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Abstract

We investigate two-party cryptographic protocols that aresecure under assumptions motivated by physics, namely special
relativity and quantum mechanics. In particular, we discuss the security of bit commitment in so-called split models, i.e. models
in which at least one of the parties is not allowed to communicate during certain phases of the protocol. We find the minimal
splits that are necessary to evade the Mayers-Lo-Chau no-goargument and present protocols that achieve security in these split
models. Furthermore, we introduce the notion of local versus global command, a subtle issue that arises when the split committer
is required to delegate non-communicating agents to open the commitment. We argue that classical protocols are insecure under
global command in the split model we consider. On the other hand, we provide a rigorous security proof in the global command
model for Kent’s quantum protocol [1]. The proof employs two fundamental principles of modern physics, the no-signalling
property of relativity and the uncertainty principle of quantum mechanics.

Index Terms

bit commitment, special relativity, quantum theory.

I. I NTRODUCTION

T HE goal of two-party cryptography is to enable two parties, Alice and Bob, to solve a task in cooperation even if they do
not trust each other. An example of such a task is the cryptographic primitive known as bit commitment. A bit commitment

protocol traditionally consists of two phases: In the commit phase, Bobcommitsa bit to Alice1, who receives some form of
confirmation that a commitment has been made. In the open phase, Bob reveals the bit to Alice. Security means that Bob should
not be able to reveal anything but the committed bit, but nevertheless Alice cannot gain any information about the bit before
the open phase. While many two-party cryptographic primitives have been defined, oblivious transfer and bit commitmentare
undoubtedly among the most important ones because they formessential building blocks for more complex problems [2].

Ideally, we would like to have protocols for such primitivesthat guarantee security without relying on any subjective (e.g.
that a safe is difficult to open) or computational (e.g. that factoring a product of two large primes is difficult) assumptions.
Unfortunately, however, it turned out that this is impossible, even if we allow quantum communication between Alice and
Bob [3], [4], [5], [6]. Much work has thus been invested into determining what kind of assumptions allow us to obtain security.
Of particular interest to this work are thereby assumptionsof a physical nature, leading to information-theoretic security.
Classical examples of such assumptions are, for example, access to some very special forms of shared randomness supplied
in advance [7], access to a noisy communication channel2 [8], [9] or a limited amount of memory [10]. Similarly, it has been
shown that security is possible if the attacker’s quantum memory is bounded [11], [12], [13] or more generally noisy [14],
[15], [16].

Another assumption is that ofnon-communication. More precisely, one imagines that each party is split up into multiple agents
who cannot communicate with each other for at least some parts of the protocol. Intuitively, the use of non-communicating
agents can evade the standard no-go argument because while all agents in total have enough information to cheat, no single
agent can cheat on his own.

On one hand, such non-communicating models have received considerable attention in classical cryptography, where such
agents are often referred to as servers [17] or provers [18]. For example, Ben-Or et al. [19] considered a simple protocol
for bit commitment that is secure against classical attacks3 as long as the committer (Bob) is split up into two agents, Bob
and Brian, who are not allowed to communicate throughout theprotocol. This protocol can also be modified to give security
against quantum adversaries [18]. Similarly, many classical protocols for other tasks havebeen proposed under the assumption
of non-communication, such as distributed oblivious transfer [20], i.e. symmetric private information retrieval [21], [22], [17],
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1Usually it is Alice who commits a bit to Bob. We decided to swapAlice and Bob as it allows us to simplify the notation in the proof of our main result.
Throughout the paper it is Bob who commits a bit to Alice.

2To be more specific what is needed is a channel with a guaranteed level of noise. It is important that the noise is truly random and cannot be influenced
by either party.

3Throughout this paper we will use the word classical to mean not quantum.
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or simple private information retrieval [23]. In all such protocols it was assumed that the agents of one party can never
communicate during any point in the protocol, or thereafter.

On the other hand, physicists have considered so-called relativistic assumptions for cryptography [24], [25], [26], [27], [1]. In
essence, this takes the form of non-communicating models where the fact that a party’s agents cannot communicate is justified
by their physical separation and the finite speed of light. The key difference to classical non-communicating models is that in
relativistic models the separation is generally only imposed during certain periods of the protocol, whereas classical models
generally assume a separation, i.e. non-communication, for all times. For example, relativistic protocols may only demand a
split into several non-communicating agents after the commit phase of a bit commitment protocol is over [27], [1]. Another
assumption based on relativity is the notion of guaranteed message delivery times (see AppendixC) or the assumption of an
accelerated observer4 [28].

Here, we will consider the security of bit commitment protocols under the assumption that one (or both) parties Alice and
Bob, are forced to be split into non-communicating agents. Motivated by the relativistic protocols of [27], [1], we thereby
do not demand that the parties are split into non-communicating agents for all time, but merely during certain phases of the
protocol. A bit commitment protocol can be naturally divided into: the commit phase, the wait phase, the open phase, and the
verification phase (see SectionII-E). We thereby introduce the explicit notion of the wait and verification phases, which are
usually only implicitly defined, in order to precisely divide the overall interaction between Alice and Bob into time frames.
Our first contribution is

• A classification of non-communicating models into subclasses which are characterised by the phases in which Alice or
Bob is split into non-communicating agents. We find that we can reduce our considerations to two minimal models,
namely the one in which Alice is split during the commit and wait phases (α-split) and the one in which Bob is split
during the wait and open phases (β-split). Either of these two models allows to evade the no-gotheorem because the
operations required for cheating are forbidden by the split.

Bob Brian

Victor

(a) Local command

Bob Brian

Victor

(b) Global command

Fig. 1: If Bob is required to perform two separate openings itbecomes important whether the command which bit he is
supposed to unveil is transmitted to just one or both agents.

It turns out that in certain split models a new, subtle issue needs to be addressed. If a cheating Bob is split into two agents, Bob
and Brian, during the open phase of the commitment, who decides which bit should be opened? In standard bit commitment
protocols this question does not arise, as there is only one cheating party. Bob will simply announce to Alice that he wishes
to unveil a particular bit, and try to provide a matching proof. However, in a model of several distinct agents, Bob and Brian
could conceivably base the decision about which bit to unveil on some external input. For example, depending on the latest
stockmarket news they both decide to open a0 or a1, even though they themselves cannot communicate. Intuitively, we would
like a bit commitment scheme to be secure in the latter setting, analogous to the case of a single party which can of course
also base its decision on external events. To capture this subtlety, we introduce an external verifier, Victor, who dictates which
bit should be unveiled. We thereby speak oflocal command if Victor only issues a command to one of the two agents, Bob.
We speak ofglobal command if Victor issues a matching command to both Bob and Brian. Note that Victor should be thought
of as an external verifier invoked solely to quantify Bob’s cheating power and that he plays absolutely no role when both Alice
and Bob are honest. The local and global command models will be defined in purely mathematical terms and the only reason
to introduce Victor is to give these mathematical definitions some intuitive meaning. Note that a related concept has recently
been introduced independently in [29] under the name of theoracle input model. In a model without separated agents, the
local and global command models are equivalent but we will see that they differ in a relativistic setting. More precisely, our
second contribution is to

• Introduce the distinction between local and global commandin the models based on theβ-split. We show that there is
a simple classical protocol that is secure under the local command. However, we proceed to show that there existsno
classical protocol that is secure under global command in the class ofβ-split models.

The latter naturally leads to the question, whether there isa quantumprotocol that is secure even when Victor issues a global
command. A quantum protocol that is likely to be secure underglobal command was given in [27]. Another quantumβ-split

4The authors consider two inertial participants sharing a noiseless quantum channel in the presence of a uniformly accelerated eavesdropper. They show that
any information the eavesdropper manages to acquire is inherently noisy which allows the two honest participants to communicate securely. It is well-known
in cryptography that most cryptographic primitives can be implemented securely as long as an external source of guaranteed noise is present.
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protocol was proposed by Kent [1], which has the very appealing feature that it can be implemented by the honest parties
using only single qubit measurements in BB84 [30] bases, without the use of any quantum memory. Yet, no explicit security
bounds were provided in [1]. Our final contribution is to

• Provide a formal security proof and security bounds for the protocol proposed in [1] in the global command model.

We want to stress that a sketch of a security proof was given in[1] already; however, we were unable to derive explicit security
bounds from the arguments provided there. We thus devised analternative proof, which allows us to find these parameters
explicitly.

Our proof requires two ingredients: First, we make use of thefact that the two agents cannot communicate. Second, we
employ an uncertainty relation in terms of min- and max-entropies [31]. This relation was previously used to prove the security
of quantum key distribution [32], and our result illustrates its power to prove security of other cryptographic primitives.

Outline: The paper is structured as follows. SectionII contains some basic definitions and technical tools essential for the
proof. We also remind the reader what a bit commitment protocol is and what conditions it should satisfy. In SectionIII we
introduce the concept of split models and, by examining the standard no-go argument, we find the minimal split requirements
that might give us security and for these we state generalised security requirements. We also show how certain splits arise from
special relativity if we require certain parts of the protocol to take place at space-like separated points. SectionIV presents
simple protocols that achieve security in the minimal splitmodels. SectionV is entirely dedicated to the bit commitment
protocol proposed by Kent [1]: first we describe the protocol and then we analyse its security to obtain explicit security
bounds.

II. PRELIMINARIES

A. Hamming distance

Let [n] = {1, 2, . . . , n} and letx be ann-bit string,x ∈ {0, 1}n, and denote thek-th bit of x by xk. Define the Hamming
distance between two stringsx, y ∈ {0, 1}n to be the number of positions at which they differ

dH(x, y) := |{k ∈ [n] : xk ⊕ yk = 1}|.

B. Probability distributions

Let X be a random variable taking values inX and distributed according toPX . The Rényi entropy of orderα ∈ R+ \
{0, 1,∞} is defined as [33]

Hα(X) :=
1

1− α
log

(

∑

x∈X

PX(x)α

)

.

The special casesα ∈ {0, 1,∞} are defined as limits Hα(X) = limβ→α Hβ(X). Note that H0(X) = log |{x ∈ X : PX(x) >
0}| and that the Rényi entropies exhibit monotonicity

Hα(X) ≥ Hβ(X) ⇐⇒ α ≤ β.

For |X | = 2 andα = 1 we obtain the binary entropy

h(q) := −q log q − (1− q) log(1− q).

Let PXY |UV be a joint conditional probability distribution.PXY |UV satisfies no-signalling if for allu ∈ U , x ∈ X the value
of the sum

∑

y∈Y

PXY |UV (X = x, Y = y|U = u, V = v)

does not depend on a particular choice ofv ∈ V .

C. Quantum notation

Let ρ be a quantum state on a Hilbert spaceH, i.e. a positive semi-definite operator withtr ρ = 1 acting onH. Let S(H)
be the set of all states onH. We say thatρXA is a classical-quantum (cq) state if it can be written in the form

ρXA =
∑

x∈X

PX(x)|x〉〈x |X ⊗ ρx,

wherePX is a probability distribution andρx ∈ S(HA). Then, we define the probability of guessingX given access to the
quantum systemA as

pguess(X |A) := max
{Mx}

∑

x∈X

PX(x) tr(Mxρx),
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where the maximisation is taken over all positive operator-valued measurements (POVMs) onHA. The min-entropyof X is
defined asHmin(X) := H∞(X). The min-entropy ofX conditioned onA is defined as

Hmin(X |A) := − log pguess(X |A).
We say thatρXY is a classical-classical (cc) state if it can be written in the form

ρXY =
∑

x∈X ,y∈Y

PXY (x, y)|x〉〈x |X ⊗ |y〉〈y |Y .

The max-entropyof X is defined asHmax(X) := H 1

2

(X). The max-entropy ofX conditioned onY is defined as

Hmax(X |Y ) := log
∑

y∈Y

Pr[Y = y] · 2Hmax(X|Y=y).

D. Uncertainty relation

Let ρABC be any tri-partite state and let{Mz}z∈Z and{Nx}x∈X be two POVMs on theA subsystem whose measurement
results are represented by classical random variablesZ andX . The following cq-states arise from performing the measurements
mentioned above5 :

ρZB :=
∑

z∈Z

|z〉〈z |Z ⊗ trAC(MzρABC) and

ρXC :=
∑

x∈X

|x〉〈x |X ⊗ trAB(NxρABC).

Theorem II.1. [31] For any tri-partite stateρABC the following uncertainty relation holds

Hmax(Z|B) + Hmin(X |C) ≥ log
1

c
, (1)

where the entropies are evaluated forρZB and ρXC , respectively, andc := maxz,x ||
√
Mz

√
Nx||2∞.

E. Bit commitment

Bit commitment is a primitive that allows Bob to commit a bitb to Alice in a way that is both binding (Bob cannot later
convince Alice that he actually committed to1 − b) and hiding (Alice cannot figure out whatb is before Bob decides to
unveil it). In this section we discuss how to describe a bit commitment protocol6 and how to formalise the desired security
requirements.

Any action taken by Alice or Bob can be described by a completely positive, trace-preserving (CPTP) map and the entire
protocol can be defined by specifying these maps. In this paper we will denote maps performed by Alice and Bob byΛ and
Φ, respectively. The subscriptX → Y means that the map acts on (reads and/or modifies) the existing registerX and creates
a new registerY . Moreover, identity is assumed on any subsystems not explicitly mentioned within the map:ΛX→Y (ρXY Z)
stands for(ΛX→Y ⊗ idZ)(ρXY Z).

The usual description of a bit commitment protocol divides it into two phases: commit and open. However, as our scenarios
rely on timing and communication constraints, it is useful to be more explicit about the structure of the protocol. We divide the
protocol into four phases:commit, wait, openandverify. The commit and open phases are the essence of the protocol: they are
the only phases during which Alice and Bob interact. The waitphase acts merely as a separator (this is when the commitment
is valid), while in the verify phase Alice uses the information collected in the previous phases to verify the commitmentand
decide whether to accept or reject it.

Let ρABC be the state that Alice and Bob share at the end of the commit phase if they are both honest.7 The subsystemsA
andB are controlled by Alice and Bob, respectively, while subsystem C is a classical register in Bob’s posession indicating
which bit Bob has (honestly) committed to. LetΦopen

BC→P be the quantum operation that Bob applies in the open phase and it
should be thought of as extracting a proof of his commitment from the subsystemsB andC and storing it in the (possibly
quantum) subsystemP 8

ρABPC = Φopen
BC→P (ρABC).

In the last step of the open phase Bob passes the subsystemsP andC to Alice. Note that asC is a classical register Alice
is automatically assumed to read it and, hence, she finds out what Bob claims to have commited to. LetΛverify

APC→F be the

5To simplify the notation we will omit all the subsystems on which the projector equals identity. Hence, in our shorthand notationMzρABC stands for
(Mz ⊗ IBC)ρABC .

6Note that we do not consider the most general class of protocols as we assume that the open phase involves one-way communication from Bob to Alice
only.

7Any private or shared randomness is included in the description of the state, hence, given a protocol we can extract a unique ρABC .
8The honest opening map will simply read the value of the classical registerC, hence, its state will not be affected.
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quantum operation that Alice applies in the verify phase, which creates a classical binary register (flag),F , indicating whether
the commitment is accepted or rejected

ρABPCF = Λverify
APC→F (ρABPC),

and let us denote a (classical) basis of the subsystemF by {|accept〉, |reject〉}. Describing the honest protocol suffices to
define correctness.

Definition II.1. A bit commitment protocol isperfectly correctif ρABC satisfies

〈accept| trABPC Λverify
APC→F (Φ

open
BC→P (ρABC))|accept〉 = 1.

If one of the parties is dishonest and does not follow the protocol then the state shared between Alice and Bob is no longer
well-defined. We will useσ to denote such a dishonest state9 to distinguish them from the honest states denoted byρ. Security
guarantee for honest Bob states that Alice finds it difficult to guess the value of his commitment before the open phase. If
Alice is dishonest and does not follow the protocol then the state shared at the end of the commit phase,σABC , does not
necessarily equalρABC . However, it is important to note that the classical register C is still well-defined since Bob is honest.
Let KA be the set of all tri-partite states that Alice might enforceat the end of the commit phase. Informally, a bit commitment
is δ-hiding if for any cheating strategy the probability that Alice guesses the committed bit correctly before the open phase is
upperbounded by12 + δ.

Definition II.2. A bit commitment protocol isδ-hiding if all σABC ∈ KA satisfy

pguess(C|A) ≤ 1

2
+ δ.

Similarly, if Bob is dishonest then different states may be reached at the end of the commit phase and letKB be the set of
all states that he might enforce at the end of the commit phase. Note that the classical registerC is no longer well-defined so
we will simply talk about bi-partite statesσAB ∈ KB. In order to cheat successfully Bob must be able to produce valid proofs
for both values ofC, which implies that there are two distinct dishonest opening maps: Bob appliesΦcheat,0

B→PC if he chooses
to open0 andΦcheat,1

B→PC if he chooses to open1. The cheating mapΦcheat,b
B→PC extracts the proof of having committed tob from

the subsystem B, stores it in the subsystemP and storesb in the newly-created registerC

σb
ABP ⊗ |b〉〈b |C = Φcheat,b

B→PC(σAB).

In the last step Bob givesP andC to Alice, who verifies the commitment using the honest map. Let pb be the probability
that Alice accepts Bob’s unveiling ofb

pb = 〈accept| trABPC Λverify
APC→F (Φ

cheat,b
B→PC(σAB))|accept〉. (2)

The security conditions onp0 andp1 depend on whether we are in the classical or quantum framework. Classically, we require
that at the end of the commit phase at least one of{p0, p1} is small. However, this requirement turns out to be too strong in
the quantum world as explained in [34] and a weaker security condition is proposed in the same paper.

Definition II.3. A bit commitment protocol isε-weakly bindingif for all σAB ∈ KB and for all cheating maps{Φcheat,b
B→PC}b∈{0,1}

we havep0 + p1 ≤ 1 + ε.

Unfortunately, this definition does not give us composability (see AppendixB-A for a counter-example). On the other
hand the usual composable definition used for quantum protocols introduced in [12] turns out to be too stringent for the
scenarios considered in this paper (see AppendixB-B for details). Hence, throughout the paper we will stick to the weaker,
non-composable definition.

III. R ELATIVISTIC MODELS

Before considering relativistic models let us briefly examine the original no-go argument (for the full version please refer
to [3], [4]) to see how it might be circumvented by imposing certain communication constraints.

9We make no assumptions on what the dishonest party stores in their part of the state. In particular it might contain some ancillary systems to be used
later.
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A. The original no-go argument and the split models

First note that we can restrict ourselves to protocols in which the state shared between Alice and Bob is pure at all times.10

Let |φb
AB〉 be the state at the end of the commit phase if Bob has decided tocommit tob. We require that Alice should not be

able to distinguish the two cases just by looking at her subsystem which implies thatρ0A = ρ1A, whereρbA = trB |φb
AB〉〈φb

AB |.
By Uhlmann’s theorem [35] there exists a unitaryUB acting on the subsystemB alone such thatUB|φ0

AB〉 = |φ1
AB〉. Hence,

if the states corresponding to both commitments are the sameon Alice’s side then Bob can cheat perfectly. This argument can
be extended to the case in whichρ0A andρ1A are close in trace distance (which means that they are difficult to distinguish)
and then one can show that Bob can still cheat with high probability (for the exact trade-off based on this idea refer to [36];
for the optimal bounds on quantum bit commitment see [37]).

What is a split model? Informally, a split model is a model in which at least one party is required to delegate multiple agents
to perform certain parts of the protocol in a non-communicating fashion. In this paper we only consider models in which we
require a party to delegate at most2 agents. The basic rule of two-party cryptography is that there are no third parties: the
world is split between Alice and Bob only, anything that doesnot belong to Alice is fully controlled by Bob. Now suppose
that the split model requires that there are two agents of Bob(Bob and Brian). It is still true that Bob and Briantogether
control everything that does not belong to Alice. However, the class of operations they can perform in a non-communicating
fashion is now restricted, which might give us security. It is clear that the only way to achieve security is to split Aliceduring
the period for which security for Bob should hold orvice versa. Therefore, we arrive at two relevant splits.

• α-split : Alice is split during the commit and wait phases.
• β-split : Bob is split during the wait and open phases.

1. commit 2. wait 3. open 4. verify

α : Alice is split

β : Bob is split

Fig. 2: The two relevant types of separations:α andβ.

The standard no-go does not apply to theα-split model because whileρ0A might be globally fully distinguishable fromρ1A
they might locally look the same for both Alice and Amy (her agent). Theβ-split evades the no-go because the global unitary
UB might be impossible to perform by Bob and Brian without communication. Note that whenever we say that a party is split
during two (or more) consecutive phases of the protocol we mean one long split throughout the whole period rather than a
sequence of short ones (the agents arenot allowed to get together in between).

We treat the splits as a resource. Hence, we are interested inthe minimal splits that give security and we will show thatα

andβ are such minimal splits. What about models that impose strictly more restrictions than those? On one hand any protocol
secure in the minimal split will remain secure in the more split model, we only need to ensure it is still feasible. E.g. the
protocol from [1] was originally proposed in the model in whichbothAlice and Bob are split during the wait and open phases,
while our analysis applies to theβ-split model (strictly less split). Therefore, our proof automatically extends to the original
setting. On the other hand, imposing more split might allow for new, simpler protocols. E.g. for the case of Bob being split
at all times there exists a number of protocols [19], [18], [24], [25].

The number of possible split models is rather large and examining all of them case-by-case is unlikely to give any valuable
insight. Hence, in this paper we only focus on the minimal splits: α andβ. It is clear that a split imposed on Alice will only
affect her cheating power (not Bob’s) and it is only the security guarantee for honest Bob that needs to be generalised. Inthe
α-split Bob commits to a bit by talking to Alice and Amy (subsystemsA andA′, respectively) and a natural generalisation of
the hiding condition is to require thatneitherof them acquires significant knowledge about the value ofC. In analogy to the
non-split case letKAA′ be the set of states that dishonest Alice and Amy can enforce at the end of the commit phase. Then
the split counterpart of DefinitionII.2 can be written as follows.

Definition III.1. An α-split bit commitment protocol isδ-hiding if all σAA′BC ∈ KAA′ satisfy

pguess(C|X) ≤ 1

2
+ δ for X = {A,A′}.

Similarly, in theβ-split let KBB′ be the set of states that dishonest Bob and Brian can enforce at the end of the commit
phase. In the introduction we mentioned the concept of an external verifier Victor who challenges Bob to open a particular
bit and this is how we quantify Bob’s cheating power. In the case of Bob and Brian performing two openings separately we
need to specify whether Victor only tells Bob what to unveil or both Bob and Brian receive the message. We call these two

10We assume that Alice and Bob start in a pure state and then all the actions can be performed coherently.
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scenarios thelocal andglobal command models, respectively. The first variant corresponds to the situation in which Bob makes
the decision while Brian intends to behave consistently. Ifb is the bit that Bob intends to unveil then the cheating maps inthe
local command model take the form

Φcheat,local,b
BB′→PP ′CC′ = Φcheat,b

B→PC ⊗ Φcheat
B′→P ′C′ ,

i.e. Bob’s actions depend onb but Brian’s behaviour is independent of it.
The natural motivation for the second scenario is a situation in which the agents are not allowed to communicate with each

other but they might receive information from the outside world, hence, they both knowb. The cheating maps in the global
command model take the form

Φcheat,global,b
BB′→PP ′CC′ = Φcheat,b

B→PC ⊗ Φcheat,b
B′→P ′C′ ,

i.e. both opening maps depend on the value ofb. Using the definition ofpb, the probability of successfully openingb, introduced
in (2) we can state the security condition in theβ-split model.

Definition III.2. A β-split bit commitment protocol isε-weakly binding in the local (global) command model if for all
σABB′ ∈ KBB′ and all the cheating maps allowed in the local (global) command model we havep0 + p1 ≤ 1 + ε.

The two variations of theβ-split model turn out to be rather different from the security point of view: there exist simple
classical protocols secure in the local command model, while no classical protocol can be secure in the global command model
(for details please refer to SectionIV-B). Hence, to satisfy this stronger security requirement oneneeds to resort to quantum
protocols and we investigate one of them in SectionV.

t

x

P

Q R

T

0

1

2

0−1 1

Fig. 3: Light gray regions represent the light cones ofQ andR, while dark gray corresponds to the common past or future.
P is the latest point of the common past, whileT is the earliest point of the common future.

B. Relativistic motivation

Special relativity states that information cannot travel faster than the speed of light. Hence, if we are guaranteed that sitesX
andY are at some well-defined distance we can calculate the minimum time it takes for a message to travel fromX to Y (or
vice versa). This motivatesguaranteed message delivery timemodels, in which transmitting messages between certain parties
takes a finite amount of time. To the best of our knowledge, these were the first models in which relativistic bit commitment
was proposed [24], [25] (please refer to AppendixC for a brief summary of what is known about these models). Special
relativity can also motivate certain split models as explained below.

We consider the model proposed by Kent [27], [1]. Take the speed of light to be1, let (x, t) be the coordinates for Minkowski
space and define the following three points :P = (0, 0), Q = (−1, 1), R = (1, 1). It is clear thatP is the latest point that
belongs to the common past ofQ andR (Fig. 3). Hence, no signal emitted aftert = 0 (regardless of where it was emitted
from) can reach bothQ andR. Kent’s bit commitment protocols take advantage of this scenario by assuming that each party
has an agent atP , Q andR and they are allowed to send information at the speed of light. The commit phase happens atP

while the open phase happens atQ andR. The resulting communication constraints are illustratedin Fig. 4. It is clear that
the communication constraints following from this configuration in space-time are strictly stronger than those of theβ-split.
This serves as a proof of principle that at least certain split models can be physically realised by requiring different parts of
the protocol to take place at different, space-like separated points.
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Alice

Bob

Commit phase

Alice Amy

Bob Brian

Wait phase

Alice Amy

Bob Brian

Open phase

Fig. 4: Effective communication constraints imposed by Kent’s model [27], [1].

IV. B IT COMMITMENT PROTOCOLS FOR THE MINIMAL SPLITS

In SectionIII-A we argued that eitherα or β-split needs to be imposed for security to be possible. In this section we give
explicit examples of protocols which are secure in each of the two cases.

A. Protocols based onα-split

Alice Amy

Bob

Commit phase

Alice Amy

Bob

Wait phase

Alice

Bob

Open phase

Fig. 5: Theα-split model: Alice is required to be split during the commitand wait phases.

Theα-split allows for a simple bit commitment protocol based on secret sharing. Such protocols will have the feature that
once the commit phase is over, the combined systems of Alice and Amy determine the committed bit and the commitment
only lasts as long as the separation is maintained. This is similar to the distributed oblivious transfer scenarios [20] in which
security disappears as soon as the agents are allowed to communicate.

Protocol 1: Bit commitment from secret sharing

1) (commit) Bob commits tob ∈ {0, 1} by generating a random bitr and sendingb⊕ r to Alice andr to Amy.
2) (open) Alice and Amy calculateb = (b ⊕ r)⊕ r.

Security against classical adversaries follows directly from the properties of secret-sharing. It is also secure against quantum
adversaries (see AppendixD-B for details). As there exists a classical protocol that is perfectly secure (even against quantum
adversaries) in this scenario quantum mechanics gives us noadvantage for the purpose of bit commitment.

B. Protocols based onβ-split

Alice

Bob

Commit phase

Alice

Bob Brian

Wait phase

Alice

Bob Brian

Open phase

Fig. 6: Theβ-split model: Bob is required to be split during the wait and open phases.

In contrast to theα-split case commitments based on theβ-split can be made permanent— Bob and Brian can always refuse
to participate in the open phase and Alice will learn nothingabout their commitment. As discussed in SectionIII-A we need
to distinguish between the local and global command models.
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1) Security in the local command model:It turns out that in theβ-split model under the local command there exists a
simple classical protocol that achieves security.

Protocol 2: Bit commitment in the local command model

1) (commit) Bob chooses a bitb and shares it with Brian.
2) (open) Bob and Brian independently send to Alice a bit theyclaim to have committed to (denote these bits byx

andy, respectively).
3) (verify) Alice accepts the commitment ofb if b = x = y, else she rejects.

It is easy to convince ourselves that the protocol is secure (according to the weakly binding definition). The problem that
Bob and Brian face is to correlate the bits they are trying to unveil. In order to do that they either have to agree on the bit
in advance (which corresponds to an honest commitment) or they would have to violate no-signalling. For a more detailed
security analysis we refer to AppendixD-C (see also the independent discussion of this and related points in [29]).

2) Security in the global command model:We have seen that in the local command model there exists a very simple bit
commitment protocol that achieves security. Unfortunately, as soon as we switch to the global command the protocol becomes
insecure — Bob and Brian can cheat perfectly. Let us considerwhat is and what is not possible in theβ-split model under the
global command.

a) Classically: Classically, it is not possible to achieve security in theβ-split model under the global command and the
informal argument goes as follows. As the protocol needs to be correct Bob and Brian must be able to honestly commit to
either bit, i.e. they must be able to agree on unveiling strategies11 that will make Alice accept either bit even without any
further communication between Bob and Brian. Since the protocol is hiding the interaction during the commit phase cannot
give away any information about the committed bit and, therefore, both strategies remain valid until the beginning of the open
phase. Hence, whichever bit Bob and Brian are told to unveil they can always succeed.

b) Quantum mechanically:The informal argument presented above does not apply in the quantum world due to the
no-cloning principle. The opening strategy may rely on somequantum system that is available to Bob right before the split —
but cannot be shared with Brian without loss. The first protocols in theβ-split model were proposed by Kent [27], [1] and
SectionV focuses on one of them.

V. B IT COMMITMENT BY TRANSMITTING MEASUREMENT OUTCOMES

We introduce a variant of the bit commitment protocol by Kent[1] and then present a security proof that leads to explicit
security bounds.

A. The protocol

The original protocol presented in [1] uses BB84 states. However, for the purpose of the proof we analyse its purified
analogue (which is equivalent from the security point of view). Denote the computational basis byB0 = {|0〉, |1〉} and the
Hadamard basis byB1 = {|+〉, |−〉}.

Note also that the original scenario described by Kent makesstrictly more assumptions (because it requires both parties to
be split rather than just one). However, we will see that whether Alice is split or not does not affect the security. Hence,the
security proof for theβ-split model presented here automatically applies to the setup originally proposed by Kent.

Protocol 3: Bit commitment by transmitting measurement outcomes

1) Alice creates2n EPR pairs and sends one half of each pair to Bob.
2) (commit) Bob commits to a bitb by measuring every qubit he receives inBb. Denote the outcomes byT (a classical

bit string of length2n).
3) (end of commit) Bob splits up into two agents: Bob and Brian. Each of them holds a copy ofT . No more

communication is allowed between Bob and Brian until the endof the protocol.
4) (open) Bob opens the commitment by sendingb andT to Alice. Brian does the same.
5) Alice picks a random subsetZ ⊂ [2n] of size n and letX := [2n] \ Z. She measures the qubits fromZ in the

computational basis and the qubits fromX in the Hadamard basis. Denote her measurement outcomes byS (a
classical bit string of length 2n).

11Bob and Brian agree on unveiling strategies during the commit phase, which they are allowed in theβ-split model. This argument might not apply in
the case of stronger splits (e.g. Bob and Brian split at all times).



10

6) (verify) Alice performs three checks :

• Alice checks whether the values ofb submitted by Bob and Brian are the same.
• Alice checks whether the strings submitted by Bob and Brian are the same.
• Alice checks whether the strings submitted are consistent with S (consistency check on qubits she measured in

Bb only).

If all three checks pass then the opening is accepted.

As mentioned in SectionII-E a secure bit commitment protocol should satisfy three conditions. If Bob is honest he will
choose a bitb, perform the correct measurement to obtain the (classical)string T . After the split Bob and Brian will both
possess identical copies ofb andT , which they send to Alice during the open phase. Hence, the first two checks clearly go
through. The third check goes through because honest Alice prepared perfect EPR pairs, measured them to obtain stringS

and so stringsS andT must be perfectly correlated on the qubits measured in the same basis. Hence, the protocol is perfectly
correct. Security for honest Bob is also easy to see. Alice does not receive any information before the open phase, hence,she
cannot learn anything about Bob’s commitment by no-signalling and the protocol isδ-hiding for δ = 0. Therefore, we only
analyse security for honest Alice, i.e. show the following result:

Theorem V.1. Protocol 3 in the β-split model under the global command isε-weakly binding, where

ε = inf
δ∈(0, 1

2
)
21−n(1−h(δ)) + 2 exp

(

−1

2
nδ2
)

,

whereh(·) is the binary entropy function as defined in SectionII-B.

Note that not only doesε vanish in the limitn → ∞ but also the rate of decay is exponential inn (n is the number of
rounds played, hence, the resources necessary to execute the protocol grow linearly inn). The fact thatε decays exponentially
would be a great advantage if the protocol were to be implemented experimentally and shows that the protocol might be of
practical interest.

B. Security for honest Alice

1) Notation: Let us denote the state of the system at the end of the commit phase byσABB′ , where subsystemsA, B and
B′ belong to Alice, Bob and Brian, respectively. Alice is honest so we know the exact state of her subsystem — it contains
2n qubits, which have already been partitioned into setsZ and X . This justifies a natural partition of the subsystemA
into subsystemsAZ andAX , each containing exactlyn qubits. Let quantum operationΛb

G for G ∈ {AZ , AX }, b ∈ {0, 1}
correspond to measuring all qubits from the subsystemG in the basisBb. The relevant projectors can be formally defined as

P
b,s
G := [H⊗n]b|s〉〈s |G[H⊗n]b, (3)

wheres ∈ {0, 1}n. Denote the environment byE and the subsystem used to store the measurement outcomes byF . ThenΛb
G

is defined as
ρFE := Λb

G(ρGE) =
∑

s

|s〉〈s |F ⊗ trG
(

P
b,s
G ρGE

)

.

The three relevant measurements areΛ0
AZ

,Λ1
AX

,Λ0
AX

— the first two are actually performed in the honest protocol,while the
third one is avirtual measurement, required for the proof only. Bob and Brian are expected to extract a string from their
respective quantum systems. Let us simplify the notation introduced in SectionII-E and denote Bob’s map intending to open
b and producing stringT as the output byΦb

B. Similarly, for Brian denote the map intending to openb′ by Φb′

B′ and the
output string byT ′. Observe thatΦb

B (Φb′

B′) is restricted to operate on the subsystemB (B′) only. The stringT corresponds
to measuring all2n qubits. Once Alice has chosen the partition intoZ andX we can naturally split it into two substrings
T = {TZ , TX }, which correspond to the outcomes obtained from the qubits from setsZ andX , respectively. SplittingT into
two substrings is useful because when Alice has to decide whether to accept or reject the commitment she will only look at
one of the substrings (the one measured in the same basis). Clearly, analogous partition applies toT ′ = {T ′

Z , T
′
X}.

2) No-signalling constraints:Let us think of Alice as talking to Bob and Brian separately and making a separate decision
(whether to accept or not) for each of them. We can see that this gives rise to a joint probability distribution with two inputs
and two outputs: the inputs are the bits that Bob and Brian were asked by Victor12 to unveil (b and b′, respectively), while
the outputs are Alice’s binary ({accept, reject}) outcomes (one on each side). We have already defined the mapsthat Bob and
Brian will apply so now we just need to specify what the tests on Alice’s side are. As described in the protocol Alice will

12We are in the global command model so both Bob and Brian know what they are trying to unveil.
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Alice and Brian
b′ = 0 b′ = 1

accept reject reject accept

Alice and Bob
b = 0

accept p0 a12 · α
reject a21 a22 a23 a24

b = 1
reject · · · a34
accept · · · p1

TABLE I: The joint probability distribution describing thetwo space-like separated openings.

check whether the relevant substring (determined by the partition into Z andX ) is identical to her measurement outcomes
and these checks can be expressed as projectors. E.g. if Bob tries to openb = 0 (b = 1) Alice will apply Π0

B (Π1
B), where

Π0
B :=

∑

s

|s〉〈s |SZ
⊗ |s〉〈s |TZ

,

Π1
B :=

∑

s

|s〉〈s |SX
⊗ |s〉〈s |TX

.

To check Brian’s opening she would applyΠ0
B′ or Π1

B′ , which can be obtained from the projectors above by replacing T with
T ′. Note that the opening maps performed by Bob and Brian and thetests performed by Alice allow us to evaluate the joint
probability distribution, which is represented in TableI.13 As Bob and Brian act on disjoint quantum systems and the tests
performed by Alice are classical the probability distribution of outcomes must satisfy no-signalling. Note that we replaced
certain fields (a11 anda44) by the probability of successfully opening0 and1 (p0 andp1), respectively. This follows from the
definition of pd in the global command model :

pd := Pr[accept, accept|b = d, b′ = d]. (4)

Also, we have replaceda14 by α because it turns out to be the quantity we will bound in the second part of the proof. The
following lemma uses the no-signalling principle to find an upper bound on the sum ofp0 andp1.

Lemma V.1. No-signalling between Bob and Brian implies thatp0 + p1 ≤ 1 + α.

Proof: Consider the following no-signalling constraints :α+ a24 = a34 + p1 anda21 + a22 = a23 + a24. Moreover, we
know that each quarter adds up to1 so p0 + a12 + a21 + a22 = 1. Combining the two conditions gives

p0 + p1 = 1− a12 − a21 − a22 + α+ a24 − a34 = 1− a12 − a23 + α− a34 ≤ 1 + α.

Hence, it is enough to show that as the number of roundsn increasesα can be made arbitrarily small, which is the focus
of the next section.

3) Impossibility of guessing both strings:The probabilityα corresponds to Bob trying to unveilb = 0, Brian trying to
unveil b′ = 1 and both openings being accepted. LetρSZSXTZTXT ′

Z
T ′

X
be the state after all three parties have performed their

measurements (note that this state is purely classical)

ρSZSXTZTXT ′

Z
T ′

X
:= (Λ0

AZ
⊗ Λ1

AX
⊗ Φ0

B ⊗ Φ1
B′)ρAZAXBB′ .

As α is the probability thatρSZSXTZTXT ′

Z
T ′

X
passes the relevant tests it can be written as

α = tr(Π0
BΠ

1
B′ρSZSXTZTXT ′

Z
T ′

X
). (5)

As operators acting on disjoint subsystems commute we can change the order slightly

α = tr(Π0
BΠ

1
B′ρSZSXTZTXT ′

Z
T ′

X
)

= tr(Π0
BΠ

1
B′(Λ0

AZ
⊗ Λ1

AX
⊗ Φ0

B ⊗ Φ1
B′)ρAZAXBB′)

= tr(Π0
BΠ

1
B′(Λ1

AX
⊗ Φ1

B′)(Λ0
AZ

⊗ Φ0
B)ρAZAXBB′)

= tr
(

Π1
B′(Λ1

AX
⊗ Φ1

B′)
[

Π0
B(Λ

0
AZ

⊗ Φ0
B)ρAZAXBB′

])

.

Define

p := tr
(

Π0
B(Λ

0
AZ

⊗ Φ0
B)ρAZAXBB′

)

,

ρ
pass
AXTXB′ :=

1

p
trSZTZ

[

Π0
B(Λ

0
AZ

⊗ Φ0
B)ρAZAXBB′

]

.

13The variables that do not appear in our argument have been replaced with placeholders.
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It is easy to see thatp is the probability that Bob passes his test andρ
pass
AXTXB′ is the normalised state conditioned on passing.

Hence,α can be written as
α = tr

(

Π1
B′(Λ1

AX
⊗ Φ1

B′)ρ
pass
AXTXB′

)

· p. (6)

This way of writingα allows us to apply TheoremII.1 to the tri-partite stateρpass
AXTXB′ .

Lemma V.2. For any strategy adopted by dishonest Bob

α ≤ inf
δ∈(0, 1

2
)
21−n(1−h(δ)) + 2 exp

(

−1

2
nδ2
)

. (7)

Proof: The trace on the right hand side of (6) corresponds to the probability that Brian guessesSX correctly by applying
his opening map on his subsystemconditionedon Alice accepting Bob’s opening. The guessing probabilityusing a fixed map
Φ1

B′ is upperbounded by the optimal guessing probability [38] which can be written in terms of the min-entropy. Hence,
α

p
= tr

(

Π1
B′(Λ1

AX
⊗ Φ1

B′)ρ
pass
AXTXB′

)

≤ 2−Hmin(SX |B′), (8)

where the min-entropy is evaluated on the stateρSXB′ := trTX
Λ1
AX

(ρpass
AXTXB′). To use the uncertainty relation (1) we also need

to considerρ
ŜXTX

:= trB′ Λ0
AX

(ρpass
AXTXB′), which would be obtained if Alice decided to make the third (virtual) measurement

in a complementary basis. Combining (1) with (8) gives
α

p
≤ 2Hmax(ŜX |TX )−n, (9)

whereHmax(ŜX |TX ) is evaluated onρ
ŜXTX

. Note that now we just need to bound the classical conditional max-entropy
between two classical random variables (the stateρ

ŜXTX
is purely classical). It turns out that it is enough to show that the

Hamming distance between̂SX andTX is small with high probability. To get such a bound we need to examine the (fully
classical) stateρSZ ŜXTZTX

:= trB′

[

(Λ0
AZ

⊗ Λ0
AX

⊗ Φ0
B ⊗ idB′)ρABB′

]

. The fact thatZ andX are random subsets of[2n]
allows us to derive the following inequality from the Hoeffding bound [39] (details in AppendixA).

Pr
[

dH(ŜX , TX ) ≥ δn ∧ dH(SZ , TZ) = 0
]

≤ exp

(

−1

2
nδ2
)

=: ε. (10)

We can also write it as conditional probability

Pr
[

dH(ŜX , TX ) ≥ δn| dH(SZ , TZ) = 0
]

≤ ε

p
,

becausedH(SZ , TZ) = 0 is equivalent to Bob passing the test (and happens with probability p as defined in (V-B3)). Let
0 < δ < 1

2 and define a binary event,Γ, such that

Γ :=

{

0 if dH(ŜX , TX ) < δn,

1 if dH(ŜX , TX ) ≥ δn.

If Γ = 0 then for any particular value ofTX = tX the Rényi entropy14 of order0 can be bounded by

H0(ŜX |TX = tX ,Γ = 0) ≤ log





⌊nδ⌋
∑

i=0

(

n

i

)



 ≤ nh(δ),

where the last inequality comes from a well-known bound (seee.g. Lemma 16.19 in [40]). The monotonicity of classical Rényi
entropies implies that

Hmax(ŜX |TX = tX ,Γ = 0) ≤ H0(ŜX |TX = tX ,Γ = 0). (11)

If Γ = 1 then we have no bound better than the maximal valueHmax(ŜX |TX = tX ,Γ = 1) ≤ n. It can be shown (see e.g.
Section 4.3.2 in [41]) that the conditional max-entropy for classical states reduces to

Hmax(Z|Y ) := log
∑

y∈Y

Pr[Y = y] · 2Hmax(Z|Y=y).

As neither of our bounds depends on the particular value ofTX = tX , they will not be affected by averaging over all strings
tX . Hence, we only need to average overΓ

2Hmax(ŜX |TX ,Γ) = Pr[Γ = 0] · 2Hmax(ŜX |TX ,Γ=0) + Pr[Γ = 1] · 2Hmax(ŜX |TX ,Γ=1)

≤
(

1− ε

p

)

2nh(δ) +
ε

p
2n ≤ 2nh(δ) +

2nε

p
. (12)

14All entropies are evaluated onρ
ŜXTX

, except forHmin(SX |B′) which is evaluated onρSXB′ .
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One bit of information cannot decrease the entropy by more than 1 bit (see e.g. Proposition 5.10 in [41]), hence

Hmax(ŜX |TX ) ≤ Hmax(ŜX |TX ,Γ) + 1. (13)

Hence, from (9), (12) and (13) we get

α ≤ 2p

[

2−n(1−h(δ)) +
ε

p

]

≤ 21−n(1−h(δ)) + 2 exp

(

−1

2
nδ2
)

,

which directly implies our claim.
Finally, TheoremV.1 follows directly from LemmasV.1 andV.2.

VI. CONCLUSIONS AND OPEN QUESTIONS

Our interest in bit commitment protocols based on the relativistic constraint was sparked by recent papers by Kent [27],
[1]. While the author gave an intuition for the security of the protocol based on BB84 states, no explicit security bounds
were given. Once we had proven the security of the protocol and calculated such bounds, we became interested in other split
models: which of them can give us security and in which of themare quantum protocols more powerful than classical ones?
We have investigated the minimal split assumptions that might allow for secure bit commitment and we have shown that they
are indeed sufficient. We have found that in theβ-split under the global command quantum protocols are more powerful than
classical ones.

We have proven security of bit commitment with respect to theweakly binding definition, which is non-composable. We
also know that the usual stronger definition (which would imply composability) is not achievable. We cannot hope for universal
composability but maybe it is possible to prove some weaker form of composability. For example, is it possible to combinen

bit commitment protocols [1] to obtain a secure string commitment scheme? If it is not secure one might investigate if there
are some extra constraints (e.g. that the commit phases are executed sequentially or that the unveilings happen simultaneously
at space-like separated points) that would guarantee composability.

One might also wonder whether these models allow us to construct other cryptographic primitives. Probably the most
natural one to look at would be oblivious transfer [42], [43]. Unfortunately, the primitive of oblivious transfer requires the
security to last forever. This would only be possible if certain parties remained split forever, which cannot be motivated by
relativistic assumptions. Moreover, if certain parties were to remain split forever then oblivious transfer can be implemented
even classically [20]. It is possible, however, that some weaker form of oblivious transfer (in which the security does not last
forever) can be proven secure in relativistic models.

APPENDIX A
HOEFFDING BOUND

In Lemma7 we need to bound the probability that sampling a small, random substring gives rise to the statistics which is
very different from the true statistics of the entire string. The Hoeffding bound is exactly the tool we need. Suppose that we
have a string of length2n which containsnerr errors and letΛ = nerr

2n denote the error fraction in the whole string. Let us take
a random sample of the string of sizek and denote the error fraction in the sample byλ. Then, the Hoeffding bound [39]
states that

Pr

[

Λ ≥ λ+
δ

2

]

≤ exp

(

−1

2
kδ2
)

.

Adding an extra event cannot increase the probability

Pr

[

Λ ≥ λ+
δ

2
∧ λ = 0

]

≤ exp

(

−1

2
kδ2
)

.

The expression inside the square bracket can be rewritten, giving us

Pr [nerr ≥ δn ∧ λ = 0] ≤ exp

(

−1

2
kδ2
)

.

This is exactly the bound we use in (10).

APPENDIX B
COMPOSABILITY ISSUES

For the sake of completeness we state some observations concerning composability. On one hand we show that the weak
bindingness definition is not composable (by giving an explicit counter-example). On the other hand we argue that the usual
stronger definition [12] cannot be satisfied in the split setting.
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A. Counter-example to the composability of the weakly binding definition

In SectionII-E we explained what it means that a bit commitment protocol is weakly binding and we also said that the
definition does not guarantee composability, e.g. executing the protocoln times does not necessarily give a secure string
commitment (string commitment is an extension of bit commitment in which we are allowed to commit to a bitstring of
lengthn rather than just a single bit). Let us explain what the sourceof the problem is. Consider a bit commitment protocol
which is binding in the sense that with probability12 Bob can unveil either bit successfully and with probability1

2 he will
fail regardless of his intentions. Clearly, we wouldnot call this protocol secure. However, asp0 = p1 = 1

2 it satisfies the
ε-weakly binding definition forε = 0. To expose the problem even further consider the task of string commitment. Analogous
to the bit commitment case suppose that at the end of the commit phase Alice and Bob share a stateρAB. Let qs(ρAB) be
the probability that Bob successfully unveils strings. Then it is natural to say that a string commitment protocol is δ-weakly
binding if for all statesρAB it satisfies

∑

s

qs(ρAB) ≤ 1 + δ.

Now consider a string commitment protocol such that Alice with probability 1
2 accepts anything while with probability12

rejects everything. It is clear that this is not a secure string commitment box as
∑

s qs(ρAB) =
1
22

n = 2n−1. However, if we
look at each bit separately we will find thatp0 = p1 = 1

2 and so each bit commitment is weakly binding. This shows that
combiningn weakly binding bit commitments does not imply that the resulting string commitment is secure.

B. Impossibility of satisfying the stronger definition

Definition B.1. [12] A bit commitment protocol isǫ-binding if the fact that Alice is honest ensures that for any state at the
beginning of the open phase,ρAB, there exists an extension of the form

ρABD = PD(0)|0〉〈0 |D ⊗ ρ0AB + PD(1)|1〉〈1 |D ⊗ ρ1AB,

whereD is a classical register andPD is a probability distribution, for which the conditioned states satisfyp1−b(ρ
b
AB) ≤ ǫ

for b ∈ {0, 1}.

While this definition has proven useful in the bounded and noisy storage models [11], [14] we argue that it is generally
inapplicable outside of these scenarios. The security in these models results from the fact that Alice and Bob cannot purify the
protocol, as there is a subsystem, referred to as the environment,E, which they do not have access to. In other wordsρAB is
not pure because we trace out the environmentE, e.g. a pure state|φ〉ABE leads toρAB = trE |φ〉〈φ |ABE . The following
argument shows that if the model does not prevent the partiesfrom purifying the protocol then DefinitionB.1 can only be
satisfied forǫ ≥ 1

2 . Suppose that Bob commits to an equal superposition of0 and 1 (as explained above). If Alice and Bob
start in a pure state and execute a purified version of the protocol (i.e. implement all operations as unitaries, generatecoherent
randomness and keep all the measurements quantum) then the state at the beginning of the open phase is pure. One possible
opening strategy for Bob is to measure the control qubit, which collapses the state. The collapsed state is exactlyas if Bob
had generated a random bitb at the very beginning of the protocol and honestly committedto it. Such a strategy gives us
a lower bound on how well Bob can open each bit, namelypb(ρAB) ≥ 1

2 for b ∈ {0, 1}. As the overall state is pure at the
beginning of the open phase, any classical registerD must necessarily be independent, which means thatρ0AB = ρ1AB = ρAB.
Thenp1(ρ0AB) = p1(ρAB) ≥ 1

2 so DefinitionB.1 can only hold forǫ ≥ 1
2 . This argument shows that DefinitionB.1 cannot be

satisfied by protocols that do not assume the presence of someexternal system inaccessible to either party.

APPENDIX C
GUARANTEED MESSAGE DELIVERY TIME MODELS

Suppose that Bob, based on Earth, exchanges messages with Alice, who is on the Moon. Special relativity states that no
message can travel faster than the speed of light, hence the minimum delivery time equals about1.26s. This scenario motivates
the study of models in which there are two separated sites andwhile intra-site communication can be instantaneous, any
inter-site message takes at least∆t to be delivered. We also assume that the inter-site (classical or quantum) channels are
perfectly secure (neither party can read or alter anything that is on the wire).

A. One agent per site

Bob Alice

∆t

Fig. 7: The simplest guaranteed message delivery time model: one agent per site.
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The simplest model (illustrated in Figure7) assumes that each party controls one site. Clearly, if Bob sends a bitb to
Alice he is committed to it. The commitment is perfect because at timet = 0 Bob is fully committed (he cannot alter his
commitment at any later time), while at the same time until time t = ∆t Alice is fully ignorant about the commitment. The
drawback of such a scheme is the fact that the commitment onlylasts for∆t and then automatically opens. Such schemes have
been studied before [44] but in a slightly different context. The conclusion is thatfor certain applications (e.g. constructing
a strong coin flip, signing contracts) suchtimed commitmentsare good enough, while for others (e.g. Yao’s construction of
OT using quantum communication [45], [43]) they are not. To illustrate the limitations of this model let us consider if it is
possible to construct a commitment that lasts for longer that ∆t. Classically, this is not possible and the intuitive argument is
simple. In the absence of noise classical protocols are fully deterministic and no probabilities can arise. For each of the bits
Bob eithercan (pb = 1) or cannot(pb = 0) unveil it. Hence, the distinction between being and not being committed is sharp
(either p0 + p1 = 2 or p0 + p1 = 1). Bob being committed implies that the information beyond his control determines the
bit. As Alice will have received all the messages in transit after time at most∆t she will be able to learn the committed bit.
Therefore, no commitment can be made longer than∆t. In the quantum world the situation is more complicated due to two
things. First of all, quantum mechanics is a probabilistic theory so there is no sharp distinction between being and not being
committed — Bob can be partially committed. The second complication is the no-cloning theorem. Suppose that at some point
Bob becomes, to some extent, committed, which means that theinformation on Alice’s side combined with the messages on
the wire give away some information about his commitment. Now, assume that Alice waits until the messages arrive (at most
∆t) and does some measurements to learn something about Bob’s commitment. Clearly, the standard hiding-binding trade-off
applies. However, the honest protocol might require Alice to return some states to Bob before the messages arrive and so
by keeping them she takes a risk of being caught cheating. It is an open question if this time-constrained scenario gives us
some advantage over the standard scenario for constructingcheat-sensitive bit commitments. It is clear, however, that no secure
(hiding) bit commitment can last longer than∆t. Hence, for this specific purpose quantum and classical protocols are equally
powerful.

B. Two agents per site

Alice Amy

Bob Brian

∆t

Fig. 8: A more complicated guaranteed message delivery timemodel: two agents per site.

A slighty more complicated model (illustrated in Figure8) assumes that each party has a trusted agent at each site (Bob
trusts his agent Brian and Alice trusts her agent Amy). Protocols implementing bit commitment in such a scenario, in which
the commitment can be sustained indefinitely as long as messages are exchanged at each site have been presented in [24],
[25]. After the exchange stops the commitment remains valid for∆t and then expires. These protocols have been shown to
be secure against classical attacks and are conjectured to be secure against any quantum attack.

APPENDIX D
CLASSICAL PROTOCOLS AGAINST QUANTUM ADVERSARIES

Some of the protocols we present are purely classical but in order to determine whether they are secure against quantum
adversaries we need to translate them into the quantum formalism. This section describes briefly how this can be achievedand
analyses the security of these protocols in the quantum setting. While the actual security proofs may appear trivial, wehave
decided to include them for completeness.

A. Classical protocol in the quantum formalism

Sending a classical bitb ∈ {0, 1} is equivalent to encoding it in the computational basis and sending the resulting state|b〉
to the other party. Receiving a classical bit corresponds toreceiving a qubit and immediately measuring it in the computational
basis.
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B. Bit commitment from secret sharing

Here we analyse Protocol1 from SectionIV-A . If Alice and Amy are honest they will measure the qubits theyreceive
immediately in the computational basis. Once the measurement outcomes are known Bob’s commitment is well-defined and
he will not be able to cheat. If Bob is honestr will be a truly random bit. Then what Alice and Amy receive canbe described
by the following density matrix

ρdAA′ =
1

2
[|0〉〈0 |A ⊗ |d〉〈d |A′ + |1〉〈1 |A ⊗ |1− d〉〈1 − d |A′ ].

It is easy to convince ourselves that whileρ0AA′ and ρ1AA′ are perfectly distinguishable the reduced states are fullymixed,
ρ0A = ρ1A = ρ0A′ = ρ1A′ = I

2 . Hence, Alice and Amy remain perfectly ignorant about Bob’scommitment as long as they are
separated.

C. Bit commitment in the local command

Here we analyse Protocol2 from SectionIV-B1. Clearly, the protocol is perfectly hiding because Alice does not receive
any messages until the beginning of the open phase. To show that it is also weakly binding we need to employ no-signalling
between Bob and Brian.

Lemma D.1. Protocol 2 is weakly binding withε = 0.

Proof: Suppose that Bob and Brian want to cheat. At the beginning of the open phase each of them picks an opening strategy
from setsR andS, respectively. Note that this has to be done independently because they are not allowed to communicate.
Bob receives the command so his distribution will in generaldepend on the command and if the command isb denote the
probability of pickingr ∈ R by pbR(r). For the second player the distribution has to be fixed and theprobability of picking
s ∈ S equalspS(s), regardless of what the value ofb is. Recall from SectionII-E that pb is the probability that Alice accepts
the commitment if the command isb. Hence, we can write

pb =
∑

r∈R

∑

s∈S

pbR(r)pS(s)p(x = b, y = b|r, s) ≤
∑

r∈R

∑

s∈S

pbR(r)pS(s)p(y = b|r, s).

By no-signalling we know thatp(y = b|r, s) does not depend onr so we can writep(y = b|s) instead. Then we get

p0 + p1 ≤
∑

r∈R

∑

s∈S

[

p0R(r)pS(s)p(y = 0|s) + p1R(r)pS(s)p(y = 1|s)
]

=

∑

s∈S

pS(s)
[

p(y = 0|s) + p(y = 1|s)
]

= 1.

One might also wonder whether the protocol satisfies the stronger binding requirement (DefinitionB.1). However, a similar
argument to the one sketched out in SectionV-B shows that the stronger definition cannot hold.
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