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Characterization of Negabent Functions and
Construction of Bent-Negabent Functions with
Maximum Algebraic Degree

Wei Su, Alexander Pott, and Xiaohu Tang

Abstract

We present necessary and sufficient conditions for a Bodigaetion to be a negabent function for both even
and odd number of variables, which demonstrate the relgttipnbetween negabent functions and bent functions.
By using these necessary and sufficient conditions for Boofenctions to be negabent, we obtain that the nega
spectrum of a negabent function has at most 4 values. Wendieithe nega spectrum distribution of negabent
functions. Further, we provide a method to construct begfabent functions im variables § even) of algebraic
degree ranging fron2 to %, which implies that the maximum algebraic degree oframariable bent-negabent
function is equal toz. Thus, we answer two open problems proposed by Parker aridaRatby Stanicaet al.
respectively.

Index Terms

Boolean function, bent function, negabent function, heggabent function, Walsh-Hadamard transform, nega-
Hadamard transform.

. INTRODUCTION

Boolean functions play an important role in cryptographg amror-correcting codes. They should satisfy several
properties, which are quite often impossible to be satidigdiltaneously. One of the most important requirements
for Boolean functions is the nonlinearity, which means tiat function is as far away from all affine functions as
possible. In 1976, Rothaus introduced the clasbeaaft functionsvhich have the maximum nonlinearity| [1]. These
functions exist only on even number of variables ancharariable bent function can have degree at mbst

A Boolean function is bent if and only if its spectrum with pest to the Walsh-Hadamard transform is flat
(i.e. all spectral values have the same absolute valuekePand Riera extended the concept of a bent function
to some generalized bent criteria for a Boolean functioriZiih [3], where they required that a Boolean function
has flat spectrum with respect to one or more transforms fragpezified set of unitary transforms. The set of
transforms they chose is not arbitrary but is motivated bja@iae of local unitary transforms that are central to the
structural analysis of pure-qubit stabilizer quantum states. The transforms theyieg@ren-fold tensor products
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of the identity I = < 01 ) the Walsh-Hadamard matrid = % ( ) . ) and the nega-Hadamard matrix
1 1 .
N = % ) Z‘ , Wherei? = —1. The Walsh-Hadamard transform can be described as thertprmuct of
—1

severalH’s, and the nega-Hadamard transform is constructed from tremteroduct of severdl’s. As in the case
of the Walsh-Hadamard transform, a Boolean function isedalegabentf the spectrum under the nega-Hadamard
transform is flat.

There are some papers in the area of negabent functions laghéew years[[4][B]. An interesting topic is to
construct Boolean functions which are both bent and nedabent-negabeit whose relates results are listed as
follows.

1) In [4], Parker and Pott gave necessary and sufficient tiondifor quadratic functions to be bent-negabent. It
turns out that such quadratic bent-negabent functiong &disll evenn. They also described all Maiorana-
McFarland type bent functions which are simultaneouslyabegt. It seems difficult to apply this result in
order to construct Maiorana-McFarland bent-negabenttioime. For even number of variables, necessary and
sufficient condition for a Boolean function to be a negabemicfion has also been presented.[Ih [4], they
proposed the following open problem (open problem 3'in [4]).

Open Problem 1:Find the maximum degree of bent-negabent functions.

2) In [5], transformations that leave the bent-negabenpenty invariant are presented. A construction for
infinitely many bent-negabent Boolean functions2imn variables {n # 1 mod 3) and of algebraic degree
at mostn is described, this being a subclass of the Maiorana-McRarteent class. Moreover, the algebraic
degrees ofi-variable bent-negabent functions in this constructi@less than or equal  andn = 0 mod 4.
Finally it is shown that a bent-negabent functioniirfn even) variables from the Maiorona-McFarland class
has algebraic degree at mdst- 1, but not an existence result.

3) In [6], Stanicaet al. developed some properties of nega-Hadamard transformsseQaently, they derived
several results on negabentness of concatenations, atidllpaymmetric functions. They also obtained a
characterization of bent-negabent functions in a sub@&dsaiorana-McFarland set.

4) In [7], Stanicaet al. pointed out that the algebraic degree of :avariable negabent function is at most
[51]. Further, a characterization of bent-negabent functioas @btained within a subclass of the Maiorana-
McFarland set. They developed a technique to constructiegabent Boolean functions by using complete
mapping polynomials. Using this technique they demorestrahat for eacti > 2 there exist bent-negabent
functions onn = 12/ variables with algebraic degre® +1 = [ + 1. It is also demonstrated that there
exist bent-negabent functions on 8 variables with algebdagrees 2, 3 or 4. Moreover, they presented the
following open problem.

Open Problem 2:For anyn = 0 mod 4, give a general construction of bent-negabent Booleantitums on
n variables with algebraic degree strictly greater tHam 1.

5) In [8], Sarkar considered negabent Boolean functionsnddfiover finite fields. He characterized negabent
quadratic monomial functions. He also presented neceasakgufficient condition for a Maiorana-McFarland
bent function to be a negabent function. As a consequentabfdasult he can obtain bent-negabent Maiorana-
McFarland function of degre§ overFs..

In this paper, we concentrate on negabent functions andrsgabent functions. In particular, we have the



following contributions.

« In Section Ill, direct links between the nega-Hadamardftmms and the Walsh-Hadamard transform are
explored. By using this property, we study necessary anficeift conditions for a Boolean function to
be negabent for both even and odd number of variables, widntodstrate the relationship between negabent
functions and bent functions.

« In Section IV, we obtain that the nega spectrum of a negaherdtibn has at most 4 values. Hereafter, we
determine the nega spectrum distribution of negabent ifumst

« In Section V, we give a method to construct bent-negabermtims inn variables { even) of degree ranging
from 2 to 5. These functions belong to the Maiorana-McFarland corepiss. Thus, we can obtain that the
maximum algebraic degree of anvariable bent-negabent function is equaljo Therefore, we answer the
Open Problems 1 and 2 proposed[ih [4] [7] respectively.

[I. PRELIMINARIES

Let n be a positive integelf; be then-dimensional vector space over the two element figJd The set of
integers, real numbers and complex numbers are denotél, B and C, respectively. To avoid confusion, we
denote the addition oveéf, R andC by +, and the addition ovely by ¢ for all n > 1.

Let 3,, be the set of all maps froffi; to Fo. Such a map is called anvariable Boolean function. Lef(x) € 5,
the supportof f(z) is defined assupp(f) = {x € F§| f(x) = 1}. The Hamming weightwt(f) of f(z) is the
size of supp(f), i.e., wt(f) = |supp(f)|. The Hamming weighof a binary vectorz = (z1, 22, --,z,) € Fy is
defined bywt(z) = > | ;. Eachn-variable Boolean functiorf (z) has a unique representation by a multivariate
polynomial overFs, called thealgebraic normal form (ANF)

f(xla"'awn): @ quw;h’ quFQ-

u=(u1,Uz, " Up ) EFY i=1
The algebraic degreéeg(f), of f is defined asnax{wt(u)|f, # 0,u € F}}.
The Walsh-Hadamard transforraf f(x) € B,, at any vector: € F3 is defined by

Wil =278 3 (1)@t

zelFy
Herew - x is a usual inner product of vectors, i.@.; x = uix1 ® usxs ® - - - ® upx, for u = (uq,ug, -, uy,) and
x = (21,22, -+, x,) € F5. The Walsh spectrunof f consists of all valuegWy(u) | v € Fy}.

A function f € B, is said to bebentif |W(u)| = 1 for all u € Fj. It is semibentf |[W;(u)| € {0,£v2}.
Boolean bent (resp. semibent) functions exist only if thenber of variablesy, is even (resp. odd). If € B, is
bent, then thelual functionf of f, defined onFy by:

Wiu) = (—1)7™, v ueRp,

is also bent and its own dual & itself.
The autocorrelationof f atw is defined as
zeFy

For evenn, it is known that a functiory € B, is bent if and only ifC¢(u) = 0 for all u # (0,0,---,0) € F3.



The nega-Hadamard transforrof f(x) € B,, atu € Fy is the complex valued function:
Ny(u) =273 ) (—1)frrueguile),
z€Fy
The nega spectrunof f consists of all value§Ns(u) | u € F5}.

A function is said to benegabentf |[N;(u)| = 1 for all v € F3. Note that all the affine functions (both even
and odd numbers of variables) are negallent [4]. For even auaftvariables, if a negabent function is also a bent
function, then we call this functiobent-negabent

Define thenega-autocorrelatiorof f atu € 5 by

elw) = Y (-1 e gy,
z€Fy
In [€], it was shown that a Boolean function is negabent if anty if all its nontrivial nega-autocorrelation values
are 0 which is analogous to the result concerning the auteletion values of a bent function.

We conclude this section by introducing the following nimtas which will be used throughout this paper.

1) 0, =(0,0,---,0) and1,, = (1,1,---,1) € F%;

2) e; : e; € F3 denotes the vector of Hamming weight 1 with 1 on ghth component;

3) z:if z=(21,---,2,) € Fy, thenz = z & 1,, denotes the bitwise complement af

4) |z| :if z=a+bi € Cis a complex number, thela| = v/a2 + b2 denotes the absolute value af

5) o4(z) : if x € Fy, theno,(x) denotes the elementary symmetric Boolean functiom mariables with degree

d(l<d<n),lie,

oq(z) = @ Ty Tiy -+ Tiyy, YV x=(T1, -, zy) € Fy.
1<iy <<ig<n
In particular, ifz = (x1,---,2,) € F3, thenoy(z) =21 ® - ®x, =1, -2 andoz(x) = ®1<i<j<nwiwj;

6) GL(n,F9) : the group of all invertiblen x n matrices oveif's.

I1l. CONNECTIONS BETWEEN NEGABENT FUNCTIONS AND BENT FUNCTIONS

In this section, direct links between the nega-Hadamardsfeam and the Walsh-Hadamard transform are
explored. By using this property, we study necessary arfitgift conditions for a Boolean function to be negabent
for both even and odd number of variables, which demonsthaerelationship between negabent functions and
bent functions.

Lemma 1:Let f € B,. Between the nega-Hadamard transform and the Walsh-Hadanaasform there is the
relation

WfEBU2 (U) + Wf@CTz (ﬂ) +i- Wf@a'z (u) B Wf@a'z (ﬂ)
2 2 '

Proof: First for anyx = (z1,z9,---,x,) € FJ, it can be easily proved by induction that

Ny(u) =

wt(z) (mod 4) @wz +2 @ ziz; = o1(z) + 202(x) = 1, -  + 202(x).

1<i<j<n

Thus, the nega-Hadamard transformfoéit v € Fy is

w3

Nf(u) = 2_§ Z (_1)f(50)+u1’zwt(x) =92~ Z (_1)f(:c)+o'2(q;)+u.xl.1n,x'
ZBE]F;’ ZBE]F;’



= 1+(2_1)a +i- 1_(2_1)a for a € Fy, we get

-z z)+too(z)+tuz 1+ (-1 Lo c1-(-1 Lo
Ni(w) = 273 3 (—1)f@ro@rua (2) L (2) ]
zeFy
Wf@o'z (’LL) + WfEBUz(u @ 1”) +Z . WfEBUz(u) - Wf@o'z(u @ ]'TL)
2 2
Wf@o'z (’LL) + WfEBUz (ﬂ) + 'l . WfEBUz (’LL) - WfEBUz (ﬂ)
2 2 ’

Applying the formula:®

O

This property is an important tool to analyse the propemitsegabent functions. If is even, necessary and
sufficient conditions for a Boolean functiofi € B,, to be negabent has been given [in [4]. By using Leniina 1
and the Jacobi’s two-square theorem, we can obtain the segeand sufficient conditions for a Boolean function
f € B, to be negabent for both even and addFor completeness, we also provide the proofs for evédrere.

Fact 1: (Jacobi's two-square theorem) Letbe a nonnegative integer.

(1) The Diophantine equatior® + > = 22! has a unique nonnegative integer solution(ag)) = (2, 2%).

(2) The Diophantine equation® + 3> = 22¢ has exactly two nonnegative integer solutions(asy) = (2*,0)
and (z, ) = (0,2").

Theorem 1:([4]) Let n be even and (z) € B,,. Then f(z) is negabent if and only if (z) ® o2(x) is bent.

Proof: A Boolean functionf € B,, is negabent if and only ifN(u)| = 1 for all u € F3. By Lemma1, we have

(W, (W)? + (Wyao, (@)
2

[Ny ()] = =1, Vuely,

hence,
(25 Wigo,(1)® + (22 Wiao, (0)* = 2"F!, VY u € Fy.

From Jacobi's two-square theorem we know tiat! has a unique representation as a sum of two squares, namely

n

2ntl = (2%)2 + (22)2 if n is even. Thus, it is equivalent to

122 Wreo, (u)| = 122 Wrao, (@)| = 22, ¥ u e F},

Wigo, ()| = [Wige, (@) =1, ¥V ueF;.

This completes the proof. O
By TheorentlL, the following corollary is obvious.
Corollary 1: ([4]) If f is a bent-negabent function, thgn® o5 is also bent-negabent.

If n is odd, we can get a similar equivalent condition as for ewein the following, we give three equivalent
conditions of a Boolean function to be negabent for an oddbmimof variables. The latter two conditions show
the relationship between-variable negabent functions aitd — 1)-variable (or(n + 1)-variable) bent functions.

Theorem 2:Let n be odd andf(z) € B,,. Then the following statements are equivalent:
(1) f(x) is negabent;
(2) f(z) ® oa(x) is semibent andWa,, (u)| # [Wrges, (@)| for all u € Fy;



(3) (f @ 0-2)(1'17 o, Tp—1,T1 @ ) D---D xn) — (1 @Zﬂn)g(xl) e 7$n—1) @l'nh(l'la e 7:L'n—1)1 Whereg andh
are both bent functions witt — 1) variables;
(4) f(x)® oa(z) ® o1(x)y is bent inn + 1 variables, where: € F3 andy € Fa.

Proof: (1) < (2): A Boolean functionf € B, is negabent if and only ifN¢(u)| =1 for all v € F5. It follows
from Lemmall that

Wyao, (u))2 + Wrao, (ﬂ))z

_
Ny ()l = :

=1, VueFy,
hence,
(22 Wyao, (0)? + (22 Wrao, (@) = 2",V u € F3.
By Jacobi’s two-square theorem, it is equivalent to
{IWrzo, (W], Wyes, @]} = {0,V2}, ¥V ueF;.

According to the definition of semibent, we can obtain (1)dsiiealent to (2).

(1) = (3): Let fi(z) = f(z)@oa(x), fo(x) = (fDo2) (w1, , Tp_1,21 D22 D - - Dxy), and the decomposition
of fa(x) is fo(z) = (1 & an)g(21, -, 2n-1) & Tph(21, -, 20—1) fOr someg, h € B,_1. Then, for anyv =
(v1,+ -, Un_1,v,) € F3, we have

sz (U) _ 2—% Z (_1)(1€an)g(x’)®xnh(x’)€9v’-x’Ean:cn

o' €F5 Y, @, ER,

= 278 Y [ (1 (1) e

x/ €Fy
1 n—1 ’ ) n—1 ’ i
- [0~ -1 g(z")ov' -z + (=1 Un—= "5 -1 h(z")®v' -z
AR DI CORRD DS
x' €Fy z' €F}
1 U
= ;E[W@(V)4‘C—1)"WWKUUL 1)
wherex’ = (21, -+, 2,—1) andv’ = (vy, -+, vp-1) € Fg‘l. Let A be ann x n matrix overFy of the form
1 1
1 1
A= ,
1 1
1

where “empty” entries ar6. ThenA~! = A and f»(z) = fi(xA). Therefore, for anw € F%, we can get that

Wy, (v) = % Z (_1)f1(rA)éBU-x — 9% Z (_1)f1(y)69v(yA)T
zeFy yeFy
- 272 Z(_l)fl(y)éB(vAT)y
yelry
= Wy, (vAT), @)

where the superscrigf represents the transpose of a matrix.



For anyu = (u1,- -+, upn_1,uy,) € F3, denotew = uA™ = (wq,---,w,_1,w,) € F3. By equality [2), we have
Wy, (u) = Wy, (w(AT) 1) = Wg, (uA™) = W, (w),

since(AT)~! = AT, Combined with equality({1), we get

Wy, (u) = W, (w) = %[Wgw') ()P W), 3)
and
Wy, (@) = W, (1 © 1,)AT) = Wy, (uhT @ e) = W, (w @ e,) = %[WQW') S CDEWRW), @)

wherew' = (wy,- -+, w,_1) € F3~1. It follows from Lemma[l, equalitie$)(3) andl (4) that
WfEBUz (’LL) + WfEBUz (ﬂ) +'l . WfEBUz (U) - Wf@o'z (ﬂ)

Ni(u) = 5 5
2 2
W) L W)
= A +i-(—1) 5 (5)

Since the matrixA is invertible, we have that = uA” = (v, w,) runs overF% if u runs all overFy.
Boolean functionf € B,, is negabent if and only ifN;(u)| = 1 for all » € F3. It follows from equality [5) that
12°F W, (w)|2 4 |2°F Wy (w')[2 = 27, for all w’ € Fy~'.
By Jacobis two-square theorem, it is equivalent to
W, (w')| = [Wy(w')| =1, forallw € Fy?,

which means thay andh are both bent functions witfr. — 1) variables. Therefore, (1) is equivalent to (3).
(2) < (4): Let f'(z,y) = f(x) Doa(x)®oi(z)y = f(x) D oa(z)® (1, 2)y € Byt1. Then the Walsh-Hadamard
transform of f'(z,y) at (u,v) € F3*, u € Fy andv € Fy, is

n+1

Wf’(u7v) = 277 Z (—1)f/(mvy)+u-r+vy

z€FY yelR,
— 2—%“ Z(_l)f(x)+az(x)+u-x+ (_1)1)2—% Z(_1)f(:c)+02(x)+1n-x+u-x
zely zelFy
1
= —[Wrae,(u) + (=1)"Wige, (T)].
\/5[ foo, (W) + (1) Wieq, ()]
Then, f’ is bent if and only if
1
Wy (u,0) = ﬁ[ﬂff@g2 (u) + Wige, (@)] = £1, for all u € F3,
and
Wit 1) = —=[W e, (1) — Wiao, (@)] = £1, for all u € Y.
V2
That is, |[Wias, (u)| # |Wiee, (@)| and Wie,, (u) € {0,£+/2} for all u € F3, i.e., f(z) ® oa(z) is semibent. O

Theoremd 1l anf]2 demonstrate that negabent functions andumetions are closely related. Theoréin 2 also
shows that-variable negabent functions must be semibent i§ odd.



IV. NEGA SPECTRUM OF NEGABENT FUNCTIONS

In this section, by using these necessary and sufficientitonsl for Boolean functions to be negabent, we

discuss the nega spectrum distribution of negabent fumgtio
Lemma 2:Let f € B,, be negabent, the values in the nega spectrurfi afe of the form:
(1) if nis even, thenNy(u) € {£1, +i};
TR 14 1—i —14i —1—i
(2) if nis odd, thenNy(u) € A e B }.
Proof: (1) If n is even andf € B, is negabent, then it follows from Theordm 1 thats o5 is bent. Thus,

Wae,(u) = £1 for all u € Fy. By Lemmall, we have

Nf(U) _ Wf@a'z (u)7 if Wf@02 (u) = Wf@02 (ﬂ)7
i Wf@02 (’U,), if Wf@02 (’U,) 7é Wf@02 (ﬂ)7
for all u € F3. Therefore,Ny(u) € {£1, +i}.
(2) If nis odd andf € B, is negabent, then it follows from Theordm 2 thétr) & o2(x) is semibent and
{IW tg0, (W), [Wiae,(@)|} = {0,+/2} for all u € F}. By Lemmall, we have
Ny(u) = 5 Wyeo, (u) + 155 Wrao, (1),
1+¢ 1—% =147 —=1—3
thUS,Nf(’LL) S {ﬁ, W, V2 V2 o U
Lemma2 shows that the nega spectrum of negabent functioatimsst 4 values. This leads to a natural question

of determining the nega spectrum distribution of negabencttions.

Theorem 3:Let n be even integer and € B,, be negabent, then the nega spectrum distributioyi isf

1, 277242571 times, 1, 2772-25"1  times,
—1, 2722271 times, —1, 27242571 times,
1, on—2 times, o i, on—2 times,
—i, on—2 times, —i, on—2 times.

Proof: If n is an even integer andl € BB,, is negabent, then by Theordrh 1, we hgve o, is bent. It is well

known that the dual of the bent functigh® o9, f @ o9, is also bent. By Lemmia 1, we can get that

_Jenw)  (_)fen@  (_1)fen) _ (_1)fe0n@)
Nyw) = (1) 2( ) L B 2( )

(-)ER0, i Fooam) = FEoalu), ©

- {i-<—1>f%<“>, it J@oxu) # [ @ os(u),

for all u € F3.
For0 <i,7 <1, denote

Sij = Hu e F3|f ® o2(u) =i, f & o2(u) = j}. (1)
Recall thatC'~—(a) = ZHGFS(—l)@?‘:(“)@%(“@“) = 0 for a # 0, since f & o3 is bent, in particular

@0/(171) = Z (_1)%;7/2@)69%(@) —0,

u€lFy



which implies
Soo+S11 = 2", (8)
So1+ S0 = 2"7L )
Clearly 510 = |{u € F§|f © 02(@) = 1, [ ©oa(u) = 0}] = [{u € F§|f © oa(@) = 1, [ ®on(u) = 0}] = So1.
Immediately, it follows from equality[{9) tha$y; = S10 = 2" 2. By equality [®),
[{u € PN} (u) = i} = [{u € F§|Ny(u) = —i}| = 2"2. (10)

e~ e~

Since f @ oy is bent, we havewt(f @ o2) = 271 £+ 2271, It is obvious thatwt(f @ g2) = Si+ S11 =
2"=2 + S 1. Thus by equality[(8),
Soo=2""2+2:"1 Soo=2""2—2:"1
n or n
5171 =2n2 _ 25_1, 5171 =272 492571,
Combining equalitied {6)[{7)[_(10), and {11), we get theirgesresult. O

Theorem 4:Let n be odd integer ang € B,, be negabent, then the nega spectrum distributiofi if

(11)

144 -2 n-l_q ; 144 -2 nelg ;
Nk 2422 times, VoL 22— 22 times,
=i 9gn-2 | 9"y 1 tim 1—i n—2 nelq :
= es =, 2 — 22 times
27 ) 27 )
_1\:__2' n—2 n-1l_1q . or _1\/_4_1' n—>2 n-l_1 .
VR 2 — 27z times, 77 2 + 272 times,
; n—1 . 1 _ no1_ .
_\1[_’, 22 _92"5 ~1  times, \1[’, 272 4 25 1 times.

Proof: If n is odd andf € B,, is negabent, then by Theordh 2, we have
(f®o)(x1, Zn-1, 21 D22 @ - D) = (LD xp)g(w1, -, Tp—1) ® xRh(T1,- -, Tpo1),

where bothg and h are bent functions witlin — 1) variables. By equality((5), we have

W) .y Walw)
Ui )T —al, ()

Na = [{u € F§|Ny(u) = a}| = [{(w',wn) € Fy~" x [y

I4i 1= —14i —1-i

wherea € {2, 7, =5 =5 .
Becausegy is a bent function offn — 1) variables, we havé{w’ € Fy~ W, (') = 1} = 272 £ 2% ~L|If

{w' € F ' W,(w') = 1} = 272 4+ 2°5 1, then [{w’ € F} W, (v') = —1}| = 2=2 — 2"7 ~1, For any

w' € {w' € Fy 1|W,(w') = 1}, we can get that

V2 vz | R i, =1,

Since W, (w') = +1 for all w’ € F3 !, we have

n—1
Niwi = Nis =272 4275 1,
vz 72

Because of{w' € Fy W, (vw') = —1}| =272 — 2”2 ~1, we can also get that

n—1 1

N—1+i :Nfl—i = 2n—2 — 22
V2 V2
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Combining with equality[(12), we can conclude that the nggecsum off in this case is

. n—1 .
i gn=2 1 9% =1 times,

; n—1 .
i 9n=2 1 9%~ times,

; n—1 .
i 9n=2 _ 9" =1 times,

. n—1 .
—li o on=2_ 955" =1 {imes.

Similarly, if [{w’ € F3 ! {Wy(w') = 1} = 2772 — 2°F ~L and [{w’ € Fi W, (w') = —1}| = 272 4 25 1,
we can get the nega spectrum jpofas follows

. n—1 .
i gn=2 _ 9% =1 times,

V2 .
1—\}’, 2n=2 _ 25 =1 times,
_\1/%”, =24 92" 1 times,
=1, 2y 251 times.
This completes the proof. O

V. CONSTRUCTION OFBENT-NEGABENT FUCTIONS WITH MAXIMUM ALGEBRAIC DEGREE

It is well known that the maximum degree of a bent functionsowvariables is3 (for evenn) and the
maximum degree of a negabent functionmvariables is[ 5| (for any integern) [7]. But, so far all the known
general constructions of bent-negabent functions.amriables produce functions with algebraic degrees lems th
or equal to% + 1, wheren is any positive integer divisible by (see [5], [7], [8]).

Throughout this section, let = 2m be any even integer greater than or equalt@ndh be a quadratic bent
fucntion defined asi(z) = @), zixm4; for all z = (z1,---,2,) € Fj. It is known that any quadratic bent
function of n variables is equivalent ta(z) [9]. Sinceos(z) is a quadratic bent function [10], then there exist
A € GL(n,F3), b, u € F§, ande € Fy such that

o9(x) =h(zA®b)Du-xde. (13)

In the sequel, we always assume thatz) is of the above form a$"(13).
In [7], Stanicaet al. provided a strategy to construct bent-negabent functions.
Lemma 3:([7]) Suppose that botlf € BB,, and f & h are bent functions. Thefi’ € 3,, defined by

f'(z) = f(xA®b) D oy(x), x€FY,

is a bent-negabent function.

Let f € BB,, be a Boolean function of the form

flx,y) =2 -7(y) ©g(y), z,y €Ty, (14)

where “-” denotes the inner product i¥;*, = : F3* — F3*, andg : F5* — [F5. Then the functionf is bent if and
only if w is a permutation. The whole set of such bent functions folmsaell-knownMaiorana-McFarland class
It is shown in [5] that the degree of a Maiorana-McFarlangetppent-negabent functions anvariables is at most
5—1 for n > 8.

For every positive integern, the vector spacgy’ can be endowed with the structure of the finite figld.. Any
permutation orF}* can be identified with a permutation Bf... A polynomial F'(X') overF,.. is called acomplete
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mapping polynomialf both F(X) and F(X) + X are permutation polynomials df;~». Combining the above
Lemmal3 and complete mapping polynomials oier., Stanicaet al. gave a method to construct bent-negabent
functions from Maiorana-McFarland bent functiofis(z) = 7r(z1, -+, Zm) - (Tm+1, -+, ), Whererp denotes
the permutation o induced by a complete mapping polynomid(X) € Fan[X]. However, the degrees of
the bent-negabent functions they constructed are equddgtrr) + 1, and there are only few known results on
the complete mapping polynomials with high degrees dger. They could prove that there exist bent-negabent
functions omn = 12/ variables with algebraic degréet-1 = 3/+1, since there exist complete mapping polynomials
on Fy» of degrees3l, wherem = 61 andl > 2 (see [7], [11]).
In fact, if 7 : F5* — F5" is a mapping such that(y) and~(y) &y are permutations, from Maiorana-McFarland
bent functions we can construct infinite class of bent-negakunctions om variables of degree ranging froth
to 5. More precisely, we get the following results:
1) We calculate the concrete value 4fin equality [I3);
2) We show that there exists mapping: Fy* — F5* such thatr(y) andw(y) & y are permutations and give
two methods to get these mappings for any> 2;
3) Using the linear transforml and such mapping, we get bent-negabent functions arnvariables of degree
arranging from2 to 3 for any evenn > 4. Note that the maximum degree of our bent-negabent furetion
onn variables is equal té. Thus, we answer the Open Problems 1 and 2.

A. The concrete values of, b, v and ¢

By transforming the quadratic form, into its canonical form, we can obtain that the concrete emlof A =
(aij)nxn € GL(n,Fa), u= (ur,ug,---,up), b= (b1,ba,---,by) € F3, ande € Fy in equality [IB) are

(1) a;y =11 1 <0 <n, a5 = Gimtj = Gmtij = Gmyimts = 1 1f 2<i<mandl < j <i—1, anda;; =0

otherwise;

(2) u=0y;

(3) b2 = byos = 1if 1 <@ < %], andb; = 0 otherwise;

(4) e=1if m=2,3 (mod 4), ande =0 if m =0,1 (mod 4).

Define matrixS,, = (si;)mxm overFy by

1, df2<i<m, 1< <i—1;
S { 0, otherwise.

Then, then x n matrix A can be written as

[ Sm®In  Sm
- S . S al, )’
and A~ = A.

B. The existence of mapping

In this subsection, we first explain that there exists mappin F5* — F7* such thatr(y) andn(y) @ y are
permutations for anyn > 2 from the perspective of the complete mapping polynomiak divéte field Fo.. And
then introduce two methods to obtain the mappindirectly from the vector spacg;’.
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If o(x) is a complete mapping polynomial ovEg.., then the corresponding permutatiof(z) on F3" satisfies
o'(z) and o'(x) @ = are both permutations. Trivial examples of complete mapmnlynomials are the linear
polynomialso (z) = ax with a # 0, —1. If m > 3, there exist complete mapping polynomialsif. of reduced
degree> 1. For details on complete mapping polynomials we refer tg.[TRBus, there exists mapping: FJ* — FJ*
such that bothr(y) and(y) @ y are permutations for any. > 2.

In what follows, we introduce two methods to obtain the lineermutationr : F5* — F* such thatr(y)$y is also
permutation for anyn > 2. Define the mapping : Fy' - F3* asn(y) = yM, wherey = (y1,y2, -+, ym) € F3".

If we can findm x m matrix M over F, such thatM and M & I,, have full rankm, then we get the desired
linear permutationr.

If m = 2, there are two matrices satisfy the conditions:

11 0 1
and .
10 11
Using exhaustive computer search, we found that there amatfces satisfying the conditions fet = 3, and
5824 matrices satisfying the conditions far= 4. For example,

011 111
110 |, 0 1,
10 101

and
0101 1011
1010 0110
0100 |’ 1100
100 0 1000

Method 1. For any evenn > 4, Parker and Pott gave a method to construct m symmetric matrix)/ over
F5 such thatd and M & I,,, have rankm in Section 3 of[[4]. To save space, here we will not give thaitlet

Method 2. An m x m block matrix P is said to beblock diagonal matrixf it has main diagonal blocks square
matrices such that the off-diagonal blocks are zero matrice., P has the form

P 0 - 0
0 P - 0
o 0 --- P

whereP;, 1 < j < t, is a square matrix of ordéf;, andk; +- - -+k; = m. It can be indicated a$iag(Py, P, -, ;).
Any square matrix can trivially be considered a block diaanatrix with only one block.
For the determinant of block diagonal matiX the following property holds

det(P) = [ [ det(P).
=1

By this property of diagonal matrix, we can easily get théofwing recursive construction.
Lemma 4:Lett > 2 and M; be a square matrix of ordér; such thatM; and M; @ I, have full rank for any
1<j <t If ky+---+ k. =m, then the matrix)\/ = diag(M;, My, ---,M,;) and M & I,,, have rankm.
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As mentioned before, fom = 2, 3, there exists matriX\/ such that both\/ and M @ I,,, have full rank. Thus,
for anym > 2, we can get matrix\/ such thatd/ and M & I,,, have full rank by Lemmal4. Therefore, the linear
permutationr(y) = yM has been obtained.

C. Construction for infinite class of bent-negabent funetio

If f € B, is a bent function, then the function given by
fle-Coa)®pB-x®d(, where C € GL(n,F3), a,p € Fy, ¢ € Fo, (15)

is also bent. All the functions if_(15) is calledcamplete classSpecifically, it is said to be Maiorana-McFarland
complete class iff belongs to Maiorana-McFarland class [inl(14).

Counterexamples show that these operations generally tigpreserve the negabent property of a Boolean
function. Indeed ifGL(n,F9) is replaced byO(n,Fs), the orthogonal group ofi x n matrices overF,, the
negabent property is still preserved.

Lemma 5:([5]) Let f, g : Fi — Fo be two Boolean functions. Suppose thatnd g are related byy(z) =
flx-O®a)® p-x@, whereO is ann x n orthogonal matrix ovelfs, «, 8 € Fy, and( € Fo. Then, if f is
bent-negabeny is also bent-negabent.

Now, we are ready to construgin-variable bent-negabent functions of degree ranging f2otm m.

Theorem 5:Define f € B,, by

flx,y) =2 -7(y) ©gly), z,yeFy,

wherer : F5* — F4' is a mapping such that(y) andn(y) @ y are permutations angl € B,,. Then

f(@,y) = f((z,y) - OAG ) ®B-2d ¢ (16)

is a bent-negabent function witkeg(f’) = deg(f), for any«, 8 € F%, ¢ € Fo, and anyn x n orthogonal matrix
O overF,.

Proof: If 7(y) andn(y) ®y are permutations oR}’, we have thaff (z,y) and f(z,y) ® h(x,y) = f(z,y) Dz y
are both Maiorana-McFarland bent functions. It followsnfreemmal8 and Corollary] 1 that((z,y) - A® b) is a
bent-negabent function. Applying Lemrmh 5 £¢(x, y) - A& b), we have thaff ((x,y) - OA® ) & -2 & ( is also
a bent-negabent function for amy 3 € Fy, ( € Fo, and anyn x n orthogonal matrixO over[F5.

Since the algebraic degree is an affine invariant, we kiagéf’) = deg(f). O

Note that we are free to choogeSpecifically if takingg € B,,, with deg(g) = m, one hasleg(f’) = deg(f) = m.

It is well known that the maximum degree of bent function2in variables ism. Then, the maximum degree of
bent-negabent function ity variables is less than or equal#e. Our construction can reach the maximal degree,
so the bound is tight. Therefore, the following result holds

Corollary 2: Let n be even andf € B,. If f is bent-negabent, then the algebraic degreg¢’ & at mosts.
And the bent-negabent functiofi given by [16) can achieve the maximal algebraic degredéedfig) = m or
deg(m) =m — 1.

Remark 1:Since the degree of a Maiorana-McFarland-type bent-neg&bection onn variables is at most
% — 1 for n > 8 (see[[5]), the functions constructed by Theofem 5 may nobéMaiorana-McFarland class, but
belong to the Maiorana-McFarland complete class.
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The dual also preserve the bent-negabent function property

Lemma 6:([4]) If f is a bent-negabent function, then its dual is again ben&ineut.

Lemma 7:([Q]) The algebraic degrees of amyvariable bent functiory and of its dualf satisfy:
5 —deg(f)

LI > .
2 deg(f) - deg(f)—l

It follows from LemmalY that the degree giN’f, deg(f), is also equal td; if f is ann-variable bent function
with deg(f) = 5. Combining Lemm&l6 and Lemnia 7, we have the following corglla
Corollary 3: Let p(x) € B,, be a bent-negabent function with degreeobtained from Theoref 5. Then its dual

iS again bent-negabent with degree

D. Examples oh-variable bent-negabent functions with maximum degree:fer8 andn = 10

Example 1:Takem = 4, n = 2m = 8, ©(y) = yM with matrix

0101
1010

M = )
0100
1 0 00

andg(y) = y1y2y3y4 in Theorentb. It is easy to check that matridesand M & I, have rankd. Then

(y) = yM = (y2 ® ya, y1 D Y3, Y2, y1),

and
flr,y)=x-7(y) @g(y) =21 (Y2 D ys) Dx2- (Y1 DYs) D x3-y2 D x4 - Y1 D Y1Y2Y3Y4-

The linear transformation matrid is equal to

00 00
Sy DI S. 1 0 00
A= 191 4 , where Sy =
Sy Si@1y 1100
1 1 10

LetO =1, a = 8 = 0,, and¢ = 0. Then the functiory’(z,y) = f((x,y)A) = Tox324Yys P T2X3Y3Ys D T2T4Y2Ys B

T2Y2Y3Ys D T324Y1Y4 D T3Y1Y3Y4 D TaY1Y2Ya D Y1Y2Y3Ys D 0223Y4 D T2T4Y4 D T2Y2Ys D T2Y3Y4 D X324Ys D T3Y1Y4 D

T3Y3ys D Tay1Ys D T4Y2ys D Y1y2y4 D Y1Y3Ys D y2y3ys © 1123 O x124 D T1Y2 D T1Y3 O X213 O X274 O T2y1 O

r3y1 © T3Yys D Tay2 O Taya D Y1y3 © Yays O y3ya © 12 © 13 © x4 O y2 © y3 is bent-negabent andeg(f') = 4.
Example 2: Takem = 5, n = 2m = 10, n(y) = yM with matrix

011
M, O 1 1
M = , where M; = , and My = 1 1 0 [,
0 M, 1 0 Lo o

and g(y) = y1y2ysyays D y2ysyays. It is easy to check that matriced and M @ I5 have ranks. Then

w(y) =yM = (1 B Y2, Y1, Ya D Ys, Y3 D Ya, Y3),

and

flx,y) =z -7(y) ®g(y) = 21(y1 © y2) ® x2y1 O 23(Ys © ys5) © 4(y3 © ya) © T5Y3 © Y1Y2Y3Y4Ys5 D Y2y3Y4Ys-
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The linear transformation matri¥ is equal to

S5 & I S
A= 591 b , where S;=
55 556915

_ = == O
_= == O O
— = O O O
— O O O O
o O O O O

Therefore, the functioft’(z, y) = f((z,y)A) = (22Dy1) (37475Y5 DT3T4Y4Y5 DL3T5Y3Y5 DT3Y3Y4Y5 DL4T5Y2Y5 D

TaY2yays D T5Y2y3Ys D Y2y3yays O 324Y5 D x37T5Y5 O T3Y3Ys D X3YaYs O 4T5Y5 D Tay2ys D TaYays D T5Y2Y5 O
T5Y3Ys O Y2935 D Y2y1ys © Y3yays O T3Ys O TaYs © T5Y5 © Yays D Y3ys © Yays) O 1172 © T1y1 © Tax3 O TaT4
ToT5 D T2Y3 © Toys D 1305 D 23Y2 D T3Ys O 425 D T4Yy2 © T4Y3 © T4Yy4 © Tays O T5Y2 © T5ys D y1Y2 D y1ys ©
Y23 D yoys D yous D ysys D yays  x3 B x5 O y5 IS bent-negabent andkg(f’) = 5.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

REFERENCES

0O.S. Rothaus, “On bent functions,” Journal of CombimiaoTheory, Ser. A, vol. 20, no. 3, pp. 300-305, 1976.

M.G. Parker, “The constabent properties of Golay-Dalésilwab sequences,” In proceedings of IEEE Internatiogaip®sium on
Information Theory, 2000.

C. Riera and M.G. Parker, “Generalized bent criteriaBaolean functions (1),” IEEE Trans. Inf. Theory, vol. 52,.rf pp. 4142-4159,
2006.

M.G. Parker and A. Pott, “On Boolean functions which aenband negabent,” Lecture Notes in Computer Science, 883 4pp.
9-23, 2007.

K.-U. Schmidt, M.G. Parker and A. Pott, “Negabent fuonais in the Maiorana- McFarland class,” In proceedings of SEQ08, Lecture
Notes in Computer Science, vol. 5203, pp. 390-402, 2008.

P. Stanica, S. Gangopadhyay, A. Chaturvedi, A.K. Garaglhyay and S. Maitra, "Nega-Hadamard transform, bent reghbent
functions,” In proceedings of SETA 2010, Lecture Notes immpater Science, vol. 6338, pp. 359-372, 2010.

P. Stanica, S. Gangopadhyay, A. Chaturvedi, A.K. Gguaglhyay, and S. Maitra, “Investigations on bent and negafumctions via
the nega—Hadamard transform,” IEEE Trans. Inf. Theory, 58| no. 6, pp. 4064-4072, 2012.

S. Sarkar, “Characterizing negabent Boolean functiower finite fields,” In proceedings of SETA 2012, Lecture Note Computer
Science, vol. 7280, pp. 77-88, 2012.

C. Carlet, “Boolean Functions for Cryptography and Erf@orrecting Codes,” Chapter of the monography “Boolean &ledand
Methods in Mathematics, Computer Science, and Enginegi@ambridge University Press (Peter Hammer and Yves Craitars),
pages 257-397, 2010.

[10] P. Savicky, “On the bent boolean functions that are swtnity” European Journal of Combinatorics, vol. 15, no. @, 407-410, 1994,
[11] Y. Laigle-Chapuy, “Permutation polynomials and apgtions to coding theory,” Finite Fields and Their Applioas, vol. 13, pp.

58-70, 2007.

[12] H. Niederreiter and K.H. Robinson, “Complete mappiridinite fields,” J. Austral. Math. Soc. (Series A), vol. 33,7:912, 1982.



	I Introduction
	II Preliminaries
	III Connections between negabent functions and bent functions
	IV Nega spectrum of negabent functions
	V Construction of Bent-negabent fuctions with maximum algebraic degree
	V-A The concrete values of A, b, u and 
	V-B The existence of mapping 
	V-C Construction for infinite class of bent-negabent functions
	V-D Examples of n-variable bent-negabent functions with maximum degree for n=8 and n=10 

	References

