algorithm associated with the coset sum wavelet system we
construct in this paper has complexity constant3

2α+2β, which
is smaller than(α + β)n as long asn ≥ 2. We note that the
complexity constant for the coset sum case does not increase
even if the spatial dimension increases. For more details, we
refer to§IV-B.

The main difference between the coset sum method and

1One way to measure the localness of a wavelet system is to compute the
sum of the volumes of the supports of its mother wavelets (cf.[24], [25]).

the tensor product method is that a “sum” is used in ob-
taining the coset sum multi-D refinement masks instead of
a “product” used in the tensor product refinement masks.
Another difference is that, on the contrary to the tensor product
case, the coset sum refinement mask cannot be decomposed
into non-univariate refinement masks. Table I summarizes the
comparison between the tensor product and the coset sum.

Some experimental results using 2-D images are included
to show the potential usefulness of the coset sum wavelet
systems we construct in this paper (cf.§IV-C). They show
that our wavelet systems can be potentially useful for effec-
tively approximating a certain class of images with strong
directional content. They also reveal some of the limitations
of our wavelet systems, which include the lack of rotational
symmetry [26]. For details, we refer to§IV-C.

The rest of the paper is organized as follows. In§II we
briefly overview some relevant concepts on wavelet construc-
tion. In §III we introduce the coset sum method and discuss
its properties. In§IV we also introduce a particular class of
coset sum wavelet systems, together with the associated fast
algorithms and some experimental results using our wavelet
systems. We summarize our results and present some obser-
vations in§V. Appendix contains technical details including
all the proofs of the theorems in this paper.

II. PRELIMINARIES

In this section we review some relevant concepts.

A. Refinement masks and wavelet masks

In this paper we refer to a Laurent trigonometric polynomial
as amask, and a maskτ with τ(0) = 1 as arefinement mask.
Refinement masks can be used to obtain refinable functions
(see, for example, [27]), which can in turn be used to construct
wavelet systems [1].

Refinement masksτ andτd arebiorthogonalif they satisfy
the following biorthogonal relation:

∑

γ∈πΓ

(ττd)(ω + γ) = 1, ∀ω ∈ T
n := [−π, π]n, (1)

whereΓ := {0, 1}n and the overline is used to denote the
complex conjugate. In this case, we refer toτ andτd asprimal
and dual refinement masks, respectively.
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A refinement maskτ is interpolatory if the condition
∑

γ∈πΓ

τ(ω + γ) = 1

holds. Thus refinement masksτ andτd are biorthogonal if and
only if ττd is interpolatory. Interpolatory masks are widely
used in subdivision schemes and wavelet constructions (for
example, see [28] and references therein).

In this paper we say that a filterh : Zn → R is associated
with a maskτ if h andτ are connected via the relationτ(ω) =
1
2n

∑

k∈Zn h(k)e−ik·ω for ω ∈ Tn.
It is straightforward to see thatτ is interpolatory if and only

if the associated filterh satisfies

h(k) =

{

1, if k = 0,
0, if k ∈ 2Zn\0,

(2)

to which we refer as the interpolatory condition for the filter.
For a refinement maskτ , the number of zeros ofτ at

γ ∈ πΓ′ with Γ′ := Γ\0 = {0, 1}n\0 is referred to as the
accuracy number[29]. Throughout the paper we assume that
all refinement masks have at least accuracy number one, since
almost all of the refinement masks used in practice satisfy this
condition.

We recall that the Laurent polynomials{tj , tdj : j =
1, · · · , l} are called thewavelet masksassociated with a pair
of biorthogonal refinement masks(τ, τd) if they satisfy the
Mixed Unitary Extension Principle (MUEP) conditions [30]:
for everyω ∈ Tn,

τ(ω + γ)τd(ω) +

l
∑

j=1

tj(ω + γ)tdj (ω) =

{

1, if γ = 0,
0, if γ ∈ πΓ′.

(3)
We refer totj , j = 1, · · · , l, and tdj , j = 1, · · · , l, as primal
and dual wavelet masks, respectively. Whenl = 2n − 1,
the masks that satisfy the MUEP conditions can be used
to construct biorthogonal wavelet systems. We refer to such
(τ, (tj)j=1,···,2n−1) and(τd, (tdj )j=1,···,2n−1) as thecombined
biorthogonal masks. A (MRA-based) biorthogonal wavelet
systemis then obtained from these combined biorthogonal
masks, under some simple additional conditions [31], [32].

For a wavelet maskt, the number of zeros oft at ω = 0
is referred to as thenumber of (discrete) vanishing mo-
ments [33]. It is well known (see, for example, [33]) that
for the combined biorthogonal masks(τ, (tj)j=1,···,2n−1) and
(τd, (tdj )j=1,···,2n−1) whose refinement masks have at leastm
accuracy, every primal wavelet masktj and dual wavelet mask
tdj , j = 1, · · · , 2n − 1, has at leastm vanishing moments.
The number of vanishing moments is closely related to the
approximation performance of the wavelet system [34].

B. Tensor product wavelet construction

We recall that then-D tensor product (or separable) re-
finement mask fromn (possibly distinct) univariate refine-
ment masksR1, R2, · · · , Rn can be written as, forω =
(ω1, ω2, · · · , ωn) ∈ Tn,

Tn[R1, R2, · · · , Rn](ω) := R1(ω1)R2(ω2) · · ·Rn(ωn). (4)

When R = R1 = R2 = · · · = Rn, we also use the
notationTn[R]. If we let H and h be the filters associated
with the masksR and Tn[R] respectively, they satisfy, for
k = (k1, k2, · · · , kn) ∈ Zn,

h(k) = H(k1)H(k2) · · ·H(kn).

It is well known that then-D refinement masks constructed
using tensor product preserve many useful properties of uni-
variate refinement masks. For example, if we letR andR̃ be
univariate refinement masks, then

(i) Tn[R] is interpolatory if and only ifR is interpolatory,
(ii) Tn[R] andTn[R̃] are biorthogonal if and only ifR and

R̃ are biorthogonal,
(iii) Tn[R] andR have the same accuracy number.

Now we pose the following question. Can we find another
method that satisfies all of the above properties? An affirmative
answer is provided by the coset sum, which we introduce and
study in the next section. Before introducing the coset sum,
let us review the usual approach for constructing biorthogonal
wavelet systems.

Construction of 1-D biorthogonal wavelet systems is well
understood. Given a pair of 1-D biorthogonal refinement
masksS0 andU0, one sets the wavelet masks as

S1(ω) := e−iωU0(ω + π), U1(ω) := e−iωS0(ω + π) (5)

for ω ∈ T. Then the univariate pairs(S0, S1) and (U0, U1)
satisfy the MUEP conditions (cf. (3)) [31].

On the other hand, given a pair of multivariate biorthogonal
refinement masks, constructing a multivariate biorthogonal
wavelet system is not so trivial since one needs to find2n− 1
primal wavelet maskstj ’s and2n−1 dual wavelet maskstdj ’s.

The usual construction of multi-D biorthogonal wavelet
systems is done by the tensor product. Given a pair of 1-D
biorthogonal refinement masksS0 andU0, one sets then-D
refinement masks as

τ := Tn[S0], τd := Tn[U0]

and then-D wavelet masks as

tν = Tn[Sν1 , Sν2 , · · · , Sνn ], tdν = Tn[Uν1 , Uν2 , · · · , Uνn ]

for all ν = (ν1, ν2, · · · , νn) ∈ Γ′. Then the two refinement
masksτ and τd are also biorthogonal, and(τ, (tν)ν∈Γ′) and
(τd, (tdν)ν∈Γ′) satisfy the MUEP conditions (cf. (3)). Here
Γ′ = {0, 1}n\0 is used as before, and the univariate masksS1

andU1 are the ones defined in (5). The biorthogonal wavelet
systems obtained from these masks are calledtensor product
(or separable) wavelet systems.

It is well known that tensor product wavelet systems have
fast algorithms for computing and inverting wavelet coeffi-
cients (see, for example, [35]), to which we refer as the
fast tensor product wavelet algorithms. These algorithms have
linear complexityO(N), whereN is the size of the input
data. More precisely, ifα is the number of nonzero entries of
the filter associated withS0 andβ is the number of nonzero
entries of the filter associated withU0, then the algorithms
for computing and inverting the corresponding tensor product
wavelet coefficients have complexity(α + β)nN , wheren
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is the spatial dimension. In particular, the constant in the
complexity bound is(α + β)n and it increases linearly as
the spatial dimension increases.

III. C OSET SUM

A. Introduction to coset sum

We present an alternative method, calledcoset sum, to
the tensor product in wavelet construction. Instead of the
“product” in the tensor product, we propose to use a “sum”
to construct multivariate refinement masks from univariate
refinement masks.

Let R be a univariate refinement mask and letH be the
univariate filter associated withR. For ν ∈ Γ′, the map

T
n → C : ω 7→ 1

2n−1
R(ω · ν),

whereω · ν is the inner product inRn, is an n-D Laurent
trigonometric polynomial. The normalization factor12n−1 is
used to placeR(ω · ν) in the n-D space. In terms of filters,
the above can be understood as aligning the 1-D filterH along
the ν direction:

Z
n → R : k 7→

{

H(K), if k = Kν for someK ∈ Z ,
0, otherwise

Since we want to consider all the directions inΓ′, a possible
candidate for the coset sum definition can be given as

T
n → C : ω 7→ A+

1

2n−1

∑

ν∈Γ′

R(ω · ν).

Since we want the coset sum to map a 1-Drefinementmask
to ann-D refinementmask, by plugging inω = 0, we obtain
A = −1 + 1

2n−1 and get to the following definition.
Definition 1: We define the coset sumCn that maps a 1-

D refinement maskR to an n-D refinement maskCn[R] as
follows: for ω ∈ Tn

Cn[R](ω) :=
1

2n−1

(

1− 2n−1 +
∑

ν∈Γ′

R(ω · ν)
)

,

whereΓ′ = Γ\0 = {0, 1}n\0.

Remark 1. We call the refinement mask obtained by the
coset sum method as thecoset sum refinement mask. The
set Γ = {0, 1}n used in the definition is a complete set of
representatives of the distinct cosets (hence the name “coset
sum”) of the quotient groupZn/2Zn. It is easy to observe
that, becausen-D masks are2π-periodic, the set{0, 1}n used
in this paper prior to the above definition (for example, for
biorthogonality condition, interpolatory condition, definition
of accuracy number, and MUEP conditions) can be replaced,
without changing the meaning of the statements, by any other
complete set of representatives of the distinct cosets of the
quotient groupZn/2Zn as long as the set contains0. As a
result, the set{0, 1}n used in the above coset sum definition
can be replaced by any such an alternative set. The set{0, 1}n
is chosen for the discussion in this paper (with the exception of
Example 3 below and discussions in§IV-C) because it makes
the support of the associated filter the smallest. Depending
on applications, choosing a different set of representatives can

make more sense. We emphasize that even if all the results
in our paper (including Theorem 1, 2, and the fast coset sum
wavelet algorithms in later part of the paper) are presented
using the setΓ = {0, 1}n, they will stay intact for other
choices forΓ.

Remark 2. We recall that the sum in the left-hand side of
the biorthogonality condition in (1) is taken over the setπΓ,
which can be considered as a set of coset representatives
of 2π(12Z

n/Zn). The set of coset representatives has been
previously used in the wavelet literature, mostly in relation
with this biorthogonality condition. For example, a new algo-
rithm called a coset by coset (CBC) is proposed in [36] for
obtaining dual masks with arbitrary number of accuracy given
an interpolatory primal mask, and the coset representatives are
used in [37] for an explicit, flexible, and easy implementation
of interpolatory subdivision schemes.

The coset sum for the first few low dimensions are given
as follows:

C1[R](ω1) = R(ω1),

C2[R](ω1, ω2) =
1

2
{−1 +R(ω1) +R(ω2) +R(ω1 + ω2)} ,

C3[R](ω1, ω2, ω3) =
1

4
{−3 +R(ω1) +R(ω2) +R(ω1 + ω2)

+R(ω3) +R(ω1 + ω3) +R(ω2 + ω3) +R(ω1 + ω2 + ω3)}.

We note that the coset sum formula in the above definition
can also be written as

− 1 +
1

2n−1

∑

ν∈Γ

R(ω · ν) (6)

or
1

2n−1

(

1

2
+
∑

ν∈Γ′

(

R(ω · ν)− 1

2

)

)

. (7)

The filterh associated with the coset sum refinement mask
Cn[R] is connected to the univariate filterH via

h(k) =







H(K), if k = Kν for someK ∈ Z\0, ν ∈ Γ′,
2n − (2n − 1)(2−H(0)), if k = 0,
0, for all otherk ∈ Z

n.
(8)

If the univariate filterH associated withR is interpolatory,
then-D filter h associated withCn[R] is also interpolatory and
it can be expressed as

h(k) =

{

H(K), if k = Kν for someK ∈ Z, ν ∈ Γ′,
0, for all otherk ∈ Zn.

In particular, the restriction of then-D filter h to ν direction,
for eachν ∈ Γ′, is the 1-D filterH .

Now we give a few very simple examples of constructing
multi-D refinement filters from univariate refinement filters.

Example 1: n-D Haar refinement filter: the only filter that
can be obtained using either the tensor product or the
coset sum.Consider the 2-D Haar refinement filter

h(k) =

{

1, if k = (0, 0), (1, 0), (0, 1) or (1, 1),
0, otherwise.
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1 1 −→
1 1

1 1
(a) 2-D Haar by tensor product

1 1 −→
111

1 1

1
(b) 2-D Haar by coset sum

Fig. 1. Constructions of 2-D Haar refinement filter (Tensor product and
Coset sum) (cf. Example 1)

Let H be the 1-D Haar refinement filter

H(K) =

{

1, if K = 0 or K = 1,
0, otherwise.

Thenh can be obtained fromH either by
(I) (Tensor Product Case) aligning the filterH alongy = 0

line (x-axis) andy = 1 line (see Figure2 1(a)), or by
(II) (Coset Sum Case) aligning the filterH along y = 0

line (x-axis), x = 0 line (y-axis), andy = x line (see
Figure 1(b)).

Since the support of the 2-D tensor product refinement filter
will always be a rectangle and the support of the 2-D coset
sum refinement filter will always be the union of three line
segments in different directions, it is easy to see that, up to
the integer translation, the 2-D Haar refinement filter is the
only 2-D filter that can be obtained using either the tensor
product or the coset sum. It is straightforward to show that,
for arbitrary spatial dimensionn, the n-D Haar refinement
filter is the only filter that can be obtained using either the
tensor product or the coset sum.

Example 2: Refinement filter associated with ann-D
piecewise-linear box spline.Let us consider the 2-D refine-
ment filterh associated with a 2-D piecewise-linear box spline
[38]:

h(k) =







1, if k = (0, 0),
1
2 , if k = ±(1, 0), ±(0, 1), or ±(1, 1),
0, otherwise.

LetH be the refinement filter associated with a 1-D piecewise-
linear spline:

H(K) =

{

1, if K = 0,
1
2 , if K = ±1,
0, otherwise.

Thenh can be obtained fromH by aligning the filterH along
y = 0 line (x-axis),x = 0 line (y-axis), andy = x line (see
Figure 2). In other words,h = C2[H ]. In fact, it is easy to see
that for then-D refinement filterh associated with ann-D
piecewise-linear box spline, we haveh = Cn[H ].

Example 3: Refinement filter supported on different di-
rected line segments.We considern = 2 and choose the
same univariate filterH as in Example 2, but choose the 2-D
filter h differently:

h(k) =







1, if k = (0, 0),
1
2 , if k = ±(1, 2), ±(2, 1), or ±(−1, 1),
0, otherwise.

2In the figures of filters drawn in this paper, the bold-faced number is used
to represent the value of the filter at the origin.

1
2 1 1

2 −→ 111

0 1
2

1
2

1
2

1
2

1
2

1
2 0

Fig. 2. Construction of 2-D piecewise-linear box spline refinement filter
(Coset sum) (cf. Example 2)

1
2 1 1

2 −→ 111

0 0 0 1
2 0

0 1
2 0 0 1

2

0 0 0 0
1
2 0 0 1

2 0

0 1
2 0 0 0

Fig. 3. 2-D coset sum refinement filter supported on differentdirected line
segments (cf. Example 3)

Thenh = C2[H ] with Γ chosen differently (cf. Remark 1 after
Definition 1):

Γ = {(0, 0), (2, 1), (1, 2), (−1, 1)}.

In particular,h can be obtained fromH by aligning the filter
H along y = x/2 line, y = 2x line, and y = −x line
(see Figure 3). Note that the filterh is supported on the line
segments that are not parallel to the coordinate directions.

B. Properties of coset sum refinement masks

In this subsection, we study the properties of the multi-D
refinement masks obtained by the coset sum method.

The following theorem shows that the refinement masks
obtained by the coset sum share many important properties
with the tensor product refinement masks.

Theorem 1:Let Cn be the coset sum, and letR and R̃ be
univariate refinement masks.

(a) Cn[R] is interpolatory if and only ifR is interpolatory.
(b) Suppose that one ofR andR̃ is interpolatory. ThenCn[R]

and Cn[R̃] are biorthogonal if and only ifR and R̃ are
biorthogonal.

(c) Suppose thatR is interpolatory. ThenCn[R] andR have
the same accuracy number.

Proof: See Appendix A.

Below we add a few remarks on Theorem 1.

Remark on Theorem 1(b).The interpolatory condition in part
(b) cannot be omitted. To see this, we consider the univariate
refinement mask associated with Daubechies wavelet system
of order2 [39], and let

R(ω) = R̃(ω) = cos2(
ω

2
)

(

1 +
√
3

2
+

1−
√
3

2
e−iω

)

, ω ∈ T.

Then R (henceR̃) is not interpolatory, andR and R̃ are
biorthogonal. However it is easy to see thatC2[R] andC2[R̃]
are not biorthogonal.

Remark on Theorem 1(c). For general (not necessarily
interpolatory)R, the accuracy number ofCn[R] is at least
min{m1,m2} wherem1 is the accuracy number ofR and
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Fig. 4. Refinement filters associated with the masksU4 and C2[U4] in
Example 4

m2 is the order that1 − R has a zero at the origin. This
statement can be proved using similar arguments as in the
proof of Theorem 1(c), and we omit the proof.

The Deslauriers-Dubuc mask [40] of order2k (k ∈ N) is
defined as

U2k(ω):=cos2k(
ω

2
)Pk(sin

2(
ω

2
)), (9)

Pk(x):=

k−1
∑

j=0

(k − 1 + j)!

j!(k − 1)!
xj .

The maskU2k is interpolatory and has accuracy number2k.
We now present a family of biorthogonal coset sum refinement
masks based on the Deslauriers-Dubuc interpolatory masks.

Example 4: A family of n-D biorthogonal coset sum
refinement masks.For eachk ∈ N, we chooseU2k in (9) as a
univariate interpolatory refinement mask. By Theorem 1(a)(c),
Cn[U2k] is ann-D interpolatory refinement mask with accuracy
number2k. It is straightforward to see that for eachk ∈ N,

S2k := U2k(3− 2U2k) (10)

is biorthogonal3 toU2k. By Theorem 1(b),Cn[U2k] is biorthog-
onal toCn[S2k]. SinceS2k has at least2k accuracy and1−S2k

has a zero of order at least2k at the origin, by the Remark
on Theorem 1(c),Cn[S2k] has at least2k accuracy. The filters
for the casek = n = 2 are depicted in Figure 4 and 5. Using
the standard tool in wavelet literature (see, for example, [44]
and references therein), one can show that bothC2[U4] and
C2[S4] generate the refinable functions that are inL2(R2) (cf.
Figure 6).

Similar to the tensor product case, the coset sum can
actually take different univariate refinement masks. However,
since the cardinality of the setΓ′ is 2n − 1, we have2n − 1

3Given a refinement filter, a dual refinement filter is not uniquely determined
in general. The specific choice of the dual filter ofU2k as in (10) can be
obtained, for example, from Proposition 2.1 in [41]. See also Theorem 2 in
[42] for an alternative derivation based on a critical representation of the
Laplacian pyramid ([43]).
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different directions to consider, instead ofn different coordi-
nate directions for the tensor product case. In such a case the
n-D coset sum refinement can be written as

Cn[(Rν)ν∈Γ′ ](ω) :=
1

2n−1

(

1− 2n−1 +
∑

ν∈Γ′

Rν(ω · ν)
)

,

(11)
whereRν , ν ∈ Γ′, are possibly distinct univariate refinement
masks for different directionν.

Let n = n1 + n2 + · · · + nm, nj ≥ 1 for j = 1, 2, · · · ,m.
Then the tensor product refinement mask in (4) can be
written as the product of possibly non-univariate lower di-
mensional tensor product refinement masks as follows: for
ω = (ω1, ω2, · · · , ωn) ∈ Tn,

Tn[R1, · · · , Rn](ω)

= Tn1
[R1, · · · , Rn1

](ω1, · · · , ωn1
) ·

Tn2
[Rn1+1, · · · , Rn1+n2

](ωn1+1, · · · , ωn1+n2
) ·

· · · Tnm
[Rn1+···+nm−1+1, · · · , Rn](ωn1+···+nm−1+1, · · · , ωn).

On the contrary, the coset sum refinement maskcannot be
written as the sum of non-univariate lower dimensional coset
sum refinement masks.

We can also consider a hybrid of the coset sum and the
tensor product : forn = n1 + n2 + · · · + nm, nj ≥ 1, j =
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Multivariate refinement masks

Tensor product

Coset sum

Decomposable

Haar

Fig. 7. The tensor product multivariate refinement masks arenot the
only decomposable refinement masks. The coset sum provides asystematic
way to construct other types of decomposable refinement masks. The other
decomposable refinement masks include the ones constructedby the existing
approaches (cf. discussion in§I). The multivariate Haar refinement mask is
essentially the only mask that can be obtained by using either the tensor
product or the coset sum (cf. Example 1).

1, 2, · · · ,m,

Cn1
[R](ω1, · · · , ωn1

) · Cn2
[R](ωn1+1, · · · , ωn1+n2

) ·
· · · Cnm

[R](ωn1+···+nm−1+1, . . . , ωn). (12)

Similar statements to the ones of Theorem 1 can be made for
the coset sum refinement mask in a generalized sense as in
(11) and for the hybrid refinement mask as in (12). We omit
the statements and the proofs as they are similar to the ones
of Theorem 1.

The diagram in Figure 7 illustrates the relation among the
tensor product, the coset sum, and the decomposable multi-
D refinement masks. We note that the type of decomposable
refinement masks that can be obtained by coset sum is different
from the one by the aforementioned existing methods [17]–
[23] since coset sum works for2n-channel sampling lattices
(cf. §IV-B).

IV. A PPLICATION: COSET SUM WAVELET SYSTEMS

In this section we introduce a special class of wavelet
systems that can be derived from coset sum refinement masks
in a very simple manner, and present their properties, including
fast algorithms, together with some experimental results.

A. Coset sum wavelet systems

Since the coset sum provides a way to construct a pair of
multivariate biorthogonal refinement masks from univariate
ones, it can be combined with any procedure for finding
wavelet masks to construct a multivariate biorthogonal wavelet
system. It is well known (for example, see [45] and Example 5
below) that for a given pair ofn-D biorthogonal refinement
masks, different biorthogonal wavelet systems can be obtained
by choosing wavelet masks differently. The specific choice
we make in this paper is guided by the simplicity of the
form of the primal wavelet masks (cf. (13) and the discussion
below). Use of other criteria may result in a totally different
type of “coset sum” wavelet systems, hence discussing about
properties of coset sum wavelet systems makes sense only after

the wavelet masks are specifically chosen. Below we present
our approach for determining the wavelet masks.

Suppose thatS and U are 1-D biorthogonal refinement
masks, and thatU is interpolatory. Theorem 1(b) implies that
the n-D coset sum refinement masksCn[S] and Cn[U ] are
biorthogonal. Moreover, from (7) and the assumption thatU
is interpolatory, we see that the restriction of then-D mask
Cn[U ] to ν direction,ν ∈ Γ′ = {0, 1}n\0, is given byU(ω ·ν)
for ω ∈ Tn (up to constants), which is essentially a 1-D mask.
Hence, as in the 1-D wavelet construction (cf. (5)), one can
attempt to define the multivariate wavelet maskstν , ν ∈ Γ′,
(note that we have2n − 1 wavelet masks) of the form

tν(ω) = e−iω·νU(ω · ν + π), ω ∈ T
n. (13)

The next theorem shows that the above approach leads to the
construction ofn-D biorthogonal wavelet systems.

Theorem 2:Suppose thatS and U are 1-D biorthogonal
refinement masks, and thatU is interpolatory. Definen-D
biorthogonal refinement masks as

τ := Cn[S], τd := Cn[U ],

and n-D primal wavelet maskstν , ν ∈ Γ′, as in (13).
Then there exist dual wavelet maskstdν , ν ∈ Γ′, such that
(τ, (tν)ν∈Γ′) and (τd, (tdν)ν∈Γ′) aren-D combined biorthog-
onal masks.

Proof: See Appendix B.

Remark 1. We refer to the biorthogonal wavelet system
constructed from then-D combined biorthogonal masks in
Theorem 2 as thecanonical coset sum wavelet system. As
we discussed previously, there may be many other coset sum
wavelet systems associated with the same coset sum refine-
ment masks. Throughout this paper, the word “canonical” is
suppressed when no confusion arises.

Remark 2. The exact form of the dual wavelet maskstdν , ν ∈
Γ′, of the canonical coset sum wavelet system in Theorem 2 is
not important for understanding our results in this paper, but
knowing it may be useful in some other contexts. By carefully
inspecting the proof of Theorem 2, we see that the dual wavelet
maskstdν , ν ∈ Γ′, have the form

tdν(ω) = 2−n+1e−iω·ν(1− 2τd(ω)So(ω · ν)), ω ∈ T
n, (14)

whereSo := (S − S(·+ π))/2 is the odd part ofS.

Remark 3. We recall that there is a nonseparable multi-D
wavelet construction method based on the traditional lifting
scheme ([46]) proposed by J. Kovačević and W. Sweldens
[47]. A key ingredient of their construction is a class ofn-
D filters called Neville filters, which are used to build the
predict and update filters. Given suitablen-D Neville filters,
their method can construct the associatedn-D biorthogonal
wavelet systems. It turns out that if the Neville filters are
extracted from then-D biorthogonal coset sum refinement
masks, the above canonical coset sum wavelet systems can
also be obtained by their method, and our fast algorithms
associated with these wavelet systems (cf.§IV-B) can be
viewed as realization of a special case of their fast transform.
However it should be noted that the Neville filters extracted
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from then-D biorthogonal coset sum refinement masks cannot
be obtained from [47]. Also note that other coset sum wavelet
systems besides the canonical ones cannot be constructed by
their method regardless of the choice of the Neville filters.

Canonical coset sum wavelet systems have many potentially
useful properties. The most distinctive property is that they can
be associated with fast algorithms, which is explained in detail
in the next subsection. Another (related) property is that they
can be much more local than tensor product wavelet systems.
The easiest way to see this property is probably through the
following example.

Example 5: n-D coset sum Haar wavelet systems.The
simplest choice for the univariate refinement mask is the1-D
Haar refinement maskR(ω) = 1

2 + 1
2e

−iω, ω ∈ T, which is
biorthogonal to itself and interpolatory. Letτ = τd = Cn[R]
be then-D Haar refinement mask, which can be obtained either
by coset sum or tensor product (cf. Example 1). Then from
Theorem 2 and the remarks after it, we obtain the canonical
coset sum wavelet system whosen-D biorthogonal refinement
masks areτ andτd, and whose primal and dual wavelet masks
are, forν ∈ Γ′ andω ∈ Tn,

tν(ω) =
e−iω·ν − 1

2
, tdν(ω) =

e−iω·ν − τd(ω)

2n−1
.

We refer to this wavelet system as then-D (canonical) coset
sum Haar wavelet system. Each of the wavelet masks of this
wavelet system has one vanishing moment. We note that this
wavelet system is the same as the piecewise-constant biorthog-
onal wavelet system introduced in [24] (up to constants),
which is shown to be far more local than the tensor product
Haar wavelet system, in high spatial dimensions.

Remark. We recall that orthogonality is a special case of
biorthogonality. We note that then-D Haar refinement mask
(cf. Example 1 and 5) is orthogonal, whereas then-D canon-
ical coset sum Haar wavelet system (cf. Example 5) is not
orthogonal. In fact, it is not possible to constructn-D canonical
coset sum wavelet system that is orthogonal. This can be seen
from the facts that the 1-D refinement mask we start with for
such a wavelet system has to be interpolatory and orthogonal,
and that there is no 1-D interpolatory orthogonal refinement
mask (in the dyadic dilation) other than the Haar one (see, for
example, [41]), whose associatedn-D canonical coset sum
wavelet system is not orthogonal as we just established.

A drawback of then-D coset sum Haar wavelet system
in the previous example is that the wavelet masks have only
one vanishing moment. In order to constructn-D biorthogonal
wavelet systems with larger number of vanishing moments,
one needs to haven-D biorthogonal refinement masks with
larger number of accuracy (cf.§II-A). In general, constructing
n-D biorthogonal refinement masks with large number of
accuracy can be cumbersome, especially whenn is large, since
it involves solving a large number of linear equations. Since
coset sum can preserve the biorthogonality and the accuracy
number simultaneously, it allows one to bypass solving these
linear systems to get biorthogonal refinement masks with large
number of accuracy. Thus it is often easier to constructn-
D wavelet systems based on the coset sum than othern-D
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Fig. 8. Primal coset sum wavelet filters of Example 6 for 2-D with 4 vanishing
moments (n = k = 2)

wavelet systems, for large number of vanishing moments. The
next is an example of such coset sum wavelet systems.

Example 6: A family of n-D coset sum wavelet systems
with larger number of vanishing moments. We choose the
univariate refinement masksU2k (interpolatory) andS2k as in
(9) and (10), respectively, and apply Theorem 2. Then with
the primal wavelet masks given as

tν(ω) = e−iω·ν sin2k(
ω · ν
2

)Pk(cos
2(
ω · ν
2

)), ν ∈ Γ′,

with Γ′ = {0, 1}n\0, there exist dual wavelet maskstdν ,
ν ∈ Γ′, such that(Cn[S2k], (tν)ν∈Γ′) and (Cn[U2k], (t

d
ν)ν∈Γ′)

aren-D combined biorthogonal masks. It is easy to check that
each of the wavelet masks of this wavelet system has2k van-
ishing moments. All the primal wavelet filters are supportedon
the union of2n−1 line segments alongν direction forν ∈ Γ′.
For example, ifn = 2, thenΓ′ = {(1, 0), (0, 1), (1, 1)} and
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Fig. 9. The magnitude of the primal coset sum masksC2[S4], t(1,0) , t(0,1) ,
and t(1,1) in Example 6

the primal wavelet masks for the casek = 2 are given as

t(1,0)(ω1, ω2)= e−iω1 sin4(
ω1

2
)
(

1 + 2 cos2(
ω1

2
)
)

,

t(0,1)(ω1, ω2)= e−iω2 sin4(
ω2

2
)
(

1 + 2 cos2(
ω2

2
)
)

,

t(1,1)(ω1, ω2)= e−i(ω1+ω2) sin4(
ω1 + ω2

2
)

·
(

1 + 2 cos2(
ω1 + ω2

2
)

)

.

The associated wavelet filters are depicted in Figure 8. The
magnitude of the primal masksC2[S4], t(1,0), t(0,1), andt(1,1)
(i.e. the magnitude of the frequency responses of the filters
associated with the primal masks) are depicted in Figure 9. The
magnitude of the corresponding tensor product primal masks
are given in Figure 10 for comparison.

SinceC2[U4] andC2[S4] generate the refinable functions that
are inL2(R2) (cf. Example 4 and Figure 6), and since we have
FIR filters, the2-D coset sum wavelet system generated from
the combined biorthogonal masks(C2[S4], t(1,0), t(0,1), t(1,1))
and (C2[U4], t

d
(1,0), t

d
(0,1), t

d
(1,1)) is also inL2(R2).

It should be noted that the above properties (the space lo-
calization property discussed in Example 5, and the frequency
responses, the vanishing moments, and the smoothness–in the
sense of whether or not a wavelet system belongs toL2–
discussed in Example 6) of canonical coset sum wavelet sys-
tems may not hold true for other coset sum wavelet systems.

B. Fast coset sum wavelet algorithms

Next we show that the canonical coset sum wavelet sys-
tem can be associated with the fast algorithm with linear
complexity whose complexity constant does not grow with
the spatial dimension. When presenting and analyzing our
algorithm below, we use mostly filters instead of masks that
we have been used so far, as this approach will be more useful
in practice.
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Fig. 10. The magnitude of the primal tensor product masks that are
comparable to the masks in Figure 9

Fast Coset Sum Wavelet Algorithms.Let S and U be
biorthogonal univariate refinement masks, whereU is inter-
polatory. Let G and H be the filters associated with the
refinement masksS andU , respectively. In particular,H is
interpolatory (cf. (2)).

input yJ : Zn → R

(1) Decomposition Algorithm:
aG = −2n + 2 + (2n − 1)G(0)
for j = J, J − 1, · · · , 1
for k ∈ Z

n

yj−1(k)

=
1

2n
(aGyj(2k) +

∑

ν∈Γ′

∑

L∈Z\0

G(L)yj(2k+Lν)) (i)

end
for ν ∈ Γ′ and k ∈ Zn

wν,j−1(k)

=
1

2
(yj(2k+ν)−

∑

m≡1

H(m)yj(2k+(1−m)ν)) (ii)

end
end

(2) Reconstruction Algorithm:
for j = 1, · · · , J − 1, J
for k ∈ Zn

yj(2k)

= yj−1(k)− 1
2n−1

∑

ν∈Γ′

∑

L∈Z

G(2L+1)wν,j−1(k+Lν)

(iii)
end
for ν ∈ Γ′ and k ∈ Zn

yj(2k + ν)

= 2wν,j−1(k) +
∑

m≡1

H(m)yj(2k + (1−m)ν) (iv)

end
end
Given coarse coefficientsyj at levelj, Decomposition Algo-

rithm first computes the lower level coarse coefficientsyj−1,
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and then the wavelet coefficientswν,j−1, ν ∈ Γ′ = {0, 1}n\0.
The coefficientsyj−1 and wν,j−1 are obtained by filtering
(using then-D filter g associated with the coset sum refinement
maskCn[S] for yj−1 and then-D filter hν associated with the
primal coset sum wavelet masktν for wν,j−1) followed by
downsampling, as is typically done in wavelet decomposition
process (see, for example, [39]). Since then-D maskCn[S]
can be written in terms of1-D mask S (cf. Definition 1),
the associatedn-D filter g can be written in terms of1-
D filter G (cf. (8)). Similarly, from the fact that then-D
mask tν can be written in terms of1-D maskU (cf. (13)),
the associatedn-D filter hν can be written in terms of1-D
filter H . Taking into account these observations, we get the
above simple expressions foryj−1 andwν,j−1 in Step(i)
and(ii), respectively. In Step(ii) and(iv), m ≡ 1 is
used to mean thatm is congruent to1 in modulo2, i.e.,m is
an odd integer.

Reconstruction Algorithm recoversyj from yj−1, and
wν,j−1, ν ∈ Γ′. It first recoversyj at even points (cf. Step
(iii)) and then at all other points (cf. Step(iv)). Step
(iii) is a key step in making our algorithm fast (cf. Com-
plexity discussion below). It is easy to show that the identity in
Step(iii) holds true for our canonical coset sum wavelet
system (see Appendix C for proof), but it need not be true
for other coset sum wavelet systems. Step(iv) is simply a
reverse process of Step(ii) and is possible since the only
yj values we need at this step are the values at even points,
and these are already computed in Step(iii).

For a given pair of1-D masksS andU that generates the
canonical coset sum wavelet system, the filtersH andG in
the algorithm can be computed easily. For example, for the
n-D coset sum Haar wavelet system in Example 5, bothH
andG are the1-D Haar refinement filter (cf. Example 1). For
the coset sum wavelet system in Example 6 that is generated
from S4 (cf. (10)) andU4 (cf. (9)), the filters are given as

H(K) =











1, K = 0,
9
16 , K = ±1,
− 1

16 , K = ±3,
0, otherwise,

G(K) =



































696
512 , K = 0,
288
512 , K = ±1,
− 126

512 , K = ±2,
− 32

512 , K = ±3,
36
512 , K = ±4,
− 2

512 , K = ±6,
0, otherwise.

We note that the above algorithms for the canonical coset
sum wavelet systems are not redundant: the number of coeffi-
cients after the decomposition algorithm is approximatelythe
same as the number of input samples, assuming that the filter
length of each filter involved in the algorithm is negligible
compared to the number of input samples.

Complexity. We measure complexity by counting the number
of operations needed in order to fully deriveyj−1, andwν,j−1,
ν ∈ Γ′, from yj , and add the number of operations needed
for the reconstruction. Here, we count only multiplicative
operations such as multiplication and division, as counting
additive operations gives a similar result.

As in the fast tensor product wavelet algorithms discussed
in §II-B, the complexity here is linear, i.e.∼ CN , with N
the number of nonzero entries inyJ , andC some constant

independent ofyJ . We refer to this constant as theconstant
in the complexity boundor simply as thecomplexity constant
throughout this paper.

We now estimate the complexity constant for fast coset
sum wavelet algorithms by computing the mean number of
operations per single entry inyJ . Supposeα and β are the
numbers of nonzero entries of the filtersG andH , respectively.
Then, the number of operations that are needed to process the
portion of yJ that lies on the vertices of a unit cube is the
sum of

• 2n− 1 (for computingaG),
• (2n − 1)(α− 1) + n+ 1 (for Step(i)),
• 2(2n − 1)β (for Step(ii) and(iv)), and
• (2n − 1)α+1

2 + n− 1 (for Step(iii)).
After computing the sum, we divide it by2n, which is the
number of vertices in the unit cube, in order to obtain the
cost per entry of performing one complete cycle of decompo-
sition/reconstruction. As a result, we get

3

2
α+ 2β

as an upper bound for the cost per entry. Therefore, the
algorithm has complexity(32α + 2β)N , and the constant in
the complexity bound in this case is32α + 2β, which does
not increase as the spatial dimensionn increases. A similar
argument is used in [25] to compute the complexity constant
for the algorithm introduced there.

Contrary to the complexity constant of the fast coset sum
wavelet algorithm that we just computed, in the tensor product
case the constant grows with the dimension (cf.§II-B). There
are a couple of components that make the coset sum wavelet
algorithm this fast. First, as we discussed in§IV-A (cf. (13)),
the wavelet masks of the coset sum wavelet system are
essentially univariate. Second, as we can see from the above
algorithms (cf. Step(iii)), the reconstruction step can be
done by completely bypassing the dual wavelet filters. This is
reminiscent of the Laplacian pyramid [43] (cf. Appendix B)
and its variant [42], which have trivial reconstruction steps
that are simply reverse processes of decomposition steps. As a
consequence, our algorithm inherits an asymmetry in the roles
of the lowpass filters from the Laplacian pyramid. Hence the
1-D lowpass filtersG and H in our fast coset sum wavelet
algorithm play different roles.

Remark 1. It is well known that any (MRA-based) biorthog-
onal wavelet system (associated with FIR filters) has decom-
position and reconstruction algorithms with linear complexity
(see, for example, [1], [29], [31], [35]). In fact, as we alluded
to earlier, our fast coset sum decomposition algorithm is
nothing but this generic decomposition algorithm for the given
canonical coset sum wavelet system. However, our fast coset
sum reconstruction algorithm is fundamentally different from
this generic reconstruction algorithm: the dual coset sum
wavelet filters (cf. (14)) that are not used for our reconstruction
algorithm are used for the generic one. As a result, our
canonical coset sum wavelet system in Theorem 2 has two
different algorithms (the fast coset sum wavelet algorithmand
the generic one) and the generic algorithm is always slower
than the fast coset sum wavelet algorithm.
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Remark 2. For any biorthogonal wavelet system, multiplying
the primal part with some constant factors and dividing the
dual part with the same factors will still make a biorthog-
onal wavelet system. As the functions in these two systems
differ only by constants, it is clear that the two systems are
essentially the same and most of their properties–including the
support and the smoothness–are kept the same.

For the above fast coset sum wavelet algorithms, this means
that the decomposition step can be rewritten with explicit
normalization factorsc, d > 0 as

ynewj−1 (k) = cyj−1(k), wnew
ν,j−1(k) = dwν,j−1(k)

whereyj−1(k), wν,j−1(k) are defined as in Step(i)-(ii),
and that the reconstruction step can be modified accordingly:
the expressions in the right-hand side of Step(iii)-(iv)
can be rewritten in terms of

1

c
ynewj−1 (k),

1

d
wnew

ν,j−1(k)

in place of yj−1(k), wν,j−1(k) that are currently used. In
this sense, our original fast coset sum wavelet algorithms can
be considered as a special case whenc = d = 1. These
normalizations are used throughout this paper except in§IV-C
(see the discussion below and the footnote in the subsection).

When normalization factors are used for the wavelet algo-
rithms, most properties of the algorithms are not affected.For
example, fast coset sum wavelet algorithms with normalization
factors will still have the linear complexity with the complexity
constant that is independent ofn. However the use of different
normalization factors may result in different performancein
practice [48]. For example, when the algorithms are used for
nonlinear approximation with multiple levels (cf.§IV-C), the
coefficients are multiplied by constant factors and these factors
propagate recursively to other coefficients in lower levelsand,
as a result, the use of normalization factors may change the
relative size of the coefficients.

Below we compare the fast tensor product wavelet algo-
rithms with the fast coset sum wavelet algorithms, both based
on the Deslauriers-Dubuc mask and its dual mask in§III-B.

Example 7: Fast tensor product wavelet algorithms vs. fast
coset sum wavelet algorithms.In this example, we compare
the algorithms for two different families ofn-D wavelet sys-
tems constructed from the same univariate refinement masks
by using two different methods: (I) the tensor product and (II)
the coset sum. We consider the same univariate refinement
masks as in Example 4 and 6, i.e.U2k (interpolatory) and
S2k as in (9) and (10), respectively. It is easy to see that the
number of nonzero entries of the filter associated withS2k is
α = 8k − 3, and the number of nonzero entries of the filter
associated withU2k is β = 2k + 1.

Then complexity constant for each algorithm is given as
follows:

(I) (Tensor Product Case) From§II-B, the complexity con-
stant for the fast tensor product algorithm is(α+β)n =
(10k − 2)n, which grows linearly with the dimension.

(II) (Coset Sum Case) From the above Complexity discus-
sion, the complexity constant for the fast coset sum

(a) Original image “part of lena”
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(b) PSNR of reconstructed image

(c) Reconstructed by tensor product (d) Reconstructed by coset sum

Fig. 11. Comparison of approximation power of tensor product and coset
sum for (a) original image “part of lena”:5-level-down decomposition and
reconstruction using3% largest coefficients. (c) The reconstructed image by
tensor product, PSNR= 25.7 dB. (d) The reconstructed image by coset
sum with Γ′ = {(1, 0), (0, 1), (1, 1)}, showing sharper edges and better
visual quality, with improved PSNR= 26.5 dB. (b) PSNR of reconstructed
images over different percentage of retained coefficients (0.5%-20%). This
experiment shows that the reconstructed images by coset sumhave higher
PSNR (solid blue), hence better approximation quality thanthose by tensor
product (dotted red) over the range0.5%-20% for image “part of lena”.

wavelet algorithm is32α+2β = 3
2 (8k−3)+2(2k+1) =

16k − 5
2 , which does notgrow with the dimension.

Therefore, remarkably, if we fixk (hence the number of
vanishing moments of the wavelet system) and increase the
dimensionn, then thecomplexity constant stays the same for
the coset sum case, whereas it increases for the tensor product
case.

C. Experiments

In this subsection we present some experimental results of
the canonical coset sum wavelet system, in comparison with
the tensor product wavelet system. We have implemented the
fast coset sum wavelet algorithms in Matlab. The program
takes a pair of1-D biorthogonal refinement filters as input
and works for2-D images. We compare our Matlab program
with the standard Matlab implementation of2-D fast tensor
product wavelet algorithms:wavedec2(for decomposition) and
waverec2(for reconstruction) in Wavelet Toolbox [49].4For
the experiments in this subsection, we use two different2-D

4When comparing the implementation of two different waveletsystems,
it is important to use the same normalization factors as theymay affect
the performance (cf. Remark 2 after Complexity discussion). Normalization
factorsc = d = 2 are used for implementing our coset sum wavelet system
since these are the normalization factors used for the tensor product Matlab
implementation when seen in terms of a2-D generalization of the related 1-D
concepts (i.e. the DC and Nyquist gains) [50].
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(a) Original image “wood45”
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Fig. 12. Comparison of approximation power of tensor product and
coset sum for (a) original image “wood45”:5-level-down decomposition and
reconstruction using3% largest coefficients. (c) The reconstructed image by
tensor product, with blurry recovered content and PSNR= 24.3 dB. (d) The
reconstructed image by coset sum withΓ′ = {(1, 0), (0, 1), (1, 1)}, showing
better approximation to the original image and better improved PSNR= 28.2
dB. (b) PSNR of reconstructed images over different percentage of retained
coefficients (0.5%-20%). The improvement of PSNR in this example is larger
than that in “part of lena” example due to the stronger directional content in
image “wood45”.

wavelet systems obtained from the same1-D filters,U4 (shown
in Figure 4) andS4 (shown in Figure 5), but using two differ-
ent methods, coset sum and tensor product. For the coset sum
wavelet system, we initially chooseΓ′ = {(1, 0), (0, 1), (1, 1)}
as the nonzero coset representatives. The two wavelet systems
constructed this way are discussed in Example 6, and the
complexity constants of their algorithms are compared in
Example 7.

We first compare the running time of the fast coset sum
wavelet algorithm with the fast tensor product wavelet algo-
rithm. We apply the two wavelet systems constructed as above
to test images, “part of lena”5 in Figure 11(a), and “wood45”6

in Figure 12(a), both of which have directional content along
the diagonal direction. Here, the diagonal direction, or45◦

from the positivex-axis, is chosen because it can highlight
the benefit of our coset sum wavelet system over the tensor
product wavelet system: it is one of the directions that may
be captured well by our coset sum system sincetan 45◦ = 1

1
and(1, 1) ∈ Γ′, while it is one of the directions that may not
be captured well by the tensor product system since it is not
a coordinate direction. Both are of size256 × 256, and we

5 This image is obtained from the image “lena” (512× 512) in the image
repository http://links.uwaterloo.ca/Repository.htmlby taking its central part
(of size256 × 256).

6 This image is obtained from the image “wood.000” (512 × 512) in the
SIPI Image Database http://sipi.usc.edu/database/database.php?volume=rotate
by rotating45◦ clockwise, and taking its central part (of size256× 256).

(a) Original image: “wood”

0 5 10 15 20
26

28

30

32

34

36

38

40

Retained coefficients (%)

P
S
N
R
 
i
n
 
d
B

 

 

Coset sum
Tensor product

(b) PSNR of reconstructed image
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Fig. 13. An example of image with multiple directions. Comparison of
approximation power of tensor product and coset sum for (a) original image
“wood”: 5-level-down decomposition and reconstruction using3% largest
coefficients. (c) The reconstructed image by tensor product, PSNR= 30.4 dB.
(d) The reconstructed image by coset sum withΓ′ = {(1, 0), (0, 1), (1, 1)},
PSNR= 31.4 dB. (b) PSNR of reconstructed images over different percentage
of retained coefficients (0.5%-20%).

perform5-level-down decomposition and reconstruction. The
running time for “part of lena” is about0.0279 seconds (s)
on average for tensor product algorithm and about0.0161 s
on average for coset sum algorithm, on a Mac 4G 1333MHz
laptop. The running time for “wood45” is about0.0283 s on
average for tensor product and about0.0162 s on average
for coset sum. We also tried several other images, both
with and without directional content, for various levels of
decomposition and reconstruction, and obtained essentially the
same results: the coset sum algorithms were faster than the
tensor product ones. These experiments confirm our theoretical
finding in the previous subsection (cf. Example 7).

We now compare the approximation power of these two
wavelet systems. For this, we first decompose a fixed image
using the two wavelet systems, then recover the image from the
M -largest decomposed coefficients (in magnitude), and finally
compare the Peak-Signal-to-Noise-Ratio (PSNR) of the two
reconstructed images. The reconstructed image with higher
PSNR indicates better approximation to the original image.For
the image “part of lena”, the reconstructed image using coset
sum system shows sharper edges along the diagonal direction
and better visual quality than those of tensor product system,
and has a slightly higher PSNR (Figure 11(a)(c)(d)). In this
experiment, we found that as long as the percentage of retained
coefficients is not too large, the coset sum system has slightly
higher PSNR (see Figure 11(b) for the range 0.5%-20%). For
higher percentage, the coset sum system showed either com-
parable or slightly worse performance. Another example using

http://links.uwaterloo.ca/Repository.html
http://sipi.usc.edu/database/database.php?volume=rotate
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(a) Reconstructed “part of lena” (b) Reconstructed “wood45” (c) Reconstructed “wood”

Fig. 14. Reconstructed images by curvelet from a5-level-down decomposition and retaining3% largest coefficients, for original images “part of lena” (Figure
11(a)), “wood45” (Figure 12(a)) and “wood” (Figure 13(a)).Experiments are done by using the wrapping-based method ([51]) implemented in CurveLab
Toolbox ([52]) with the default parameter setting. PSNR forreconstructed images are: (a)25.4 dB (b) 27.7 dB and (c)30.7 dB.

the texture image “wood45” is also presented (Figure 12).
The reconstructed image using coset sum system shows even
better performance in this example in terms of PSNR, which is
probably due to its stronger directional content. Contraryto the
previous experiment with “part of lena”, in this experiment,
the coset sum system showed consistently higher PSNR for
all the percentages. From this experiment, we see that coset
sum wavelet system shows promising results when applied to
images with strong directional content that matches with the
directions of the coset sum primal wavelet filters.

We recall that the directional preference of the coset sum
primal wavelet filters can be specified by the associated coset
representatives inΓ′. If a dominant direction of the given
image does not match with the preferred directions of the
coset sum, the coset sum wavelet system may no longer
perform well. In such a case, a different setΓ′ may be
used to match the image’s direction (cf. Remark 1 after
Definition 1 in§III-A). For example, if the dominant direction
is −60◦ from the positivex-axis, then sincetan(−60◦) =
−
√
3 ≈ 2

(−1) , the coset representative(−1, 2) can be used
in place of(1, 0) in the default nonzero coset representatives
Γ′ = {(1, 0), (0, 1), (1, 1)}.

For many images, it may not be possible to match the
directions of the image with the directions of the coset sum.
In order to see how the coset sum system would perform for
these images in comparison with the tensor product system,
we apply the two systems to the test image, “wood”7 in Fig-
ure 13(a). It has5 different directional content (25◦, 60◦, 95◦,
130◦ and165◦ from the positivex-axis), and it is impossible
for us to choose the nonzero coset representatives that match
all the directions presented in the image. The reconstructed
image using coset sum with the default coset representatives
shows sharper edges along the directions near45◦, such as
60◦ and 25◦, and better visual quality than those of tensor
product system, and has a slightly higher PSNR (see Figure
13(a)(c)(d)). For the directions that are significantly different
from the preferred directions of the coset sum, such as130◦,
it does not show sharp edges anymore, but the reproduced
image using tensor product does not show sharp edges either.

7This image is produced by overlying 5 rotated versions of theimage
“wood.000”, which is used to generate the image “wood45” in Figure 12(a),
and taking its central part (of size256 × 256).

We found that the overall PSNR result of this image is similar
to that of “part of lena”: the reconstructed image by coset
sum has slightly higher PSNR as long as the percentage of
retained coefficients is not too large (see Figure 13(b) for the
range 0.5%-20%), but for higher percentage it showed either
comparable or slightly worse performance.

We notice that in the reconstructed image in Figure 13(d)
certain directions are pronounced more strongly than others
despite that the original image in Figure 13(a) does not
have that characteristic. This is due to the lack of rotational
symmetry ([26]) of the coset sum refinable functions with
the default coset representatives (cf. Figure 6 and 9(a)). A
remedy for this can be obtained by choosing a setΓ′ that gives
(roughly) equi-angled directions. For example, whenn = 2, by
settingΓ′ = {(1, 1), (−4, 1), (1,−4)}, a rotational symmetry
can be roughly achieved as it gives equi-angled directions
45◦, 165◦, and 285◦ from the positivex-axis. However, in
general it is not easy to overcome the lack of rotational
symmetry of the coset sum refinable functions. For example,
if we use the above non-default choice ofΓ′ for C2[S4] and
C2[U4] in Example 4, our computation shows that the refinable
function associated withC2[S4] is still in L2(R2), but the
one associated withC2[U4] is not. Therefore obtaining coset
sum refinable functions that are inL2(Rn) with rotational
symmetry may not be always possible even for the case of
n = 2.

As a passing remark, we make a brief comment on com-
parison to the curvelet system [53], which is a state-of-the-
art system for representing 2-D and 3-D data effectively
using their geometric structure. Before presenting the image
experiments using curvelets, we note that any comparison
between the curvelet system and the coset sum wavelet system
should be made with care as they are very different in nature.
For one thing, the curvelet system is not a wavelet system
constructed by using a method that works for any multi-D,
which is our main interest in this paper. Besides, the curvelet
system is highly redundant and its fast algorithm is slower
than that of the tensor product and the coset sum system.

With all these in mind, we perform the curvelet transform
to the above test images using the Matlab implementation
(fdct wrapping.mfor decomposition andifdct wrapping.mfor
reconstruction) of 2-D discrete curvelets ([51]) in CurveLab
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Toolbox [52]. Even after fixing the decomposition level and
the percentage of retained coefficients, there are still some
parameters to be chosen in the curvelet codes, and the PSNR
of reconstructed images is quite sensitive to the choice of these
parameters. For reconstructed images using curvelet system
with the default parameter setting, the PSNR is either between
the PSNR of tensor product and that of coset sum (“wood45”
and “wood”), or slightly lower than the PSNR of tensor
product (“lena”) (see Figure 14). In terms of the visual quality,
the curvelet system is superior to the other two systems in both
capturing different directional content and keeping rotational
symmetry in an image (see Figure 14(c)), but it may add
some strong directional artifacts to the reconstructed image
(see Figure 14(a)(b)). We conclude that a complete comparison
between the coset sum system and the curvelet system requires
more thorough study on them.

V. SUMMARY AND OUTLOOK

In this paper we presented the coset sum as an alternative
method to the tensor product in constructing decomposable
multivariate refinement masks. The decomposable refinement
mask constructed by coset sum can be written as the sum,
instead of the product, of the univariate refinement masks.
We showed that the coset sum can provide many important
features of the tensor product, such as preserving the biorthog-
onality of the univariate refinement masks and the availability
of a wavelet system with fast algorithms.

Since the coset sum provides a way to obtain a pair of mul-
tivariate biorthogonal refinement masks, it can be combined
with any method for finding wavelet masks to construct a
(MRA-based biorthogonal) multivariate wavelet system. There
has been only limited progress in a systematic constructionof
non-tensor based multivariate wavelet systems. The coset sum
adds a new opportunity to this end.

By specifying wavelet masks as described in§IV-A, we
constructed a particular class of coset sum wavelet systems
that can be associated with fast algorithms. Such algorithms
are referred to as fast coset sum wavelet algorithms.

The fast tensor product wavelet algorithm has linear com-
plexity, but the constant in the complexity bound increases
as the spatial dimension increases. On the other hand, the
constant in the (linear) complexity bound for the fast coset
sum wavelet algorithm is independent of the dimension. Thus,
when the spatial dimension is high, the coset sum wavelet
algorithm can befaster than the tensor product wavelet algo-
rithm.

Coset sum is not necessarily the only alternative to the
tensor product. Rather, despite of its limitations in processing
images, its existence with desirable features suggests that it
may be worthwhile to develop and practice alternative methods
to the tensor product for constructing multivariate wavelet
systems.

APPENDIX

A. Proof of Theorem 1

1) Proof of part (a): SupposeH and h are the filters
associated with masksR and Cn[R]. If R is interpolatory,

it is straightforward to show thatCn[R] is interpolatory. If
Cn[R] is interpolatory, by (2),h(0) = 1, and h(k) = 0 if
k ∈ 2Zn\0. Then by (8),H(0) = 1. Moreover,H(K) = 0 at
all other even points, because ifH(K) 6= 0 at some even point
K ∈ 2Z\0, thenh(k) = H(K) 6= 0 at k = Kν ∈ 2Zn\0,
which contradicts to thatCn[R] is interpolatory. ThereforeR
is also interpolatory.

2) Proof of part (b): Without loss of generality, we may
assumeR̃ is interpolatory. We want to show that,Cn[R]
and Cn[R̃] are biorthogonal if and only ifR and R̃ are
biorthogonal.

Let Ro := (R−R(·+ π))/2 andRe := (R+R(·+ π))/2
be the odd and even parts ofR, respectively, and let̃Ro be
the odd part ofR̃. SinceR̃ is interpolatory, the even part of
R̃ is the constant1/2. It is easy to check∀ω1 ∈ T

Ro(ω1)R̃
o(ω1) =

1

2
− 1

2
Re(ω1)

⇐⇒ R andR̃ are biorthogonal.

Here, as before, the overline is used to denote the complex
conjugate.

We will also need the following identities:
∑

γ∈πΓ

e−iν·γ =

{

2n, if ν = 0,
0, if ν ∈ Γ′.

(15)

Then from the definition of the coset sum (cf. Definition 1, (6)
and (7)), biorthogonal condition (1), and the above identities
(15), we have

Cn[R] andCn[R̃] are biorthogonal

⇐⇒
∑

γ∈πΓ

(Cn[R]Cn[R̃])(ω + γ) = 1, ∀ω ∈ T
n

⇐⇒
(

1

2n−1

)2
∑

γ∈πΓ

(

−2n−1 +
∑

ν∈Γ

R((ω + γ) · ν)
)

·
(

1

2
+
∑

ν̃∈Γ′

(

R̃((ω + γ) · ν̃)− 1

2

)

)

= 1, ∀ω ∈ T
n

⇐⇒
∑

γ∈πΓ

(

1− 2n−1 +
∑

ν∈Γ′

eiγ·νRo(ω · ν) +
∑

ν∈Γ′

Re(ω · ν)
)

·
(

1

2
+
∑

ν̃∈Γ′

e−iγ·ν̃R̃o(ω · ν̃)
)

= (2n−1)2, ∀ω ∈ T
n

⇐⇒2n−1(1− 2n−1) + 2n−1
∑

ν∈Γ′

Re(ω · ν)

+2n
∑

ν∈Γ′

Ro(ω · ν)R̃o(ω · ν) = (2n−1)2, ∀ω ∈ T
n

⇐⇒Ro(ω1)R̃
o(ω1) =

1

2
− 1

2
Re(ω1), ∀ω1 ∈ T.

Therefore,Cn[R] andCn[R̃] are biorthogonal if and only ifR
and R̃ are biorthogonal.

3) Proof of part (c): Let R be a univariate interpolatory
refinement mask with accuracy numberm. First let us prove
the accuracy number ofCn[R] is at leastm. SinceR has
accuracy numberm,

(DkR)(π) = 0, ∀0 ≤ k ≤ m−1, and (DmR)(π) 6= 0. (16)
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Furthermore, sinceR is interpolatory,1−R(ω) = R(ω + π)
holds for allω ∈ T. Hence(Dk(1−R))(0) = (DkR)(π) for
all k ∈ N0 := N ∪ {0}. Thus1 −R has a zero of orderm at
the origin, i.e.

R(0)=1

(DkR)(0)=0, ∀1 ≤ k ≤ m− 1 (17)

(DmR)(0) 6=0.

Now consider then-D refinement maskCn[R]. The accuracy
number ofCn[R] is at least one, i.e.Cn[R](γ) = 0, for all
γ ∈ πΓ′. To see this, we need the dual identities of (15):

∑

ν∈Γ

e−iν·γ =

{

2n, if γ = 0,
0, if γ ∈ πΓ′.

(18)

From (18), we can read off

#{ν ∈ Γ′ : γ · ν ≡ π (mod 2πZ)} = 2n−1, (19)

for all γ ∈ πΓ′. In particular, the left-hand side of (19) is
independent ofγ. We then have for anyγ ∈ πΓ′

2n−1Cn[R](γ) = −2n−1 +
∑

ν∈Γ

R(γ · ν)

=1− 2n−1 +
∑

{ν∈Γ′:γ·ν≡0}

R(γ · ν) +
∑

{ν∈Γ′:γ·ν≡π}

R(γ · ν)

=0,

where ≡ in the second line is used to denote congruence
in modulo 2πZ, and the last equality is from the conditions
R(0) = 1, R(π) = 0 and the identity (19). Furthermore, for
all γ ∈ πΓ′ and for all µ ∈ Nn

0 with 1 ≤ µ ≤ m − 1
( µ := µ1 + · · ·+ µn)

(DµCn[R])(γ) =
1

2n−1

∑

ν∈Γ′

(Dµ[R(ω · ν)])|ω=γ

=
1

2n−1

∑

ν∈Γ′





n
∏

j=1

ν
µj

j



 (D µ R)(γ · ν) = 0,

where the last equality is from the identities (16) and (17).
Therefore the accuracy number ofCn[R] is at leastm.

Next we prove the accuracy number ofCn[R] is exactlym
by contradiction. Suppose the accuracy number ofCn[R] is
m+ l with l ≥ 1. Then

(DµCn[R])(γ) = 0,

∀γ ∈ πΓ′ and∀µ ∈ N
n
0 with 0 ≤ µ ≤ m+ l − 1.

Since the univariate interpolatoryR and the multivariate
interpolatoryCn[R] are connected as follows:

R(ω) = Cn[R](ω, 0, · · · , 0), ∀ω ∈ T,

we have(DkR)(π) = D(k,0,···,0)Cn[R](π, 0, · · · , 0) = 0 for
all 0 ≤ k ≤ m + l − 1. Hence the accuracy number ofR
is at leastm + l, which contradicts to the given assumption.
Therefore the accuracy number ofCn[R] has to bem.

B. Proof of Theorem 2

In this subsection we prove Theorem 2. In the proof we use
the concepts of Compression-Alignment-Prediction (CAP) and
Compression-Alignment-Modified-Prediction (CAMP) [54].
CAMP is a variant of CAP, and CAP is a generalization of the
Laplacian pyramid [43]. In particular, CAP without alignment
operator is the same as Laplacian pyramid. It is well known
that Laplacian pyramid has a trivial reconstruction algorithm of
reversing the steps in its decomposition algorithm. Both CAP
and CAMP are originally designed for the redundant wavelet
construction, and CAMP is introduced in order to achieve a
better space localization than CAP.

Given τ := Cn[S], τd := Cn[U ] with interpolatoryU , and
tν(ω) := e−iν·ωU(ω · ν + π), ω ∈ Tn, ν ∈ Γ′, we want
to show that there exist dual wavelet maskstdν(ω) such that
(τ, (tν)ν∈Γ′) and (τd, (tdν)ν∈Γ′) satisfy the MUEP conditions
in (3).

To show this, first let us construct another pair of wavelet
masks(τν)ν∈Γ and dual wavelet masks(τdν )ν∈Γ, which we
know for sure satisfy the MUEP conditions withτ andτd.

First extend the definition oftν by definingt0:

tν(ω) :=

{

1
2(1− τ(ω)), if ν = 0,

e−iν·ωU(ω · ν + π), if ν ∈ Γ′.

Then from [54] we know that

tν(ω) = 2
n
2
−1 · tCAMP

−ν (ω), ν ∈ Γ, (20)

wheretCAMP
ν is the CAMPlet mask in Section 2.3 of [54].

Furthermore by comparing the CAPlet masks in Lemma 2.2
of [54] with the CAMPlet masks, it is easy to see that they
are related as

tCAP
ν (ω)− tCAMP

ν (ω) =

{

0, if ν = 0,
f−ν(ω)t

CAMP
0 (ω), if ν ∈ Γ′,

(21)
where fν(ω) = e−iν·ω

∑

γ∈πΓ e
−iν·γτd(ω + γ). Here it is

necessary to point out thatfν is π-periodic, i.e.fν(ω + γ) =
fν(ω), for anyγ ∈ πΓ.

Now define(τν)ν∈Γ

τν(ω) := 2
n
2
−1tCAP

−ν (ω), ν ∈ Γ. (22)

Then since CAP without alignment operator is the same
as Laplacian pyramid, and Laplacian pyramid has a trivial
reconstruction, we know that with

τdν (ω) :=

{

21−n, if ν = 0,
21−ne−iν·ω, if ν ∈ Γ′,

(τ, (τν)ν∈Γ) and (τd, (τdν )ν∈Γ) satisfy the MUEP conditions.
Next, we start from the MUEP conditions of(τ, (τν)ν∈Γ)

and (τd, (τdν )ν∈Γ) to find our dual wavelet maskstdν . To do
that, we need three more identities. The first one is a simple
observation that can be obtained from (20), (21) and (22):

τν(ω)− tν(ω) =

{

0, if ν = 0,
fν(ω)t0(ω), if ν ∈ Γ′.

(23)

The second one can be derived from the interpolatory property
of τd and the identities (18):

τd0 (ω) +
∑

ν∈Γ′

fν(ω)τ
d
ν (ω) = 2τd(ω). (24)
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After defining gν(ω) := e−iν·ω
∑

γ∈πΓ e
−iν·γτ(ω + γ), the

third identity:

t0(ω) + 2−n
∑

ν∈Γ′

tν(ω)gν(ω) = 0 (25)

can be shown from the biorthogonality betweenτ andτd and
the identities (18). Finally from the above identities (23), (24)
and (25), with

δγ0 :=

{

1, if γ = 0,
0, if γ ∈ πΓ′,

we get

δγ0

=τ(ω + γ)τd(ω) + τ0(ω + γ)τd0 (ω) +
∑

ν∈Γ′

τν(ω + γ)τdν (ω)

=τ(ω + γ)τd(ω) + t0(ω + γ)τd0 (ω)

+
∑

ν∈Γ′

fν(ω + γ)t0(ω + γ) + tν(ω + γ)τdν (ω)

=τ(ω + γ)τd(ω)

+t0(ω + γ)

(

τd0 (ω) +
∑

ν∈Γ′

fν(ω + γ)τdν (ω)

)

+
∑

ν∈Γ′

tν(ω + γ)τdν (ω)

=τ(ω + γ)τd(ω) + t0(ω + γ)2τd(ω) +
∑

ν∈Γ′

tν(ω + γ)τdν (ω)

=τ(ω + γ)τd(ω)

+

(

t0(ω + γ) + 2−n
∑

ν∈Γ′

tν(ω + γ)gν(ω + γ)

)

2τd(ω)

−2−n
∑

ν∈Γ′

tν(ω + γ)gν(ω + γ)2τd(ω)

+
∑

ν∈Γ′

tν(ω + γ)τdν (ω)

=τ(ω + γ)τd(ω)− 21−n
∑

ν∈Γ′

tν(ω + γ)gν(ω + γ)τd(ω)

+
∑

ν∈Γ′

tν(ω + γ)τdν (ω)

=τ(ω + γ)τd(ω)

+
∑

ν∈Γ′

tν(ω + γ)
(

−21−ngν(ω)τ
d(ω) + τdν (ω)

)

.

Therefore, by lettingtdν := −21−ngντ
d + τdν , we find the

dual wavelet maskstdν , ν ∈ Γ′, such that(τ, (tν)ν∈Γ′) and
(τd, (tdν)ν∈Γ′) satisfy the MUEP conditions.

C. Proof of the identity in Step(iii) of the coset sum
algorithm in §IV-B

In this subsection we verify the identity in Step(iii) of
Reconstruction Algorithm in§IV-B. We use the same notation
as in the algorithm. In particular,G andH are univariate re-
finement filters associated with biorthogonal refinement masks
S andU , respectively, andH is interpolatory.

From Step(i) of the algorithm in§IV-B, we know that,
with aG = 2n − (2n − 1)(2 −G(0)),

aG yj(2k)=2nyj−1(k)−
∑

ν∈Γ′

∑

L∈Z\0

G(L)yj(2k + Lν)

=2nyj−1(k)−
∑

ν∈Γ′

∑

L≡1

G(L)yj(2k + Lν)

−
∑

ν∈Γ′

∑

L≡0,L 6=0

G(L)yj(2k + Lν) (26)

where≡ is used to denote congruence in modulo2Z. Since the
masksS andU are biorthogonal, from (1) and the connection
between the filter and the mask, it is easy to see that the
associated filtersG andH satisfy the following condition:

∑

m∈Z

G(L +m)H(m) =

{

0, if L ≡ 0, L 6= 0,
2, if L = 0.

Combining this with the fact thatH is interpolatory leads to

∑

m≡1

G(L +m)H(m) =

{

0−G(L), if L ≡ 0, L 6= 0,
2−G(0), if L = 0.

From this and the change of variables, we see that
∑

ν∈Γ′

∑

L≡0,L 6=0

G(L)yj(2k + Lν)

=
∑

ν∈Γ′

∑

L≡0,L 6=0

(

0−
∑

m≡1

G(L +m)H(m)

)

yj(2k + Lν)

=−
∑

ν∈Γ′

∑

m≡1

∑

L≡0

G(L+m)H(m)yj(2k + Lν)

+
∑

ν∈Γ′

∑

m≡1

G(m)H(m)yj(2k)

=−
∑

ν∈Γ′

∑

m≡1

∑

n≡1

G(n)H(m)yj(2k + (n−m)ν)

+(2n − 1)(2−G(0))yj(2k)

=−
∑

ν∈Γ′

∑

L≡1

∑

m≡1

G(L)H(m)yj(2k + (L−m)ν)

+(2n − 1)(2−G(0))yj(2k)

By substituting this result to (26) and solving foryj(2k), we
obtain

yj(2k) = yj−1(k)−
1

2n−1

∑

ν∈Γ′

∑

L∈Z

G(2L+ 1)wν,j−1(k + Lν)

as desired.
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[5] J. Kovačević and M. Vetterli, “Nonseparable two- and three-dimensional
wavelets,”IEEE Trans. Signal Processing, vol. 43, no. 5, pp. 1269–1273,
1995.

[6] C. A. Micchelli and Y. Xu, “Reconstruction and decomposition algo-
rithms for biorthogonal multiwavelets,”Multidimensional Systems and
Signal Processing, vol. 8, pp. 31–69, 1997.

[7] S. D. Riemenschneider and Z. Shen, “Multidimensional interpolatory
subdivision schemes,”SIAM J. Numer. Anal., vol. 34, pp. 2357–2381,
1997.

[8] W. He and M.-J. Lai, “Construction of bivariate compactly supported
biorthogonal box spline wavelets with arbitrarily high regularities,” Appl.
Comput. Harmon. Anal., vol. 6, pp. 53–74, 1999.

[9] H. Ji, S. D. Riemenschneider, and Z. Shen, “Multivariatecompactly
supported fundamental refinable functions, duals and biorthogonal
wavelets,”Stud. Appl. Math., vol. 102, pp. 173–204, 1999.

[10] M. Salvatori and P. M. Soardi, “Multivariate compactlysupported
biorthogonal spline wavelets,”Annali di Matematica, vol. 181, no. 2,
pp. 161–179, 2002.

[11] Q. Chen, C. A. Micchelli, S. Peng, and Y. Xu, “Multivariate filter banks
having matrix factorizations,”SIAM J. Matrix Anal. Appl., vol. 25, pp.
517–531, 2003.

[12] Q. Chen, C. A. Micchelli, and Y. Xu, “Biorthogonal multivariate filter
banks from centrally symmetric matrices,”Linear Algebra and its
Applications, vol. 402, pp. 111–125, 2005.

[13] Z. He, X. You, and Y. Yuan, “Texture image retrieval based on non-
tensor product wavelet filter banks,”Signal Process., vol. 89, pp. 1501–
1510, 2009.

[14] G. Quellec, M. Lamard, G. Cazuguel, B. Cochener, and C. Roux, “Adap-
tive nonseparable wavelet transform via lifting and its application to
content-based image retrieval,”IEEE Trans. Image Processing, vol. 19,
no. 1, pp. 25–35, 2010.

[15] X. You, L. Du, Y. Cheung, and Q. Chen, “A blind watermarking scheme
using new nontensor product wavelet filter banks,”IEEE Trans. Image
Processing, vol. 19, no. 12, pp. 3271–3284, 2010.

[16] Z. Zhang, “A new method of constructions of non-tensor product
wavelets,”Acta Appl. Math., vol. 111, pp. 153–169, 2010.

[17] D. B. H. Tay and N. G. Kingsbury, “Flexible design of multidimen-
sional perfect reconstruction FIR 2-band filters using transformations of
variables,” IEEE Trans. Image Processing, vol. 2, no. 4, pp. 466–480,
1993.

[18] S.-M. Phoong, C. W. Kim, P. P. Vaidyanathan, and R. Ansari, “A new
class of two-channel biorthogonal filter banks and wavelet bases,”IEEE
Trans. Signal Processing, vol. 43, no. 3, pp. 649–665, 1995.

[19] R. H. Bamberger and M. J. T. Smith, “A filter bank for the directional
decomposition of images: theory and design,”IEEE Trans. Signal
Processing, vol. 40, no. 4, pp. 882–893, 1992.

[20] I. A. Shah and A. A. C. Kalker, “Theory and design of multidimen-
sional QMF sub-band filters from 1-D filters and polynomials using
transforms,”Communications, Speech and Vision, IEE Proceedings I,
vol. 140, no. 1, pp. 67–71, 1993.

[21] R. Ansari and C.-L. Lau, “Two-dimensional IIR filters for exact recon-
struction in tree-structured sub-band decomposition,”Electronics Letters,
vol. 23, no. 12, pp. 633–634, 1987.

[22] T. A. C. M. Kalker and I. A. Shah, “A group theoretic approach to
multidimensional filter banks: theory and applications,”IEEE Trans.
Signal Processing, vol. 44, no. 6, pp. 1392–1405, 1996.

[23] J. M. Shapiro, “Adaptive McClellan transformations for quincunx filter
banks,” IEEE Trans. Signal Processing, vol. 42, no. 3, pp. 642–648,
1994.

[24] Y. Hur and A. Ron, “New constructions of piecewise-constant wavelets,”
Electronic Transactions on Numerical Analysis, vol. 25, pp. 138–157,
2006.

[25] ——, “L-CAMP: Extremely local high-performance wavelet represen-
tations in high spatial dimension,”IEEE Trans. Inform. Theory, vol. 54,
pp. 2196–2209, 2008.

[26] Rajan, P. and Reddy, H. and Swamy, M., “Fourfold rotational symmetry
in two-dimensional functions,”Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 30, no. 3, pp. 488–499, 1982.

[27] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli,Stationary subdivi-
sion. Memoirs of Amer. Math. Soc., 1991, vol. 93.

[28] B. Han and R.-Q. Jia, “Optimal interpolatory subdivision schemes in
multidimensional spaces,”SIAM J. Numer. Anal., vol. 36, pp. 105–124,
1999.

[29] G. Strang and T. Nguyen,Wavelets and Filter Banks. Wellesley:
Wellesley-Cambridge Press, 1997.

[30] A. Ron and Z. Shen, “Affine systems inL2(Rd) II: dual systems,”J.
Fourier Anal. Appl., vol. 3, no. 5, pp. 617–637, 1997.

[31] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of
compactly supported wavelets,”Comm. Pure Appl. Math., vol. 45, no. 5,
pp. 485–560, 1992.

[32] Y. Hur and A. Ron, “High-performance very local Riesz wavelet bases of
L2(Rn),” SIAM Journal on Mathematical Analysis, vol. 44, pp. 2237–
2265, 2012.

[33] D.-R. Chen, B. Han, and S. D. Riemenschneider, “Construction of
multivariate biorthogonal wavelets with arbitrary vanishing moments,”
Adv. Comput. Math., vol. 13, no. 2, pp. 131–165, 2000.

[34] Y. Meyer, Wavelets and Operators. Cambridge: Cambridge University
Press, 1992.

[35] S. G. Mallat,A Wavelet Tour of Signal Processing. San Diego, CA:
Academic Press, 1999.

[36] B. Han, “Analysis and construction of optimal multivariate biorthogonal
wavelets with compact support,”SIAM Journal on Math. Analysis,
vol. 31, pp. 274–304, 2000.

[37] M. Nielsen, “On polynomial symbols for subdivision schemes,” Adv.
Comput. Math, vol. 27, pp. 195–209, 2007.
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