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Abstract

Video coding schemes designed based on sequential or predictive coding models are
vulnerable to the loss of encoded frames at the decoder end. Motivated by this obser-
vation, in this thesis we propose two new coding models: robust sequential coding and
robust predictive coding. For the Gauss-Markov source with the mean squared error
distortion measure, we characterize certain supporting hyperplanes of the rate region
of these two coding problems. The proof is divided into three steps: 1) it is shown
that each supporting hyperplane of the rate region of Gaussian robust sequential cod-
ing admits a max-min lower bound; 2) the corresponding min-max upper bound is
shown to be achievable by a robust predictive coding scheme; 3) a saddle point anal-
ysis proves that the max-min lower bound coincides with the min-max upper bound.
Furthermore, it is shown that the proposed robust predictive coding scheme can be
implemented using a successive quantization system. Theoretical and experimental
results indicate that this scheme has a desirable “self-recovery” property. Our inves-
tigation also reveals an information-theoretic minimax theorem and the associated

extremal inequalities.
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Notation and abbreviations

Random variable

Alphabet of random variable X

Source variable at time ¢ or the ith video frame

1 x n random vector (X1, Xo, -+ X))

Variance of X

Distribution of X

Rate vector (Ry, Ra, -, Rp)

Expectation

Gaussian distribution with mean p and variance o>

Minimum mean square error
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Chapter 1

Introduction

1.1 Background and Motivation

The sequential coding problem was first introduced by Viswanathan and Berger in
[1]. Due to its potential relevance to video coding applications, this problem has
received renewed interests in recent years [2; 3|. In a sequential coding system, shown
in Fig. 1.1, L sources Xy, ---, X, each representing a video frame, are encoded and
decoded in a causal manner, where Encoder i has access to Xy, -+, X;, 1 =1,--- | L,
and the decoder reconstructs X; based on the outputs from the first ¢ encoders,
1=1,---, L. If Encoder 7 is only allowed to have access to X; as well as the outputs
from the first ¢ — 1 encoders (if ¢ > 2), then the resulting problem is known as
predictive coding (see Fig. 1.2). It is shown in [4] that the rate regions of these two
coding problems are identical if X; <> X5 < --- < X form a Markov chain. Note
that this Markov chain condition is trivially satisfied when L = 2.

The existing schemes for sequential coding and predictive coding rely critically

on the assumption that the decoder has access to the first i encoded frames (i.e.,
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X, » Encoder 1 > Decoder | [——— X ~ |

X, : Encoder 2 » Decoder2 |—— X, ~d,
- > Decoder3 ——» X ~

X3 | Encoder 3 > ceodet X 3 d3
B > Decoder L ——» )A(L ~d,
| Encoder L >

X, >

Figure 1.1: Sequential coding with hierarchical distortion constraints.

the outputs from the first i encoders) when reconstructing the ith frame (i.e., X;).
As a consequence, these schemes are vulnerable to the loss of encoded frames at the
decoder end. Motivated by this observation, in this thesis we introduce a robust

version of these two coding problems.

1.2 Robust Sequential and Predictive Coding

For the robust sequential coding problem and the robust predictive coding problem,
it is required that the reconstruction of the ith frame has to meet a certain fidelity
constraint even when the decoder only has access to the output from the ith encoder.
This formulation is also applicable to the scenario where the encoded frames are to be

decoded by two types of decoders: one has the capability of using multiple encoded
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X ™ Encoder 1 > Decoder 1 Xl B dl
X >| Encoder 2 > Decoder2 ——» X, ~d,
2
X, > Encoder 3 > Decoder 3 ——» X, ~ d3
< ™ Decoder L ——» )A(L ~d,
~| Encoder L >
X,

Figure 1.2: Predictive coding with hierarchical distortion constraints.

frames to reconstruct a target frame while the other can only perform the recon-
struction operation based on a single encoded frame (due to storage or complexity
constraints).

Consider L sources X1, - - - , X, with joint distribution p(xy, - - - ,zr). Let {(Xy;, -
X1j)}32, be iid. copies of (Xy,---, Xp). Let w; : & X X; — [0,00) be a distortion
measure, where X; and X; are respectively the source alphabet (of X;) and recon-

struction alphabet, i =1,---, L.

Definition 1. A rate vector R = (Ry,--- ,Ry) is said to be achievable with a se-
quential coding system subject to hierarchical distortion constraint d = (dy,--- ,dr)
and individual distortion constraint 6 = (dy,---,61) if for every e > 0 there ewist

encoding functions fi(n) A X e x A = Ci, i =1,---, L, and decoding functions

b
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gz-(n):Cl><~-><Cz-—>)22-,i:1,---,L, andgl-(n):ci%)&,i:2,~~,[/, such that

1
—10g|Ci|§Ri+e, i=1,---,L,

|: sz zga :|§dz+€7 izla"'aLa (11)

|: sz l]a :|§52+67 i:27"'7L7 (12)

where X" = g§")(cl,--- C),i=1,--- L, and X" = §1(n)(Ci), i=2,---,L, with
= f"(xp, XM, i=1,--- L.

)

Definition 2. The rate region Rs(d,0) is the set of all the rate vectors achievable
with a sequential coding system subject to hierarchical distortion constraint d and

individual distortion constraint 0.

A system diagram of robust sequential coding with hierarchical and individual

distortion constraints can be found in Fig. 1.3.

Definition 3. A rate vector R 2 (Ry,--- , Ry) is said to be achievable with a predic-
tive coding system subject to hierarchical distortion constraint d = (dy,--- ,dr) and
individual distortion constraint & = (8y,--- ,01) if for every e > 0 there exist encod-
ing functions fl(") A — C1 and fi(") O X xCa XA = Ci,t =2, L,

and decoding functions § gZ O X xC > X, i=1,---,L, and gf”’ (G — X,
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Figure 1.3: Robust sequential coding with hierarchical and individual distortion con-
straints.

1=2,---,L, such that

1
—log|Ci| < Ri+e¢, i=1,---,L,
n

1 ~
]E|:— sz(Xiquijﬂ < dz + €, 1 = 1, ,L, (1 3)
n
7=1
I ;
E[_ZMI(XZ‘”X”)} <6Z+67 Z:2a 7L7 (1 4)
n
7j=1

where XM = §"(Cy, -+ ,Cy), i =1,-- L, and X" = ¢"™(Cy), i = 2,--- , L, with
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Figure 1.4: Robust predictive coding with hierarchical and individual distortion con-
straints.

¢ = fl(n)(Xf) and C; = fi(“)(ch_.. ,Ci, XM, i=2,--- L.

Definition 4. The rate region Rp(d,0) is the set of all the rate vectors achievable
with a predictive coding system subject to hierarchical distortion constraint d and

individual distortion constraint o.

A system diagram of robust predictive coding with hierarchical and individual
distortion constraints can be found in Fig. 1.4.

Note that the case L = 1 corresponds to the conventional lossy source coding
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Xln ————p Encoder I: fi(”) - Decoder 1: gl(n) —P)}l" ~d,
—> ~\n <

L | Encoder 2: fz(") p-| Decoder 2: gg) _>X1n - d2

—— | Decoder 2: ggn) > X" )

Figure 1.5: Multiple descriptions.

problem, and the tradeoff between rate and distortion is characterized by the rate-
distortion function (see Appendix B.2).

If L =2 and X; = X5, then we recover the classic multiple description problem
(see Fig. 1.5). A general inner bound of the rate region for this problem was derived
by El Gamal and Cover [7] (see Appendix B.3). A tighter inner bound was found by
Zhang and Berger [8] (see Appendix B.3). For the quadratic Gaussian case, Ozarow [9]
showed that El Gamal-Cover inner bound is tight (see Appendix B.3).

Throughout this thesis, for any random object W and 1 x n random vector X"
we define 0%, = 1E[X"(X™)T] and U?{MW = agme[Xn‘W}; the logarithm function is

to base e unless specified otherwise.

1.3 Main Results

In this thesis we focus on the special case where X; <+ X5 <+ - -+ <> X form a Gauss-
Markov chain. With no essential loss of generality, we assume X; ;1 = X; + A;, 1 =
1,---,L—1, where Xy, Ay, -+ ,A;_1 are mutually independent zero-mean Gaussian
random variables with 0% > 0 and 03, > 0, i = 1,--- ,L — 1. Furthermore, we

use the mean squared error as the distortion measure, i.e., w;(z;, ;) = (x; — &;)*
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for all x; € Rand z; € R, i = 1,---, L. Note that in this setting there is no loss
of optimality in assuming §§")(Cl,--- ,Cy) = EXMCy, -+ ,C), i = 1,--+ L, and
f]i(n)(Ci) =E[X]|C;],i=2,---, L. As a consequence, (1.1) and (1.3) can be rewritten

as
aiﬂcwvci <di+e 1=1,---,L;
for the same reason, (1.2) and (1.4) can be rewritten as
agqllci <6 +e i=2,---,L.

Without loss of generality, we assume 0 < d; < 0_%(1,, 1=1,--- ,L,and 0 < §; <
0%,,i=2,---,L. Since both Rg(d, ) and Rp(d,d) are closed convex sets, it suffices
to characterize their supporting hyperplanes, i.e., to solve the following optimization

problems

_inf ﬁﬁT and  inf ﬁf_zT,

ReRs(d,5) ReRp(d.9)
where 77 = (1, -+, pug) with yg; > 0,4 =1,---, L. In view of the fact that Rp(d,§) C
Rs(d,d), we must have

_inf @R < inf ER. (1.5)
ReR(d,0) ReRp(d,0)

|
Ql
=

)



Ph.D. Thesis - Lin Song McMaster - Electrical Engineering

To state the main results of this thesis, we need to define the following function:

U2 L . 0-4 (v, + 0.2 .
:ﬂlog< X1>+Zuz log< ! X, (Vi QAH) 2 )
(Uxi —0i—1) (Vi1 + UAi—l) + 0% bi-1

_i_i&lo ( (Ug(i—@i_l)'Yi‘i‘O'g(iQi_l )
: S\((0% =6 1)0; + 0% 0 )7

where 7 = (vy1,--- ,7z) and 6 = (Ay,--- ,0;_1). Furthermore, let

ki, d, 6) = sup min  ¢(%,7,6,0
6:€(0,0%, )=l .L-1 Vi€[0,ds],i=1,-,L

k(T d, ) = inf max (7,7, 6, 0).

’yle(ovdl)vlzlv 7L 926[0»U§(L+1]77‘:17 7L_1

Theorem 1. For g with py > --- > ugp > 0,

inf @R > w7, d, ).
ReRg(d,5)

Theorem 2. For g with pu; >0,1=1,---,L,
. _=T ==
_inf ER < ky(@,d,9).
RERP(d,(S)

Theorem 3. For @ with g > --- > pup > 0,
k(T d, ) = ky(Ti, d, 6).

The proofs of Theorems 1, 2, and 3 are given in Chapters 2, 3, and 4, respectively.
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These theorems together with (1.5) lead to the following result, which provides a
characterization of certain supporting hyperplanes of Rg(d,d) and Rp(d,d); in par-
ticular, setting 1 = --- = pr = 1 gives the minimum sum rate of these two rate

regions.

Theorem 4. For i with py > --- > pup > 0,

inf ER =  inf AR = (7, d,0) = k(7 d,9).
ReRs(d,5) ReRp(d,5)

For the special case L = 2, it can be verified that x;(f, d, d) and x,(f, d,0) have

the following explicit expression (when gy > po > 0):

o2 d1+02
%log(dill>+’§log<ldfl>, dy < dy + 03X, + 065 — 0%,
0'2 0'2
=g () raee (). dzGrpriod)t
0% (di+o3 )0 .
& log <—11> + £ log <T1>, otherwise
where
(0%, — d2)?
’]7 =

(0%, — )2 = (\/(0, — di = 03 (0%, — &) = \[(ds + 04, — o) (0 — )2

Our formulation of robust sequential coding and predictive coding is partly inspired by
the classic multiple description problem (see, e.g., [7; 10]). In fact, the problem treated
in [10] can be viewed as a degenerate case of our setup with 63, =0, =1,--- ,L—1.
It will be seen that such a connection allows us to leverage the techniques developed for

the multiple description problem and, albeit somewhat implicitly, provides conceptual

10



Ph.D. Thesis - Lin Song McMaster - Electrical Engineering

guidelines for our analysis. However, a straightforward application of the existing
techniques turns out to be insufficient for handling these new problems. Indeed, we
need to establish a new extremal inequality for the converse argument (see Chapter 2);
the achievability scheme (see Chapter 3) and the saddle point analysis (see Chapter
4) are also more delicate than their counterparts in [10]. Moreover, the new coding
problems possess certain features not found in the multiple description problem; for
example, the special case studied in Chapter 6 has no natural counterpart in multiple
description coding. Finally and most importantly, the analysis of the new coding
problems enables us to extract an information-theoretic minimax theorem which is of

interest in its own right (see Chapter 5).

1.4 Thesis Outline

The remainder of this thesis is organized as follows. We state our main results in
Chapter 1; these results provide a partial characterization of the rate region of robust
sequential coding and robust predictive coding for the Gauss-Markov source model
under the mean squared error distortion constraint. The proofs of these results are
given in Chapters 2, 3, and 4. It is shown in Chapter 5 that our main results can be
viewed as a manifestation of an information-theoretic minimax theorem. Chapter 6
contains an explicit characterization of the minimum sum rate for a special class of
sources and distortion constraints and provides a detailed discussion of the proposed

robust predictive coding scheme. We conclude this thesis in Chapter 7.

11



Chapter 2

Lower Bound

2.1 Extremal Inequality

The following extremal inequality is the main technical ingredient in the proof of

Theorem 1. It can be viewed as a generalization of [10, Lemma 1].

Theorem 5. Let N be a zero-mean Gaussian random vector with i.i.d. entries of
positive variance o3, i = 1,2,3, where 0%, < ox,. Let vy, vy, p1, pa, and d be
arbitrary real numbers satisfying vy > v > 0 and d > 0. Then for any random vector

S™ and random object W, jointly independent of (N}*, N3, N¥), such that a%nlw <d,

vi(h(prS" + N{' W) = h(S"[W)) — va(h(p2S™ + N3 [W) — h(p2S™ + N3’ [W))

v PV FOR,\  van (paY +O%,
> min —log(—— ) — (575" ).
velo.d 2 gl 2 \pyy +oy,

The following lemmas are the special cases of Theorem 5.

12
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Lemma 1. For any random vector S™ and random object W such that agn‘w <d,

h(S"[W) <

NS

log(2med).

For completeness we give a proof in Appendix C.

The following result is a variant of the worst additive noise lemma by Thara [18] as
well as Diggavi and Cover [19, Lemma I1.2]. Its proof can be found in [11, Appendix
BJ.

Lemma 2. Let Z™ be a zero-mean Gaussian random vector with i.i.d. entries of
positive variance o%. For any random vector S™ and random object W, jointly inde-

pendent of Z™, such that U?WW <d,

d—i—o%)

n
n n o n >
h(S™ + Z"|W) — h(S"|W) > 210g( -

Lemma 3. Let Z!' be a zero-mean Gaussian random vector with i.i.d. entries of
positive variance U%w 1t =1,2. Let v; and vy be arbitrary real numbers satisfying vy >
vy > 0. Then for any random vector S™ and random object W, jointly independent

of (Z3,Z3), such that 0%,y < d,

— i h(S"|W) — vo(R(S™ + Z3|W) — h(S™ + ZT'|W))

n Van d+ 0%
> A e (ored) — 20 ( )
2= og(2med) 5 o8 Py

13
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Proof: Note that

= nh(S"W) = vy (h(S" + Z3|W) — h(S" + Z7|W))

=1 (h(S"™ + ZM W) — h(S"|W)) — uh(S™ + ZF|W) — (1n — vo)h(S™ + Z7|W).

(2.1)
Since U%wzﬂw = agn‘w + 0% <d+ 0%, i=1,2, it follows from Lemma 1 that
— h(S™ + Z2W) — (1) — w)h(S™ + ZP|W)
> —% log(2me(d + 03,)) — @ log(2me(d + 03))). (2.2)
Furthermore, by Lemma 2, we have
v (R(S™ + ZP W) — h(S"|W)) > % log (d%"%). (2.3)
Substituting (2.2) and (2.3) into (2.1) completes the proof of Lemma 3. O

Now we are ready to prove Theorem 5. It can be verified that

e if p; = po =0, then Theorem 5 is implied by Lemma 1;

o if py # py =0 or o3, = 0%, then Theorem 5 is implied by Lemma 2;
o if py # p; = 0, then Theorem 5 is implied by Lemma 3.

Therefore, it suffices to consider the case where 0]2\,2 < 012\,3 and p; # 0,1 =1,2. With

no loss of generality, we shall assume p; = py = 1.

14
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First consider the case 0%, > 0%,. Note that

vi(h(S™ + NY'|W) = h(S"|W)) — va(h(S" + N3'[W) — h(S" + N3 |W))
= vy (R(S™ + NP[W) — h(S™ + N2W)) + v(h(S™ + NF|W) — h(S"[W))

+ (11 — ) (R(S™ + N3 |W) — h(S™|W)). (2.4)

By Lemma 2,

va(h(S"™ + N3 |W) = h(S"|W)) + (v1 — v2) (R(S™ + N3'|W) — h(S"|W))

van <d+012\,2> n (1/1—V2)n10g <d+o']2\/3>.

> = .
2 5 loe(— 2 d (2:5)

If 0%, > 0%, then without loss of generality we can assume N{* = Ny + ©", where
©" is independent of (N}, S™ W), and the entries of ©" are i.i.d. Gaussian random

variables with mean zero and variance o3, — o3, Hence,

v (h(S™ + NJ'|W) — h(S™ + N3 |[W))

=1 (h(S™ + NI + O"|W) — h(S™ + N3 |W))

mn <d+a]2\,1>

> ] 2.6
08 d+ o3, (2:6)

-2

where (2.6) follows from Lemma 2 and the fact that 05, yuy = 06y +0%, < d+o3,.

It is clear that (2.6) also holds when 0%, = 03},. Substituting (2.5) and (2.6) into

15
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(2.4) gives

vi(R(S™ + N{'|W) = h(S"[W)) = 1a(h(S™ + Ng'[W) — h(S™ + N3 |W))

mn d+o%, Vom d+ o3,

2 e (T )~ 5 e ()

which is the desired result.
Now it suffices to prove Theorem 5 for the case 0%, < o3%,. To this end, we
use a reduction method inspired by [20]. Without loss of generality, we assume

N} = N" 4+ O, where OF is independent of (N*, S™, W), and the entries of ©F are

1

i.i.d. Gaussian random variables with mean zero and variance o}, — o3, i = 1,2.

Note that

v (R(S™ + NIJW) — h(S"|W)) — va(h(S™ + N2|W) — h(S™ + NJ|W))
— 1y (A(S™ + N2|W) + h(S™ + NT|S™ + NI W) — h(S"™ + N2|S™ + NI', W)
— i (R(S™ + N2W) + h(S™|S™ + N2 W) — h(S™ + N2|S™, W) — vah(S"™ + N2|W)
+ a(h(S™ + NP|[W) + h(S™ + N2|S™ + NI W) — h(S™ + NI|S™ + NI, W)
= vi(h(S" + NY'[S™ + N3, W) — h(O7)) — v1(h(S"[S™ + N3, W) — h(N3'))
+ va(R(S™ + NJ|S™ + N2, W) — h(OD))
. (h(S" +NP|S™ 4+ NDLW) — glog(Qwe(o?VB - 0]2\,1)))
—u (h(S”]S” + NI W) — glog(Qwea§V3))

+ (h(S" 4 NP|S™ + NILW) — glog(Qﬂe(J]QV3 - a]2V2))). (2.7)

Let Q7 = N — E[N]"|N}], i = 1,2. It can be verified that QF = N* — 0'12\[2,0';73]\[:?,

i = 1,2. Moreover, it is clear that Q7 is independent of (N}, S™ W), and the entries

16
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of Q7 are i.i.d. Gaussian random variables with mean zero and variance o3, — oy, 0;73,

1 =1,2. Note that

h(S™ + NI'|S™ + NI, W)

= h(S" + oy oo NY + QPS™ + Ny, W)

Il
=

(1= oxon)S" + QF|S" + N3, W)

vV

log <€%h((1—012\,ia;,§)Sn‘Sn—i—Ng’},W) +€%h(Qy)> (2.8)

S ]S

log ((1 — J?Via&g)ze%h(sn\sz;,W) + 2me(oR, — a&,a&?)), i=1,2, (2.9)

where (2.8) follows by the entropy power inequality. Substituting (2.9) into (2.7), we

obtain

vi(h(S™ + N |W) = h(S"[W)) = va(h(S™ + N |W) — h(S" + N3 |W))
> o (108 ({1 — o032 e e, — o 03)

— glog(27re(aj2v3 — 012\,1))>

i (h(S"18" + Ny W) — Dlog(ameo?,)

0 log (11— a2 e (o, — k)

- glog(27re(a]2\,3 — 012\,2))>. (2.10)

Now we proceed to bound h(S™|S™ + NI, W). Let 5™ be an estimate of S™ based on

(S™ + NI, W), where

S" =E[S"|W] + 0%y (0hnw + o%,) 7 (S — E[S"|W] + NF).

17
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It can be verified that

2 2
1 n anvian  am T5n 1w I Ny
“E[(S" - Sm)($" - 8] =
n Tgniw + O,

Since Ugn\SmrNg,W < 1E[(S" — §")(S™ — SMT] and Ognyy < d, we have
U%”\S"—f—N;,W <(d '+ 0&3)_17
which, by Lemma 1, implies that
h(S™|S™ + NI, W) < glog(Qﬂe(d’l +ox2)™h). (2.11)
In view of (2.10) and (2.11), we have

vi(R(S™ + Ny W) = h(S"[W)) = va(h(S™ + N5’ |W) — h(S™ + N3 |W))

> min 12 (E log <27re(1 — 00N,
e, (d-1+ox2) "1 N2

n
-3 log(27re(<7]2\,3 — 0]2\,1))>

-1 <g log(2mey) — glog(2ﬂ60%3)>

75 + 2me(0%, — ok,052))

n B _ n
+ 1y (5 log <27re(1 — 012\,20;,5)27 + 27re(<7]2\,2 — af‘VZUNi)> -3 10%(27T6(012v3 - 012\/2))>-

P
W;N{T Note that there is a one-to-one correspondence between v € [0, d] and

Let v =

G'N3

18
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3 € [0, (d™" 4 o52) 7). Moreover, it can be verified that

n _ - _ n
v <§ log (271’6(1 — afVlaNf)?'y + 2me(oy, — 0%“1\73)) ~ 3 log(2me (0%, — U?w)))
- (g log(2me?y) — glog(ZweU?\,SD

+ 1y <g log (27re(1 — 012V20;]§)27y + 27re(012V2 - ajl%a;[?)) — glog(%re(a]z\,3 — 012\72))>

mwn v+ o3, van (7Y + O3,
= loe () - T ()
2 2 \y+oy,

which completes the proof.

2.2 Proof of the Lower Bound

Now we proceed to prove Theorem 1. The proof relies on Theorem 5 as well as the

techniques developed in [9; 10; 11]. Given R € Rg(d,?), it suffices to show that

s | m.7,0,0 2.12
k> i 9(5T0.9) 1)

for all  with 6; € (O,U?QH), 1=1,---,L—1.
By Definition 1, for every € > 0 there exist L encoding functions fl-(”) L R — ¢,

1=1,---,L, such that

1
—log|Ci| < Ri+e€ i=1,--- L,
n
O-g(in‘cly”wci S di+€7 1= ]-, ,L,

2 .
UX{L\CZ-S(;Z'—’_E: 2227"'7[/7
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where C; = fl-(n) (X7, -+, X™),i=1,---, L. One can readily verify that

Z pi(R; + €) (2.13)

™~

L
+ZM(I(C1,”' ,Cio; C3) + I(XF5 Cry -, Gy) = I(XT5 Oy, Ci)). (2.14)

Let Z!' be a zero-mean Gaussian random vector with i.i.d. entries of positive variance

O’%i, i=1,---,L—1; moreover, we assume Z is independent of (X[, C4,---,Cii1),

1=1,---,L —1. Note that

I(Cy, -, Ciy; CY)
—I(XM+Z" :Cy, - i)+ I(XP + Z 1 C))

+I(Cy, - Ci; G X+ 20 ) — I X+ 20, Chy -0, CY)
>I(X]+Z";C, - Cimy) + I(X] + 21, C))

(XM 20 G, =2, L. (2.15)
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Continuing from (2.14),

L
Z ,LLZ(RZ + 6)
=1
L
I(Xp00)+ Y % (XP+ 2 i Cy, e Comy) + I(XP + 21 C)
1=2

[(Xn+Zn1701, ,Cl)—FI(XZn,Cl, ,Cz)—I(XZn,Cl, ;Cz—l)) (216)

= BLrxp, o) = By ) - 100 + 275.0v)

L-1
+ 3 (Bacn - 0) = 10 + 2, G-, O)
=2
— BRI O C) = I(X e + 255G, )
L
+ EL (X3 O O) = I(XG 4+ 253 O C)) + 3 ELI(X] + 20350))

2
U1 2 M2 Ox Ml
= —log(2 ——1 (—2> X7
9 Og( 7T€O'X1) 9 0g 0'_%(2 _{_0%1 n ( | 1)

— 2 (h(Xy + 271C1) = h(X5]Ch))

L—1 2 2
i ox; i1 OXin
2 (Gl rer) e ()
= 2 a%c + a%i_l 2 U?QH + U%i

+— - (h(X” + 2 |Cyy - C) — (X Cyy -, C))

- :U;&-l (h(in+1 + Zin|01’ T 70@) - h(XZL—i-llOl? e ,OJ))

2
g
Fotog (25— ) + EE(M(XE + 21, |C, -+, Cu) = h(XEICh, -, C))

Ix; + O-ZLfl

2
L
Hi Hi n n
+Z<Elog(27re(0§(i+a%i_l)) Fipxr 4 2 1|(J)) (2.17)

=2
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where (2.16) is due to (2.15). Note that

— mh(X7[C1) = pa(h(X3 + Z7|C1) = h(XZ[Ch))

= = h(XT|Cy) = pa(h(XT + AT + Z7[|Ch) — h(XT + AT|CY))

—pin pamn di+ e+ ox, + 0%
> log(2me(d — 2% 10g ( L) 2.18
> 5 og(relds + ) ~ M og (T T (2.13)
. —n am T+ 02A + 0%
= min log(2mey;) — lo ( L 1), 2.19
1E[0.d1+e] 92 g( '71) 2 g " + O_QAI ( )
where (2.18) follows from Lemma 1 and 2 in Section 2.1. Moreover, we have
pi(R(X{ + Z74|Ch, -, ) = B(XP[C, -, C))
- Mi+1(h(in+1 + Zzn|01a e 701) - h(in—i—llCla T acl))
= (X3 + 224 |Cy, - Cy) = X[ Chy -+, G))
— pipt (WX + A + Z7|Cy, - C) = R(XT 4+ AF[Ch, -+, G))
i i + 07, ; i+ 04, + 0%,
> min Ry, (’y ZH) - M+1nlog<7 74, 5 UZ’), i=2,--+,L—1,
vi€[0,di+e] 2 Y 2 Vi + oA,
(2.20)
where (2.20) follows from Theorem 5. Note that
MXE + 20 4|Cy -+, CL) = MXE|Cy, -, C)
n dp, + €+ U%
> ( L—l) 2.21
— 2 o8 dp, + € ( )
+ 0%
— min  Zlog <M> (2.22)
~vL€[0,d 1, +¢€] 2 YL

where (2.21) is due to Lemma 2. In view of Lemma 1 and the fact that U.%(“JrZ-”‘,lICi =
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0Xric, T 0%, 0+ e+ 0y, , we have
—h(XT+ 2" |C) > —g log(2me(; +e+0%_ ), i=2,--,L. (2.23)

Substituting (2.19), (2.20), (2.22), (2.23) into (2.17) yields

L

i=1

2 L 2 2 , 2 , 2
%) + Z ,LLZ 10g (O-Xl + O-Zi_l)(/yl_l + O-Ai_l)(/YZ + O-Zi_l)

. 251
> min —lo < )
L2 08 " ~ 2 (Vie1r + 07, +oy )0i+et+oy v

T 4i€[0,d;+e)i=1,,

(2.24)

Replacing 0% with (6" — 0;(1,2“)_1, i=1,---,L—1,1in (2.24) gives

L
Sw(Bi+e = omin  w(E7,60,0),

1 T ~i€[0,di+€]i=1,- L
1=

where 69 = (02 + €,--+,0; + €). Note that there is a one-to-one correspondence

between o7, € (0,00) and 6; € (0, U§i+l), i=1,---,L—1. Let v(») be a minimizer

to

mln _7 _7 5(67%)7 8 b
Y €[0,di+em],i=1,-- ,Lw('u " )

where €, > 0, and €, tends to zero as m — oo. Without loss of generality, we assume

that v(em) converges to some 7* as m — oo (otherwise, one can take a converging
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subsequence of y(em) m > 1). We have

T yi€l0,dg) i=1, L

This completes the proof of (2.12).
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Chapter 3

Upper Bound

In order to prove Theorem 2, it suffices to prove that

inf ER < max ¥(,7,9.,0) (3.1)
ReRp(d,0) eie[o,aﬁiﬂ],z‘:h.. L—1
for all ¥ with v; € (0,d;),i=1,--- , L.

The maximization problem in (3.1) can be decomposed into

2 2
(UXM — 05)Yig1 + 0%, 0
max

. (32)
0:€0,0%, ] ((Uggﬂ —0;)(vi +03,) + Uggﬂei)((ggciﬂ —0:)0i1 + 0§(i+19i)

fori=1,---,L—1.

The maximizers to (3.2) are characterized by the following result [10, Lemma 2].

Lemma 4. Fort=1,---,L — 1, define

o _< 1 n 1 1 )1
%—4—1 ’7z+0-il 6i+1 O_g(Hl )

* o 2 2
Yit1 = Vi + on; + 5i+1 D e
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1. If max{y; + 0%, 0in1} < 0%,,,, then 77, > i, and the mazimizers to (3.2)

are given by

&
0, Vit1 = Vix1
; — 2 * 1 — .« .. JR—
01 - O-Xi+17 f}/l+1 S f}%.ﬁ,.]_ ’ v = ]‘7 7L ]-; (33)
0, otherwise
where
2 2 2 2 5
é =S OXina (% + UAi) I X1 Tit1 UXi+15i“’1 OXi 41 i+l
i = 02 —v—02 g2  — I O
Xipa — i A Xy Vit Xit1 i+l Xy — i+l
2
9% i
2

Ox;yy — i+l

1s the unique solution to the following equation

2 2 2 2
OX; 41 Vit1 A\ 1 0%, (Vi + 0A,) ~\ 1 0%, ,0it1 ~\ 1
(2; + 0i> B ( - 9i> ( - 0i>

. 2 _ . 2 2 5
OXipr — Vitl OXipn — T 704, OXin Oit1

for@; € (0,a§(i+1), i=1,---,L—1. The maximizersf;,i=1,--- ,L—1, given in
(8.3) are monotonically increasing continuous functions of ~; and monotonically

decreasing continuous functions of v;11; furthermore, the monotonicity is strict

when 6; € (0,0%,,,)-

2. If max{7; + 0},,0i11} = 0%,,,, then 79y, = 7y = min{y; + 03, dis1} and the
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maximizers to (3.2) are given by

07 Yi+1 > mln{% + O-QAia 5i+1}
Qi: O-%(H_l? 7i+1<min{fy’i+aii76i+l} , Z:]_7 ’L—l
any number in [0,0%, |, otherwise
(3.4)

The proof of the following lemma is essentially the same as that of [10, Lemma 3]

and thus is omitted.

Lemma 5. There exist o/ = (7,,--- ,7,) and & = (8, --- ,07) with

0<%’§%» i:17"'aLa

0<d <6, i=2--,L,

1 1 1 \-1!
/ 2 ! 2 /
T N R << S L i=1,---,L—1,
K B i X1 = it = ’Yz{ + O—zAi (5§+1 Ug{iJrl
such that
max V(@7 9,0) < max (7, 7,9,0).
eie[o,ag(iﬂ},i:L...,Lq 9¢€[0,0§(i+1],i:1,...7L71

3.1 An Inner Bound of Rp(d,?)

The following lemma provides an inner bound of Rp(d, ).

Lemma 6. Let (Uy,---,UyL) be jointly Gaussian with (X1, ---,X) such that

1. (Xg,--+, X1) & Xy < Uy form a Markov chain,
and (X;)z < (X3, Uy, -+ ,Ui—1) < U; form a Markov chain, i =1,--- | L,
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2. UgfilUl,---,Ui <d;,i=1,---,L, and U§(i|Ui <é;,1=2,---,L.

Then R € Rp(d, ) for any R satisfying

Ry > 1(Xy;Uy),

Proof: Consider L discrete memoryless sources Xi,---, Xy with joint probability
mass function p(zy, -+ ,2zr). Let w;(-,-) be a bounded distortion measure on X; x X,

where both X; and X; are finite, i = 1,---,L. We shall show that if there exist
auxiliary random variables U; (over finite alphabet U;), ¢ = 1,--- , L, and functions

Gi Uy X - XL{i—>/f’i,i:1,~-- , L, and g, :L{i—>2&,i:2,--~ , L, such that
P1) (Xs,---,X.) > Xy <> U; form a Markov chain,
and (X])]7gz — (X“ Uy,--- 7Ui—1) <> U; form a Markov Ch&in, 1=1,---,L,
2,--- L,

then R € Rp(d,d) for any R satisfying

Ry > 1(Xy;Uy),

RZ’Z[(Xi7U17"'7Ui71;UZ'>7 7;:2’...’[1'

One can readily extend this result to the quadratic Gaussian case via a discretization
procedure and certain limiting arguments [21].
As the proof is based on the standard techniques in network information theory,

we only give a sketch here. We adopt the notation in [21].
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Codebook generation:

Fix a conditional probability mass function p(us,--- ,ur|zy, -+ ,x) and functions

Gi iUy X XU — Xy i=1,--- L and § : Uy — X;, i = 2,--- , L, such that P1)

and P2) are satisfied. Note that P1) is satisfied if p(u,--- ,ug|zy,--- ,z1) factors as
L
plur, -+ urles, -+ 2r) = plua|2) HP(Uz‘|$i7U1, L Ui1).
=2
For i = 1,---, L, randomly and independently generate e™f sequences u?(c;), ¢; €

[1: %], each according to []}_; pu, (ui;). The codebook is revealed to the encoders
and the decoder.

Encoding:

Given 27, Encoder 1 finds an index ¢; € [1 : e"®1] such that (z7,u?(c;)) € T, it
there is more than one such index, it picks the smallest one among them; if there is
no such index, it sets ¢; = 1. For i = 2,--- | L, given (20, ¢1,---,¢;_1), Encoder i
finds an index ¢; € [1 : e"®] such that (27, u}(c1), -+ ,ul(c;)) € 7™ if there is more
than one such index, it picks the smallest one among them; if there is no such index,
it sets ¢; = 1. Here we assume that e, > --- > ¢; > 0. The indices ¢, -+ ,cy are
then sent to the decoder.

Decoding:

Fori=1,---,L, given (¢, ,¢;), the decoder computes Z;; = §i(uyj(c1), -+, ui(ci)),
j=1,---,n,and uses Z] as the reconstruction of z}'. For i = 2,--- | L, given ¢;, the
decoder computes #;; = §i(ui(c;)), j = 1,--+ ,n, and uses 2 as the reconstruction
of x7.
Error analysis:

Let C; denote the output of Encoder ¢, i = 1,---, L. By the covering lemma [21,
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Lemma 3.3, p. 62], P{(X],Ur(C)) € Ti"} tends to one as n — oo if Ry >
I(X1;Uy)+01(€1), where 6;(e1) tends to zero as €, — 0. Then it follows from the condi-
tional typicality lemma [21, p. 27] that P{(X™,--- , X", UP(C})) € T} tends to one
as n — oco. For ¢ = 2,--- | L, by the covering lemma, P{(X", U}"(C}),--- ,UC;)) €
ﬁ(n)} tends to one as n — oo if R; > I(X;, Uy, ,U;_1;U;) + 0;(€&;), where d;(¢;)
tends to zero as ¢; — 0; furthermore, it follows from [21, Lemma 12.3, p. 299] and the
Markov lemma [21, Lemma 12.1, p. 296] that P{(X},--- , X7, U(CY),--- ,UMC})) €
7;52)1} tends to one as n — oo if ¢; is sufficiently small compared to €;.1. Therefore, for
every € > 0 and every n > n(e) (with n(e) determined by €), there exists a determinis-
tic codebook conditioned on which the probability of (X7, --- , X7, U (Cy),--- ,U}(CL)) ¢

72(;1)1 is less than €. Now one can readily complete the proof by invoking the typical

average lemma [21, p. 26]. O

3.2 Proof of the Upper Bound

For the purpose of proving Theorem 2, it suffices to construct (Uy, - -« ,Up) satisfying

the conditions in Lemma 6 such that

L
M1I(X1;U1)+ZM¢I(X1'7U1,"' anfl;Ui) = max ¢(ﬁ>7,§a9), (3-5)

o 2 e L
— 91€[O7UX1-+1]71_17 L—1

where 7/ and ¢’ are specified in Lemma 5.

Now, we are ready to construct (Uy,---,UpL).
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Define
07 maX{’y{ —|— O'QAi’ (57{+1} — O-g(i+1
gi - 0§(i+1(agfi+1 +i—/ (Ti—6i)(Ai—<)) th . ’ (36)
(0%, TT)(o%, ) , otherwise
1=1,---,L—1,
(
0, %+ 0-2Ai - O-g(i+1
i = q (0%,,, VA s , =L L1, (3.7)
L (Ug(i_,_l+§i)(\/‘rz'*<¢+\/)\i7<¢)’
0 i1 = 0%
’ ? i+1
bi = (0%, HAVTi—i , , =1, L—1, (3.8)
L (O-g(iJrl+§i)(\/7'i_§i+\/)‘i_<i)’ otherwise
0, = any number in [0, Ug(i+1]’ max{7; + UQAN Oip1 )} = U§(¢+1 =1, L—1
\/(Ti —G)(Ni — <) —¢;, otherwise
\
(3.9)
where
2 / 2
TZ: 2X7,+1(’7 / A;) ’ :17' . ’L_]_7
OXi1 — i = 94,
0% Ot
Ai = 2 = H_/ ) :17"7[/_17
UXi+1 - 5i+1
Ug(- 1%{-1-1 .
gz: 3 L 7 N Z:l’...7L_1
Oxin — it
We assume E[U;] = 0, i = 1,---, L. Let U; be jointly Gaussian with (X1, , X,)

such that

E[U7] = E[X,Uh] = 0%, — 7,
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and (Xy, -+, Xp) <> Xy <> U; form a Markov chain. Now let U; be jointly Gaussian
with (Xl, ce ,XL7 Ul, ey Uz‘—l) such that

E[U?] = E[X;U;] = 0%, — 0,

E[U;_1U;] = &1,

and ((Xj);z,Ur, -+, Ui_1) < (X,-,Ui_l) <> U; form a Markov chain, i = 2,--- | L,

where

Ul = U17

Ui =a; U1+ b 1U;, 1=2,--- L.

It is clear that the covariance matrix of (X7, U) is positive semidefinite; moreover, one
can readily verify that the covariance matrix of (X, Ui,l, U;) is positive semidefinite,
i = 2,---,L. As a consequence, the joint distribution of (Xi,---,X,) and the
constructed (Uy,--- ,Uyp) (as well as the induced (U7, --- ,Uy)) is well defined. It can

be verified that

Uy, = E[X4|U4],

Therefore, the constructed (Ui, ---,UL) satisfies the conditions in Lemma 6. Note
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that

moreover, we have

I(Xi> U, - Uig; Ui)
= I(X;,U;_1; Up) (3.10)

= [(01'*1; U;) + 1(X; Ui‘Uifl)

— llog ( o, (vi_i+ ok (0%, —O_ )i+ 0% 0i_) )
2 ((O-,%(z - 9;71)(71'—1 + UZFI) + 0“%(19;71)((0%{1 _ 9;71)6; + 0.%(19;71)7; )

(3.11)

where (3.10) is due to the fact that (X;, Uy, -+ ,U;_1) <> (X,-,UZ-) + U; form a
Markov chain and that U is a (linear) function of (Uy,---,Ui_;), and (3.11) is by
direct evaluation (see (3.9) for the definition of 0, i = 1,--- | L — 1). Now one can

readily prove (3.5) by invoking Lemma 4. This completes the proof of Theorem 2.
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Chapter 4

Saddle Point Analysis

Without loss of generality, we assume p; > --+ > uy > 0 throughout this chapter.

Note that the minimization problem

min  ¢(%.7,90,0)

~:€[0,d;],t=1,- ,L

can be decomposed into

2 2
. Ox 2 M+ OA
min — lo ( 1)4——10 ( ! ), 4.1
y1€0,d1] 2 & 71 2 & (0%(2 — 91)(’)/1 + UQAl) + 0'3(201 ( )
i ((qu —0;1)7vi + U?(ﬁH)
min — log
'Yie[o,di] /YZ
Hit1 Vi + 04, .
+ log< ; ) i=2,- L—1, (4.2)
2 (0%, — 0i) (i +0R,) +0%,,.0;
0% —0r_ +0% 0
min &log<( X L-1)7L XYL 1)_ (4.3)
yr€l0,dr] 2 YL

The minimizers to (4.1), (4.2), and (4.3) are characterized by the following lemmas.

Only the proof of Lemma 8 is provided. The proofs of Lemma 7 and Lemma 9 are
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straightforward and thus omitted.
Lemma 7. The minimizer to (4.1) is given by v1 = d;.

Lemma 8. Fort=2,---,L — 1, define

~ 2 2 2 2
a; = pit1(0x, — Oi-1)ox,, 0 — pi(ox,,, — 0i)ox,0i-1,

T 2 2 2 2 2
bi = (iv1 — pi)ox,0x,,,0i10; — 20,0104, (0%,, |

C; = —/LiUg(iei,lUQAi(O'g(i+lO'2Ai -+ 03(191)
The minimizers to (4.2) are given by

min{’yi, dl} a; >0

Vi = di a; < 0,01 € (0,0%,] » =2

any number in [0,d;], 0;-1 =6; =0

where

Lemma 9. The minimizer to (4.3) is given by

dL, 0;_, € (0’0-%@]
YL =
any number in [0,dr], 0,1 =0

Proof: Consider the following minimization problem

nin (i),
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where

((Ug(i - ‘91'—1)%‘ + U_%(ﬁz’—l) n Hit1 Yi + U2Ai )

o(vi) = &108; 1035( 2 2 2
2 Vi 2 (0%, —0:)(vi+0R,) + 0%, 0;

It is easy to verify that the objective function is a constant if ;,_; = 6; = 0; moreover,
the minimum in (4.10) is achieved at ; = 0 if 6;; = 0 and ¢; € (0,0%,, .
In the rest of the proof we shall assume 6, ;1 € (0,0%,] (which implies that the

minimum in (4.10) is not achieved at 7; = 0). Note that

90(71)
O

1 .
= ﬁ(dﬂf + by + ),
where @;, b;, and & are defined in (4.4), (4.5), and (4.6), respectively, and
h=2((o%, — Oi—1)vi + 0%,0i-1) % (v + Uii)((ag(m —0;)(vi + 04, + quﬂei)-

It is clear that b; < 0, & < 0, and i > 0 for v; € (0, d;].

Now consider the following cases.

1. If @; > 0, then the equation
ELi’YZ-Q + ZN)m + @' =0

has a unique positive root at v; = 4;, where 4; is defined in (4.8). We have

%J:) < 0 for v; € (0,%) and %;f) > 0 for 7; > 4;. As a consequence, the

minimum in (4.10) is achieved at min{%;, d;}.

2. If a; < 0, we have ag(;y.i) < 0 for 7; > 0. As a consequence, the minimum in
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(4.10) is achieved at d;.

This completes the proof of Lemma 8. n

4.1 Proof of Theorem 3

Now we proceed to prove Theorem 3. The key step is to show the existence of a
saddle point (7%, 6*) with the property that

0,7, 0,0%) = i 0,7, 6, 0" 4.11

([, v+, 6,6) %e[o,tgl]ﬁl,...,f““’% ,0%), (4.11)

U(7, 7%, 0, 0%) = max ¥(7,7*,9,0). (4.12)

9i€[0’0§(¢+1]’7':1""7[’_1
First consider the case where d; < 0%, i=1,---,L,and §; < o%,,i=2,---,L.
Let v = dy and 7} = dr. Define

w<’727 T 7’7L71> = max w<ﬁ7 7 79)‘

91'6[0,0%(2-+1]77::1,'-~,L—1 'Yl:'Yik,'YL:’Yz '
Note that w(vs, -+ ,7vr-1) is a continuous function of (vys,--- ,vyr_1) for ~; € (0, agg_],
i=2,---,L—1,and w(vs, -+ ,v,-1) = 00 if ; = 0 for some i; moreover, it is clear

from the proof of Theorem 2 that

i 0%,
w(y2, - a’VLl)Z%log(%), i=2---,L—1.

Therefore, the minimum of w(ys,- -+ ,yr-1) over (Yo, ,v5-1) with v € [0,0% ],

i =2,---,L—1, is achieved at some (v3,---,7;_,) satisfying 7 € (0,0%], i =
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2,---,L—1. Let 0* = (%,--- ,03) be a maximizer to

where v* = (75, -+ ,7;). We shall prove that (v*, 6*) satisfies (4.11) (note that (4.12)
is automatically satisfied).

In view of Lemma 7, Lemma 9, and our choice of (75,7} ), we just need to show that
(75, -+ .75 _,) satisfies the optimality condition (4.7) (with 6, =6f,i=1,--- ,L—1)
in Lemma 8. Let us assume that (4.7) is violated by ~j for some i*. Note that
0%._, and 6} are determined by 7% according to (3.3). To stress this dependence,
we denote 6% _; and 0% by 05 _(v5:) and 6% (7%), respectively. It is clear that at
least one of 6% _,(v%) and 6% (7;) is not zero since otherwise (4.7) is satisfied by 5.
Now let ;= (7%) be the minimizer determined by 6% _, (7)) and 6} (7)) according to
(4.7). We shall move ~/. toward 7;«(v)) (and change 6% (7)), 05 (7)), and 7 (75)
correspondingly) while keeping ~F (i # *) and 67 (i # i* — 1 and i # i*) fixed. It
is shown in Appendix D that 4;«().) varies continuously with ~. if at least one of
0% _1 (i) and 6% () is not zero. As a consequence, we can keep moving 75 until

v =7}~ at which one of the following cases happens:
Lo =% ()5

Clearly, 7% satisfies (4.7) with 0,1 = 05 _,(3%) and 0; = 05 (55). Define 7° =
(78, ,7%) with 42 = 7% and 7° = 77 for i # i*. Moreover, define 6° = (63, - - - ,63)
with 0%, = 05, (35), 05 = 05(35), and 09 = 07 for i # i* — 1 and i # *. If 0° # 0,

1
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then

U, *, 6, 0%)

> w(ﬁ??) 5,%)

2 ¢(ﬁ7 ?7 3, %)

) 70,0); 413
916[07U§cifi'}il,...,L_1w(u’ ,0,0); ( )

if §° = %, then
w(ﬁ? _*753 _*>
> w(ﬁ??) 57_*)

= ma 77,7°,6,0). 4.14

9ie[0,a§(i+1],z‘}i1,.-- ,L—1 w(lﬁ ) ( )

Note that both (4.13) and (4.14) contradict with the fact that (v3,--- ,7;_,) achieves

the minimum of w(7a, -+, yr—1) over (2, -+ ,y,-1) withv; € [0,0% ], i =2,--- , L —
1. Therefore, (7%, 0*) indeed satisfies (4.11) and thus is a saddle point.

Now consider the general case where d; € (0,0%],i=1,---,L, and §; € (0,0% ],

it =2,---,L. The preceding argument shows the existence of (fy(k),W) such that

7.~k 5 k) = min 7,79, pro, 0k,
Yy ®,0,00) = min G0, o0, 00)

9ie[0,a§(i+1],i:1,... L—1

where p;, € (0,1), and p, tends to one as k — oo. By taking a converging subsequence

of (®),6M), k > 1, with its limit denoted by (7%, 0%), one can readily verify that
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(7%, 0%) satisfies (4.11) and (4.12).
Let (7%,0*) be an arbitrary saddle point satisfying (4.11) and (4.12). It can be

shown! that
Sl) vi>0,1=1,---,L;

S2) there exists some i* such that 67 > 0 for i < ¢* and 07 = 0 for i > i* (we set
i* = 1 if all the entries of * are zero, and set i* = L if all the entries of * are

positive).

To complete the proof of Theorem 3, it suffices to show that

k(7. d,0) < (7, 77,0,0%), (4.15)
ki(Ti, d,0) = (7, 77, 6,07). (4.16)
Clearly,
k(71 d, 8) < (7,7, 5, 00m), (4.17)
where 4 2 (4™ o My (with 4™ € (0,d;), i = 1,---, L) tends to 7* as

m — 0o, and 0™ is a maximizer to

max w(ﬁ? W? S’ g) °

0i€l0,0%,, Ji=1,,L-1

Note that we must have v; = dy. If v = 0 for some i > 2, then it follows by (3.3) and (3.4)
that 6 ; > 0; on the other hand, according to (4.7) and (4.9), we must have 6_; = 0, which leads
to a contradiction. In view of (4.7) and the fact that v > 0, we must have 67 = 01if §;_; = 0. One
can verify that (71,7, 6, 0), as a function of (¥, ), is continuous at (¥, 6) if v; > 0 for all 4, but not
necessarily so if v; = 0 for some i. It will be seen that S1) and S2) allow us to circumvent such
points of discontinuity.
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Without loss of generality, we assume that (™) converges to some 6° as m — oo

(otherwise one can take a converging subsequence of 6(™) m > 1). Note that

llm w(ﬁ? fy(m)757 Q(m)) - w(ﬁ? *75’ O) S ¢(ﬁ? 7*737 *)7 (4']‘8)

m—00

where the first equality is due to S1) and the fact that (7,7, 6,0), as a function of
(¥,0), is continuous at (¥,0) if 7; > 0 for all i. Combining (4.17) and (4.18) proves
(4.15). Now construct 6 £ (8 ... %)) with 6™ € (0,0%,,,),i=1,---,L—1,

such that 60" converges to 0* as n — oo, and

(4.19)
where (4.19) is void if i* > L — 1. Let 4( be the minimizer to
| 7,7.5,000).
vie[o,ﬂligl7.._7L¢(M,7, , )
It is easy to verify that W converges to ° £ (75, ,77) as n — oo, where 70 = v*

for ¢ < ¢* and ) = d; for « > ¢*. Clearly,

which proves (4.16).
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Chapter 5

Minimax Theorem

We shall show that our main results in Section 1.3 can be viewed as a manifestation of
a certain information-theoretic minimax theorem. It will be seen that this minimax
theorem can be used to explain why there is no loss of optimality in choosing the
auxiliary random vectors Z7,--- , Z}_, to be Gaussian in the proof of Theorem 1.

Let X7, -+, X7 be defined as in Section 1.2. Define

L
© = i I(X75 W) + > pa(T(Viey; Wa) + T(X Wil W, -+, Wiy, Viiy)),
=2
where py > -+ > py > 0. We assume that V; < X[\, < (Wy,--- W) form
a Markov chain, ¢ = 1,--- L — 1. As a consequence, in order to determine ®, it

suffices to specify the conditional distribution of V; given X, ¢ = 1,--- L — 1,

as well as the conditional distribution of (Wy,--- ,Wy) given (X7, -+, X}). Let P

denote the set of conditional distributions (pv;|xy,- -+ ,pv,_,|xz). Moreover, let Q
denote the set of conditional distributions of (Wy,--- W) given (X7, -+, X}) such
that Ug(?\Wl,---,Wi S di, — 1,. .. ,L, Ugg"le S 51', — 27. .. ,L’ and Xln—‘,-l AN in VAN
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(Wi, - -+, W;) form a Markov chain, i = 1,--- , L—1, where d; € (0,0%,],i=1,--- , L,
and &; € (0,0%,],1=2,---, L.

Theorem 6.

sup inf ® = inf sup ®.
7)p ) ) 7Dp

5.1 Extremal Inequality

The following extremal inequality is needed for the proof of Theorem 6.

Theorem 7. Let N be a zero-mean Gaussian random vector with i.i.d. entries of
positive variance 012\,1,, 1=1,2,3. Let d be an arbitrary positive real number. Then for
any random vector S™ and random object W, jointly independent of (N7, N3, N},

such that agn‘w < d, we have

h(S™ + Ng'|W) — h(S™ + N{'|W) — h(S" + N3 |W)

< max n log(2me(y + 0]2\,3)) _n log(2me(y + JJQVI)) _nr log(2me(y + 0]2\[2)).
ve[0,d] 2 2 2

Proof: First consider the case 012\,3 > 012\,1. Without loss of generality, we can assume

N} = N+ ©", where O" is independent of (N7, S™, W), and the entries of ©™ are
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i.i.d. Gaussian random variables with mean zero and variance o}, — 0%, . Note that

h(S™ + NI|W) — h(S™ + NI[W)

= h(S™ + NI + ©"|W) — h(S™ + NI|W)
— [(O7; 5" + N + O"|W)

< I(O" 8"+ NI + 0", W)

< I(O"; N+ 0 (5.1)
2

n oN
()
2 o8 012\,1

where (5.1) is due to the fact that ©" <» (N + O") <> (S™ + NJ' + ©", W) form a

Markov chain. Moreover, we have
h(S™ + NZ|W) > h(S™ + N2|S™, W) = h(NZ) = glog(27rea]2\,2).
As a consequence,

h(S™ + N}W) — h(S™ + NJ'|W) — h(S™ + N3'|W)

n n n
< B log(2meoy;,) — B) log(2meoy;, ) — B) log(2meoyy, ),

which is the desired result. By symmetry, this upper bound also holds when 0]2\,3 >

2
TN, -

. 2 . 2 2 . .
Now consider the case 0%, < min{oy,,oy,}. Without loss of generality, we assume

N* = N} 4+ O, where OF is independent of (N}, S™, W), and the entries of ©F are

7

i.i.d. Gaussian random variables with mean zero and variance o}, — o3, i = 1,2.
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Note that

h(S™ + NI'|W)

= h(S™ + NI + Q")

> glog (e%h(SuNg'W) + 6%h(®?)> (5.2)
= glog (e%h(SmrN;'W) + 2me(oR, — 012\,3)), i=1,2, (5.3)

where (5.2) is due to the entropy power inequality. Note that o3, N = U%n\w +

012\,2, <d+ 0]2\,1_, 1 = 1,2. Therefore, it follows from Lemma 1 in Section 2.1 that

h(S™ + NI'|W) < ~log(2me(d + 0%.)), i=1,2. (5.4)

|3

In view of (5.3) and (5.4), we have

h(S™ + N3 |W) — h(S™ + N'|W) — h(S™ + N3|W)
.. n n
< min o log(2me(y + o%y,)) — B log(2me(y + o%,) + 2me(o%, — oxy))

— g log(2me(y + o&,) + 2me(or, — ox,))

.. n n n
= min  log(2me(y + 0%,)) — 5 log(2me(y + 0%,)) — & log(2re(y + 0%,)),
vel0,d] 2 2 2 2

which completes the proof. ]
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5.2 Proof of the Minimax Theorem

Now we proceed to prove Theorem 6. It suffices to show that
supinf ® > inf sup ®. (5.5)
P <Q e p

Let Z!' be a zero-mean Gaussian random vector with i.i.d. entries of positive variance

0%@_, i=1,---,L—1; moreover, we assume Z is independent of (X[, W1, -, Wii1),

t=1,--- L -1 Let V; =X, + 2", i=1,---,L— 1. Note that

I<XZTL7VI/’L|W17 7Wi717Xin+Zin71)
XD 4 2 XB WA, Wiy = X+ 22 Wil Wi W)

=I( X WiWy, -  Wiy) = I(X]+ Z Wil Wy, - Wiy), i=2,--- L.

Therefore, we have

L
O = i I(XT;Wh) + Y pa(H(X] + 21 Wi) + T(XT Wil WA, - W)

=2

- I(XZL + Zin—l; Wilwh T aVVi—1>>

L

n n

— % log(2meos,) — ph(XT|Wh) + Z 1 (5 log(2me(o%, + 0%, )
i=2

— WX+ Z7 [Wi) + WX W, - W) = (X W, - W)

— A(X o ZE [ Way e Wat) (X ZE W, W)
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n
= B log(2mea’,) — mh(X7 W) = ua((X5 + Z7|W1) = (X5 W)
L-1
3 (i h(XT 2 W, W) = RIS, W)
=2

= pi (MK + Z2IWA, - W) = (X WA, W)

+—(h(X”+Z£ W, W) = WX W, - W)

+ Z 1 (g log(2me(0%, + 0% ) — h(X! + Z | |W; )) (5.6)
1=2
It can be shown (cf. (2.19), (2.20), (2.22), and (2.23)) that

— mh(XT[Wh) = pa(h(X5 + Z7[Wh) — h(X3|Wh))

. LUaM Y+ 0%, +0%
> min " 1og(2mer) — H2 1o ( - 1), 5.7
> min g2rem) = =~ log (—— ey (5.7)
— pipr (M X7y + Z0 W, W) = (X W, - W)
, i+ o2 : .+ oA + 02
> min i 10g <’7 Z171> _ Hia T IOg <’7 Ay ; szl>7 i = 27 . ,L . 1’
vi€l0,di] 2 Yi 2 Vi + 04,
(5.8)
+ 02
WXT + 70 Wi, Wh) — h(XP[Wh, - ,W2) > min Zlog <%—2>
vL€[0,dL] YL
(5.9)
—h(X]+ Z" |W;) > ——10g(27re(5 +oy ), i=2,---,L. (5.10)
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Substituting (5.7), (5.8), (5.9), (5.10) into (5.6) and setting 0, = (6, —ox? )",

(2

Z:]_, 7[/_]-7 y161ds
¢z i 7750
= el0diint L n (1,75, 6, 0),

which further implies

inf ® > min n (11,7, 6, ).

Q  y€l0dy]i=1,,L
Therefore, we have
supinf & > sup min nY(,7,9,0)], I S NI
P < 02 >0,i=1,- [ —1 Vi€[0.di]i=1,, L X Tz

= sup min ni (11,7, 6, ). (5.11)

0;€(0,0%, | )ii=1,,L—1 %i€[0,dil =1, L

In view of (5.11) and Theorem 3, for the purpose of establishing (5.5), it suffices

to prove that

infsup® < inf max ni (1,7, 0, 0).
Q 'pp T €O =1 LOE0,0%, L=l L1 ¥(7.7,0,9)

To this end, we shall show that given any %7 with +; € (0,d;), i = 1,---, L, there
exists (W, .-+, W) such that

A]-) O-g(n‘WIV...7Wi < Vi, 1= ]-7 e 7L7
A2) Ug{"‘WZ < 5i7 1:27 7L7
A3) X, < X[ < (Wh,--- W) form a Markov chain, ¢ =1,--- | L — 1;
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moreover,

sup ® < max ni (11,7, 6, 6). (5.12)

P 916[0,0§i+1},i:1,...,L71

Let 4/ and 0’ be as specified in Lemma 5. Note that 7/ € (0,7, i = 1,---,L,
5 € (0,8],i=2,---,L,and

max (7,7, 9, 8) < max ¥(7,7,9,0). (5.13)
Gie[O,ag(Hl],i:l,--.,L—l Gie[o,ag(iﬂ],i:L...,L_l
As shown in Chapter 3, one can construct a zero-mean random vector (Uy,---,Up,

U1, e UL) jointly Gaussian with (X7i,---, Xp) such that
B1) U, = E[X,|Uy, -+, U] and E[(X; — U)?] =L, i=1,---, L,
B2) E[U?] = E[X,U)] = 0%, — &, i=2,--- L,

B3) (XQ, s ,XL) g X1 — Ul form a Markov Ch&in, and (Xj)j;,gz <~ (XZ, Ul, < ,Uifl)

< U; form a Markov chain, : =1,--- | L.
First assume that 0] < 0%, i =2,--- , L. Define
2
o%. -
Nz = 5 7 : B Ui—l Xz 1= 2, ,L,
0x;, = Vi—1 Aiy
2
Ux.
N; = B} - ,Uz X 1 =2, aLu
0%, — 0;
. o3 -
i = 5 : ,Uz_Xia i =2, , L
O-XZ - fyZ
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It can be verified that

0%, (Vi_y + o4,
0-]2\[1 = 2Xl(ry /1 AZQ_I) Y Z: 27 e 7L7 (514)
UXi _P)/i—l _O'A,;,l
2 s/
s 0¥, 0; o
e i=2,-,L, (5.15)
0%
2 i I s
aﬁifag(i_%{, i=2,---,L. (5.16)

Let (Xij,Uij,ﬁij,Nij,NZ-j,Nij,i = 1,---,L)j_; be niid. copies of (X,-,U,-,UZ-,NZ-,
N, N,i=1,--- ,L), and let W; = U, i =1,--- L. It is easy to see that A1), A2),
and A3) are implied by B1), B2), and B3), respectively. Moreover, one can readily
verify that (N7, Nj, Ni) is independent of (X', V;_1), i = 2,---, L. Note that

L
O = I(X7UD) + > (I (Vie; UP) + IX UM UL, -+ Uy Vi)

1=2
L

= m I (XT3 U7) + Y w(I(Viei; UP) + I(X UP|UT, -+ U
1=2

— I(Vie; UPUT, -+, URY)

L

= mI (XT3 UN) + Y w(I(Vie; UP) + (X5 U7 -+ U = I(XS UY -+ U )
=2

—I(‘/l_l,Uln, ,Uf)‘FI(‘/z—luUln? 7Uznfl))

L
= I(X707) + ) p(I(Viey; UP) + I(XP5 UP) — I(XP5 UF )

1=2

— I(Vie; UF) + 1(Viei: UL))

2 L / 2
= Tlog ( 7{) + ;:2 ui<§log (T> + I(Viey; UYY)
— (Vi UP) + I(Viey; U 1)). (5.17)
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We have

[(Vii; UM = I(Viy; U + 1(Viy; U
= I(Vioy; X4 NP = I(Vioy; X2+ NPY 4 I(Viy; X2 4 NP

= glog@we(ag(i +o%.)) + glog(%re(a?{i + JJQV)) — glog(Qﬂe(Ugfi + 0]2\71_))

+ W(X] + NPViet) = W(X] + NP Viet) = W(X] + NP |Viey), i=2,--- L.
Since Ug(_nm_ ., < 0%, it follows from Theorem 7 that

h(X} _’_Nzn“/i—l) — h(X]" + N'|Vi_1) — h(X] +N¢n|Vz‘—1)

n n
< —log(2me(0;_1 + 02 )) — = log(2me(b;_1 + o2,
eif?%figd 5 og(2me(fi-1 + 0%)) 5 og(2me(f;i—1 + oy.))

n .
3 log(2me(6;_1 + 012%)), i=2---,L.
Therefore, we have

I(Vii; UM = I(Vi; UMY + 1(Viy; U

< log ( : ) =20 L (5.18)
2 (91-_1+0Ni)(9i—1+<7m)(0xi +0Ni)
Substituting (5.18) into (5.17) and invoking (5.14)-(5.16) yields

P < max nw(ﬁ7 77 ya 5) (519>
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If 0} = 0%, for some 4, then

[(V;—ﬂ U@n) - I(Vz’—1§ Un) + [(‘/;—1; Uzn—l) =0.

(2

As a consequence, one can readily verify that (5.19) continues to hold. Combining

(5.13) and (5.19) gives
@ < max n¢<ﬂ’ 77 S’ @)’

0i€0,0%,, Ji=1 L1

which further implies (5.12). This completes the proof of Theorem 6.
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Chapter 6

Miscellaneous Results

6.1 The Minimum Sum Rate: A Special Case

In this section we focus on the case @ = (1,---,1) (which corresponds to the sum
rate). Let 0%, =p'"',i=1,--- L,and 0}, = p" '(p—1),i=1,--- ,L — 1, where
p > 1. Moreover, let d = (p°d,--- ,p"'d) and § = (pd,--- , p*~16), where d € (0, 1]
and § € (0,1]. By Theorem 3, (%I, d, §) and k,(f,d,d) coincide in this special case;

therefore, we shall denote them by (f, d, 5). The main result of this section is an

explicit characterization of (i, d, §).

Theorem 8. 1. Ifd=> (5= + s —1)71, then
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51
2. Ifd < /;;Tw then

k(f1,d,5) = 1log (é) + L;1 log <d+;d_ 1).

o ( (d+p—1)((1—0)d+6) )
> B\ —0)d+p—1)+p0)((1—0) +6)d)

9_\/p—1< o d )_ d
S Vi1-d\1-6 1-d/ 1-d
Proof: 1. Let ¥* = d and 0* = (0,---,0). It can be verified that (7%, 0*) satisfies

(4.11) and (4.12) (see the optimality conditions in Lemmas 4, 7, 8, and 9).
Therefore, it follows by the proof of Theorem 3 that
1 1

(i, d, ) = ¥(E, v+, 6,0%) = 5 log <E> + L ; L log <%>

Note that in this case we can decrease the hierarchical distortion constraint d

tod = (dy,--- ,d}) without affecting the minimum sum rate, where
dy =d,
dl 7—1 ( pi_l + 1 1) -1 . 2 L
. = - —_ — s Z = s o .. s .
SRR PRV

2. Let v* =d and 0* = (p,--- , p“~1). It can be verified that (77, 0*) satisfies (4.11)

and (4.12) (see the optimality conditions in Lemmas 4, 7, 8, and 9). Therefore,
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it follows by the proof of Theorem 3 that

k(i,d, ) = (@, v+, 6,0%) = %log (é) + L ; ! log (d-l-pﬂd— 1).

Note that in this case we can decrease the individual distortion constraint § to

o' & (8}, -+ ,6,) without affecting the minimum sum rate, where

5;:pl—2(p_1)d+p2—2’ 2227 7L

3. Let v* = d and 0* = (pf,--- ,p"~'9). It is easy to verify that (7*,6*) satisfies
(4.12) (see the optimality condition in Lemma 4). Note that the optimality
conditions in Lemma 7 and Lemma 9 are clearly satisfied; therefore, to ver-
ify (4.11), it suffices to show that (7%, 0*) satisfies the optimality condition in

Lemma 8. In view of the fact that 6 € (0,1) and that
~ _ 3i-9
a; = p” " (p—1)(1 - 0)0 >0,

we just need to show that 4; > p*~1d, where

v, = p (1 L) =92 ... [ —1.
P)/ p <+ 1_97 ? Y )

This is indeed true since 1+, /1% > 1 > d. Therefore, it follows by the proof
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of Theorem 3 that

k(7. d,0) = Y (,77,0,0%)

1 1 L-1 (d+p—1)((1—-0)d+0)
=5loe (3) + 73 log(((1—e)(d+p—1)+p9)<(1—9)5+9)d>'

6.2 Robust Predictive Coding System

In this section we propose an efficient implementation of the robust predictive coding
scheme associated with Lemma 6. For simplicity, throughout this section we describe
the scheme in the form of single-letter operations; however, it should be understood
that in fact such a scheme has to be implemented over long blocks in order to approach
the information-theoretic limits.

As shown in Chapter 3, to minimize the weighted sum rate ﬁﬁT of the robust
predictive coding scheme associated with Lemma 6, there is no loss of optimality in
considering zero-mean random vector (Ui, --- , Uy, (71, U 1) jointly Gaussian with

(X1, -+, X1) such that

E[U}] = E[X,U1] = 0%, =7,
EU7) =EX;U)=0%, —6;, i=2,---,L,

E[Uz—le] :fi—h 7’:27 aLv

U1 - ]E[X1|U1] - Ul,
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U; =EXi|Uy, - U] = E[Xi|Uin, U] = @i Uit + b2 Ui, i=2,00-, L,

E[(XZ_UZ)Q] :7;7 L= 17 aL7

E[(Xl_Ul)2] :5;7 7'227 7L7

where 7/ and ¢ satisfy

O<P)/1/§dla i=1--,L,

0<8 <6, i=2--,L,

%{ + 0-2A7L + 51{-&-1 - U?QH < %{-i-l < ( + Y

/ 2
Y%t oA, Oiy1 Ox,

and the parameters &;, a;, and b;, i = 1,--- ,L — 1 are defined in (3.6), (3.7), and
(3.8), respectively; moreover, (X, -+, Xy) <> X; <> U; form a Markov chain, and

((Xj)j;aéi; Ul, ce 7Ui—1) <~ (X“ 01'—1) — U; form a Markov Ch&il’l, 1= 2, s ,L. Let

Rl = I(Xl; U1>,

Ri:I(X’iyUl,"'7Ui_1;Ui), i:2,"'7L7

where R; is the rate of Encoder i. One can interpret X; and U;, respectively, as
the input and the output of Encoder 1; similarly, (X;, Uy, - ,U;_1) and U; can be
interpreted, respectively, as the input and the output of Encoder i, ¢ = 2,--- | L.
Given the outputs from the first i encoders, the decoder can compute U; and use
it as the reconstruction of X;, and the resulting distortion is 7}, ¢ = 1,---, L. If
the decoder only receives the output from Encoder i, then it simply uses U; as the

reconstruction of X;, and the resulting distortion is ¢;, ¢ = 2,---, L. Moreover, in
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view of the fact that
[(Xi, Uy, Uiz Ui) = [(Xi, Ui_1; Ui)7

it suffices to provide Encoder i with (X, Ui_l) as the input, i = 2,--- , L. Note that

we can write

U1 = E[U1|X1] + N1 = Olel + Nl,

U; = E[U;]| X, Ui—l] +N; = a;X; + BiiUiy +N;, i=2,--- L,

where

2 /

o O-Xl - 71

M= 5
O—X1

2 !
_0x, — 0; — i1

i / B ) = 27 e 7L7
Yic1 T OA,,
/2
0, i — IXx; _
B; = . i=1,-, L—1
& Xy Ot~ : ’ ’ ’ ’
ot — __ , otherwise
9%, Vi Yitoa,
2 INAS
0%, — M)V
21 ( X, 1/ 71
]E[Nl] - 2 3
UXl
2 ! !
(aXi_ai)(si I — 52
2 0'3(_ Y 77,—1 Xi—l
E[NZ]: ’ 2 ’ 2 2 3 Z:2,“ ,L
o2 — 0§ — o T VR otherwise
Xi ! '71{—1+‘72Ai,1 ”§i71_7§—1’

It is clear that

I(Xl, Ul) = I(Oéle;Oéle + Nl);

I(X;,Ui—1; U;) = I X; + 5171[71'71; 0; X, + ﬁiflﬁifl +N;), 1=2,---,L.
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As a consequence, we can interpret Encoder 1 as a quantizer with oy X7, Uy, and Ny
respectively as the input, the output, and the quantization error; similarly, we can
interpret Encoder ¢ as a quantizer with o; X; + @,1(72-,1, U;, and N; respectively as
the input, the output, and the quantization error, ¢ = 2,--- |, L. Furthermore, in view

of the fact that

Ui = ai—lﬁi—l + bi—lUi; 1= 27 e ’L7

the calculation of (Ul, U 1) at the encoders and the decoder can be performed
iteratively. A robust predictive coding system based on this interpretation is depicted
in Fig. 6.1. It is worth mentioning that one can implement the quantization operation
in such a system by using entropy-coded dithered lattice quantizers (see, e.g., [12; 13;

14)).

6.3 Reconstruction Based on an Arbitrary Subset
of Encoder Outputs

As pointed out in Section 6.2, one can interpret U; as the output of Encoder i, i =
1,---, L, for the robust predictive coding scheme associated with Lemma 6. Although
it is developed for the scenario where only the hierarchical distortion constraint and
the individual distortion constraint are imposed, this scheme has a desirable property
that every subset of the encoder outputs is decodable. For example, if at the time
of reconstructing X5, the decoder only receives the outputs from a subset of the first

5 encoders (say, (Uy,Us, Uy)), then it can still decode these outputs and further use
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Xf—»é}—» Quantizer 1 ——

>

&
> X,

a, B b,
X;—»é—» Quantizer 2 > X

—> X!
aZ
> X!
a, B, b,
X;—»é—» Quantizer 3 — > X!
A

XC—»&—» Quantizer L

Figure 6.1: Robust predictive coding via successive quantization. Here Xi” can be
viewed as a multi-letter version of U;, i« = 1,---,L, and X can be viewed as a
multi-letter version of U;, 1 =2,---, L.

E[X5|Uy, Us, Uy] as the reconstruction of X5 (with the resulting distortion equal to
O U U Us)-

Now we proceed to give a detailed analysis for this kind of scenario. Again we
shall focus on the case where (Uy,---,Uy) satisfies the conditions listed in Section
6.2. Assume that the decoder receives U;, j € A for some non-empty set A C
{1,---, L}; moreover, at the time of reconstructing X;, the decoder is only allowed

to use (U;)jea <i- With no loss of generality, we shall assume E[(U?)] # 0 (which
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implies & < 0%,) for all i € A.

Define

Note that U; = 0 and d; = ag(i if 7 > i for all 7 € A. We shall show that (Ul, - U)
and (czl, e ,cZL) can be computed iteratively.
It is clear that
. 0, 1¢A4

U1 — )
Uy, otherwise

. %, 1¢A

vy,  otherwise

For i = 2,--- | L, we have Ul = Ui_l and CL = czi_l + UZH if i ¢ A; moreover, we
have UZ = U; and cfz = 0, if cZ,;_l = ag(i_l. Therefore, it suffices to consider the case

where i € A and d;_; < 0%, , (which implies 7/_, < 0%, ). Since (U, --- ,Ui—1) <

i1 < (X, Ui_l) < U; form a Markov chain, it follows that (U;);jeca j<i < Uiy

U1 < (X UZ) < U; form a Markov chain. As a consequence,

A

Ui = E[X;|Ui_1, Uy).
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In view of the fact that

~

IE[[A]Z.Q_J = E[Ui—lﬁi—l] = JE(H —d;_q,

we can write

A

~ ~ ~ ~ O'Xi_1 i—1 ~ ~
Ui-1 = ElU;i1|Uiz] + Nioy = —————U;_1 + N1,
Ox,_y — i1

where N;_, is independent of (X;, Uiy, U;) (recall that U< U < (X;, U;) form

a Markov chain). Therefore,

A ok, - CZz'—l ~ (02 T 621—1)&'—1
E[U;_1U;] = ;(Z_l—,E[Ui—lUi] = XZ; - X
Ox, 1 — i1 Ox, + — Yi—1

It is also easy to see that

Now one can readily verify that

U’i = OAéiflUifl + Bifle’,

CZi = 0'?(1- - 0%-71(0'?(1.71 B a?ifl) - Bi*1<0-§(i o 52)’
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0.7 : ‘
* A={1,...,60}\{8,9,10,11,12,35,36,50}
O A={1,...,60}
0.6F
*
0.5F
*
_ 04 *
|
= * ok *
S

0.1r

Figure 6.2: Reconstruction based on a subset of encoder outputs.

where

Gt — (Ugg,l - 71(—1)2(‘7%(1 , — die 1)( g{ - 5,) - (UE(H - %{—1)(‘739,1 —di—1)&i-1(0%
i-1 = =

o (0%, =)0k, —die 1) & 1+ (0%, 7)) (0%, — dica) (0%, — 0))
i—1 = .

(Ug(i,l - %’—1)2(‘7_%6 1 difl)@xi —6;) — (0_%(1,7 - dz 1)? ’fz 1

i—

An illustrative example is given in Fig. 6.2. In this example, we choose a§(i =
pt i =1,--- L, and O'ZAZ_ =pYp—-1),i=1,---,L—1, where L = 60 and
p = 2 moreover, we set 7/ = (p°v,---,pt71y) and & = (pd',-- -, p"~1§"), where
v = 0.2 and & = 0.5. We plot d;/p"*, i = 1,---, L, for the scenario where A =
{1,---,60}\{8,9,10,11,12,35,36,50}. A comparison with the ideal scenario (i.e.,

{1,---,60}) shows that the proposed scheme has a desirable “self-reovery”

property.
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Chapter 7

Conclusion and Future Work

We have partially characterized the rate region of robust sequential coding and robust
predictive coding for the Gauss-Markov source model under the mean squared error
distortion constraint. More fundamentally, our investigation reveals an information-
theoretic minimax theorem, which can be obtained by coupling two extremal inequal-
ities. It is worth noting that most of the results in this thesis can be extended to the
vector source setting in a relatively straightforward manner. In particular, one can
establish the vector version of Theorem 5 and Theorem 7 by leveraging techniques

developed in [15; 16; 17].
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Appendix A

Mathematical Elementary

A.1 Jensen’s Inequality

If X is a random variable and ¢ is a convex function, then
P(E[X]) < E[p(X)].
If X is a random variable and ¢ is a concave function, then

P(E[X]) = E[o(X)].

A.2 Mean Square Error Estimation

Let X and Y be two random variables. The minimum mean squared error (MMSE)

estimate of X given Y is a function z(Y") of Y that minimizes the mean squared error
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A~

E[(X — X)?] and is given by

If X and Y are zero-mean and jointly Gaussian, then

-@MMSE(Y) =aY,

E[XY]
E[Y?

where a =
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Appendix B

Information Theory Elementary

B.1 Entropy and Differential Entropy

Definition 5. The entropy of a discrete random variable X with distribution p(x) is

defined as
H(X) 2= p(x)logp(w),

TEX

where X s alphabet of X .

Definition 6. The differential entropy of a continuous random variable X with prob-

ability density function f(x) is defined as

h(X) 2 = [ 1) 1og e}
If X is a Gaussian random variable with variance 0%, then

1
h(X) = 5 log(2mea?.).
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Theorem 9. The maximum differential entropy under the average power constraint

1s achieved by the Gaussian distribution

1
h(X) = = log(2meP).
f(x)%l&}%]g (X) 2 og(2meP)

Theorem 10. Entropy Power Inequality: Let X™ and Z™ be conditionally indepen-

dent random wvectors given a random variable U and let Y™ = X" + Z", then

eBROMIU) S BRXMU) 4 BH(ZMU)

B.2 Lossy Source Coding

Let X be a discrete memoryless source with distribution p(x), and w : X X X —
[0,00) be a distortion measure, where X and X are the source alphabet and the

reconstruction alphabet, respectively.

Definition 7. A rate R is said to be achievable subject to distortion constraint D
if for every e > 0 there exist an encoding function f™ : X™ — C and a decoding

function g™ : C — X™ such that

1
—log|C] < R+,
n

1 ~
E[— X-,X~] <D+e
n;w( J ]) S D+e

where X" = g (f(X™)),

Let R(D) denote the minimum achievable rate subject distortion constraint D.
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Theorem 11. Shannon’s Lossy Source Coding Theorem [6]:

A

R(D) = min I(X;X)
p(2|z):E[d(X,X)]<D

for D > Dy = E[ming w(X, 2)].

Theorem 12. The rate-distortion function for a zero-mean Gaussian source with

variance P and the mean squared error distortion measure is

B.3 Multiple Descriptions

Consider a discrete memoryless source X with distribution p(z) and distortion mea-
sures w; : X X X; — [0,00), where X and X, are respectively the source alphabet and

the reconstruction alphabet, i = 0,1, 2.

Definition 8. A pair of rates (Ry, Rs) is said to be achievable subject to distortion
constraint (Dy, D1, Do) if for every e > 0 there exist encoding functions fi(n) AT —
Ci, i = 1,2, decoding functions g(()") Cy X Cy — X', and gi(n) G — X, i =1,2 such

that

1
“log|Cil < Ri+e, i=1,2
n

1 — .
E[— iX-,XZ-}<Di . i=0,1,2,
n;w( 5 Xij)| < +e, i

where X3 = g8 (F7(X™), £ (X™) and X7 = g (£ (X)), i = 1,2.

i 7
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The rate region R(Dg, D1, D-) is the set of all rate vectors achievable subject to

distortion constraints (Dg, D1, Ds).
Theorem 13. El Gamal-Cover Inner Bound [7]: A rate pair (Ry, Rs) is achievable

subject to distortion constraint (Dgy, D1, Do) if

Ry > I(X, X1|Q),
Ry > I(X, X,|Q),
Rl —+ RQ > I(X, Xo,X17X2|Q) + I(Xl;X2|Q>,
for some p(q)p(io, &1, &alx, q) such that Elw(X,X;)] < Dy, i =0,1,2,

Theorem 14. Zhang-Berger Inner Bound [8]: A rate pair (Ry, Rs) is achievable
subject to distortion constraint (Dy, D1, Do) if

Rl > I(Xv)%l’U)a
Ry > I(X, X,,U),
Ri+ Ry > I(X, Xo, X1, Xo|U) 4+ 2I(U; X) + I(X1: Xo|U),
for some p(u, &g, T1, To|x) such that Elw;(X, XZ)] <D;,i=0,1,2.

Ozarow [9] showed that the El Gamal-Cover inner bound is tight for the quadratic

Gaussian case.

Theorem 15. The multiple description rate region R(Dy, D1, Dy) for a zero-mean

Gaussian source X with variance P and mean squared error distortion measures is
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the set of rate pairs (Ry, Rs) satisfying

Rl 2 _log_7
RQ 2 _log_7

Ry + Ry > -log — + A,

where

A llog (P — Dy)?
(P — Dy)? = (\/(P — D1)(P — D3) — /(D1 — Dy)(D5 — Dy))?

2

if Dy + Dy < P+ Dy, and A = 0 otherwise.
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Appendix C

Proof of Lemma 1

Proof: Note that

A(S"IW) = 3 A(S W, 5

=1

<3 h(siw)
=1

1
< Z 3 log(2meos, )

=1

< g log(2meogn )

< g log(2med),

where the third inequality follows by Jensen’s inequality.
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Appendix D
The Continuity of ¥;«(v%)

To stress their dependence on (6;+_1,6;+), we shall denote a;x, bi-, ¢+, and Ji« by
Qi+ (O3e—1, 0+ ), éi*(ei*—laei*)a Ci= (01,05 ), and 4= (0;+_1, 0;+) respectively. Define re-

gions R, and R4 as follows:

Ri = {(91*—1,92‘*) : &i*(ei*—hei*) > O},

Ro = {(0+—1,0:) : = (01, 0:+) < 0,01 € (0,0%,.]}.

*

It is clear that ;«(;) varies continuously with % if (65 _;(v%), 05 (75)) moves in-

i
side one of these two regions. Therefore, we only need to consider the case where
(05 _1 (), 0% (74)) traverses through the boundary between Ry and Ro.

Let (6;+_1, 0;<) be a boundary point between Ry and Ro. It is clear that a;« (0«1, 0;) =
0; moreover, it suffices to consider the case 6;_; > 0 since we have #;x = 0 if

both @;«(0;_1,0;<) and 6;«_; are zero. As a consequence, we have (0;«_1,0;) €

Ry. Note that 4« (v5h) = di= if (05_,(75~),05(75)) € Ra. On the other hand, as
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(05 _1 (7)), 05 (7)) moves toward (0;«_1,0;+) from the R, side, we have

i (67 1 (34, 07 (7)) = 0,

Civ (07 _1(73=), 05 (7i=)) = Cix (0321, 05) > 0;

i*

moreover, since

—Cj~ (9;*—1 (’Yf*)v 6;2 (%** ))
&i*(eik*—l(’ﬁ*)ae;* (%**)) ’

e (01 (77%), 03 (732)) = \/

it follows that 4;«(07._,(v%), 0% (7)) — oo, which further implies that

2

Fir () & min{ g (07 1 (972), 07 (772)), div } = di-

when (65._, (7). 05 (7)) is sufficiently close to (6;+—1, 6;«). Therefore, 4;«(v}.) varies

continuously with % when (0% _; (7)), 05 (7

i*

)) traverses through the boundary be-

tween R; and Ra,.
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