
IEEE TRANSACTIONS ON INFORMATION THEORY 1

Tree-Structure Expectation Propagation for LDPC
Decoding over the BEC

Pablo M. Olmos, Juan José Murillo-Fuentes, and Fernando Pérez-Cruz

Abstract—We present the tree-structure expectation propa-
gation (Tree-EP) algorithm to decode low-density parity-check
(LDPC) codes over discrete memoryless channels (DMCs). EP
generalizes belief propagation (BP) in two ways. First, it can be
used with any exponential family distribution over the cliques in
the graph. Second, it can impose additional constraints on the
marginal distributions. We use this second property to impose
pair-wise marginal constraints over pairs of variables connected
to a check node of the LDPC code’s Tanner graph. Thanks to
these additional constraints, the Tree-EP marginal estimates for
each variable in the graph are more accurate than those provided
by BP. We also reformulate the Tree-EP algorithm for the binary
erasure channel (BEC) as a peeling-type algorithm (TEP) and we
show that the algorithm has the same computational complexity
as BP and it decodes a higher fraction of errors. We describe
the TEP decoding process by a set of differential equations that
represents the expected residual graph evolution as a function
of the code parameters. The solution of these equations is used
to predict the TEP decoder performance in both the asymptotic
regime and the finite-length regime over the BEC. While the
asymptotic threshold of the TEP decoder is the same as the
BP decoder for regular and optimized codes, we propose a
scaling law (SL) for finite-length LDPC codes, which accurately
approximates the TEP improved performance and facilitates its
optimization.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are well known
channel capacity-approaching (c.a.) linear codes. In his

PhD [1], Gallager proposed LDPC codes along with linear-
time practical decoding methods, among which the belief
propagation (BP) algorithm plays a fundamental role. BP was
later redescribed and popularized in the articial intelligence
community to perform approximate inference over graphical
models, see for instance [2], [3], [4]. Given a factor graph
that represents a joint probability density function (pdf) p(V)
of a set of discrete random variables [5], BP estimates the
marginal probability function for each variable. It uses a local
message-passing algorithm between the nodes of the graph.
The complexity of this algorithm is linear in the number of
nodes [2]. For tree-like graphs, the BP solution is exact, but
for graphs with cycles, BP is strictly suboptimal [6], [7], [8].

Linear block codes can be represented using factor (Tanner)
graphs [9], where the factor nodes enforce the parity check

This work was partially funded by Spanish government (Ministerio de
Educación y Ciencia, TEC2009-14504-C02-01,02, Consolider-Ingenio 2010
CSD2008-00010), Universidad Carlos III (CCG10-UC3M/TIC-5304) and
European Union (FEDER).

P. M. Olmos and F. Pérez-Cruz are with Dept. Teorı́a de la Señal y
Comunicaciones, Universidad Carlos III de Madrid (Spain). E-mail: {olmos,
fernando}@tsc.uc3m.es

J.J. Murillo-Fuentes is with the Dept. Teorı́a de la Señal y Comunicaciones,
Escuela Técnica Superior de Ingenierı́a, Universidad de Sevilla, Paseo de los
Descubrimientos s/n, 41092 Sevilla, Spain. E-mail: murillo@us.es

constraints. For LDPC codes, the presence of cycles in the
Tanner graph quickly decays with the code length n. For
large block lengths, a channel decoder based on BP achieves
an excellent performance, close to the bitwise maximum a
posteriori (bit-MAP) decoding, in certain scenarios [3], [10].
Nevertheless, the bit-MAP solution can only be achieved when
the code length, code density and computational complexity
go to infinity [11], [12], [13].

The analysis of the BP for LDPC decoding over independent
and identically distributed channels is detailed in [14], [15],
in which the limiting performance and code optimization
are addressed. For the binary erasure channel (BEC), the
BP decoder presents an alternative formulation, in which the
known variable nodes (encoded bits) are removed from the
graph after each iteration. The BP, under this interpretation,
is referred to as the peeling decoder (PD) [11]. In [16], the
authors investigate the PD limiting performance by describing
the expected LDPC graph evolution throughout the decoding
process by a set of differential equations. The asymptotic per-
formance for the BP decoder is summarized in the computation
of the so-called BP threshold [10], [11], [16], [17], which
defines the limit of its decodable region for an LDPC code.

The analysis of BP decoding performance in the finite-
length regime is based on the evaluation of the presence
of stopping sets (SSs) in the LDPC graph [14], which can
severely degrade the decoder performance. In [14], [18], the
authors provide tools to compute the exact BP average perfor-
mance. However, this task becomes computationally challeng-
ing if the degree of irregularity or block length increases [11].
Alternatively, we can separate the contributions to the error
rate of large-size errors, which dominate in the waterfall region
[19], from small failures, which cause error floors [14]. Scaling
laws (SLs) were proposed in [19], [20] to accurately predict
the BP performance in the waterfall region. For the BEC, they
are based on the PD covariance evolution for a given graph
as a function of the code length. Covariance evolution was
solved for any LDPC ensemble in [21]. On the other hand,
the analysis of the error floor is addressed by determining
the dominant terms of the code weight distribution [14], [18].
Precise expressions for the asymptotic bit-MAP and BP error
floor are derived in [1], [22], [23].

Expectation propagation (EP) [24] can be understood as a
generalization of BP to construct tractable approximations of
a joint pdf p(V). Consider the set of all possible probability
distributions in a given exponential family that map over
the same factor graph. EP minimizes within this family the
inclusive Kullback-Leibler (KL) divergence [25] with respect
to p(V). In [24], [26], it is shown that BP can be re-
formulated as EP by considering a discrete family of pdfs

ar
X

iv
:1

20
1.

07
15

v3
 [

cs
.I

T
]

 1
3

A
ug

 2
01

2

IEEE TRANSACTIONS ON INFORMATION THEORY 2

that factorizes as the product of single-variable multinomial
terms, i.e. q(V) = q1(V1)q2(V2) . . . qn(Vn). EP generalizes
BP in two ways: first, it is not restricted to discrete random
variables. And second, EP naturally formulates to include
more versatile approximating factorizations [27], [28]. In this
paper, we focus on EP to construct a Markov tree-structure
to approximate the original graph. Conditional factors in the
tree-structure are able to capture pairwise interactions that
single factors neglect. We refer to this algorithm as tree-
structure expectation propagation (Tree-EP). We borrow from
the theoretical framework of the Tree-EP algorithm to design a
new decoding approach to decode LDPC codes over discrete
memoryless channels (DMCs) and we analyze the decoder
performance for the BEC.

For the erasure channel, we show that the Tree-EP can
be reinterpreted as a peeling-type algorithm that formulates
as an improved PD. We refer to this simplified algorithm as
the TEP decoder. The TEP decoder was presented in [29],
[30], where we empirically observed a noticeable gain in
performance compared to BP for both regular and irregular
LDPC codes. We now explain, analyze and predict this gain
in performance for any LDPC code. First, we extend to the
TEP decoder the methodology proposed in [16] to evaluate
the expected graph evolution of the LDPC’s Tanner graph. As
the block size increases, we show the conditions for which
the TEP decoder could improve the BP decoder. Nevertheless,
for typical LDPC ensembles the TEP decoder is not able to
improve the BP solution. In the second part of the paper, we
concentrate on practical finite-length codes and we explain
the gain provided by the TEP decoder compared to BP.
Based on empirical evidence, we propose a SL to predict
the TEP performance for any given LDPC ensemble in the
waterfall region, which captures the gain in performance that
the TEP achieves with respect to BP for finite-length LDPC
codes. Furthermore, the SL can be used for TEP-oriented
finite-length codes optimization. Finally, we also prove that
the decoder complexity is of the same order than BP, i.e.
linear in the number of variables, unlike other techniques
proposed to improve BP at a higher computational cost. For
instance, we can mention variable guessing algorithms [31],
the Maxwell decoder [12] and pivoting algorithms for efficient
Gaussian elimination [32], [33], [34], whose complexity is
not linear unless we impose additional restrictions that may
alter/compromise their performance, such as bounding the
number of guessed variables or pivots.

The rest of the paper is organized as follows. Section II
is devoted to introducing the Tree-EP algorithm for block
decoding over DMCs. In Section III, we particularize the
algorithm for the BEC, yielding the TEP decoder. In Sec-
tion IV, we derive the differential equations that describe the
decoder behavior for a given LDPC graph and we investigate
its asymptotic behavior as well as the algorithm’s complexity.
In Section V, we describe the scaling law proposed to approx-
imate the TEP finite-length performance for a given LDPC
ensemble in the waterfall region. We conclude the paper in
Section VI.

II. TREE-EP FOR LDPC DECODING LDPC OVER
MEMORYLESS CHANNELS

Consider an LDPC binary code C with parity check matrix
H, of dimensions k × n, where k = n(1 − r), n is the code
length and r the rate of the code. By definition, any vector v
in Fn

2 belongs to the code C as long as vH> = 0, where Fn
2 is

the n-dimensional binary Galois field. Each row of H therefore
imposes an even parity constraint on a subset of variables:

Cj(v)
.
= 1

∑
i∈Ij

vi mod 2 = 0

 ∀j = 1, . . . , k; (1)

where vi is the i-th component of v, Ij is the set of positions
where the j-th row of H is one and 1[·] is a boolean operator,
which takes value one if the condition in its argument is
verified. Note that, given the definition in (1), we can write
1[v ∈ C] = C1(v)C2(v) . . . Ck(v).

Assume that an unknown codeword is transmitted through
a discrete memoryless channel [25] and let y ∈ A(y) be
the observed channel output, where A(y) is the channel
output alphabet. A bit-MAP decoder [35] minimizes the bit
error rate (BER) by estimating the transmitted vector v̂ =
[v̂1, v̂2, . . . , v̂n] as follows1:

v̂u = arg max
v∈{0,1}

p(Vu = v|y) = arg max
v∈{0,1}

∑
V∈C:Vu=v

p (V|y)

= arg max
v∈{0,1}

∑
V∈C:Vu=v

p (y|V) p(V)

= arg max
v∈{0,1}

∑
V:Vu=v

n∏
i=1

p(yi|Vi)
k∏
j=1

Cj(V) (2)

for u = 1, . . . , n, where we have assumed that the channel is
memoryless and that all codewords are equally probable

p(V) =
1[V ∈ C]

2nr
. (3)

For most LDPC codes of interest, the factor graph associated
to the product p (y|V) p(V) in (2) yields a graph with
cycles [36]. Hence, the exact computation of the marginals
of p(Vu = v|y) grows exponentially with the number of
coded bits [6]. Belief propagation [1], [2], [3] is nowadays the
standard algorithm to efficiently solve this problem in coding
applications, because accurate estimates for each marginal are
obtained at linear cost with n. Besides, BP can be cast as an
approximation of p (V|y) in (2) by a complete disconnected
factor graph, i.e.

p(V|y) ∝
n∏
i=1

p(yi|Vi)
k∏
j=1

Cj(V) ≈
n∏
i=1

q̂i,BP(Vi), (4)

where q̂i,BP(Vi) is the BP estimate for the i-th variable [6],
[37], [38].

1In the following, we use lower case letters to denote a particular realization
of a random variable or vector, e.g V = v means that V takes the v value.

IEEE TRANSACTIONS ON INFORMATION THEORY 3

A. Tree-EP algorithm for LDPC decoding

The Tree-EP algorithm [27], [39] improves BP decoding
because it approximates the posterior p (V|y) in (2) with a
tree (or forest) Markov-structure between the variables, i.e.:

q(V) =

n∏
i=1

qi(Vi|Vpi), (5)

where the set of pairs {(i, pi)ni=1} forms a tree graph over the
original set of variables nodes and qi(Vi|Vpi) approximates the
conditional probability p(Vi|Vpi ,y). For some variable nodes
Vpi might be missing, i.e. pi is empty, and we use single-
variable factors qi(Vi) to approximate them.

Using the approximation in (5), the complexity of the
marginalization in (2) is linear with the number of variables.
In [39], it is shown that the approximation in (5) provides
more accurate estimates for the marginals of p(Vu|y) than
BP, since it captures information about the joint marginal of
pairs of variables that are then propagated through the graph.
Indeed, note that the factorization in (4) is just a particular
case of (5), because EP converges to the same solution as the
BP [24], [26], when we consider a completely disconnected
graph, i.e. pi = ∅ ∀i.

Consider a family of discrete probability distributions that
factorize according to (5), denoted hereafter by Ftree. The
optimal choice for q(V) ∈ Ftree, denoted by q̂(V), is such
that it minimizes the inclusive KL divergence2 with p(V|y):

q̂(V) = arg min
q(V) ∈ Ftree

DKL

(
p(V|y)||q(V)

)
. (6)

The next lemma, first proved in [40], states that the reso-
lution of the problem in (6) is as complex as the bit-MAP
decoding problem in (2). In both cases we have to perform
exact marginalization over the posterior distribution p(V|y).

Lemma 1: (Moment matching for inclusive KL-divergence
minimization). Consider a set of discrete random variables
V with joint pdf p(V). Let F∗ be a family of probability
distributions that share a common factorization:

q(V) ∈ F∗ ⇔ q(V) =

L∏
i=1

qi(Vi), (7)

for some normalized functions qi(Vi), where Vi is a subset
of V, for i = 1, . . . , L. Under these conditions, the function
q̂(V) in F∗ such that

q̂(V) = arg min
q(V) ∈ F∗

DKL

(
p(V)||q(V)

)
(8)

is constructed as follows:

q̂i(Vi) =
∑

V∼Vi

p(V), i = 1, . . . , L (9)

q̂(V) =

L∏
i=1

q̂i(Vi), (10)

2We refer to the inclusive KL divergence with respect to p when we
minimize DKL(p||q) and to the exclusive KL divergence when we minimize
DKL(q||p), which is the one used for mean-field approximations, see [39]
for a discussion.

where V ∼ Vi denotes all the variables in V except those in
Vi.

Proof: The proof of this lemma can be found in [40],
[41]. �

Lemma 1 can be directly applied to the problem in (6) and
the optimum Markov-tree q̂(V) is such that

q̂i(Vi|Vpi) =

∑
V∼{Vi,Vpi

}
p(V|y)

∑
V∼Vpi

p(V|y)
= p(Vi|Vpi ,y) (11)

for i = 1, . . . , n and

q̂(V) =

n∏
i=1

q̂i(Vi|Vpi). (12)

The marginal computation in (11) is of the same complexity
order as (2). Lemma 1 only provides the conditions to find the
distribution q̂(V) in the family Ftree that is optimum in the
sense of (6). A different problem arises from the optimization
of the family Ftree itself, namely how we choose the parent
variables Vpi , to achieve the highest accuracy for the least
cost. As discussed in [39], while determining the cost of a
given choice is straightforward, estimating the accuracy for
each case is a non-trivial problem that highly depends on the
distribution p(V) and the application at hand. In our case,
the analysis of the Tree-EP decoder for the erasure channel in
Section III provides the intuition to construct the family Ftree
for any DMC. To describe the implementation of the Tree-EP
algorithm, in the following we assume fixed the family Ftree.

The Tree-EP algorithm overcomes this problem by iter-
atively approaching q̂(V) as follows. Define q`(V) as the
EP approximation to q̂(V) at the end of the `-th iteration
and let q∞(V) ≈ q̂(V) be the Tree-EP solution after con-
vergence3. Let w`z,j(Vz, Vpz) be non-negative real functions,
with z = 1, . . . , n and j = 1, . . . , k, that are updated at each
iteration so that

Cj(V) ≈W `
j (V) =

n∏
z=1

w`z,j(Vz, Vpz), (13)

Thus, the Tree-EP approximation to the posterior p(V|y) at
iteration `, i.e q`(V), is constructed as follows:

q`(V) =

n∏
z=1

q`z(Vz|Vpz)

.
=

n∏
z=1

p(yz|Vz)
k∏
j=1

W `
j (V)

=

n∏
z=1

p(yz|Vz) k∏
j=1

w`z,j(Vz, Vpz)

 . (14)

The Tree-EP is described in Algorithm 1. At iteration `,
only the m-th factor, W `

m(V), is refined. In Step 7 we replace
W `−1
m (V) by the true value Cm(V) in the q`−1(V) function.

The resulting function is denoted by f(V, `,m). Then, by

3EP as BP might not converge for loopy graphs [39].

IEEE TRANSACTIONS ON INFORMATION THEORY 4

Lemma 1, in Steps 8 to 10 we compute q`(V) as the solution
of the following problem

q`(V) = arg min
q(V) ∈ Ftree

DKL

(
f(V, `,m)||q(V)

)
. (15)

At this point, the TEP solution becomes suboptimal with
respect to (6) but tractable: the computation of the marginals
q(Vi|Vpi) for i = 1, . . . , n over f(V, `,m) in (20) and (21) can
be performed efficiently. Let us first express the factorization
of f(V, `,m) in a more convenient way:

f(V, `,m) = Cm(V)
q`−1(V)

W `−1
m (V)

= Cm(V)

n∏
z=1

p(yz|Vz)
k∏
j=1
j 6=m

W `−1
j (V)

= Cm(V)

n∏
z=1

g`−1,mz (Vz, Vpz), (16)

where we have introduced the following auxiliary functions

g`−1,mz (Vz, Vpz)
.
= p(yz|Vz)

k∏
j=1
j 6=m

w`−1z,j (Vz, Vpz). (17)

Therefore, the marginalization of (16) in (20) yields

q(Vi, Vpi) =
∑

V∼{Vi,Vpi
}
Cm(V)

n∏
z=1

g`−1,mz (Vz, Vpz). (18)

As in (13), the product
∏n
z=1 g

`−1,m
z (Vz, Vpz) maps over

the same factor graph than the tree structure chosen in (5).
Therefore, the presence of cycles in the factor graph of
f(V, `,m) is due to the parity factor Cm(V). The graph is
cycle-free as long as, among the variables connected to the
parity check node Cm(V), none of them are linked by a
conditional term q(Vi|Vpi) in (5), as illustrated in Fig. 1(a).
Otherwise the graph presents cycles, as shown in Fig. 1(b).
These cycles play a crucial role in understanding why the
Tree-EP algorithm outperforms the BP solution. In the first
case, the marginal computation in (20) is solved at linear cost
by message-passing. For the latter, where the graph is not
completely cycle-free, we can compute the pairwise marginals
using Pearl’s cutset conditioning algorithm [27], [42].

Pearl’s algorithm proceeds by breaking each cycle assuming
a set of the variables involved as known, e.g. Vo in Fig.
1(b). Then, the marginals of the remaining variables can
be computed at low-cost by message-passing. The overall
complexity of this method is exponential with the number of
assume-observed variables. However, we prove that for the
BEC the complexity of the Tree-EP algorithm is linear with
the number of variables, i.e. of the same order as BP.

III. TREE-EP DECODING FOR THE BEC
For the BEC, the likelihood function for a particular variable

Vi, p(yi|Vi), provides a complete description about its value
when it has not been erased:

p(yi = 1|Vi = 1) = 1− ε, p(yi = 1|Vi = 0) = 0, (23)
p(yi = 0|Vi = 1) = 0, p(yi = 0|Vi = 1) = 1− ε. (24)

Algorithm 1 Tree-EP algorithm for a predefined tree structure.
1: ` = 0.
2: Initialize W 0

j (V) = 1 for j = 1, . . . , k.

3: Initialize q0(V) =

n∏
i=1

p(yi|Vi).

4: repeat
5: ` = `+ 1.
6: Chose a W `

m(V) to refine: m = mod(`, k).
7: Remove W `−1

m (V) from q`−1(V) and include the true
term Cm(V):

f(V, `,m)
.
= Cm(V)

q`−1(V)

W `−1
m (V)

. (19)

8: Compute q`i (Vi, Vpi) and q`i (Vi) for i = 1, . . . , n:

q`i (Vi, Vpi) ∝
∑

V∼{Vi,Vpi
}
f(V, `,m), (20)

q`i (Vi) =
∑
Vpi

q`i (Vi, Vpi). (21)

9: Compute q`i (Vi|Vpi) =
q`i (Vi, Vpi)

q`i (Vpi)
for i = 1, . . . , n.

10: q`(V) =

n∏
i=1

q`i (Vi|Vpi).

11: Compute w`i,m(Vi, Vpi) from q`(V). By (14),

w`i,m(Vi, Vpi) =
q`i (Vi|Vpi)

p(yi|Vi)
k∏
j=1
j 6=m

w`−1i,j (Vi, Vpi)

(22)

for i = 1, . . . , n.

12: W `
m(V) =

n∏
i=1

w`i,m(Vi, Vpi).

13: until all W `
j (V), j = 1, . . . , k, converge.

14: q̂(V) ≈ q∞(V).

In this case, we say that the variable is known. Otherwise,
when the variable is erased, the likelihood function for this
variable is constant and the uncertainty about its value is
complete:

p(yi = ?|Vi = 1) = p(yi = ?|Vi = 0) = ε. (25)

This two-state behavior of the likelihood function makes
the pairwise marginal functions q`i (Vi, Vpi) in (18) and (20)
alternate between just four states, depending on what we
know about these variables at the end of the `-th iteration.
Furthermore, we can describe a finite set of scenarios for
which q`i (Vi, Vpi) might alternate between these states. This
result is used later to propose a simplified reformulation of the
decoding algorithm. Let us detail the possible outcomes and
cases of interest by running the algorithm at different times,
after initialization.

IEEE TRANSACTIONS ON INFORMATION THEORY 5

VoVr. . .

Cm(V)

. . .Vp

g`�1,m
p (Vp)

Vs

g`�1,m
s (Vs)

g`�1,m
r (Vr, Vo)

(a)

Vo

g`�1,m
p (Vp)

Vs

g`�1,m
s (Vs)

Vr. . .

g`�1,m
r (Vr, Vo)

Cm(V)

. . .Vp

(b)

Fig. 1. Example of factor graph associated to f(V, `,m). In (a), the graph
is cycle free since Cm does not connect any variable Vi with its parent Vpi .
In (b), the graph has a cycle since both Vr and Vpr = Vo belong to Im.

Iteration ` = 1. In Step 7, we compute

f(V, ` = 1,m = 1) = C1(V)

n∏
z=1

p(yz|Vz), (26)

where the likelihood terms p(yz|Vz) for z = 1, . . . , n take
the form (23)-(25). Over (26), we compute the marginals
of {(Vi, Vpi)ni=1}. For any pair (Vi, Vpi), we observe the
following scenarios:

• If Vi and Vpi have not been erased, then marginalization
yields:

q1i (Vi, Vpi) ∝ p(yi|Vi)p(ypi |Vpi)
= 1 [Vi = v1, Vpi = v2] , (27)

where v1 and v2 are, respectively, the values of Vi and
Vpi .

• If Vi is erased and Vpi is not, then the marginalization
in (26) might reveal the value of Vi. This scenario only
happens if Vi is connected to the check C1(V) and, in
addition, the rest of variables connected to this check are
known. In this way, the parity restriction fixes the value
of the variable and the marginalization yields the same
result than in (27). Otherwise Vi remains unknown:

q1i (Vi, Vpi) =
1

2
1 [Vpi = v2] , (28)

where v2 is the value of Vpi . For instance, assume that,
in Fig. 1 (a), Vo and Vp are known. When we compute
the marginal for Vs, this variable gets revealed.

• The case where Vpi is erased and Vi is not is symmetric
to the previous scenario.

• If both Vi and Vpi are erased, we compute

q1i (Vi, Vpi) ∝
∑

V∼{Vi,Vpi
}
C1(V)

n∏
z=1

z 6={i,pi}

p(yz|Vz) = 1/4

(29)

for any (Vi, Vpi) pair unless these two variables are the
only unknown variables connected to the check C1(V). In
this case, due to the parity constraint, only one value of
Vi + Vpi makes q1i (Vi, Vpi) non-zero. In other words, an
equality or inequality relationship between both variables
is found and q1i (Vi, Vpi) either takes the form of

q1i (Vi, Vpi) =
1

2
1[Vi = Vpi] (30)

or

q1i (Vi, Vpi) =
1

2
1[Vi 6= Vpi]. (31)

For instance, assume that, in Fig. 1(b), Vp and Vs are
known. Then, we learn that Vr is equal or opposite to
Vo.

The latter is of importance to explain the advantage of the
TEP decoder over BP, because we only obtain the result in (30)
or (31) if we compute pairwise marginals. The BP algorithm
uses only a disconnected approximation for the factors and
from them we cannot derive the (in)equality constraints in
(30) and (31).

It can be readily check for the BEC that when we compute
the functions q`i (Vi|Vpi) and w`i,m(Vi, Vpi) in Steps 9, 10 and
11 of the algorithm, they are proportional to the pairwise
marginal computed above4:

q`i (Vi|Vpi) ∝ q`i (Vi, Vpi), (34)

w`i,m(Vi, Vpi) ∝ q`i (Vi, Vpi). (35)

Iteration `. We follow a induction procedure to analyze
the result of the `-th iteration. Given the factorization of
the function f(V, `,m) in (16), the current information of
each variable is contained in the g`−1,mz (Vz, Vpz) functions for
z = 1, . . . , n in (17). By replacing (35) into (17), we observe
that these functions are also proportional to q`−1z (Vz, Vpz).
Therefore,

f(V, `,m) ∝ Cm(V)

n∏
z=1

q`−1z (Vz, Vpz). (36)

4For instance, if we assume that q`i (Vi, Vpi) is of the form of (27), we
first compute q(Vpi):

q(Vpi) =
∑
Vi

q(Vi, Vpi) = 1[Vpi = v1] (32)

and, therefore,

q`i (Vi|Vpi) =
1 [Vi = v1, Vpi = v2]

1[Vpi = v1]
= 1 [Vi = v1, Vpi = v2] , (33)

where we take q`i (Vi|Vpi) = 0 when q(Vpi) = 0.

IEEE TRANSACTIONS ON INFORMATION THEORY 6

By enumerating the possible outcomes of the marginal
q`i (Vi, Vpi) over f(V, `,m) in (36), we conclude that the
discussion for ` = 1 extends for this case almost literally.
By induction, we have proved that the functions q`i (Vi, Vpi)
only belong to one of the four states described in (27)-(31).

Nevertheless, for any ` > 1, we reveal a new scenario
for which a variable can be de-erased, thanks to the imposed
(in)equality pairwise condition in (30) and (31). Assume that
at iteration ` − 1, we learn that Vr and Vo are equal and at
iteration ` we process the check node Cm(V) depicted Fig. 1
(b). If Vs = 0, then the erased variable Vp should be zero to
fulfill the parity constraint. This scenario is not possible if we
cannot capture equality relationships, which are void for the
BP decoder. Therefore, the tree structured approximation in
(5) provides with respect to the BP procedure an extra case in
which a variable can be de-erased. The key aspect is to find
(in)equality conditions between variables that can be used to
decode other variables related to them by parity functions.
This depends on the family Ftree that it is used to decode the
received word.

The Tree-EP procedure for BEC presented next can be
cast as the sequential search of three particular scenarios to
perform the inference (e.g. build Ftree), where the only thing
that matters is the number of unrevealed variables in the
processed check node. We can further simplify and reformulate
this procedure as a peeling-type decoder. The key idea is to
simplify the LDPC Tanner graph according to the information
that we sequentially obtain from the encoded bits. We rename
this reformulated algorithm as the TEP decoder [29], [30].

A. The TEP decoder

Before detailing the TEP decoder algorithm, let us introduce
some basic definitions about Tanner graphs. The Tanner graph
of an LDPC code is induced by the parity-check matrix H as
detailed in [9], [35]. The graph has n variable nodes V1, . . . , Vn
and k = n(1−r) parity check nodes P1, . . . , Pk. The degree of
a check node, denoted as dPj , is the number of variable nodes
connected to it in the graph. Similarly, the degree of a variable
node, denoted as dVi

, is the number of check nodes connected
to that variable node. In the Tanner graph, we associate a zero
parity value to each check node in the graph. As we iterate, the
parity of a certain check node Pj , which is denoted hereafter
as [Pj], might change.

The TEP decoder is detailed in Algorithm 2. It is based on
the sequential procedure of degree-one and two check nodes
in the graph. Processing a degree-one check node in Steps
10-12 of Algorithm 2 is equivalent to find an erased variable
connected to a check node where the rest of variables are
known. Since the BP solution is restricted to this case, the
description of the BP as a peeling-type algorithm is obtained
if we do not consider Steps 13-16 in Algorithm 2 [16],
[43]. In this sense, the TEP decoder emerges as an improved
PD. Besides, we claim that the complexity of both decoders
is of the same order, i.e. O(n). We intentionally leave to
Section IV-E a detailed analysis of the TEP complexity.

The removal of a degree-two check node in Steps 13-16
of Algorithm 2 represents the inference of an equality or

Algorithm 2 TEP algorithm for LDPC decoding over BEC.

1: Let y be the received codeword: y ∈ {0, ?, 1}n.
2: Construct the index set ξ : ∀s ∈ ξ then ys 6=?.
3: for all s ∈ ξ do
4: Remove from the graph variable node Vs.
5: If ys = 1, flip the parity of the check nodes connected

to Vs.
6: end for
7: repeat
8: Look for a check node of degree one or two.
9: if Pj is found with degree one, connected to Vs,.

then
10: Vs is decoded with value [Pj].
11: Remove both Vs and Pj from the graph.
12: If [Pj] = 1, flip the parity of the check nodes

connected to Vs.
13: else if Pj is found with degree two, connected to Vo

and Vr, then
14: Remove Pj and Vo from the graph.
15: If [Pj] = 1, flip the parity of the check nodes

connected to Vo.
16: Reconnect to Vr the check nodes connected to Vo.
17: end if
18: until the graph is empty or there are no degree-one or two

check nodes in the graph.

inequality relationship. This process is sketched in Fig. 2. The
variable V1 heirs the connections of V2 (solid lines) in Fig.
2(b). Finally, the check P1 and the variable V2 can be removed,
as shown in Fig. 2(c), because they have no further implication
in the decoding process. V2 is de-erased once V1 is de-erased.
Note that, when we remove a check node of degree two, we
usually create a variable node with a higher degree while the
degree of the check nodes remain unaltered.

The TEP decoder eventually creates additional check nodes
of degree one when we find a scenario equivalent to the one
depicted in Fig. 3. Consider two variable nodes connected to a
check node of degree two that also share another check node
with degree three, as illustrated in Fig. 3(a). After removing
the check node P3 and the variable node V2, the check node
P4 is now degree one, as illustrated in Fig. 3(b). At the
beginning of the decoding algorithm, this scenario is very
unlikely. However, as we remove variable and check nodes, the
probability of this event grows, as we are reducing the graph
and increasing the degree of the remaining variable nodes.

Another important result of the TEP algorithm is that it
applies the Tree-EP algorithm with no initial pairwise rela-
tions. The tree structure is not fixed a priori. It dynamically
includes a new pairwise relation in the tree structure whenever
it processes a degree-two check node, i.e. it updates Ftree
on the fly. In Appendix A, we show that the TEP decoding
is independent of the ordering in which the variables are
processed, as different processing orderings yield equivalent
trees in the graph.

IEEE TRANSACTIONS ON INFORMATION THEORY 7

V1

V2

P1

P2

P3

(a)

V1V2

P1 P2

P3

(b)

P2

P3

V1

(c)

Fig. 2. In (a) we show two variable nodes, V1 and V2, that share a check
node of degree two, P1. In (b), V1 heirs the connections of V2 (solid lines).
In (c), we show the graph once P1 and V2 have been removed. If P1 is parity
one, the parities of P2, P3 are reversed.

V1

V2

V3

P1

P2

P3

P4

V1

V3

P1

P2

P4

(a) (b)

Fig. 3. In (a), the variables V1 and V2 are connected to a two-degree check
node, P3, and they also share a check node of degree three, P4. In (b) we
show the graph once the TEP has removed P3 and V2.

B. Connection to previous works

A similar procedure for removing degree-two check
nodes was considered in the analysis of accumulate-repeat-
accumulate (ARA) LDPC codes [44], [11]. ARA codes were
proposed to achieve channel capacity under BP decoding
at bounded complexity. Roughly speaking, ARA codes are
formed by the concatenation of an accumulate binary en-
coder, an irregular LDPC code and another accumulate binary
encoder. In [45], [46], Pfister and Sason showed that ARA
codes can be described for BEC as an equivalent irregular
LDPC ensemble and hence they were able to compute the
ARA BP threshold using standard techniques [10]. To obtain
such equivalent LDPC ensemble, parity checks of degree two,
corresponding to the accumulate encoding, were processed
similarly to how the TEP decoder processes degree-two check
nodes. Once they obtained the equivalent irregular LDPC

ensemble, they just consider BP decoding. Nevertheless, we
want to emphasize that the novelty of our proposal is twofold:
first, we consider, describe and measure the effect of the
removal of degree-two check nodes to improve the BP solution
for any block code. And second, we have shown that the idea
of propagating pairwise relationships can be extended for any
binary DMC using the EP framework.

IV. TEP DECODER EXPECTED GRAPH EVOLUTION

Both the PD and the TEP decoder sequentially reduce the
LDPC Tanner graph by either removing check nodes of degree
one, or degree one and two. As a consequence, the decoding
process yields a sequence of residual graphs. In [43], [16], it
is shown that if we apply the PD to elements of an LDPC
ensemble, then the sequence of residual graphs follows a
typical path or expected evolution [11]. The authors described
this path as the solution of a set of differential equations and
characterized the typical deviation from it. Their analysis is
based on a result on the evolution of (martingale) Markov
processes due to Wormald [47].

In this section, we first introduce the Wormald’s theorem
and then particularize it to compute the expected evolution of
the residual graphs for the TEP, which is used in the following
to evaluate the decoder performance.

A. Wormald’s theorem
Consider a discrete-time Markov random process Z(a)(t)

with finite d-dimension state space A(Z)d that depends on
some parameter a > 1. Let Z(a)

i (t) denote the i-th component
of Z(a)(t) for i ∈ {1, . . . , d}. Let D be a subset of Rd+1

containing those vectors [0, z1, . . . , zd] such that:

p

(
Z

(a)
i (t = 0)

a
= zi, 1 ≤ i ≤ d

)
> 0, (37)

We define the stopping time tD to be the minimum time so that
(t/a, Z

(a)
1 (t)/a, . . . , Z

(a)
d (t)/a) /∈ D. Furthermore, let fi(·)

for 1 ≤ i ≤ d, be functions from Rd+1 → R such that the
following conditions are fulfilled:

1) (Boundedness). There exists a constant Ω such that for
all i ≤ d and a > 1,∣∣∣Z(a)

i (t+ 1)− Z(a)
i (t)

∣∣∣ ≤ Ω, (38)

for all 0 ≤ t ≤ tD.
2) (Trend functions). For all 1 ≤ i ≤ d and a > 1,

E
[
Z

(a)
i (t+ 1)− Z(a)

i (t)
∣∣∣Z(a)(t)

]
= fi

(
τ, Z

(a)
1 (t)/a, . . . , Z

(a)
d (t)/a

)
(39)

for all 0 ≤ t ≤ tD, where τ = t
a .

3) (Lipschitz continuity). For each i ≤ d, the function fi(·)
is Lipschitz continuous on the intersection of D with the
half space {[t, z1, . . . , zd] : t ≥ 0}, i.e., if b, c ∈ Rd+1

belong to such intersection, then there exists a constant
ν such that

|fi(b)− fi(c)| ≤ ν
d+1∑
j=1

|bj − cj | . (40)

IEEE TRANSACTIONS ON INFORMATION THEORY 8

Under these conditions, the following holds:
• For [0, b1, . . . , bd] ∈ D, the system of differential equa-

tions
∂zi
∂τ

= fi (τ, z1, . . . , zd) , i = 1, . . . , d, (41)

has a unique solution in D for zi(τ) : R → R with
zi(0) = bi, 1 ≤ i ≤ d.

• There exists a constant δ such that

p
(
|Z(a)
i (t)/a− zi(t/a)| > δa−

1
6

)
< da

2
3 exp(−a 1

3 /2),

(42)

for i = 1, . . . , d and for 0 ≤ t ≤ tD, where zi(τ) is the
solution given by equation (41) for

zi(0) = E[Z
(a)
i (t = 0)/a]. (43)

The result in (42) states that each realization of the process
Z

(a)
i (t) has a deviation from the solution of (41) smaller than
O(a−1/6) if a is large enough. Our goal is to show that this
theorem is suitable to describe the LDPC graph evolution
during the TEP decoding process in certain scenarios.

B. LDPC ensembles and residual graphs

In this subsection, we introduce some basic notation
about LDPC ensembles. An ensemble of codes, denoted by
LDPC[λ(x), ρ(x), n], is defined by the code length n and the
edge degree distribution (DD) pair (λ(x), ρ(x)) [10]:

λ(x) =

lmax∑
i=2

λix
i−1, (44)

ρ(x) =

rmax∑
j=2

ρjx
j−1, (45)

where λi represents the fraction of edges with left degree i in
the graph and ρj is the fraction of edges with right degree j.
The left (right) degree of an edge is the degree of the variable
(check) node it is connected to. The graph is specified in
terms of fractions of edges, and not nodes, of each degree; this
form is more convenient to analyze the convergence properties
of the decoder. If the total number of edges in the graph is
denoted by E, it can be readily checked that

E =
n∑
i λi/i

. (46)

The design rate of the LDPC ensemble r = r(λ(x), ρ(x))
is set as follows [11]:

r = 1− Λavg

Θavg
, (47)

where Λavg and Θavg are, respectively, the average variable
degree and the average check node degree in the graph. They
can be computed from the graph DD:

Λavg =
1∫ 1

0
λ(ν)dν

, (48)

Θavg =
1∫ 1

0
ρ(ν)dν

. (49)

To analyze the expected graph evolution, each time step
corresponds to each step of the decoder. Li(t) and Rj(t)
are, respectively, the number of edges with left degree i
and right degree j in the residual graph at time t and we
define li(t) = Li(t)/E and ri(t) = Ri(t)/E. We denote by
E(t) the number of edges in the graph at time t and define
e(t) = E(t)/E. Hence, li(t)/e(t) for i = 1, . . . , lmax(t) and
rj(t)/e(t) for j = 1, . . . , rmax are the coefficients of the DD
pair that defines the graph at time t. As we show in the next
subsection, an small fraction of degree-one variable nodes
might appear during the decoding process. Note that we have
included an explicit dependency with time in lmax(t). As we
described in Section III-A, the removal of degree-two check
nodes tends to increase the variable degree and, consequently,
we expect the maximum left degree to grow.

The remaining graph at time t+1 only depends on the graph
at time t and, hence, the sequence of graphs (L(t), R(t)) along
the time is a discrete time Markov process, where L(t) =

{Li(t)}lmax(t)
i=1 , R(t) = {Rj(t)}rmax

j=1. It can be shown that the
DD sequence of the residual graphs constitutes a sufficient
statistic [16], [19] for this Markov process and, therefore, it
suffices to analyze their evolution.

For a given LDPC ensemble and a BEC with parameter ε,
the TEP decoder performance is analyzed and predicted using
the expected evolution of r1(t) and r2(t) along time. In this
section, we first identify their dependence with the rest of
the components of the DD in the graph. Then, we show the
conditions in which they can be estimated along time using
Worlmald’s theorem.

C. Expected graph evolution in one TEP iteration

We analyze the average evolution of the DD pair
(L(t), R(t)) in one iteration of the TEP decoder, i.e.

E [L(t+ 1)− L(t)|L(t), R(t)] , (50)
E [R(t+ 1)−R(t)|L(t), R(t)] . (51)

At time t, the TEP looks for a check node of degree one or
two to remove it. With probability

pC(t) =
R1(t)

R1(t) +R2(t)/2
(52)

the decoder selects a check node of degree one, which is
denoted as Scenario S1. Alternatively, in Scenario S2, a check
node of degree two is removed with probability pC(t)

.
=

1 − pC(t). The expected change in the process (L(t), R(t))
between t and t+ 1 can be expressed as follows:

E
[
Li(t+ 1)− Li(t)

∣∣∣L(t), R(t)
]

= (53)

pC(t)E
[
Li(t+ 1)− Li(t)

∣∣∣L(t), R(t),S1
]

︸ ︷︷ ︸
I

+ pC(t)E
[
Li(t+ 1)− Li(t)

∣∣∣L(t), R(t),S2
]

︸ ︷︷ ︸
II

,

IEEE TRANSACTIONS ON INFORMATION THEORY 9

Vo

Vr

Pj

Pl
dVr dPl

dVo

Vo

Vr

Pj

Pl
dVr dPl

dVo

(a) (b)

Fig. 4. Examples of Subscenarios SA2 in (a), given the check node Pj the
variable nodes Vo and Vr only share the check node Pj , and SB2 in (b), in
which they share another check node of degree dPl

.

for i = 1, . . . , lmax(t) and

E
[
Rj(t+ 1)−Rj(t)

∣∣∣L(t), R(t)
]

= (54)

pC(t)E
[
Rj(t+ 1)−Rj(t)

∣∣∣L(t), R(t),S1
]

︸ ︷︷ ︸
III

+ pC(t)E
[
Rj(t+ 1)−Rj(t)

∣∣∣L(t), R(t),S2
]

︸ ︷︷ ︸
IV

,

for j = 1, . . . , rmax. In the following, we omit the pair
{L(t), R(t)} in the expectations to keep the notation unclut-
tered.

The terms I in (53) and III in (54) correspond to one
iteration of the BP decoder and they were already computed
in [16]. We include them for completeness:

E
[
Li(t+ 1)− Li(t)

∣∣∣S1] = −i li(t)
e(t)

, (55)

for i = 1, . . . , lmax(t),

E
[
Rj(t+ 1)−Rj(t)

∣∣∣S1] = (56)

j

(
rj+1(t)

e(t)
− rj(t)

e(t)

)
(lavg(t)− 1)− δ(j − 1)

for j = 1, . . . , rmax, where δ(j) is the Kronecker’s delta
function and

lavg(t) =

lmax(t)∑
i=1

i li(t)/e(t) (57)

is the average edge left degree at time t. We now compute the
terms II and IV in (53) and (54), respectively. When a check
node of degree two is removed, e.g., Pj in Fig. 4, there are
two possible subscenarios:
• SA2 : The variable nodes Vo and Vr connected with the

check node Pj do not share another check node, depicted
in Fig. 4(a).

• SB2 : The variable nodes Vo and Vr connected with the
check node Pj share at least another check node, depicted
in Fig. 4(b).

Let pB(t) be the probability of scenario SB2 , i.e., pB(t) =
p
(
SB2 |S2

)
. In Appendix B, we show that this probability is

given by:

pB(t) =
(lavg(t)− 1)2(ravg(t)− 1)

e(t)E
, (58)

where

ravg(t) =

rmax∑
j=1

j rj(t)/e(t) (59)

is the average edge right degree. In Appendix B, we also show
that the scenario SB2 is dominated by the case in which the two
variables connected to a check node of degree two only share
another check node, as illustrated in Fig. 4(b). To compute II
and IV in (53) and (54), we first evaluate the graph expected
change for SA2 and SB2 and then average them using pB(t):

E
[
Li(t+ 1)− Li(t)|S2

]
= pB(t)E

[
Li(t+ 1)− Li(t)|SB2

]
+ pB(t)E

[
Li(t+ 1)− Li(t)|SA2

]
, (60)

E
[
Rj(t+ 1)−Rj(t)|S2

]
= pB(t)E

[
Rj(t+ 1)−Rj(t)|SB2

]
+ pB(t)E

[
Rj(t+ 1)−Rj(t)|SA2

]
, (61)

where pB(t) = 1−pB(t). Now we evaluate each term in (60)
and (61).

1) Expected change in the graph assuming SA2 : At time t,
we remove the check node Pj in Fig. 4(a), which is connected
to Vo and Vr. If Vo is the remaining variable, its degree
becomes dVo

+ dVr
− 2. From the edge perspective, the graph

losses dVo
edges with left degree dVo

and dVr
edges with left

degree dVr
, and gains dVo

+ dVr
− 2 edges with left degree

dVo + dVr − 2. Note also that we have the same result if Vq
is the remaining variable. The node degrees dVo and dVr are
asymptotically pairwise independent [48] and, thus, Vo and Vr
are degree i with probability li(t)/e(t) for i = 1, . . . , lmax(t).

We first focus on the evolution in the number of edges with
left degree i ≥ 3 at time t + 1, i.e. Li(t + 1). The sample
space of Li(t+ 1)− Li(t) is given by:

Li(t+ 1)− Li(t) ∈ {−i,−2i,+i, 0} i ≥ 3, (62)

where

• Li(t+ 1)−Li(t) = −i, if (dVo
= i XOR dVr

= i) AND
dVo + dVr − 2 6= i.

• Li(t+ 1)− Li(t) = −2i, if dVo = dVr = i.
• Li(t+ 1)− Li(t) = +i, if dVo

6= i, dVr
6= i AND dVo

+
dVr
− 2 = i.

• Li(t+ 1)− Li(t) = 0, otherwise.

The probability associated to each case can be easily eval-
uated. Finally, the expected change in the number of edges
with left degree yields:

E
[
Li(t+ 1)− Li(t)

∣∣∣,SA2] =

− i li(t)
e(t)

2

(
1− li(t)

e(t)
− l2(t)

e(t)

)
− 2i

(
li(t)

e(t)

)2

+ i

i+1∑
q=1

q 6=i,q 6=2

lq(t)

e(t)

l(i−q)+2(t)

e(t)
. (63)

For i = 2, the sample space reduces to L2(t+ 1)−L2(t) ∈

IEEE TRANSACTIONS ON INFORMATION THEORY 10

{−2,+2, 0} and, it is straightforward to show that:

E
[
L2(t+ 1)− L2(t)

∣∣∣SA2] =

− 2
l2(t)

e(t)
2

(
1− l2(t)

e(t)

)
− 2

(
l2(t)

e(t)

)2

+ 2

(
l1(t)

e(t)

l3(t)

e(t)

)
.

(64)

For the case i = 1, we have

E
[
L1(t+ 1)− L1(t)

∣∣∣,SA2]
= −2

l1(t)

e(t)

(
1− l2(t)

e(t)

)
− 2

(
l1(t)

e(t)

)2

. (65)

Note that degree-one variable nodes are not created in
both scenarios S1 and SA2 . Regarding the edge right degree
distribution, only two edges of right degree two are lost and,
hence,

E
[
R2(t+ 1)−R2(t)

∣∣∣SA2] = −2, (66)

E
[
Rj(t+ 1)−Rj(t)

∣∣∣SA2] = 0, j 6= 2. (67)

2) Expected graph evolution assuming SB2 : We study now
the scenario depicted at Fig. 4(b), where the variables Vo and
Vr are also linked to another check node Pl of degree dPl

. In
this case, the degree of the remaining variable is dVo

+dVr
−4

and the check node Pl losses two edges and its degree reduces
to dPl

− 2. On the left side, the graph losses dVo
edges with

left degree dVo
and dVr

edges with left degree dVr
, and gains

dVo + dVr − 4 edges with left degree dVo + dVr − 4.
For a given degree i 6= 4, Li(t+ 1)− Li(t) takes value in

the set in (62). The possible combinations of dVo , dVr and the
associated Li(t+ 1)− Li(t) values are now as follows:

• Li(t+ 1)−Li(t) = −i, if (dVo = i XOR dVr = i) AND
dVo + dVr − 4 6= i.

• Li(t+ 1)− Li(t) = −2i, if dVo
= dVr

= i.
• Li(t+ 1)− Li(t) = +i, if dVo

6= i, dVr
6= i AND dVo

+
dVr
− 4 = i.

• Li(t+ 1)− Li(t) = 0, otherwise.
The expected value of Li(t+ 1)− Li(t) for i 6= 4 is given

by:

E
[
Li(t+ 1)− Li(t)

∣∣∣,SB2] =

− i li(t)
e(t)

2

(
1− li(t)

e(t)
− l4(t)

e(t)

)
− 2i

(
li(t)

e(t)

)2

+ i

i+3∑
q=1

q 6=i,q 6=4

lq(t)

e(t)

l(i−q)+4(t)

e(t)
, (68)

and, for the case i = 4 we obtain:

E
[
L4(t+ 1)− L4(t)

∣∣∣SB2] =

− 4
l4(t)

e(t)
2

(
1− l4(t)

e(t)

)
− 4

(
l4(t)

e(t)

)2

+ 4

i+3∑
q=1

q 6=i,q 6=4

lq(t)

e(t)

l(i−q)+4(t)

e(t)
. (69)

The values of i for which the number of edges involved in
(63) and (68) is larger than the number of edges in the graph
are not allowed. We set a zero probability for them. We do
not enumerate the complete list of these combinations for the
sake of the readability of the section.

The importance of scenario SB2 lies on the fact that the
check node Pl losses two edges and its degree reduces to
dPl
− 2. Therefore, check nodes with right degree one can

be created. Since the check node has degree dPl
= l with

probability rl(t)/e(t), it can be shown that:

E
[
Rj(t+ 1)−Rj(t)

∣∣∣SB2] = j

(
rj+2(t)

e(t)
− rj(t)

e(t)

)
, (70)

for j > 2,

E
[
R2(t+ 1)−R2(t)

∣∣∣SB2] = 2

(
r4(t)

e(t)
− r2(t)

e(t)

)
− 2, (71)

and

E
[
R1(t+ 1)−R1(t)

∣∣∣SB2] =
r3(t)

e(t)
. (72)

With the results in (63)-(72) and the probability pB(t) in
(58), we are able to compute the terms II and IV in (53) and
(54), obtaining the expected graph evolution in one iteration
of the TEP decoder. It is important for the following analysis
to note that, in any possible scenario, R1(t) and R2(t) only
depend on the left DD through lavg(t).

D. Analysis of lavg(t) in the asymptotic limit

The application of Wormald’s Theorem to guarantee the
concentration around the TEP expected graph evolution de-
rived in the previous subsection is not formally possible in
the limit n → ∞. First, the maximum left degree lmax(t) is
not bounded and the boundedness condition in (38) might not
hold. And second, note that the dimension of the Markov
process {L(t), R(t)} is not bounded either. However, the
asymptotic limit performance can be studied by observing the
evolution of the average left degree lavg(t), which measures
how likely is the creation of degree-one check nodes by
removing degree-two check nodes, see Fig. 3.

If we assume an LDPC[λ(x), ρ(x), n] ensemble with
bounded complexity, i.e. finite λavg, lmax and rmax values, then
in the limit n → ∞ we get pB(t = 0) = 0. As long
as pB(t) = 0, the TEP and BP solutions are equivalent.
Therefore, the BP decoding threshold is only improved for
those LDPC ensembles for which, as the TEP decoder runs,
there exists some t0 ≤ tD such that

lim
t→t0

lim
n→∞

pB(t)

= lim
t→t0

lim
n→∞

(lavg(t)− 1)2(ravg(t)− 1)
∑
i λi/i

e(t)n
> 0 (73)

or, equivalently, if there exists some t0 ≤ tD such that

lim
t→t0

lavg(t) =∞, (74)

since the rest of the terms in (73) stay bounded during the
TEP procedure if ε ≥ εBP. If lavg(t) becomes infinite, the
asymptotic decoding threshold for the TEP might be higher

IEEE TRANSACTIONS ON INFORMATION THEORY 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

10
5

Fraction of variables nodes processed

l a
v
g

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

Fraction of variables nodes processed

R
a
ti

o
o
f

l a
v

g

(a) (b)

Fig. 5. In Fig. 5(a), we plot the average left degree lavg(t) computed using the urn model for n′ = 100 (4), 1000 (×), 104 (◦), 105 (�), as a function
of the fraction of processed variables. In Fig. 5(b) we plot the ratio between lavg(t) for n′ = 10j+1 and n′ = 10j for j = 2 (×), 3 (◦) and 4 (�).

than the decoding threshold of the BP decoder. However, we
cannot rely on Wormald’s Theorem to find the TEP threshold
εTEP. In this section, we analyze the conditions for lavg(t) to
go to infinity, which opens the possibility for εTEP > εBP.
Although, we have not found so far any LDPC ensemble
with a finite degree distribution meeting these conditions and,
besides, the strategies followed to maximize this effect yield
ensembles that lack practical interest, as shown later. We leave
as an interesting open problem the search for practical LDPC
ensembles for which εTEP > εBP and, as well as, the exact
computation of such threshold.

Assume an LDPC ensemble of infinite length. As proven
in Appendix A, the processing order is irrelevant and, hence,
we can always run the BP first. The removal of degree-one
check nodes does not increase the left average degree, i.e.
lavg(t) is finite [11]. Over the BP residual graph, processing
a degree-two check node can be explained with a Polya urn
model. Consider lmax(t) urns labeled 1, 2, . . . , lmax(t). In urn
i we place a ball for each variable of degree i in the graph.
In each iteration, we take two balls from the urns. The urns
are chosen independently with probability proportional to the
number of balls per urn times its label. One ball is thrown
away and the other one is placed in the urn labeled by the
sum of the labels of the picked balls minus 2, introducing a
new urn if it did not previously exist. For example, if we pick
a ball with label “3” and a ball with label “4”, we put one ball
in the urn labeled “5”. We repeat this process c2 times, the
number of degree-two check nodes in the BP residual graph.
The resulting lavg(t) is the sum of the number of balls in all
urns multiplied by their labels.

It is straightforward to conclude that, as we process check
nodes of degree two, lavg(t) increases, but does it becomes
infinite? On the one hand, if we start with n′ balls and c2 =
n′−1, lavg(t) becomes infinite as n′ →∞. On the other hand,

if c2 is small enough such that we do not pick twice the same
ball, lavg(t) stays finite. There must be an intermediate value
for c2 for which lavg(t) becomes infinite.

Let us illustrate this result with the (3, 6) regular LDPC
code. We run the urn model described above to numerically
compute lavg(t). In Fig. 5(a), we plot lavg(t) for n′ = 102

(4), 103 (×), 104 (◦), 105 (�), as a function of the fraction
of processed variables c2/n′. In Fig. 5(b) we plot the ratio
between lavg(t) for n′ = 10j+1 and n′ = 10j for j = 2
(×), 3 (◦) and 4 (�). Although the urn model is only valid
asymptotically and as long as pB(t) = 0, we can see there
is a clear phase-transition. If we process less than 74% of
the variables nodes we should not expect lavg(t) to go to
infinity. For a BEC channel with erasure probability just above
the BP threshold (ε = 0.4295), the ratio between degree-two
check nodes and variables in the BP residual graph is 0.625
[16]. Therefore, for this ensemble the TEP decoder performs
asymptotically as the BP decoder, i.e. εTEP = εBP, because
lavg(t) stays finite.

In order to maximize the fraction c2 with respect to the
number of variables in the BP residual graph there are two
basic strategies. We can either design LDPC ensembles to
minimize the size of the residual BP graph or we can design
the ensemble to increase the presence of degree-two check
nodes. Given the known analytical expressions for the BP
residual graph [16], it is easy to prove that in the first case
the solution yields standard irregular ensembles for which
εBP → εMAP, i.e. codes for which the threshold is given by
the stability condition [15], [16], [22]. In this case, there is
no margin and εBP = εTEP = εMAP. In the second case, the
ensemble presents severe limitations: for instance, by (47),
any ensemble where all the check nodes are of degree two,

IEEE TRANSACTIONS ON INFORMATION THEORY 12

i.e. ρ(x) = x, has a rate

r(λ(x), x) = 1− 2∫ 1

0
λ(ν)dν

∈ [0, 1]⇒ λ(x) = a+ bx,

(75)

where a, b ∈ R are such that a + b = 1. Either the code
presents minimum distance of only one bit if a > 0 or zero
rate if a = 0. We approach this undesired behavior as we
increase the fraction of degree-two check nodes ρ2.

E. TEP decoder complexity

In the next two lemmas we prove that, for most LDPC
codes, namely those for which εTEP = εBP, the TEP complexity
linearly scales with the code length n:

Lemma 2: Consider a transmission over a BEC of pa-
rameter ε using a code C sampled at random from
LDPC[λ(x), ρ(x), n], where the polynomials λ(x) and ρ(x)
are of finite order and the code length n → ∞. Let
Λavg(t,y, C) and Θavg(t,y, C) be the evolution under TEP
decoding of the average variable and check node degrees when
the channel realization is y. For any vector y, Λavg(t,y, C) and
Θavg(t,y, C) are bounded during the whole decoding process.

Proof: See Appendix C.
The boundedness property of the variable degree evolution

under TEP decoding, proved in Lemma 2, has a significant
impact in the decoding complexity.

Lemma 3: The complexity per iteration of the TEP algo-
rithm for decoding LDPC codes of positive rate and finite
maximum variable and check node degrees remains constant
for any code for which εTEP = εBP. Compared to the BP
complexity, the TEP complexity differs at most in a constant
complexity per iteration.

The complexity per iteration can grow as a function of n

only for ε ≥ εBP and for those ensembles for which the limiting
condition in (73) is fulfilled.

Proof: See Appendix D.

F. TEP decoder differential equations

Unlike the asymptotic case, for finite-length LDPC ensem-
bles such that εTEP = εBP, Wormald’s Theorem can be applied
to estimate the expected graph evolution along the decoding
process. In particular, we are interested in the evolution of
r1(t) and r2(t), which is basic to predict the finite-length
performance as we later discuss in Section V. Consider the
TEP decoding of an arbitrarily large LDPC[λ(x), ρ(x), n]
ensemble with finite code length. First, note that expressions
(53) and (54) play the role of the trend functions in Wormald’s
theorem:

E
[
Rj(t+ 1)−Rj(t)

]
(76)

= fRj

(
t

E
,
Lavg(t)

E
,
R1(t)

E
, . . . ,

Rrmax(t)

E

)
,

E
[
Li(t+ 1)− Li(t)

]
(77)

= fLi

(
t

E
,
L(t)

E
,
R1(t)

E
,
R2(t)

E

)
,

for i = 1, . . . , E and j = 1, . . . , rmax, where Lavg(t) =∑
i iLi(t). Regarding the bounding condition in (38), for finite

ensembles, any individual realization |Rj(t+ 1)−Rj(t)| and
|Li(t+1)−Li(t)| are bounded by E at any time. This condition
also ensures the Lipschitz continuity of the functions fLi

(b)
and fRj

(b) in (76) and (77) for all b contained in the set
D defined in (37). In this case, D is simply the region of
possible initial conditions for the DD, i.e. the region within
the hypercube of unit length and dimension E + rmax.

Given the former discussion, Wormald’s Theorem ensures
that when we solve the differential equations:

∂rj(τ)

∂τ
= fRj

(τ, lavg(τ), r1(τ), . . . , rrmax(τ)) , (78)

∂lavg(τ)

∂τ
=
∑
i

ifLi
(τ, l2(τ), . . . , lE(τ), r1(t), r2(τ)) , (79)

∂li(τ)

∂τ
= fLi (τ, l2(t), . . . , lE(t), r1(t), . . . , rrmax(t)) ,

(80)

for j = 1, . . . , rmax and i = 1, . . . , E with initial conditions
li(0) = E [Li(0)] /E and rj(0) = E [Rj(0)] /E, then the
solution for r1(τ) and r2(τ) is unique and, with high proba-
bility, by (42), does not differ more than O(E−1/6) from any
particular realization of Rj(t)/E for j = 1 and 2. Because of
the expected graph evolution equations derived in Section IV-C
assumed independency, the deviation that we can expect with
respect to the solution given by (78)-(80) might rise up to
O(E−1/6 + E−1). As we show in Appendix B, any cycle
involving m variables decays as E−m. The most dominant
component, i.e. E−1, is not significant compared to maximum
deviation guaranteed by Wormald’s theorem.

Note that the initial conditions, li(0) and rj(0), contain the
information about the ensemble LDPC[λ(x), ρ(x), n] and the
channel [16], [11]:

li(0) = ελi, i ≤ lmax, (81)

rj(0) =
∑
m≥j

ρj

(
m− 1

j − 1

)
εj(1− ε)m−j , j = 1, . . . , rmax.

(82)

It is important to remark that, as described in Section IV-A,
the solution of (78)-(79) only holds for all t < tD. In our
scenario, the stopping time tD is given by either the time
instant at which the decoder stops because there are no degree-
one or degree-two check nodes or the time when e(τ) cancels,
denoting that all variables in the graph have been decoded.

Let us illustrate the accuracy of this model to analyze
the TEP decoder properties for a very large code length,
n = 217. In Fig. 6(a), we compare the solution of the system
of differential equations in (78) and (79) for R1(τ) = r1(τ)E
and R2(τ) = r2(τ)E for a regular (3, 6) code with 20 par-
ticular decoding trajectories obtained through simulation. We
consider two cases: below (ε = 0.415) and above (ε = 0.43)
the BP threshold, i.e. εBP = 0.4294. We depict their evolution
along the residual graph at each time, i.e. e(τ). We plot in thick
lines the solution of our model for R1(τ) (C) and R2(τ) (�),
and in thin lines the simulated trajectories, R1(τ) in solid and

IEEE TRANSACTIONS ON INFORMATION THEORY 13

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
101

102

103

104

105

R
i(

τ
),

i
=

1
,2

Residual graph normalized size e(τ)

0.06 0.08 0.1 0.12 0.14 0.16 0.18

103

104

R
i(

τ
),

i
=

1
,
2

Residual graph normalized size e(τ)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
101

102

103

104

105

R
i(

τ
),

i
=

1
,2

Residual graph normalized size e(τ)

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

103

104

R
1
(τ

)

Residual graph normalized size e(τ)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10

1

10
2

10
3

10
4

10
5

R
i(

τ
),

i
=

1
,2

Residual graph normalized size e(τ)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

10
1

10
2

10
3

10
4

10
5

R
i(

τ
),

i
=

1
,2

Residual graph normalized size e(τ)

(a) (b)

Fig. 6. In (a), we include the predicted evolution of R1(τ) (C) and R2(τ) (♦) for a regular (3, 6) code with n = 217 and an erasure probability
ε = 0.415 < εBP (top) and ε = 0.43 > εBP (bottom), where εBP = 0.4294. In (b), we include the same result for the irregular DD defined in (83) and
(84) and an erasure probability ε = 0.47 < εBP (top) and ε = 0.483 > εBP (bottom), where εBP = 0.4828. We include in thin lines a set of 20 individual
decoding trajectories chosen at random.

R2(τ) in dashed line. In Fig. 6(b), we reproduce the same
experiment for the following irregular LDPC ensemble,

λ(x) =
1

6
x+

5

6
x3, (83)

ρ(x) = x5, (84)

where the BP threshold for this code is εBP = 0.4828. For this
code, by running the urn model procedure described previously
in Section IV-D, we also find that lavg(t) does not scale with
n.

In both cases, when we are below the BP threshold both
the expected evolution curves and the empirical trajectories
represent successful decoding since degree-one check nodes
do not vanish until e(τ) tends to zero. Besides, note also that
the longest deviation happens around τ ≈ 0.12 and τ ≈ 0.18,
when the predicted curves for both R1(τ) and R2(τ) have a
relative minimum. This point is known as critical point and

plays a fundamental role in the derivation of scaling laws to
predict the performance in the finite-length regime [19], [11],
as explained in Section V. In [19], [20], the authors show that
the graph initial DD are Gaussian distributed around the mean
in (81) and (82). Furthermore, they observe that as the PD
performs, individual realizations are also Gaussian distributed
around the mean computed in [16] using Wormald’s theorem.
And they show that the standard deviation is O(1/

√
E), lower

than the one warranted by Wormald’s theorem. This result is
a consequence of the channel properties. In Fig. 6 we observe
the same results for the TEP decoder.

IEEE TRANSACTIONS ON INFORMATION THEORY 14

V. TEP DECODING OF LDPC ENSEMBLES IN THE
FINITE-LENGTH REGIME

A. Motivation

In [29], [30], we empirically observed the gain in perfor-
mance obtained when the TEP decoder is applied to decode
some finite-length LDPC ensembles over the BEC. The gain
of the proposed algorithm for practical codes can be analyzed
from a different perspective based on the work by Polyanskiy
et al. [49]. They present bounds on the maximum achievable
coding rate for binary memoryless channels in the finite-length
regime. These bounds can be regarded as the extension of
the Shannon coding rate limit when the number of channel
uses, i.e. code length, is fixed. For a given channel, a target
probability of error PW and a desired code rate r, we can
compute the minimum code length nmin for which there exists
a code that satisfies these requirements.

0 500 1000 1500 2000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Blocklength n

R
a
te

b
it

/
ch

.u
se

nmin TEP LDPC A

nmin BP LDPC A

nmin TEP LDPC B

nmin BP LDPC B

DT bound

Fig. 7. Dependency-testing (DT) lower bound to the maximal achievable
rate with supreme block error rate PW ≤ 10−3 over a BEC of parameter
ε = 0.5 [49]. We include the minimum code length computed to obtain a
valid performance for both the TEP and the BP and two LDPC ensembles A
and B of rates rA = 0.325 and rB = 0.365.

In Fig. 7, we plot the dependency-testing (DT) lower bound
in [49] to the maximal achievable rate for a target block error
rate of PW = 10−3 over a BEC of parameter ε = 0.5. In [49],
this lower bound is shown to be tight and much simpler to
compute than the non-asymptotic maximum achievable rate.
We considered two LDPC ensembles, referred to as code A
and B. In both codes, λ(x) = x2, while ρB(x) = 0.25x3 +
0.75x4 and ρA(x) = 0.5x3 + 0.5x4. The rate of each code
is, respectively, rA = 0.325 and rB = 0.365. In Fig. 7, we
depict the minimum code length for both the TEP and the BP
decoders to empirically obtain a performance below 10−3 for
each one of the two LDPC ensembles proposed. We observe
that the use of the TEP decoder reduces by roughly half the
block length to the optimum case given by the DT bound.
Since the complexity of both algorithms is of the same order

for these ensembles, the TEP decoder emerges as a powerful
method to decode practical finite-length LDPC codes.

In the light of these results, we focus on a theoretical
description of the TEP gain with respect to BP for finite-
length codes. We show that the TEP differential equations
proposed in Section IV-F are the key to measure and predict
such gain. This result is used to extend to the TEP decoder
the closed-form expressions proposed in [19], [20] to estimate
the BP performance for some LDPC ensembles of regular or
quasi-regular DD. They are referred to as BP scaling laws
(SLs). For the TEP, we propose a simple SL, in which all
parameters are analytically known as a function of the DD.
We start by reviewing some important steps in the analysis of
the BP performance for finite-length LDPC ensembles that are
need for the TEP finite-length analysis.

B. BP decoder in the finite-length regime

In [19], [20], the authors proved that the BP performance
for finite-length LDPC codes can be predicted by analyzing
the statistical presence of degree-one check nodes at a finite
set of time instants during the whole decoding process. These
points are referred to as critical points.

Definition 1: BP-critical point of an LDPC ensemble. For
a given LDPC ensemble with BP threshold εBP, let rBP

1 (τ)
be the expected evolution of the fraction of degree-one check
nodes under BP decoding at ε in the limit n → ∞. We say
that τ∗ is a BP-critical point of the ensemble if

lim
ε→εBP−

rBP
1 (τ∗) = 0. (85)

In [16], [43], the authors analytically compute rBP
1 (τ) as

a function of the LDPC degree distribution and the channel
parameter ε:

rBP
1 (u) = ελ(u)

(
u− 1 + ρ (1− ελ(u))

)
, (86)

where ∂u
u = −∂τ

e(τ) . The decoding process starts at u = 1 and
finishes at u = 0. Let XBP

r1 (τ, n) be the random process that
represents the evolution of the fraction of degree-one check
nodes along the decoding process for a given ensemble of code
length n. Note that any realization xBP

r1 (τ, n) of such process
represents a successful decoding as long as it is positive for any
τ ∈ [0, n/E). The process XBP

r1 (τ, n) presents some important
properties [19], [20]:

1) E[XBP
r1 (τ, n)] closely follows rBP

1 (τ) in (86). For
moderately-sized codes the mean of the process is essen-
tially independent of n.

2) The variance is of order O(n−1). We denote it as
δBP
r1,r1(τ)/n.

3) For any τ , the distribution of XBP
r1 (τ, n) tends with n to

a (truncated) Gaussian pdf.
Let us focus for simplicity on LDPC ensembles with a single

critical point at τ∗5. In [19], [20], it is shown that the BP
decoder at ε = εBP+∆ε successes with very high probability as

5This includes any regular ensemble and typically codes with small degree
of irregularity, for instance the code defined in (83) and (84).

IEEE TRANSACTIONS ON INFORMATION THEORY 15

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

2

4

6

8

10

12

14

16

18

20
x 10

−3

Normalized time τ

F
ra

c
ti

o
n

o
f

d
e
g
re

e
-o

n
e

c
h
e
c
k

n
o
d
e
s

Fig. 8. In (a) we show a set of 100 realizations of XBP
r1

(τ, n) for n = 215

and ε = 0.425 along with the DE mean prediction in (86), thick line.

long as XBP
r1 (τ∗, n) > 0, i.e., if there exists a positive fraction

of degree-one check nodes at the BP-critical point. In Fig. 8,
we include a random set of 100 realizations of XBP

r1 (τ, n) for
the (3, 6) LDPC ensemble, n = 215 and ε = 0.425 along with
the Density Evolution (DE) mean prediction in (86), in thick
line. The ensemble has a single critical point at τ∗ = 0.07.
Around this point, we can see that the DE curve reaches a
relative minimum and the global error probability is clearly
dominated by the failure probability at this point. Thus, the
finite-length performance can be roughly estimated by just
evaluating the cumulative density function (cdf) of XBP

r1 (τ, n)
at the unique critical point τ∗:

1− E(λ(x),ρ(x),n)

[
PBP

W (C, ε)
]
≤ p

(
XBP
r1 (τ∗, n) ≥ 0

)
, (87)

where PBP
W (C, ε) is the average block error probability for the

code C ∈ LDPC[λ(x), ρ(x), n] under BP decoding. To evaluate
(87) assuming XBP

r1 (τ∗, n) is Gaussianly distributed, we need
its mean and variance. The mean can be computed for each
ε from (86), but in [19] the authors show that the first-order
Taylor expansion around the BP-critical point, i.e:

rBP
1 (τ∗) =

∂rBP
1 (τ)

∂ε

∣∣∣∣
τ=τ∗
ε=εBP

∆ε, (88)

is as precise and more convenient, as it allows computing a SL
that measures the performance as a function of the distance to
the threshold.

Closed-form expression for the variance, δBP
r1,r1(τ∗), for any

LDPC ensemble can be found in [21] and, for large enough
n at the critical point, we can ignore the dependency of
δBP
r1,r1(τ∗) with respect to ε [19].The error probability can be

approximated by [19]:

E(λ(x),ρ(x),n)

[
PBP

W (C, ε)
]
≥ Q

(√
n(εBP − ε)
αBP

)
, (89)

where

αBP =

√
δBP
r1,r1(τ∗)∣∣∣∣∣∣∂rBP

1 (τ)
∂ε

∣∣∣∣
τ=τ∗
ε=εBP

∣∣∣∣∣∣
. (90)

For sufficiently large code lengths, this scaling function pro-
vides an accurate estimation of the BP error probability. A
comparison between (89) (dashed lines) and empirical BP
performance curves (solid lines) can be found, respectively,
in Fig. 11(a) and (b) for the regular (3, 6) LDPC ensemble
and for the irregular LDPC ensemble in (83) and (84).

C. TEP decoding in the finite-length regime

For describing the TEP decoder finite-length performance,
we follow a similar approach and study the random process
XTEP
r1 (τ, n), which represents the evolution of the fraction of

edges with right degree 1 along the TEP decoding process for
a given ensemble of code length n, around its local minima6.
As for the BP, the analysis centers on the points during
the decoding processes for which the presence of degree-
one check nodes vanishes. As for the BP analysis, we define
similarly the critical points for the TEP decoder and we also
prove that these critical points are identical for both decoders.

Definition 2: TEP-critical point of an LDPC ensemble. For
a given LDPC ensemble with TEP threshold εTEP = εBP, let
rTEP
1 (τ) be the expected evolution of the fraction of degree-

one check nodes under TEP decoding at ε in the limit n→∞.
We say that τ ′ is a TEP-critical point of the LDPC ensemble
if

lim
ε→εTEP−

rTEP
1 (τ ′) = 0. (92)

Lemma 4: For a given ensemble LDPC[λ(x), ρ(x)], the
number of TEP critical points is equal to the number of BP
critical points.

Proof: In the regime n → ∞, we have proven that,
with very high probability, the TEP decoder is not able to
create any additional check nodes of degree one with respect
to the BP solution and, as a consequence, εTEP = εBP. Besides,
given the TEP independence of the processing order proved
in Appendix A, we can implement the TEP decoder by first
removing all the degree-one check nodes, i.e. a BP stage,
and then process degree-two check nodes if the BP does
not succeed. Hence, for ε → εBP

− and n → ∞, rBP
1 (τ)

and rTEP
1 (τ) match during the whole decoding process and,

therefore, the ensemble presents the same number of critical
points for both decoding algorithms.

6We could have also studied the evolution of

XTEP
r1,2

(τ, n)
.
= XTEP

r1
(τ, n) +XTEP

r2
(τ, n), (91)

where XTEP
rj

(τ, n) represents the evolution of the fraction of edges with right
degree j along the decoding process for a given ensemble of code length
n. But the processing of degree two does not decode any additional variable
unless degree-one check nodes are create and hence we only focus on the
evolution of the random process XTEP

r1
(τ, n) that tell us how many additional

variables we can decode.

IEEE TRANSACTIONS ON INFORMATION THEORY 16

0.04 0.06 0.08 0.1 0.12 0.14
0

50

100

150

200

250

300

Normalized time τ

r
T

E
P

1
(τ

,
n
)
×

n

n = 212

n = 213

n = 214

n = 215

Fig. 9. For the (3, 6) ensemble, we plot r1(τ ′, n, εTEP) × n (solid lines)
computed from (78)-(80) for different code lengths, where εTEP = 0.4294.
We include in dashed lines sample average curves obtained by simulation. We
have averaged them over 500 realizations.

The process XTEP
r1 (τ, n) behaves as XBP

r1 (τ, n) and present
the same statistical properties, namely:

1) E[XTEP
r1 (τ, n)] closely follows rTEP

1 (τ), which is com-
puted as solution of the TEP decoder differential equa-
tions in (78)-(80).

2) The variance decays as O(n−1). We denote it as
δTEP
r1,r1(τ)/n.

3) For any τ , the distribution of XTEP
r1 (τ, n) tends with n to

a (truncated) Gaussian pdf.
As discussed before, for codes with a single critical point τ ′,

we estimate the TEP finite-length performance by computing
the cdf of the process XTEP

r1 (τ, n) at τ ′:

1− E(λ(x),ρ(x),n)

[
P TEP

W (C, ε)
]
≈ p

(
XTEP
r1 (τ ′, n) ≥ 0

)
(93)

where P TEP
W (C, ε) is the average block error probability for

the code C ∈ LDPC[λ(x), ρ(x), n] under TEP decoding. To
evaluate (93) assuming XTEP

r1 (τ ′, n) is Gaussianly distributed,
we need its mean and variance, which can be computed
analogously to the BP case. The mean can be computed using
the first-order Taylor expansion around the TEP-critical point,
i.e.:

rTEP
1 (τ ′, n, ε) = rTEP

1 (τ ′, n, εTEP) +
∂r1(τ, n, ε)

∂ε

∣∣∣∣
τ=τ ′
ε=εTEP

∆ε

(94)

In this case, there exists a nonzero value for the zero-order
Taylor expansion that indeed explains the improvement of the
TEP decoder over the BP for finite-length codes. For the BP
decoder, the mean process evolution in (86) is independent
of n. Therefore, at εBP and the corresponding critical point,
rBP
1 (τ∗, n, εBP) = 07 and hence the expression in (88). For

7The BP gets stuck because it has run out of check nodes of degree one.

the TEP decoder, the mean evolution depends on the code
length n and the mean at the critical point is nonzero. We
can understand why rTEP

1 (τ ′, n, εTEP) is nonzero by assuming
that we first process all degree-one check nodes, and then
all degree-two check nodes. After we process all the degree-
one check nodes for ε = εBP and, at τ = τ∗ and large
n, we should get stuck at the BP critical point with high
probability and hence rBP

1 (τ∗, n, εBP) ≈ 0. Now, when we
process all the degree-two check nodes, we move from τ∗

to τ ′ and we can generate degree-one check nodes for finite
length codes, because pB(τ) in (58) is nonzero. This value is
captured by a nonzero rTEP

1 (τ ′, n, εTEP) in (94). The evaluation
of rTEP

1 (τ ′, n, εTEP) for different code lengths using the TEP
differential equations shows that it decays as 1/n, namely:

rTEP
1 (τ ′, n, εTEP) = γTEPn

−1, (95)

because the probability that two variables nodes share the
same two check nodes decays as n2 and we process a fraction
of n of degree two check nodes after we have process all
degree-one check nodes. For instance, in Fig. 9 we plot
r1(τ ′, n, εTEP) × n (solid lines) computed from (78)-(80) for
different code lengths, where εTEP = 0.4294. We include in
dashed lines sample average curves obtained by simulation.
Note that all curves converge at the critical point. The exact
computation of γTEP is obtained by solving (78)-(80) and it is
shown in Appendix E how it can be computed for each DD.
For instance, the (3, 6) LDPC ensemble has a γ−1TEP = 0.3194
and the irregular LDPC ensemble in (83) and (84) presents a
γ−1TEP = 0.2925.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

1

2

3

4

5

6

∂
r̂
1
(
τ
,n

,ε
)

∂
ε

| ε=
ε

T
E

P
fo

r
T

E
P

a
n
d

B
P

Normalized time τ

ε = 0.415

ε = 0.42

ε = 0.425

Fig. 10. We include the TEP sample mean evolution (rTEP
1 (τ) −

γTEPn
−1)/∆ε (in solid lines) computed using a set of 500 realizations of

XBP
r1

(τ, n) for the (3, 6) ensemble with n = 215 and ε = 0.415 (�), ε = 0.42
(�) and ε = 0.425 (◦). We also include the BP sample mean evolution in
dashed lines for comparison.

IEEE TRANSACTIONS ON INFORMATION THEORY 17

0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44
10

−3

10
−2

10
−1

10
0

Channel erasure probability ε

W
o
rd

e
rr

o
r

ra
te

TEP n = 210

TEP n = 212

TEP-SL n = 210

TEP-SL n = 212

BP n = 210

BP n12

BP-SL n = 210

BP-SL n = 212

0.43 0.44 0.45 0.46 0.47 0.48 0.49
10

−2

10
−1

10
0

Channel erasure probability ε

W
o
rd

e
rr

o
r

ra
te

TEP n = 210

TEP n = 212

TEP-SL n = 210

TEP-SL n = 212

BP n = 210

BP n = 212

BP-SL n = 210

BP-SL n = 212

(a) (b)

Fig. 11. In (a), we include the BP/TEP performance for the regular (3, 6) ensemble (solid lines) along with their respective SL approximations in (89)/(96)
(dashed lines) for n = 210 and (+). The SL parameters are αBP = αTEP ≈ 0.5603, δTEP

r1,r1
(τ∗) ≈ 0.0526 and γTEP ≈ 0.3194. In (b), we reproduce the

same figure for the irregular LDPC code defined in (83) and (84). The SL parameter is αBP = αTEP ≈ 0.5791, δTEP
r1,r1

(τ∗) ≈ 0.0593 and γTEP ≈ 0.2925.

By (93), we estimate the TEP performance as follows:

E(λ(x),ρ(x),n)

[
P TEP

W (C, ε)
]

≈ 1−Q

−

∂rTEP
1 (τ,n,ε)
∂ε

∣∣∣∣
τ=τ ′
ε=εTEP

∆ε+ γTEPn
−1

√
δTEP
r1,r1(τ ′)/n

= Q

√n(εBP − ε)
αBP

+
γTEP√

n δBP
r1,r1(τ∗)

 , (96)

where P TEP
W (C, ε) is the TEP block error rate for the code

C ∈ LDPC[λ(x), ρ(x), n] and we have used the values com-
puted in [19], [21], [50], [51] for the BP (namely αBP and
δBP
r1,r1(τ∗)) for the TEP performance. These values measure the

mean and variance of the degree-one check nodes and mainly
depend on the DD ensemble and the channel dispersion [49].
We could expect the value of ∂r1(τ,n,ε)

∂ε

∣∣
τ=τ ′
ε=εTEP

and δTEP
r1,r1(τ ′)

to slightly grow with respect to the BP estimates, because
we are additionally processing degree-two check nodes. Em-
pirically, we observe that ∂r1(τ,n,ε)

∂ε

∣∣
τ=τ ′
ε=εTEP

is slightly larger

than ∂r1(τ)
∂ε

∣∣
τ=τ∗
ε=εBP

, as shown in Fig. 10, and we observe an

insignificant reduction in the variance.
In Fig. 11, we compare the SL solution in (96) in dashed

lines with real performance data obtained through simulation
in solid lines for the regular (3, 6) LDPC ensemble (a) and
for the the irregular ensembel defined in (83) and (84) (b).
The match between dashed and solid lines is as good as
for the BP estimates as for the TEP, showing the accuracy

of the model for the TEP performance and the proposed
parameter estimation. In both plots, due to the parameter
overestimation when assuming the BP values for δTEP

r1,r1(τ ′)/n
and αTEP, we slightly overestimate the TEP error probability.
The overestimation is also augmented because in our estimate
of r1(τ, n, ε) under TEP decoding we do not take into account
scenarios where two variables that share a degree-two check
node, also share more than one additional check node. For
the code lengths considered, these scenarios can be eventually
found and the mean can be slightly higher. In addition, there
exists XTEP

r1 (τ, n) trajectories that go to zero at some point
but eventually can be positive again by removing degree-two
check nodes.

VI. CONCLUSIONS

In this paper, we present the expectation propagation algo-
rithm to address the LDPC decoding process over any DMC.
The posterior distribution of the variables is approximated
with a Markov-tree probability distribution, over which the
marginal estimate can be efficiently performed. By construc-
tion, the solution improves the BP estimate. For the binary era-
sure channel, we show that the tree-EP algorithm reduces to a
peeling-type algorithm, i.e. the TEP decoder, that outperforms
the BP solution by additionally processing degree-two check
nodes and not only degree-one check nodes. The TEP decoder
improvement in performance is significant for practical finite-
length LDPC codes. We prove that the complexity of this
additional step is bounded even in the limiting case and
therefore, the TEP complexity is of the same order than the
BP algorithm. In the asymptotic regime, we have shows the

IEEE TRANSACTIONS ON INFORMATION THEORY 18

conditions to be fulfilled by an LDPC ensemble to improve
the BP threshold. The TEP decoder differential equations
provide the graph mean evolution under TEP decoding. Using
Wormald’s theorem, we proved that the dispersion around the
mean evolution is bounded. This results are used to explain and
predict the TEP decoder improvement. Along with empirical
support, we have developed a scaling law to predict the
performance. The analysis of the BEC case developed in detail
in this paper for both the asymptotic and finite-length regime
is a guideline to construct efficient implementations of the
Tree-EP algorithm to outperform the BP solution in other
channels like the binary symmetry channel and the binary
additive Gaussian noise channel.

REFERENCES

[1] R. G. Gallager, Low Density Parity Check Codes. MIT Press, 1963.
[2] J. Pearl, Probabilistic reasoning in intelligent systems: networks of

plausible Inference. Morgan Kaufmann, 1988.
[3] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of

low density parity check codes,” Electronics Letters, vol. 32, pp. 1645–
1646, 1996.

[4] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp.
399–431, 1999.

[5] H. A. Loeliger, “An introduction to factor graphs,” IEEE Signal Pro-
cessing Magazine, vol. 21, no. 1, pp. 28–41, Feb. 2004.

[6] F. R. Kschischang, B. I. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, Feb. 2001.

[7] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Department of Electrical Engineering Linkping University, 1996.

[8] S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 325–343, Mar.
2000.

[9] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Transactions on Information Theory, vol. 27, no. 5, pp. 533–547, Sept.
1981.

[10] T. Richardson and R. Urbanke, “The capacity of low-density parity
check codes under message-passing decoding,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[11] ——, Modern Coding Theory. Cambridge University Press, Mar. 2008.
[12] C. Measson, A. Montanari, and R. Urbanke, “Maxwell construction: the

hidden bridge between iterative and maximum a posteriori decoding,”
IEEE Transactions on Information Theory, vol. 54, no. 12, pp. 5277–
5307, Dec. 2008.

[13] S. Kudekar, T. Richardson, and R. Urbanke, “Threshold Saturation via
Spatial Coupling: Why Convolutional LDPC Ensembles Perform So
Well over the BEC,” IEEE Trans. on Information Theory, vol. 57, no. 2,
pp. 803 –834, feb. 2011.

[14] C. Di, D. Proietti, T. Richardson, E. Telatar, and R. Urbanke, “Finite
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Transactions on Information Theory, vol. 48, no. 6, pp.
1570–1579, Jun. 2002.

[15] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences for the
erasure channel,” IEEE Transactions on Information Theory, vol. 48,
no. 12, pp. 3017 – 3028, Dec. 2002.

[16] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Ste-
mann, “Efficient erasure correcting codes,” IEEE Transactions on Infor-
mation Theory, vol. 47, no. 2, pp. 569–584, Feb. 2001.

[17] A. E. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information
transfer functions: model and erasure channel properties,” IEEE Trans-
actions on Information Theory, vol. 50, no. 11, pp. 2657–2673, Nov.
2004.

[18] J. Zhang and A. Orlitsky, “Finite-length analysis of LDPC codes
with large left degrees,” in 2002 IEEE International Symposium on
Information Theory, ISIT, 2002.

[19] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, “Finite-
length scaling for iteratively decoded LDPC ensembles,” IEEE Trans-
actions on Information Theory., vol. 55, no. 2, pp. 473–498, 2009.

[20] A. Amraoui, R. Urbanke, and A. Montanari, “Finite-length scaling of
irregular LDPC code ensembles,” in 2005 IEEE Information Theory
Workshop, Aug. 2005.

[21] N. Takayuki, K. Kasai, and S. Kohichi, “Analytical solution of
covariance evolution for irregular LDPC codes,” e-prints, Nov. 2010.
[Online]. Available: http://adsabs.harvard.edu/abs/2010arXiv1011.1701T

[22] C. Di, T. Richardson, and R. Urbanke, “Weight distribution of low-
density parity-check codes,” IEEE Transactions on Information Theory,
vol. 52, no. 11, pp. 4839 –4855, 2006.

[23] A. Orlitsky, K. Viswanathan, J. Zhang, and S. Member, “Stopping set
distribution of LDPC code ensembles,” IEEE Transactions Information
Theory, vol. 51, pp. 929–953, 2005.

[24] T. P. Minka, “Expectation Propagation for approximate Bayesian infer-
ence,” in Proceedings of the 17th Conference in Uncertainty in Artificial
Intelligence (UAI 2001). Morgan Kaufmann Publishers Inc., 2001, pp.
362–369.

[25] T. M. Cover and J. A. Thomas, Elements of information theory. New
York, NY, USA: Wiley-Interscience, 2005.

[26] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief prop-
agation,” in Proceedings of the Neural Information Processing Systems
Conference, (NIPS), vol. 13, 2001, pp. 689–695.

[27] T. Minka and Y. Qi, “Tree-structured approximations by expectation
propagation,” in Proceedings of the Neural Information Processing
Systems Conference, (NIPS), 2003.

[28] Z. Ghahramani and M. I. Jordan, “Factorial hidden markov models,”
Machine Learning, vol. 29, pp. 245–273, Nov. 1997.

[29] P. M. Olmos, J. J. Murillo-Fuentes, and F. Pérez-Cruz, “Tree-structure
expectation propagation for decoding LDPC codes over binary erasure
channels,” in 2010 IEEE International Symposium on Information The-
ory, ISIT, Austin, Texas, 2010.

[30] P. Olmos, J. Murillo-Fuentes, and F. Pérez-Cruz, “Tree-structured ex-
pectation propagation for decoding finite-length LDPC codes,” IEEE
Communications Letters, vol. 15, no. 2, pp. 235 –237, Feb. 2011.

[31] H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-check
codes over the binary erasure channel,” IEEE Transactions on Informa-
tion Theory, vol. 50, no. 3, pp. 439–454, Mar. 2004.

[32] D. Burshtein and G. Miller, “Efficient maximum-likelihood decoding of
LDPC codes over the binary erasure channel,” IEEE Transactions on
Information Theory, vol. 50, no. 11, pp. 2837 – 2844, nov. 2004.

[33] G. Liva, B. Matuz, E. Paolini, and M. Chiani, “Pivoting Algorithms
for Maximum Likelihood Decoding of LDPC Codes over Erasure
Channels,” in IEEE Global Telecommunications Conference, 2009.
GLOBECOM 2009., dec. 2009, pp. 1 –6.

[34] S. Kim, S. Lee, and S.-Y. Chung, “An efficient algorithm for ML
decoding of raptor codes over the binary erasure channel,” IEEE
Communications Letters, vol. 12, no. 8, pp. 578 –580, aug. 2008.

[35] T. K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms. Wiley-Interscience, 2005.

[36] T. Etzion, A. Trachtenberg, and A. Vardy, “Which codes have cycle-
free tanner graphs?” IEEE Transactions on Information Theory,, vol. 45,
no. 6, pp. 2173 –2181, sep 1999.

[37] M. J. Wainwright and M. I. Jordan, Graphical Models, Exponential
Families, and Variational Inference. Foundations and Trends in
Machine Learning, 2008.

[38] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[39] T. P. Minka, “A family of algorithms for approximate bayesian infer-
ence,” Ph.D. dissertation, Massachusetts Institute of Technology, 2001.

[40] S. L. Lauritzen, “Propagation of probabilities, means and variances in
mixed graphical association models,” Journal of the American Statistical
Association, vol. 87, no. 420, pp. 1098–1108, 1992.

[41] X. Boyen and D. Koller, “Tractable Inference for Complex Stochastic
Processes,” in Uncertainty in Artificial Intelligence. Morgan Kaufmann,
1998, pp. 33–42.

[42] A. Becker, R. Bar-Yehuda, and D. Geiger, “Randomized algorithms for
the loop cutset problem,” Journal of Artificial Intelligence Research,
vol. 12, no. 1, pp. 219–234, 2000.

[43] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Ste-
mann, “Practical loss-resilient codes,” in Proceedings of the 29th annual
ACM Symposium on Theory of Computing, 1997, pp. 150–159.

[44] A. Abbasfar, D. Divsalar, and K. Yao, “Accumulate-Repeat-Accumulate
Codes,” IEEE Transactions on Communications, vol. 55, no. 4, pp. 692
–702, april 2007.

[45] H. Pfister and I. Sason, “Accumulate-repeat-accumulate codes: Capacity-
achieving ensembles of systematic codes for the erasure channel
with bounded complexity,” IEEE Transactions on Information Theory,
vol. 53, no. 6, pp. 2088 –2115, june 2007.

IEEE TRANSACTIONS ON INFORMATION THEORY 19

[46] H. Pfister, “Finite-length analysis of a capacity-achieving ensemble for
the binary erasure channel,” in IEEE Information Theory Workshop,
2005, sept. 2005.

[47] N. C. Wormald, “Differential equations for random processes and
random graphs,” Annals of Applied Probability, vol. 5, no. 4, pp. 1217–
1235, 1995.

[48] M. Mzard and A. Montanari, Information, Physics, and Computation,
1st ed. Oxford University Press, 2009.

[49] Y. Polyanskiy, H. Poor, and S. Verdu, “Channel coding rate in the finite
blocklength regime,” IEEE Transactions on Information Theory, vol. 56,
no. 5, pp. 2307 –2359, may 2010.

[50] J. Ezri, A. Montanari, and R. Urbanke, “A generalization of the finite-
length scaling approach beyond the BEC,” in 2007 IEEE International
Symposium on Information Theory, ISIT, june 2007, pp. 1011 –1015.

[51] J. Ezri, A. Montanari, S. Oh, and R. Urbanke, “The slope scaling
parameter for general channels, decoders, and ensembles,” in 2008 IEEE
International Symposium on Information Theory, ISIT, jul. 2008, pp.
1443 –1447.

[52] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
4th ed. Mcgraw-hill, 2002.

[53] B. Bollobas, Random Graphs, W. Fulton, A. Katok, F. Kirwan, P. Sarnak,
B. Simon, and B. Totaro, Eds. Cambridge University Press, 2001.

[54] C. Measson, A. Montanari, and R. Urbanke, “Asymptotic Rate versus
Design Rate,” in 2007 International Symposium on Information Theory,
june 2007, pp. 1541 –1545.

[55] T. Wadayama, “Average stopping set weight distributions of redundant
random ensembles,” IEEE Transactions on Information Theory, vol. 54,
no. 11, pp. 4991 –5004, nov. 2008.

[56] M. Schwartz and A. Vardy, “On the stopping distance and the stopping
redundancy of codes,” Information Theory, IEEE Transactions on,
vol. 52, no. 3, pp. 922 –932, march 2006.

APPENDIX A
TEP SOLUTION AND PROCESSING ORDER

We prove that the TEP decoder solution is independent of
the processing order, i.e., the order in which check nodes
of degree-one and two are removed. Given the parity check
matrix of a linear block code H, we first show that any
operation of the TEP decoder has an associated linear operator
over H. Finally, we prove that these operations commute,
proving the independence on the processing order.

Consider the k× n parity check matrix of the code, H. The
TEP algorithm is initialized by removing from the graph all
the known variables. The removal of any of these variables
from the graph is equivalent to applying a binary linear
transformation over the matrix H to get a new one, Ĥ, where
the variable Vs is completely disconnected, i.e.

Ĥ = HAs, (97)

where As is an n-dimensional identity matrix where the s-th
element is zero.

To remove a check node of degree two from H, e.g., Pj
connected to variables Vo and Vr, the resulting matrix, Ĥ, is
obtained as follows:

Ĥ = HBo,r, (98)
Bo,r = Ao + Zo,r, (99)

where o 6= r and Zo,r is an n×n zero-matrix with(Zo,r)(o,r) =
1. We have assumed that variable Vo has been removed and
Vr inherits its connections. The symmetric transformation,
i.e. remove Vr instead of Vo, is performed by applying the
Br,o operator. Since the final result is one variable with all
connections, Br,o is equivalent to Bo,r. With no loss of
generality we assume that the removed variable is the leftmost

variable in Tanner graph or, equivalently, the leftmost column
in the parity check matrix.

When applying As after a sequence of operations (transfor-
mations), variable s must be connected to a degree-one check
node. If it was not in the original graph, in H, some operations
are needed first. Similarly, for Bo,r we need variables o and
r to share a degree-two check node. Therefore, not every
sequence of operations is valid.

We study the commutativity of two valid sequences I and
II . If we prove that every pair of operations commutes, we
may reorder the operations in the second sequence as in the
first one. Particularly, we have to show the conditions for
which following matrices commute:

1) As and Ap commute for all s, p,
2) Bo,r and Bv,z commute for all possible pairs {o, r} and
{v, z} for o 6= r and v 6= z,

3) As and Bo,r commute for all the possible triples {s, o, r}
for o 6= r,

where s, o, r, v and z belong to {1, . . . , n}. The first case is
straightforward since diagonal matrices always commute.

For the other two cases, we need to prove the conditions for
which Bo,rBv,z = Bv,zBo,r, which can be express as follows
using (99):

Bo,rBv,z = AoAv + AoZv,z + Zo,rAv + Zo,rZv,z, (100)
Bv,zBo,r = AvAo + AvZo,r + Zv,zAo + Zv,zZo,r. (101)

Note that, to prove both 2) and 3), we have to show that
the matrices Ao and Zv,z commute for all the possible triples
{o, v, z} and that Zo,r and Zv,z commute as well. Regarding
the first case, we have:

Zv,zAo =

{
Zv,z, z 6= o

0n×n, z = o
(102)

AoZv,z =

{
Zv,z, v 6= o

0n×n, v = o
, (103)

where 0n×n is the n-square zero matrix. Hence, we can
conclude that Ao and Zv,z commute for every triplet, as long
as o 6= z and o 6= v. If o = v, Zo,z and Ao do not commute,
but neither Zo,zAo nor AoZo,z are valid sequences, because
once we have removed variable o, we cannot remove it again.
If o = z, Zv,o and Ao do not commute, but in this case
Zv,oAo is a valid sequence, while the reverse is not valid. But,
if we examine the operation Bv,oAo closely, it means that v
and o share a degree-two check node and o is connected to
degree-one check node. Hence, we can find in Sequence I the
operations Bv,oAo and in Sequence II the operations AoAv ,
because once we have remove variable o, the check node that
variables v and o shared is now a degree-one check node, and
these two operations are equivalent, as it can be seen in in
Fig. 12.

Finally, to conclude the proof, we have to show that the
matrices Zo,r and Zv,z commute. It is easy to check that:

Zo,rZv,z =

{
Zo,z, r = v

0n×n, otherwise
. (104)

IEEE TRANSACTIONS ON INFORMATION THEORY 20

VtVv

Pj Pl

Fig. 12. The TEP decoder can process the graph by either removing the
degree-one check node Pj and then process the degree-one check node Pl

(once Pj has been processed Pl becomes degree one) or, indistinctly, remove
first the degree-two check node Pl and then process the degree-one check
node Pj .

If the four indices are different the matrices commute. If one
of the indices is repeated, we have three possible scenarios:

1) v = o, the matrices commute and Bo,rBo,z and Bo,zBo,r

are invalid sequences, because we would remove variable
o twice in both cases.

2) z = r, the matrices commute and both sequence are valid.
3) v = r (or equivalently o = z), the matrices do not

commute and one order gives a valid sequence, i.e.
Bo,rBr,z , and the other does not, i.e. Br,zBo,r, because
once we have removed the variable r we cannot use it
again. But we could find in the Sequence I the matrices in
this order Bo,rBr,z and in the Sequence II the matrices
in this order Br,zBo,z , because after we process Br,z , z
inherits all the check nodes of r, hence if r had a degree-
two check node with o after we have processed Br,z , now
this degree-two check node is between o and z.

Hence, we have proven that any two matrices in the first
sequence commute or have a valid alternative in the second.

APPENDIX B
PROBABILITY OF SHARING TWO CHECK NODES

In this appendix we compute the probability pB(t) in (58).
Recall that it is defined as the probability for scenario SB2 , in
which two variables share a check node of degree two and, at
least, another check node of arbitrary degree, as illustrated in
Fig. 4(b). Let SBm

2 the particular case where both variables
share m+ 1 check nodes, one of them at least of degree two.
If we compute the probability

p(SBm
2 |S2), (105)

then the probability pB(t) is computed by summing over the
parameter m:

pB(t) = p(SB2 |S2) =
∑
m

p(SBm
2 |S2). (106)

In what follows, we proceed by evaluating the probability
of scenarios SB1

2 and SB2
2 to finally conclude that

p(SB1
2 |S2)� p(SB2

2 |S2)� p(SB3
2 |S2) · · · (107)

and, for large enough graphs, we have

p(SB2 |S2) = p(SB1
2 |S2) +O(1/E2), (108)

which means that, in practice, we only have to consider the
scenario SB1

2 to study the TEP decoder for large code lengths.

1) Probability of scenario SB1
2 : We first focus on the

scenario SB1
2 , illustrated in Fig. 4(b). Our goal is to compute

the probability p
(
SB1,j
2 |S2

)
, where SB1,j

2 corresponds to the
case where Vp and Vq share just a check node of degree two
and a check node of degree j. Then, the probability (108) is
computed by summing over the degree j:

p
(
SB1
2 |S2

)
=

rmax∑
j=1

p
(
SB1,j
2 |S2

)
. (109)

If dVo
(j) denotes the number of edges connected to Vo

that have right degree j, we propose to obtain the probability
p
(
SB1,j
2 |S2

)
by marginalizing over the following probability

function:

p(SB1,j
2 , dVo , dVr , dVo(j) = θ, dVr (j) = ϑ|S2), (110)

for θ ∈ {0, . . . , dVo
− 1}, ϑ ∈ {0, . . . dVr

− 1}. The mass
probability function in (110) represents the probability that
Vo and Vr share another check node of degree j, the degree
of Vo and Vr is, respectively, dVo and dVr , Vo has θ edges
of right degree j and Vr has ϑ edges of right degree j. The
probability density function in (110) can be rewritten applying
the properties of conditional probability:

p(SB1,j
2 , dVo , dVr , dVo(j) = θ, dVr (j) = ϑ|S2)

= p(SB1,j
2 |dVo

(j) = θ, dVr
(j) = ϑ, dVo

, dVr
,S2)

· p(dVo
(j) = θ, dVr

(j) = ϑ|dVo
, dVr

,S2)

· p(dVo
, dVr
|S2). (111)

The degrees of two given nodes in the graph are (asymptot-
ically) pairwise independent [48] and, hence, for sufficiently
large graphs we can assume

p(dVo
, dVr
|S2) =

ldVo
(t)

e(t)

ldVr
(t)

e(t)
+O(E−1), (112)

for dVo
, dVo

∈ {2, . . . , E}. Each edge connected to a variable
node has right degree j with probability rj(t)/e(t). The
number of edges connected to either Vo or Vr with right degree
j are asymptotically distributed according to binomial distri-
butions B(θ, dVo

−1, rj(t)/e(t)) and B(ϑ, dV1
−1, rj(t)/e(t))

respectively, where B(x,N, P) denotes a binomial distribution
over x ∈ N with parameters N and P [52]. Note that we
subtract 1 to dVo and dVr since we know that one edge
is connected to a check node of degree two. Therefore, the
second term in (111) is

p(dVo
(j) = θ, dVr

(j) = ϑ|dVo
, dVr

,S2) = (113)

= B

(
θ, dVo − 1,

rj(t)

e(t)

)
·B
(
ϑ, dVr − 1,

rj(t)

e(t)

)
+O(E−1).

Finally, we have to compute the first term in (111), i.e., the
probability that variables Vo and Vr share a check node of
degree j when the variables have, respectively, θ and ϑ edges
with right degree j. Note first that the graph has rj(t)E edges
with right degree j. Let us assume that the edges of one of
the variables, Vo for example, are fixed and that the edges of
Vr are now randomly set.

IEEE TRANSACTIONS ON INFORMATION THEORY 21

If the graph is large enough, with probability

θ(j − 1)

Erj(t)
, (114)

each edge of Vr shares a check node of degree j with an edge
of Vo. For large graphs, the number of checks shared between
both variables is asymptotically described by a binomial
distribution B(ϑ, θ(j − 1)/Erj(t)). The probability that they
share al least one check node of degree j in (111) yields

p(SB1,j
2 |dVo

(j) = θ, dVr
(j) = ϑ, dVo

, dVr
,S2)

= ϑ
θ(j − 1)

Erj(t)

(
1− θ(j − 1)

Erj(t)

)ϑ−1
≈ ϑθ(j − 1)

Erj(t)
+O(E−2). (115)

We have already computed all the factors in the joint mass
function in (111). In (117) (see next page), we marginalize
over dVo

, dVr
, θ and ϑ to obtain p

(
SB1,j
2 |S2

)
:

p
(
SB1,j
2 |S2

)
=

(j − 1)rj(t)

Ee2(t)
(lavg(t)− 1)2. (116)

Finally, the probability of scenario SB1
2 is computed by

summing over the degree j as follows

p(SB1
2 |S2) =

rmax∑
j=1

p
(
SB1,j
2 |S2

)
=

(lavg(t)− 1)2(ravg(t)− 1)

Ee(t)
.

(118)

As expected, the probability of two variables sharing a
check node in a random graph (aside from the check node of
degree two that we know they are sharing) is O(E−1e(t)−1),
i.e., inverse to the total number of edges in the graph. This
result is consistent with the theory of random graphs [53].

2) Probability of scenario SBu
2 for u > 1: A similar

analysis can be extended for the case SB2
2 . If we define the

subscenario SB2,j,`
2 , where both variables share two check

nodes of degrees j and `, the probability p(SB2
2 |S2) is obtained

by counting over all possible cases:

p(SB2
2 |S2) =

∑
j,`

p(SB2,j,`
2 |S2). (119)

The probability p(SB2,j,`
2 |S2) can be obtained with a similar

procedure than the one used to compute p(SB1,j
2 |S2). In this

case, we marginalize over the joint mass probability function
of the degrees of both variables (dVo

, dVr
) the number of

edges in each variable with right degree j (dVo(j), dVr (j))
and the number of edges in each variable with right degree
` (dVo

(`), dVr
(`)). Now we factorize the joint mass function

applying the conditionality properties, as we did in (111):

p(SB2,j,`
2 , dVo

, dVr
, dVo

(j), dVr
(j), dVo

(`), dVr
(`)|S2)

= p(SB2,j,`
2 |dVo

(`), dVr
(`), dVo

(j), dVr
(j), dVo

, dVr
,S2)

· p(dVo
(`), dVr

(`), dVo
(j), dVr

(j) = β|dVo
, dVr

,S2)

· p(dVo
, dVr
|S2), (120)

where the last factor p(dVo
, dVr
|S2) does not change with

respect to (112) and the second one, similarly to (113), can be

expressed as a product of binomial distributions. In the first
term in (120), we have fixed the degrees of Vo and Vr and the
number of edges of both variables with right degree j and `.
Following the same procedure considered to derive (115), it
can be shown that

p(SB2,j,`
2 |dVo

(`), dVr
(`), dVo

(j), dVr
(j), dVo

, dVr
,S2)

=
dVo(j)dVr (j)(j − 1)

Erj(t)

dVo
(`)dVr

(`)(`− 1)

Er`(t)
∝ E−2

(121)

The constant E−2 does not depend on the marginalization
in (119). Hence,

p(SB2
2 |S2) ∝ 1

E2
(122)

and, in general we have:

p(SBm
2 |S2) ∝ 1

Em
, (123)

for m ∈ N. Therefore p(SBm
2 |S2) for m ≥ 2 are negligible

compared to p(SB1
2 |S2) for sufficiently large graphs.

Probability pB(t) is crucial to evaluate the expected graph
evolution under TEP decoding in Section IV. In addition, for
asymptotically large graphs, to evaluate how the graph changes
in one iteration of the TEP decoder, it is a good approximation
to consider that two variables that are sharing a check node of
degree two, share at most one extra check node, as illustrated
in Fig. 4(b).

APPENDIX C
BOUNDEDNESS ON THE GRAPH DEGREES. PROOF OF

LEMMA 2

The proof of this lemma is straightforward but it is conve-
nient to review first some basic definitions. We make use of
LDPC ensembles and degree distribution polynomials, which
are defined in Section IV-B.

A. Design rate, code rate and redundant codes

Consider an LDPC ensemble defined by (λ(x), ρ(x)) with
finite maximum degrees. Let Hn be the parity matrix of a code
sample of length n chosen at random and let row(Hn) and
col(Hn)denote respectively the number of rows and columns
of the matrix. In the limit n → ∞ the expected presence of
double edges in H∞ is zero [11] and the matrix presents the
exact DD defined by (λ(x), ρ(x)). The following expression
is true in this case:

1− row (H∞)

col (H∞)
= 1− Λavg|H∞

Θavg|H∞
= 1− Λavg

Θavg
= r, (124)

where r is the design rate, Λavg|H∞ and Θavg|H∞ are the
average node and check degrees that we compute from H∞
and Λavg and Θavg are the same parameters computed directly
from the pair (λ(x), ρ(x)) using (48) and (49). Because the
ensemble has bounded maximum degrees, the design rate is
finite.

Besides, the true rate rtrue of the code H∞ is defined as

rtrue = 1− rank(H∞)

col(H∞)
∈ [0, 1] (125)

IEEE TRANSACTIONS ON INFORMATION THEORY 22

p
(
SB1,j
2 |S2

)
=

∑
dVo ,dVr
θ,ϑ

p(SB1,j
2 , dVo

, dVr
, dVo

(j) = θ, dVr
(j) = ϑ|S2)

=
∑

dVo ,dVr

[
ldVo

(t)

e(t)

ldVr
(t)

e(t)

∑
θ

(
dVo
− 1

θ

)(
rj(t)

e(t)

)θ (
1− rj(t)

e(t)

)dVo−1−θ

∑
ϑ

(
dVr
− 1

ϑ

)(
rj(t)

e(t)

)ϑ(
1− rj(t)

e(t)

)dVr−1−ϑ ϑθ(j − 1)

Erj(t)

]

=
∑

dVo ,dVr

ldVo
(t)

e(t)

ldVr
(t)

e(t)

(j − 1)

Erj(t)
E[dVo(j)]E[dVr (j)]

=
∑

dVo ,dVr

ldVo
(t)

e(t)

ldVr
(t)

e(t)

(j − 1)

Erj(t)
(dVo

− 1) (dVr
− 1)

(
rj(t)

e(t)

)2

=
(j − 1)rj(t)

Ee2(t)

∑
dVo

ldVo
(t)

e(t)
(dVo − 1)

∑
dVr

ldVr
(t)

e(t)
(dVr − 1)

 =
(j − 1)rj(t)

Ee2(t)
(lavg(t)− 1)2. (117)

and it can be easily verified that r ≤ rtrue, where in the
limit n → ∞ the equality only holds for a certain subset of
ensembles [22], [54].

Although unusual, we can construct LDPC ensembles with
negative design rate. For instance, the ensemble:

λ(x) = x3 ρ(x) = x2, (126)

has a design rate r = −1 but, despite this, the DD is well-
defined and the construction of graph samples follows the
standard procedure [11]. When we sample from such class
of random ensembles, we obtain parity matrices that contain
dependent rows, which are sometimes referred to as redundant
LDPC parity matrices. By extension, ensembles such as (126)
are called redundant ensembles [55], [56].

Redundant ensembles also appear when we analyze the
residual graph after transmission over the erasure channel. Let
(λ(x), ρ(x)) define an LDPC ensemble of positive design rate
and finite maximum degrees that is used for transmission over
the erasure channel. As shown in [16], the DD that defines the
residual ensemble after removing the set of known bits from
the Tanner graph has the form

λ̂(x) = λ(x), (127)

ρ̂(x) =

rmax∑
j=1

ρ̂jx
j−1, (128)

where

ρ̂j =
1

ε

∑
m≥j

ρj

(
m− 1

j − 1

)
εj(1− ε)m−j . (129)

The ensemble
(
λ̂(x), ρ̂(x)

)
has, in most cases, a negative

design rate8. An important property of this ensemble is that

8For instance, for the (3, 6) ensemble and ε = 0.42 we get

λ̂(x) = x2, ρ̂(x) = 0.0656 + 0.2376x+ 0.3441x2 + 0.2492x3

+ 0.0902x4 + 0.013x5,

for which the design rate is −0.1448.

its design rate is always finite as long as the original ensemble
has finite maximum degrees. As a consequence, by (124), the
number of variable and check nodes in the residual graph are
of the same order.

B. Proof of Lemma 2

Let (λ(x), ρ(x)) define an LDPC ensemble of positive
design rate and finite maximum degrees. Let C be a sample
from such ensemble that is used for transmission over a
BEC(ε). Any channel realization y ∈ {0, ?, 1}n gives rise to a
residual parity matrix Ĥ sampled from

(
λ̂(x), ρ̂(x)

)
in (127)-

(129).
As discussed above, the residual ensemble after removing

the known bits has finite rate and, therefore, row(Ĥ) and
col(Ĥ) are of the same order. The TEP decoder works over
the initialized graph by removing one column and one row per
iteration and, thus, the sequence of residual parity matrices Ĥt

for t = 1, 2, . . . , satisfies the same property.
By removing degree-one or degree-two check nodes, on the

one hand we know that the average check degree Θavg|Ĥt
does

not grow. On the other hand, Λavg|Ĥt
might grow as we remove

degree-two check nodes. To show that the latter cannot grow
unbounded, note that Θavg|Ĥt

and Λavg|Ĥt
are linked by E(t),

i.e., the number of edges in the residual matrix Ĥt:

E(t)

col
(

Ĥt

) = Λavg|Ĥt
,

E(t)

row
(

Ĥt

) = Θavg|Ĥt
. (130)

Equation (130) proves that, if E(t) > 0 and col
(

Ĥt

)
and

row
(

Ĥt

)
are of the same order, then Λavg|Ĥt

and Θavg|Ĥt
have

to keep the same order as well, which proves the lemma.

APPENDIX D
TEP COMPLEXITY PER ITERATION. PROOF OF LEMMA 3

A step of the PD algorithm, summarized in the linear
transformation in (97), has a constant complexity and the PD

IEEE TRANSACTIONS ON INFORMATION THEORY 23

1

1

1

(a) (b)

Fig. 13. Most likely scenarios when lavg(t) → ∞ and we are about to
process a degree-two check node.

overall complexity is O(n). By crossing (97) and (99), we
observe that the removal of a degree-two check node in a step
of the TEP is performed by a basic PD operation followed
by the summation of two columns of the code parity check
matrix H. The cost of this operation is given by the number
of ones in both columns. For LDPC codes, once we select a
degree-two check node, the two associated variable nodes have
in average degree lavg(t), where lavg(t) is the average edge left
degree defined in (57).

In Section IV-D, we show that there might exist codes for
which, in the limit n→∞ the average edge left degree lavg(t)
diverges to ∞ at some point of the TEP decoding process.
However, the conditions are too restrictive and we can say
that, for most of the ensembles, lavg(t) is bounded during the
whole decoding process. In this case, TEP decoder iteration
just adds a constant complexity to the PD cost per iteration.

For those ensembles for which lavg(t) may diverge at some
point, the complexity of the TEP decoder remains linear as
long as we only focus on degree-one nodes. If there are not
any of them left and lavg(t) → ∞, an eventual iteration of
quadratic cost (with n) is required. However, we expect the
fraction of such iterations throughout the decoding process to
be low for several reasons. First, since the variable average
degree Λavg is always bounded, then the fraction of variable
nodes with infinite degree is small compared to the rest of the
code. And second, each time we remove a degree-two check
node and lavg(t) → ∞, we face very high probability one of
the following two scenarios depicted in Fig. 13. In the scenario
(a), the probability that the two variables share an additional
check nodes is close to one and then degree-one check nodes
can be created. If this happens, lavg(t) is of the same order and
it is very likely that those recently created check nodes are
connected to variables of infinite degree. By (56), the removal
of such nodes starts a process of massive creation of degree-
one check nodes that brings down lavg(t). In Fig. 13 (b), we
have a double connection that can be removed at no cost.

APPENDIX E
COMPUTATION OF THE γTEP PARAMETER

We compute γTEP, based on the TEP solution independency
of the processing order proven in Appendix A:
• Start the TEP algorithm by running a BP stage. Compute

the BP residual graph expected DD at ε = εBP [16].
Alternatively, we can obtain such DD by evaluating the
differential equations for the TEP in (78)-(80) if we set
pC(τ) = 1 in (52) for any τ until the fraction of degree-
one check nodes in the graph cancels.

• Using this graph as input, evaluate the graph expected
evolution when we only remove degree-two check nodes:
solve the system (78)-(80) by setting pC(τ) = 0 in (52)
for all τ until the graph runs out of degree-two check
nodes.

• γTEP = nr1(τ ′, n, εTEP), once we have run out of degree
two check nodes.

In Fig. 14, we represent the evolution of nrTEP
1 (τ ′, n, εTEP)

after following the previous steps for the regular (3, 6)-LDPC
code and n = 212 (+), n = 214 (�) and n = 216 (×).
At e(τ) ≈ 0.22, the BP decoder gets stuck and we begin to
remove degree-two check nodes. In this second phase we can
notice that nr1(τ ′, n, εTEP) is independent of n.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10−1

100

101

102

Residual graph normalized size e(τ)

rT
E

P
1

(τ
,n

,ε
T

E
P
)
×

n

n = 212

n = 214

n = 216

BP decoding stage

Fig. 14. We plot the solution for r1(τ) computed to estimate r1(τ ′, n, εTEP)
for a (3, 6) regular code at ε = εBP = εTEP. The code lengths considered are
n = 212 (×), n = 214 (4) and n = 216 (�). The BP was first run and then
degree-two check nodes were processed.

