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Linear Coherent Estimation with Spatial
Collaboration
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Abstract—A power constrained sensor network that consists
of multiple sensor nodes and a fusion center (FC) is considered,
where the goal is to estimate a random parameter of interest.
In contrast to the distributed framework, the sensor nodes may
be partially connected, where individual nodes can update their
observations by (linearly) combining observations from other
adjacent nodes. The updated observations are communicated
to the FC by transmitting through a coherent multiple access
channel. The optimal collaborative strategy is obtained by
minimizing the expected mean-square-error subject to power
constraints at the sensor nodes. Each sensor can utilize its
available power for both collaboration with other nodes and
transmission to the FC. Two kinds of constraints, namely the
cumulative and individual power constraints are considered.
The effects due to imperfect information about observation and
channel gains are also investigated. The resulting performance
improvement is illustrated analytically through the example of a
homogeneous network with equicorrelated parameters. Assuming
random geometric graph topology for collaboration, numerical
results demonstrate a significant reduction in distortion even for
a moderately connected network, particularly in the low local-
SNR regime.

Index Terms—Distributed Estimation, Wireless Sensor Net-
works, LMMSE Estimators, Constrained Optimization

I. INTRODUCTION

Wireless sensor networks consist of spatially distributed
battery-powered sensors that monitor certain environmental
conditions and often cooperate to perform specific signal pro-
cessing tasks such as detection, estimation and classification
[1]. In this paper, we consider a network that is deployed for
the purpose of estimating a common random parameter of
interest. After observing noisy versions of the parameter, the
sensors can share their observations among other neighboring
nodes, an act referred to as collaboration in this paper (fol-
lowing [2]). The observations from the neighbors are linearly
combined using appropriate weights and then transmitted to
the fusion center (FC) through a coherent multiple access
channel (MAC). The FC receives the noise-corrupted signal
and makes the final inference. The schematic diagram of such
a system is shown in Figure 1 (we will introduce the notations
and describe each block later in Section II).
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Fig. 1. Sensor network performing collaborative estimation.

The individual sensor nodes are battery powered and hence
the network is power limited. The power constraints can be
described by the following two situations 1) Cumulative: Here
the total power-usage in the network (summed across all the
nodes) has to be below a pre-specified limit. 2) Individual:
Here each node has their own power constraint as dictated by
the capacity of their batteries. The performance analysis of
a cumulative-constraint problem is usually simpler and more
insightful since we have only one constraint to take care of.
The individual-constraint problem is more practical from an
implementation perspective but also more difficult to analyze.
In the absence of a power limit, the sensors could collaborate
with all the other nodes, make the inference in the network,
and transmit the estimated parameter to the FC without any
further distortion (by using infinite transmission power). This
is similar to the centralized inference situation, where the
error in estimate is only due to the noisy observation process.
However, with limited power availability, both collaboration
and transmission have to be performed judiciously, so as to
maximize the quality of inference at the FC. In this paper,
we study the following problems. For a cumulative power
constraint, we study the optimal allocation of power resources
among various nodes and tasks (namely collaboration and
transmission) so as to achieve the best estimation performance
at the FC. Regarding individual power constraints, the goal is
to allocate power between collaboration and transmission at
each node.

In the absence of collaboration, this problem reduces to
the class of distributed inference/beamforming algorithms. In
distributed estimation, the objective is to coordinate all the
sensors so that without communicating with one-another, they
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collectively maximize the quality of inference at the FC. The
quality of inference can be quantified by either the mean-
square error (MSE) (in case of random signals) or Cramér-Rao
lower bound (in case of deterministic unknown signals). Dis-
tributed estimation has been extensively researched both from
analog [3],[4],[5] and digital [6],[7],[8] encoding perspectives.
Examples of analog encoding include the amplify-and-forward
(AF) scheme, where the nodes amplify the raw observations
and transmit to the FC by either forming a coherent beam
in a multiple access channel [3] or using their own dedicated
links with the FC for transmission (sometimes referred to as
orthogonal MAC) [4]. The AF framework appears extensively
in the literature [3],[5],[9] due to its simplicity of implementa-
tion in complex networks and provable information-theoretic-
optimality properties for simple networks [10]. In another
research direction, quantization of the observations may be
performed prior to transmission [11],[6]. The quantized ob-
servations are then communicated to the FC using digital
communication, where further information may be lost due to
channel errors [12]. Another closely related field of research
in communication theory is distributed beamforming in relay
networks [13], [14], [15], where the objective is to maximize
the signal-to-noise ratio (SNR), rather than minimize the
estimation error, at the FC. These two problems are sometimes
related, as one might imagine. When the observation and chan-
nel gains are perfectly known, the SNR and MSE functions
are monotonically related and the two problems are equivalent.
However, in the presence of observation and channel gain
uncertainties, the SNR and MSE functions are different.

Though distributed inference/beamforming has been widely
studied, research regarding collaborative estimation is rela-
tively nascent. When the transmission channels are orthogonal
and cost-free collaboration is possible within a fully connected
sensor network, the optimal strategy is to perform the inference
in the network and use the best available channel to transmit
the estimated parameter [2]. In a rate-constrained framework
considered in [16], it was shown that spatial collaboration
can be used to whiten the observation space, thereby enabling
efficient resource allocation when the noise is correlated. In
a preliminary version of this paper [17], we have considered
an extension of the AF framework, where sensors are able
to linearly combine the observations from neighboring nodes
before transmitting to the FC. We obtained the optimal cu-
mulative power-distortion tradeoff when a fixed but otherwise
cost-free collaborative topology is used to transmit over a
coherent MAC channel. In this paper, we extend the problem
formulation in three new directions, namely a) consideration
of individual power constraints, b) consideration of imperfect
information about observation and channel gains (the second
order statistics are assumed to be known), and c) consideration
of finite costs associated with collaboration. The primary
contributions of this paper are as follows

• Extending the amplify-and-forward framework to formu-
late and analyze the problem of estimation with spatial
collaboration

• Defining a metric called collaboration gain, that quanti-
fies the worthiness of spatial collaboration as a tool to

enhance the estimation performance
• Demonstrating that for a fixed but otherwise cost-free

(ideal) collaborative topology, the resulting optimiza-
tion problem reduces to an eigen-decomposition problem
for the cumulative-constraint case. For the individual-
constraint case, accurate numerical solution can be ob-
tained by solving several semi-definite feasibility prob-
lems. We investigate both the cases further by deriv-
ing/analyzing the optimal achievable distortion and the
corresponding weights for some special collaborative
topologies like the distributed (no-connections), partially
connected cycles and fully connected cases. We also
derive the explicit expression of collaboration gain for
a homogeneous network with identical channel and ob-
servation gains and equicorrelated observation noise. In
particular, we demonstrate that collaboration is particu-
larly effective in a certain power regime that depends on
various factors like the skewness (or variability) of power-
availability in the network, uncertainty in observation and
channel gains, and the correlation of the measurement
noise.

• Addressing the design of collaborative topologies where
finite costs are involved in collaboration. We suggest an
efficient algorithm that uses the results for the fixed-
topology but cost-free case to find locally optimal so-
lutions for the finite-cost case.

The rest of the paper is organized as follows. In Section
II, we formulate the problem after describing each block
of the system in Figure 1. We define “collaboration gain”
(CG) that is normalized with respect to the operating region
(CG ∈ [0, 1]). It summarizes the efficacy of collaboration
across various problem conditions. In Section III, we solve
the optimal transmission-power allocation problem for a fixed
but otherwise cost-free collaborative topology, (i.e., extend the
results of [17] to address points (a) and (b) in the previous
paragraph). We also derive explicit expressions for collabo-
ration gain for a homogeneous network with equicorrelated
noise. In Section IV, we address the problem with finite
collaboration costs and suggest a greedy algorithm to obtain
a locally optimal solution in polynomial time. Concluding
remarks are presented in Section V.

II. PROBLEM FORMULATION

A. Linear Sensing Model

We consider the scenario where the parameter of interest is
a scalar random variable with known statistics, specifically,
Gaussian distributed with zero mean and variance η2. The
observations at the sensor nodes n = 1, 2, . . . , N are governed
by the linear model xn = h̃nθ + εn, where h̃n is the
observation gain and εn is the measurement noise. The second
order statistics of the observation gain h̃ = [h̃1, h̃2, . . . , h̃N ]T

is assumed to be

E h̃ = h, var h̃ = Σh. (1)

The measurement noise ε = [ε1, ε2, . . . , εN ]T is assumed to
be zero-mean, Gaussian with (spatial) covariance var ε = Σ.
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Perfect knowledge of the observation model statistics h,Σh
and Σ is assumed. In vector notation, we have

x = h̃θ + ε, (2)

where x = [x1, x2, . . . , xN ]T denotes the observations.

B. Linear Spatial Collaboration

We consider an extension of the analog amplify-and-forward
scheme as our encoding and modulation framework for com-
munication to the fusion center. In the basic amplify-and-
forward scheme, each node transmits a weighted version of its
own observation, say Wnxn, with resulting power W 2

nE[x2n].
Such a scheme is appealing and often-used [4],[3],[2] due
to two reasons, 1) Uncoded nature: Does not require block
coding across time and hence efficient for low-latency systems,
2) Optimal in select cases: For a memoryless Gaussian source
transmitted through an additive white Gaussian noise (AWGN)
channel (Figure 1 with N = 1), an amplify-and-forward
scheme helps achieve the optimal power-distortion tradeoff in
an information-theoretic sense (see Example 2.2 in [18]). The
optimality of linear coding has also been established [19] for
distributed estimation over a coherent MAC (Figure 1 without
spatial collaboration).

In general, all the N data-collecting sensor nodes in a net-
work may not have the ability to communicate with the FC. In
that case, they may still pass their information (through the act
of collaboration) to another node which has a communication
link with the FC (see the network in Figure 3, for example).
We assume that the nodes are ordered in such a way that the
first M nodes (where M ≤ N ) are able to communicate with
the FC. Let the availability of collaborative links among the
various nodes be represented by the M×N zero-one adjacency
matrix (not necessarily symmetric) A, where Amn ∈ {0, 1}.
An entry Amn = 1 signifies that node n shares its observation
with node m. Sharing of this observation is assumed to be
realized through a reliable communication link that consumes
power Cmn, regardless of the actual value of observation. The
M×N matrixC describes all the costs of collaboration among
various sensors and is assumed to be known. Since each node
is trivially connected to itself, Amm = 1 and Cmm = 0. We
denote the set of all A-sparse matrices as

SA , {W ∈ RM×N : Wmn = 0 if Amn = 0}. (3)

Corresponding to an adjacency matrix A and an A-sparse ma-
trix W , we define collaboration in the network as individual
nodes being able to linearly combine local observations from
other collaborating nodes,

zm =
∑

n=1,...,N
Amn=1

Wmnxn, m = 1, . . . ,M. (4)

In effect, the network is able to achieve a one-shot spatial

transformation W : x→ z of the form1

z = Wx, W ∈ SA. (5)

We refer to W as the matrix containing collaboration weights.
It may be noted that, 1) Particularization: When W is a
diagonal matrix (equivalently, A is the identity matrix IM ),
our collaborative scheme simplifies to the basic amplify-and-
forward relay strategy as in [5],[3], 2) Collaboration cost: Any
collaboration involving W ∈ SA is achieved at the expense
of power

QA,m ,
N∑
n=1

CmnAmn, (6)

at node m, and cumulatively

QA ,
M∑
m=1

QA,m, (7)

for the entire network, and 3) Transmission cost: The power
required for transmission of encoded message zm at node m
is,

PW ,m , Eθ,h̃,ε
[
z2m;W

]
=
[
WExW

T
]
m,m

, where (8)

Ex , Eθ,h̃,ε
[
xxT

]
= Σ + η2(hhT + Σh). (9)

Consequently, the cumulative transmission power in the net-
work is

PW ,
M∑
m=1

PW ,m = Tr
[
WExW

T
]
. (10)

C. Coherent Multiple Access Channel

The transformed observations z are assumed to be transmit-
ted to the fusion center through a coherent MAC channel. In
practice, a coherent MAC channel can be realized through
transmit beamforming [20], where sensor nodes simultane-
ously transmit a common message (in our case, all zm-s
are scaled versions of a common θ) and the phases of their
transmissions are controlled so that the signals constructively
combine at the FC. Denote the channel gain at node m by g̃m.
The second order statistics of the channel g̃ , [g̃1, g̃2, . . . , g̃M ]
is assumed to be,

E g̃ = g, var g̃ = Σg, (11)

and the noise of the coherent MAC channel u is assumed to
be a zero-mean AWGN with variance ξ2. Perfect knowledge of
the channel statistics g, Σg and ξ2 is assumed. The output of
the coherent MAC channel (or the input to the fusion center)

1It is worth emphasizing our assumption that though collaboration incurs
a fixed cost (in terms of power consumed that could otherwise have been
used for transmission), it is otherwise reliable, in the sense that the act of
collaboration does not incur any errors. This can be implemented by, say
communicating in a digital framework with sufficient precision and ensuring
sufficient channel coding to counter the channel noise. We abstract this process
by assigning a cost to the link when it is required to be used. An interesting
problem which is worthy of research but beyond the scope of this paper, is
to assume possibly erroneous collaboration, where z = Wx + ζ (say) and
errors incurred during collaboration (ζ) decrease with collaboration power.
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is

y = g̃TWx+ u, u ∼ N (0, ξ2) (12a)

= g̃TWh̃︸ ︷︷ ︸
net gain

θ + g̃TWε+ u︸ ︷︷ ︸
net zero-mean noise

. (12b)

D. Linear Minimum Mean Square Estimation
Having received y, the goal of the fusion center is to obtain

an accurate estimate θ̂ of the original random parameter θ. We
restrict our attention to linear estimators of the form θ̂ = ay,
where a is a fixed constant subject to design. We consider the
mean square error (MSE) as the distortion metric

DW (a) , Eθ,h̃,ε,g̃,u
[
(θ − ay)2;W

]
. (13)

From the theory of linear minimum mean square estimation
(LMMSE, see [21], Chapter 12), we readily obtain that

aLMMSE , arg min
a
DW (a) =

E[yθ]

E[y2]
, and (14a)

DW , DW (aLMMSE) = η2 − (E[yθ])2

E[y2]
, (14b)

where the above expectations are w.r.t. all random variables
{θ, h̃, ε, g̃, u}. From (12a) and (12b), we obtain

E
[
y2
]

= Tr
[
EgWExW

T
]

+ ξ2, and

E [yθ] = η2gTWh, where
(15)

Eg , E
[
g̃g̃T

]
= ggT + Σg, (16)

where Ex is defined in (9).
Remark: Perfect observation gain and channel state infor-

mation (OGI and CSI): When the observation and channel
gains are precisely known, i.e., Σh = Σg = 0, (12b) reduces
to a linear Gaussian model conditioned on θ,

y|θ ∼ N (gTWhθ, gTWΣW Tg + ξ2), (17)

and hence the LMMSE estimator is also the minimum mean
square estimator (MMSE) [21],

θ̂LMMSE := aLMMSEy = Eθ,ε,u[θ|y] =: θ̂MMSE, (18)

i.e., θ̂LMMSE minimizes the distortion over all possible estima-
tors (not just within the linear class).

We know from the theory of MMSE estimation (see [21],
[22]) that the optimal distortion DMMSE is related to the Fisher
Information (FI),

J , −Eθ
{
Ey|θ

{
d2θ

dθ2
p(y|θ)

}}
, (19)

by DMMSE ≥
(

1
η2 + J

)−1
in general and that equality holds

for linear Gaussian models of the form (17). Though the FI
(Equation (19)) results in

J =

(
gTWh

)2
gTWΣW Tg + ξ2

(20)

for the case of perfect OGI and perfect CSI (the linear
Gaussian model in (17)), the FI is difficult to derive for cases
when the observation and channel gains are uncertain. In fact,

this is the main reason why we consider LMMSE estimation
(which is suboptimal in general but easier to compute) rather
than MMSE estimation (which is optimal but difficult to
compute).

For the purposes of notation in this paper, for all cases
(whether we have perfect OGI/CSI or not), we would find
it convenient to work with the quantity

JW ,
1

DW
− 1

η2
. (21)

as a surrogate for the LMMSE distortion DW (as in (14b)).
Note that DW and JW are monotonically related and that
minimizing DW is equivalent to maximizing JW . Motivated
by the preceding discussions, we would refer to JW as the
equivalent Fisher Information, or sometimes simply FI or even
distortion, for the sake of brevity.

E. Problem Statement
The design of the collaboration weights W is critical

since it affects both the power requirements and estimation
performance of the entire application. Specifically, the fol-
lowing quantities depend on W , 1) the resources required to
collaborate, i.e., Qnz(W ),m

2 for individual nodes or Qnz(W )

cumulatively for the network (see (6) and (7)), 2) the resources
required to transmit, i.e., PW ,m for individual nodes or PW
cumulatively for the network (see (8) and (10)), and 3) the
final distortion of the estimate at the FC, DW , provided by
(14b). In this paper, we address the problems of designing the
collaboration matrix that minimizes the distortion subject to
either 1) a system-wide cumulative power constraint,

minimize
W

DW

subject to PW +Qnz(W ) ≤ PC,
(22)

or 2) power constraints at individual sensor nodes,

minimize
W

DW

subject to PW ,m +Qnz(W ),m ≤ PC
m, m = 1, . . . ,M.

(23)
We note that problem (23) (with M individual power con-
straints) is more realistic from a deployment point of view,
since various nodes in a network can possess significantly
different power sources, based on age of deployment or
make/type of the batteries. However, problem (23) is signifi-
cantly more difficult than problem (22), which has only one
cumulative power constraint. Problem (22) is more important
from a system design and analysis point of view, since it is
more tractable analytically and as a result, reveals significant
insights on the various system level tradeoffs.

F. Solution Methodology
Both problems (22) and (23), in general, have no known

procedure that efficiently computes (in polynomial-time) the

2Definition of operators nz(·), zero(·), and nnz(·): The operator nz :
RN×N → {0, 1}N×N is used to specify the non-zero elements of a matrix.
If Wij 6= 0, then [nz(W )]ij = 1, else [nz(W )]ij = 0. Similarly, the
operator zero : RN×N → {0, 1}N×N is used to specify the zero elements of
a matrix, [zero(W )]ij = 1−[nz(W )]ij . The operator nnz : RN×N → Z+

is used to specify the number of non-zero elements of a matrix.
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globally optimal solution(s). However, for the special case
when the entries of the collaboration cost matrix C are either
zero or infinity, Cij ∈ {0,∞}, we will show that globally
optimal solutions for both the problems can be obtained using
efficient numerical techniques, and for problem (22), even a
closed-form solution can be derived.

Physically, this special case corresponds to the situation
when the topology of a network is fixed (and hence not subject
to design) and communication among neighbors is relatively
inexpensive compared to communication with the FC. Let
A = zero(C) denote the permitted adjacency matrix for
such a situation. Hence, the collaboration costs vanish, and
problems (22) and (23) simplify to

minimize
W∈SA

DW

subject to PW ≤ PC, and
(24)

minimize
W∈SA

DW

subject to PW ,m ≤ PC
m, m = 1, . . . ,M.

(25)

respectively, which are optimization problems in nnz(A)
variables. Since problems (24) and (25), which will be solved
in Section III, arise out of the assumption of zero-cost for
collaboration, we would refer to them as ideal-collaborative
problems.

For the general case, when the topology is flexible and col-
laboration incurs a finite cost, a polynomial-time sub-optimal
algorithm is proposed in Section IV where the bigger problem
is broken into smaller sub-problems, where several ideal-
collaborative problems of the form (24) or (25) are solved
at each iteration. Specifically, we start from the distributed
topology A = [IM |0], and follow a greedy algorithm to
augment the collaborative topology with the most power-
efficient link at each iteration.

G. Performance Metric - Collaboration Gain

Let the optimal solutions to problems (22) and (23) be
denoted by Dopt(P

C), where (note bold notation) P C =

PC for a cumulative-constraint (problem (22)) and P C =
[PC

1 , P
C
2 , . . . , P

C
M ]T for individual constraints (problem (23)).

Generally, the distortion Dopt(P
C) depends on a number of

problem conditions other than P C, which includes 1) the
source variance η2, 2) the noise variance Σ, 3) the observation
gain statistics {h,Σh}, 4) the coherent channel gain statistics
{g,Σg}, and 5) the power needed to collaborate (matrix
C). However, to assess and compare the benefits of spatial
collaboration for a wide-range of problem conditions, we seek
a metric that is normalized with respect to the operational
region. Towards that goal, we define a few quantities. 1) Let

D0 , Dopt

(
P C →∞;A = 11T

)
, (26)

denote the optimal distortion that can be obtained with ar-
bitrary collaboration and without any power constraints (the
actual value of D0 will be derived later, see (51) for an early
preview). 2) Let

Ddist
opt (P

C) , Dopt

(
P C;A = [IM |0]

)
(27)

denote the optimal distortion for the distributed scenario, i.e.,
transmission power is optimally allocated among sensors and
there is no collaboration among them. 3) Also let

Dconn
opt (P C) , Dopt

(
P C;A = 11T

)
(28)

denote the optimal distortion for the fully connected collabo-
rative topology. Note that

D0︸︷︷︸
Infinite power

Full collab.

≤ Dconn
opt (P C)︸ ︷︷ ︸

Finite power
Full collab.

≤ Ddist
opt (P

C)︸ ︷︷ ︸
Finite power
No collab.

≤ η2︸︷︷︸
Zero power
(prior only)

, (29)

where η2 is the worst-case distortion that corresponds to the
prior information only. Equation (29) is illustrated in Figure
2, where a typical operational region is depicted alongwith the
power-distortion tradeoff for distributed and connected topolo-
gies for the cumulative-constraint problem3. The goal of any
estimation application is to close as much of the performance
gap (η2 −D0) as possible using limited resources and spatial
collaboration is a tool that enables efficient allocation of those
resources. We are now in a position to define as Collaboration
Gain (CG), the following normalized (centered and scaled)
metric,

CG =
Ddist

opt (P
C)−Dconn

opt (P C)

η2 −D0
. (30)

0.001 0.01 0.1 1 10

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Transmission Power, P

D
is

to
rti

on
, D

 

 
Distributed

Connected

𝐷optconn(𝑃) 

𝐷optdist(𝑃) 

𝜂2 
(prior) 

 
𝐷0 (Infinite power limit) 

op
er

at
io

na
l r

eg
io

n 

gain due to  
collaboration 

Fig. 2. A typical power-distortion curve illustrating collaboration gain.

Note that 0 ≤ CG ≤ 1, which means that efficacy of
collaboration can now be summarized for a wide range of
problem conditions. For example, if for a problem CG = 0.01
(say), we might conclude that collaboration is not sufficiently
beneficial for that particular problem. On the other hand, if
CG = 0.2 (say), we would conclude that spatial collaboration
closes the realizable performance gap by 20% and hence, may
be worth considering.

3As we shall see later, for the cumulative-constraint problem, all the
available power must be used at optimality, i.e., Popt = PC, and hence the
subscript (C) is dropped from PC in Figure 2.
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III. MAIN RESULTS - IDEAL COLLABORATIVE POWER
ALLOCATION:

In this section, we consider the situation when the entries
of the collaboration cost matrix C are either zero or infinity,
Cij ∈ {0,∞}, i.e., we will solve problems (24) and (25),
where the topology A = zero(C) is assumed to be fixed and
not subject to design.

A. Explicit formulation w.r.t. non-zero weights
From (14b) and (21), we note that minimizing the distor-

tion DW is equivalent to maximizing the equivalent Fisher
Information,

JW =

(
gTWh

)2
Tr
[
EgWExW

T
]
− η2 (gTWh)

2
+ ξ2

, (31)

where DW and JW are related by Equation (21). Part of the
numerator and denominator of JW and also the expressions
for power ((8) for individual and (10) for cumulative) are
quadratic functions of the non-zero elements in W . To see
that explicitly, we concatenate the elements of W (column-
wise, only those that are allowed to be non-zero), in w =
[w1, w2, . . . , wL]T . For l = 1, 2, . . . , L, define indices ml and
nl such that wl = Wml,nl . Further, we define L×L matrices
ΩJN, ΩJD, ΩP,m, ΩP ,

∑M
m=1 ΩP,m and L × N matrix G

such that the following identities,

gTW = wTG, (32a)

JW =

= wTΩJNw︷ ︸︸ ︷(
gTWh

)2
Tr
[
EgWExW

T
]
− η2

(
gTWh

)2︸ ︷︷ ︸
= wTΩJDw

+ξ2
, (32b)

PW = Tr
[
WExW

T
]

︸ ︷︷ ︸
wTΩPw

=

M∑
m=1

[
WExW

T
]
m,m︸ ︷︷ ︸

wTΩP,mw

(32c)

are satisfied. Precisely, the elementwise descriptions for all the
matrices are as follows,

[G]l,n =

{
gml , n = nl,

0, otherwise ,

[ΩJN]k,l = gmkgmlhnkhnl ⇔ ΩJN = GhhTGT ,

[ΩJD]k,l =
[
Eg
]
mk,ml

[Ex]nk,nl − η
2 [ΩJN]k,l , and

[ΩP,m]k,l =

{
[Ex]nk,nl , mk = ml = m,

0, otherwise
,

(33)

for k, l = 1, 2, . . . , L, n = 1, 2, . . . , N and m = 1, 2, . . . ,M .
Though ΩJN is rank-1 (as described above), in general, there

are no compact expressions for the matrices ΩJD and ΩP,m.
We illustrate some relevant matrix definitions (ΩP,m and G
in particular) through an example, in Figure 3, with N = 4
data-collection nodes, M = 3 communicating nodes and 3
collaborating links, resulting in a total of L = 6 non-zero
coefficients in the collaboration matrix W .

For some special cases and regular topologies, more com-
pact expressions for ΩJD may be derived. For the special case

1 

2 

4 

3 FC 

𝑔1 
𝑔2 

𝑔3 

𝑨 
1 0 0 0
0 1 1 0
0 1 1 1

 

𝒘
𝑨
→𝑾 

𝑤1 0 0 0
0 𝑤2 𝑤4 0
0 𝑤3 𝑤5 𝑤6

 

𝑮 
𝑔1 0 0 0
0 𝑔2 0 0
0 𝑔3 0 0
0 0 𝑔2 0
0 0 𝑔3 0
0 0 0 𝑔3

  

𝑙 𝑚𝑙 𝑛𝑙 
1 1 1 

2 2 2 

3 3 2 

4 2 3 

5 3 3 

6 3 4 𝛀𝑃 = 𝛀𝑃,𝟏 + 𝛀𝑃,𝟐 + 𝛀𝑃,𝟑 

𝐸11 0 0 0 0 0
0 𝐸22 0 𝐸23 0 0
0 0 𝐸22 0 𝐸23 𝐸24
0 𝐸32 0 𝐸33 0 0
0 0 𝐸32 0 𝐸33 𝐸34
0 0 𝐸42 0 𝐸43 𝐸44

  

(𝑬𝒊𝒊  denotes  [𝑬𝒙]𝒊𝒊 ) 

Fig. 3. Matrices for problem formulation in explicit form - an example.

when perfect channel state information is available (Σg = 0),
it is easy to see that

ΩJD = G
(
Ex − η2hhT

)
GT

= GΣ̃GT , where Σ̃ , Σ + η2Σh. (34)

This simplification will also be useful later in our discussion.
With the help of these definitions, the objective function

(Fisher Information) is simplified as

Jw ,
wTΩJNw

wTΩJDw + ξ2
, (35)

and problems (24) and (25) are re-written as

maximize
w

Jw

subject to wTΩPw ≤ PC, and
(36)

maximize
w

Jw

subject to wTΩP,mw ≤ PC
m, m = 1, . . . ,M.

(37)

respectively, which are both optimization problems with the
same fractional-quadratic objective (35) and single (or mul-
tiple) quadratic constraint(s). Solution of problems (36) and
(37) will be provided in Sections III-B and III-C respectively.

B. Cumulative power constraint

Since multiplying w by a scalar α > 1 (strictly) increases
both Jw and power wTΩPw (and for α < 1, strictly decreases
them), problem (36) is equivalent to its converse formulation,
where power is minimized subject to a maximum distortion
constraint (represented by JC),

minimize
w

wTΩPw

subject to Jw ≥ JC,
(38)

in the sense that the optimal solutions Jopt(P
C) (of (36))

and Popt(J
C) (of (38)) are inverses of one another. Moreover,

the optimal solutions hold with active constraints (satisfying
equalities P = PC for(36) and J = JC for (38)). From (35),
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problem (38) is further equivalent to,

minimize
w

wTΩPw

subject to wT (JΩJD −ΩJN)w + Jξ2 ≤ 0,
(39)

which is a quadratically constrained quadratic program
(QCQP) in L , nnz(A) variables. Note in (39) that, though
ΩP is positive definite (it is composed of blocks of another
positive definite matrix Ex, see Figure 3, for example), the
matrix JΩJD − ΩJN is not, and hence problem (39) is not
convex. However, a QCQP with exactly one constraint (as in
problem (39)) still satisfies strong duality (for a background,
see Appendix B, [23]) and hence the optimal solution to (39)
satisfies the Karush-Kuhn-Tucker (KKT) conditions

(ΩP + µ (JΩJD −ΩJN))w = 0. (40)

Together with the following active constraint conditions at
optimality

P = wTΩPw, and wT (JΩJD −ΩJN)w + Jξ2 = 0,
(41)

which implies µ = P
Jξ2 , the solution to problem (39) (equiv-

alently, problems (38), (36) and (24)) is summarized below.
Theorem 1: (Power-Distortion tradeoff for Linear Coherent

Ideal-Collaborative Estimation) For a given topology A, let
J ∈ (0, λG,max (ΩJN,ΩJD))4. The optimal tradeoff between
distortion (represented by J) and cumulative transmission
power P and also the optimal weights w that achieve that
tradeoff, are obtained through the solution of the generalized
eigenvalue problem,(

ΩP

Pξ
− ΩJN

J
+ ΩJD

)
w = 0, where Pξ ,

P

ξ2
. (42)

In particular, the function Jopt(P ) : (0,∞) →
(
0, JA0

)
and

its inverse Popt(J) are

Jopt(P ) = λG,max

(
ΩJN,ΩJD +

ΩP

Pξ

)
, and (43a)

Popt(J) = λpos
G,min

(
ΩP,−ΩJD +

ΩJN

J

)
ξ2, (43b)

respectively. This optimal tradeoff is achieved when the
weights of collaboration matrix is an appropriately scaled
version of the (generalized) eigenvector corresponding to (43a)
(or (43b), since they are equivalent), say vopt. That is, wopt =
cvopt, where the scalar c is such that wT

optΩPwopt = P .
Theorem 1 is important since it helps to (numerically) com-

pute the power-distortion tradeoff for arbitrary problem condi-
tions (like topology, noise covariance, second-order statistics
of the observation and channel gains). Since the numerical
complexity for eigenvalue problems is roughly cubic in the

4Definitions of eigenvalue related operators: The operators λ(P ) and v(P )
denote the solution(s) to the ordinary eigenvalue problem Pv = λv. Operator
λmax(·) denote the maximum among all real eigenvalues and λpos

min(·) denote
the minimum among all positive eigenvalues (i.e., the positive eigenvalue
that is closest to, but different from, zero). The operators λG(P ,Q) and
vG(P ,Q) denote the solution(s) to the generalized eigenvalue problem
Pv = λQv. Operators λG,max(·, ·) and λ

pos
G,min(·, ·) are similarly defined

as λmax(·) and λ
pos
min(·) respectively. Note that, when Q is full-rank, then

λG(P ,Q) = λ(Q−1P ).

size of the problem (see for example [24]), the complexity
of computing the (cumulative) power-distortion tradeoff is
O(L3), where (recall that) L = nnz(A) is the number of
non-zero collaboration weights.

Corresponding to the example topology in Figure 3 and
randomly chosen system parameters h,Σ and g, a typical
power-distortion tradeoff curve is shown in Figure 2 (bold
line). Theorem 1 can be simplified further for several specific
scenarios, allowing deeper insight into the power-distortion
tradeoff as it relates to the problem parameters. The first
obvious simplification is because of the rank-1 property of
ΩJN. The only non-zero generalized eigenvalue is (provided
the inverse exists)

Jopt(P ) = hTGT

(
ΩJD +

ΩP

Pξ

)−1
Gh, (44a)

with eigenvector wopt ∝
(

ΩJD +
ΩP

Pξ

)−1
Gh. (44b)

Equation (44a) explicitly shows the effect of finite-power
constraint Pξ on the distortion. Some other insightful examples
are discussed next.

Example 1: For the case of perfect CSI (Σg = 0), we note
from (34) that ΩJD = GΣ̃GT . It follows that

Jopt(P ) = λG,max

(
GhhTGT ,GΣ̃GT +

ΩP

Pξ

)
(45)

(a)
= λG,max

(
hhT , Σ̃ +

ΓP

Pξ

)
, ΓP ,

(
GTΩ−1P G

)−1
(46)

(b)
= hT

(
Σ̃ +

ΓP

Pξ

)−1
h, (47)

assuming all the inverses exist. Step (a) reduces the size
of the eigenvalue problem from L to N yet preserving the
non-zero eigenvalues. Note that the corresponding generalized
eigenvectors of problems (45) (say vL) and (46) (say vN ) are
related by vL = Ω−1P GΓPvN . Step (b) describes the only
non-zero generalized value of problem (46), since hhT is
rank-1. Note that optimal collaboration weights are provided

by wopt ∝ Ω−1P GΣ̃
(
Σ̃ + ΓP

Pξ

)−1
h.

When, in addition to perfect CSI, we also have perfect OGI
(Σh = 0), Equation (47) further simplifies to

Jopt(P ) = hT
(

Σ +
ΓP

Pξ

)−1
h, (48)

which was obtained in a preliminary version of this paper
[17]. Equation (48) can be compared to the centralized case,
where measurements xn are directly observed through gains
h and measurement noise with variance Σ, for which the
Fisher Information is Jcent , hTΣ−1h, which is also the
infinite power limit of (48). One can think of the additional
quantity ΓP

Pξ
in (48), which factors in the effect of channels,

the collaboration topology and finite transmission power, as
equivalent to the variance of an additional noise that is added
to the measurement noise.

When, in addition to perfect OGI and CSI, we also have a
distributed topology ( A = IM ) and the measurement noise is
uncorrelated (Σ is diagonal), we can proceed as follows. We
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have w = diag(W )5. This means that ΩP = diag(diag(Σ +
η2hhT )) is a diagonal matrix with mth element as σ2

m+η2h2m,
and G = diag(g). Consequently, ΓP is a diagonal matrix
with mth element as σ2

m+η2h2
m

g2m
. Hence, the optimal power-

distortion tradeoff in Equation (48) further simplifies to (define
σ2
m , Σm,m and γm , η2h2

m

σ2
m

)

Jopt(P ) =

M∑
m=1

h2m
σ2
m

[
1 +

1 + γm
Pξg2m

]−1
, (49)

which was also obtained in [3]. Since for the centralized case,
we have Jcent =

∑M
m=1

h2
m

σ2
m

, Equation (49) indicates the exact
fractions of individual Fisher Information that “reaches” the
receiver. When subjected to a network-wide power constraint,
information from the more informative (higher γm) and less
reliable (lower gm) sensor undergoes a higher degree of
“attenuation”. While a higher observation gain hm clearly
carries more information, it also requires quadratically higher
power to transmit in an amplify-and-forward framework such
as ours (note that Pm = w2

m(σ2
m + η2h2m)). Similarly, a

lower magnitude of channel gain gm implies that quadratically
higher transmission power is needed to compensate for the
channel. Hence, in the optimal tradeoff (49), it turns out
that information from higher-hm and lower-gm sensors are
attenuated by a larger factor.

Example 2: When the network is fully connected (A =
11T ), we proceed from (44a) and obtain the following result.

Proposition 2: The optimal solution for Example 2 is

Jopt(P ) = J̃

[
1 +

1 + η2J̃

G

]−1
and Wopt ∝ uvT ,

where J̃ , hT Σ̃
−1
h, G , gT Σ̃

−1
g g, u = Σ̃

−1
g g,

v = Σ̃
−1
h, Σ̃ , Σ + η2Σh and Σ̃g , Σg +

I

Pξ
.

(50)

Also, for the special case with perfect OGI and perfect CSI
(when Σh = Σg = 0), the resulting distortion is information
theoretically optimal.

Proof: See Appendix A.
This example is important since a connected topology

makes use of all possible collaboration links and hence Equa-
tion (50) gives the LMMSE performance limit for a network
with cumulative transmission power constraint. From (50), we
are now in a position to compute the optimal achievable Fisher
Information J0 (and equivalently the distortion D0), by letting
the power go to infinity,

J0 = J̃

[
1 +

1 + η2J̃

G0

]−1
, where G0 , gTΣ−1g g. (51)

As discussed earlier, D0 (definition in (26)) forms a lower
bound for distortion in a network and is useful to characterize

5Definition of operators diag(·) and vec(·): While operating on a matrix,
diag : RM×N → Rmin(M,N) is used to extract the diagonal elements. While
operating on a vector, diag : RM → RM×M is used to construct a matrix
by specifying only the diagonal elements, the other elements being zero. The
vectorization operator vec : RM×N → RMN stacks up all the elements of
a matrix column-by-column.

the operational region and subsequently define the collabora-
tion gain (Equation (30)).

From Equation (50), it can be explicitly seen that for a fully
connected topology, more observation or channel uncertainty
always deteriorate the estimation performance, a notion that is
intuitive but still was not completely evident in the discussion
so far. The following result formalizes this notion.

Proposition 3: If Σh,1 � Σh,2 and Σg,1 � Σg,2 (here A �
B implies that A−B is a symmetric positive definite matrix),
then for a connected topology,

Jopt,1(P ) < Jopt,2(P ). (52)

Proof: This is established by re-writing Equation (50) as

Jopt(P ) =

[(
1 +

1

G

)
1

J̃
+
η2

G

]−1
, (53)

which shows explicitly that Jopt(P ) is a monotonically
increasing function of J̃ and G. Recall that J̃ =

hT
(
Σ + η2Σh

)−1
h and G = gTΣ−1g g. Assuming Σh,1 �

Σh,2 and Σg,1 � Σg,2, it is sufficient to show that a)
J̃1 < J̃2 and b) G1 < G2, both of which are evident from
the inequality involving positive definite matrices in Lemma
10 (see Appendix B).

The last two examples provided insight on the distributed
and fully connected topologies respectively. The following
example addresses a partially connected topology and shows
how the distortion decreases with an increase in links available
for collaboration.

Partially connected cycle graphs: In Figure 4, we display
a class of graphs, namely the (K − 1) connected directed
cycle, for K = 1, 2, . . . ,M , in which each node shares
its observations with the next K − 1 nodes. The adjacency
topology of such a graph will be denoted as A = C(K). Note
that K = 1 denotes the distributed scenario while K = M
denotes the fully connected scenario.

 

2 

3 

4 

  

2 

3 

4 

 
 

2 

3 

4 

 

𝑁 = 5,𝐾 =1 𝑁 = 5,𝐾 =2 𝑁 = 5,𝐾 =3 

1 

2 

3 4 

5 

1 

2 

3 4 

5 

1 

2 

3 4 

5 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 

𝐴 = 𝐶(1) 

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

 

𝐴 = 𝐶(2) 

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1

 

𝐴 = 𝐶(3) 

Fig. 4. Directed cycle graphs, (K − 1) connected.

Example 3: We assume that the collaborative topology is
a (K − 1) connected directed cycle (A = C(K)) and the
channel gain and uncertainties are such that the network is
homogeneous and equicorrelated. In particular, we denote a)
the expected observation and channel gains by h20 and g20 , b)
the observation and channel gain uncertainties by αh and αg,
and c) measurement noise variance and correlation by σ2 and
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ρ, and thereby assume

h = h0
√
αh1,Σh = h20(1− αh)I,

g = g0
√
αg1,Σg = g20(1− αg)I, and

Σ = σ2
(
(1− ρ)I + ρ11T

)
.

(54)

These assumptions provide an analytically tractable example
that is representative of a broad range of problem conditions
and will also be used in the subsequent discussions. In addition
to covering the partial collaboration (1 ≤ K ≤ N) regime,
note that αh = 1 implies perfect OGI, αg = 1 implies perfect
CSI and ρ = 0 implies uncorrelated measurement noise.
Equation (44a) can be simplified further for this example, to
obtain the following result.

Proposition 4: The optimal solution for Example 3 is

Jopt(P ) =
h20
σ2

[
ρN + α̃h

(
ρN +

γ

N

)
+

1

N

(
α̃g +

1

Pξg20αg

){
γ + ρK + α̃h

(
ρK +

γ

K

)}]−1
,

where ρt , ρ+
1− ρ
t

, γ ,
η2h20
σ2

, and α̃ ,
1

α
− 1.

(55)

Proof: See Appendix C.
Equation (55) helps us quantify the efficacy of collaboration
in a partially connected network. For example, when the
measurement noise is uncorrelated (ρ = 0) and we have
perfect OGI (αh = 1, equivalently α̃h = 0) and perfect CSI
(αg = 1, equivalently α̃g = 0), Equation (55) reduces to

J =
h20g

2
0

σ2ξ2
NP

γ + 1
K

. (56)

For the high-(NP ) regime, (i.e., when J is large and D ≈
J−1), we can now compare the power requirements of a
distributed topology (say P dist, for K = 1) with that of a
(K−1) connected topology (say P C(K)), provided an identical
distortion performance is desired. Since P dist

γ+1 = PC(K)

γ+ 1
K

, this
implies that the relative savings in power is

P dist − P C(K)

P dist =
1− 1

K

γ + 1
, (57)

which depends on the local-SNR γ. For example, when the
local-SNR is large, say γ = 100, then even a fully connected
network (large K) can provide only 1% power savings. On
the other hand, if the local-SNR is small, say γ = 1, then
even a 1-connected network (for which K = 2) can provide
25% efficiency in power savings. The conclusion is that one
needs to be judicious in the design of collaborative topologies,
especially when there are overhead costs associated with it.
The design of collaborative topologies with finite collaboration
cost will be discussed later in Section IV.

C. Individual power constraints

In the previous subsection, we have discussed the solution
to the ideal-collaborative power allocation problem with a
cumulative transmission power constraint. In this subsection,
we consider the case when the individual nodes have separate

power constraints. We recall problem (37),

maximize
w

Jw =
wTΩJNw

wTΩJDw + ξ2

subject to wTΩP,mw ≤ PC
m, m = 1, . . . ,M.

(58)

Let Jopt be the optimal solution of problem (58), although
it is not clear yet how this solution can be obtained. Unlike
problem (36) for which a closed from solution was derived
in Section III-B, in general, there are no known closed form
expressions of Jopt. However, as we shall show below, Jopt
can still be precisely obtained using an efficient (polynomial
time) numerical procedure. For some special cases though,
(somewhat) closed form and insightful expressions for Jopt
can be obtained, which will be discussed later.

1) Numerical Solution: We would use the semi-definite
relaxation (SDR) technique for quadratically constrained prob-
lems [13], [25] to solve problem (58). The SDR technique is
widely used in the literature since it can reduce an otherwise
intractable problem to one with polynomial time complexity.
However, the main drawback of SDR technique is that, in
general, it can guarantee only a sub-optimal solution. But, in
some special problems, which includes our problem at hand
(as we shall establish later), the relaxation involved in SDR
is exact and hence, the SDR technique becomes an efficient
numerical tool to obtain the (precisely) optimal solution. For
more details on the SDR technique, including sub-optimality
analysis for special classes of problems, the reader is referred
to the book-chapter [25].

We proceed using arguments similar to [13], [26]. Define

X , wwT ∈ RL×L, (59)

so that problem (58) is equivalent to,

maximize
X

JX =
Tr [ΩJNX]

Tr [ΩJDX] + ξ2

subject to Tr [ΩP,mX] ≤ PC
m, m = 1, . . . ,M,

rank X = 1, X � 0,

(60)

Problem (60) is further equivalent to,

find maximum J

such that X (J) is nonempty,
(61)

where X (J) is defined as the following (feasible) set,

X (J) ,

X
∣∣∣∣∣∣

Tr [(JΩJD −ΩJN)X] + Jξ2 ≤ 0,
Tr [ΩP,mX] ≤ PC

m, m = 1, . . . ,M,
rank X = 1, X � 0.


(62)

Note that by definition, any X ∈ X (Jopt) will correspond
to the optimal weights that maximize the Fisher Information.
Also note that X (J1) ⊃ X (J2) when 0 ≤ J1 < J2. Therefore,
assuming we can test the feasibility of X (J) for some J , a
simple bisection search over [0, J0] can potentially yield Jopt
with arbitrary accuracy6 (since Jopt < J0 for finite power).
However, testing the feasibility of X (J) is a difficult problem.

6Arbitrary accuracy is only of theoretical interest, since the solution to the
feasibility problem (61) will have numerical errors. Hence, a more realistic
stopping criterion is a fixed number of iterations, say 15.
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Though the set of symmetric positive-semidefinite matrices
is convex and the other M + 1 inequalities in (62) are also
convex, X (J) is still not convex due to the rank constraint
rank X = 1. Relaxing this constraint, we define,

X R(J) ,

X
∣∣∣∣∣∣

Tr [(JΩJD −ΩJN)X] + Jξ2 ≤ 0,
Tr [ΩP,mX] ≤ PC

m, m = 1, . . . ,M,
X � 0,


(63)

which is now a convex set (superscript R stands for relaxation).
Because of this relaxation, we have X (J) ⊂ X R(J) for all J .
We denote the solution to the new problem,

find maximum J

such that X R(J) is nonempty,
(64)

as JR
opt, so that Jopt ≤ JR

opt. Hence, in general, the solution of
the relaxed problem (64) only provides an upper bound to the
solution of the original problem (61). However, the following
result establishes the fact that the relaxation is tight, i.e., Jopt =
JR

opt for our specific problem.
Proposition 5: (Semidefinite relaxation is tight): Assume

ΩP be positive definite. Then, for any feasible J < Jopt,
X R(J) contains a rank-1 matrix.

Proof: See Appendix D.
The matrix ΩP is usually positive definite since it is

composed of blocks of the matrix Ex = E[xxT ]. Since
X R(J) contains a rank-1 matrix, X R(J) ∩ X (J) is non-
empty, and feasibility of X R(J) also implies the feasibility
of X (J), thereby making the relaxation tight (in terms JR

opt
being equal to Jopt). Note that the solution to (64) can also be
obtained using a bisection search. However, feasibility test of
X R(J) is a convex semi-definite programming problem and
hence can be performed efficiently (in polynomial-time). The
computational complexity7 of such a feasibility problem is
roughly O(M2L2), where M is the number of sensors and L
is the number of non-zero collaboration weights. We have used
the publicly available software SeDuMi as the optimization
tool [28] for our numerical simulations.

2) Closed Form solutions: Though numerical solution of
the general problem (58) can be obtained using the procedure
outlined in Section III-C1, (somewhat) closed form solutions
can be obtained for some special cases. All the special cases
discussed in this subsection will make use of the following
optimization problem in its core,

maximize
t

Ft =

(∑M
m=1 amtm

)2
∑M
m=1 bmt

2
m + ξ2

,

subject to 0 ≤ tm ≤ cm, m = 1, . . . ,M,

given that am and bm are positive for all m,

(65)

which is known to have the following solution.

7Generally, numerical techniques for semidefinite programming are iterative
in nature, see [27] for a detailed discussion. In the dual formulation of the
problem, each iteration solves a linear problem in M variables and L(L+1)

2
equations, with the resulting complexity being O(M2L2). The number of
such iterations is generally between 5 to 20 for many practical purposes
(although theoretically, it is also a polynomial function).

Proposition 6: (Solution of problem (65), see [14]): Order
the sensors based on the parameter dm , am

bmcm
such that,

without loss of generality,

d1 ≥ d2 ≥ · · · ≥ dM . (66)

Define

Φk ,

∑k
m=1 bmc

2
m + ξ2∑k

m=1 amcm
. (67)

Also, define m̃ algorithmically as follows - keep checking
in the decreasing order m̃ = {M,M − 1, . . . , 2} whether
Φm̃−1

am̃
bm̃
≥ cm̃, and stop at the first instance this condition

is satisfied. If Φ1
a2
b2
< c2, then m̃ = 1. Then the solution to

problem (65) is Fopt which is achieved when t = topt, where

Fopt =

(∑m̃
m=1 amcm

)2
∑m̃
m=1 bmc

2
m + ξ2

+

M∑
m=m̃+1

a2m
bm

,

topt,m =

{
cm, m = 1, . . . , m̃

Φm̃
am
bm

< cm, m = m̃+ 1, . . . ,M.

(68)

Note that all the constraints are active (i.e., m̃ = M or
topt,m = cm for all m) if and only if ΦM−1dM ≥ 1.

Notation: Corresponding to constants a, b and c, we
would denote the optimal solution (68) of problem (65)
as Fopt(a, b, c). When mentioned in conjunction with
Fopt(a, b, c), the corresponding value of t will be simply
denoted as topt, i.e., without the arguments, to avoid repetition.

Next, we provide some insightful examples. Some of these
results will be used to derive the collaboration gain for
homogeneous networks in Section III-D.

Example 4: For the problem with a) distributed topology,
b) perfect information about observation and channel gains,
and c) uncorrelated measurement noise, problem (58) can be
simplified as (note that w = diag(W )),

maximize
w

Jw =
wTaaTw

wTdiag(b)w + ξ2

subject to w2
mσ

2
x,m ≤ PC

m, m = 1, . . . ,M,

(69)

where

am = gmhm, bm = g2mσ
2
m, σ

2
m = [Σ]m,m ,

σ2
x,m = σ2

m + η2h2m.
(70)

Note that since am and bm are positive, the value of wm at
optimality has to be positive, hence the quadratic constraints
in (69) reduce to the linear constraints as in (65). The rest
of the problem is solved by defining cm ,

√
PC
m

σ2
m+η2h2

m
and

applying Proposition 6. We obtain

Jopt

(
P C
)

=

(∑m̃
m=1 hmgmcm

)2
∑m̃
m=1 σ

2
mg

2
mc

2
m + ξ2

+

M∑
m=m̃+1

h2m
σ2
m

. (71)

Equation (71) is mathematically equivalent to the solution
in [14], which was obtained in the context of maximum-SNR
beamforming. This is because, for perfect OGI and perfect
CSI, maximum-SNR also implies minimum-MSE. However,
in the presence of observation and channel gain uncertainties,
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the two problems are different.

The optimal Fisher Information in (71) can also be com-
pared to that in the cumulative-constraint case. With individual
constraints, some sensors (those with lower “reliability-to-

power ratio” dm =
hm
√
σ2
m+η2h2

m

gmσ2
m

√
PC
m

, precisely sensors m =

m̃ + 1, . . . ,M ) effectively “convey” the entirety of their
individual Fisher Information to the FC while the other sensors
(m = 1, . . . , m̃) can convey only a fraction of their combined
sum. In contrast, for the cumulative-constraint problem, dif-
ferent fractions of individual Fisher Information reach the FC.
However, in the infinite-power limit, both the cases converge
to the centralized Fisher Information Jcent =

∑M
m=1

h2
m

σ2
m

.

The previous example assumed perfect CSI and perfect
OGI. The following extension of Example 3 (homogeneous
network with equicorrelated parameters) illustrates the dete-
rioration of performance with observation and channel gain
uncertainties.

Example 5: Consider a distributed topology with problem
conditions similar to Example 3 (see (54)). To find the optimal
distortion for this example, we proceed directly from (31),
using the full-matrix notation

maximize
w

W=diag(w)

Jw =

(
gTWh

)2
Tr
[
EgWExW

T
]
− η2 (gTWh)

2
+ ξ2

,

subject to
[
WExW

T
]
m,m
≤ PC

m, m = 1, . . . ,M.

(72)
Noting the following identities,(

gTWh
)2

= αgαhg
2
0h

2
0

(
wT1

)2
,

Tr
[
EgWExW

T
]

= g20σ
2
x
{

(1− αgαx)wTw

+αgαx
(
wT1

)2}
,[

WExW
T
]
m,m

= σ2
xw

2
m, where

σ2
x = σ2 + η2h20, αx =

ρσ2 + αhη
2h20

σ2
x

,

(73)

problem (72) is equivalent to,

maximize
w

Fw =
αgαhg

2
0h

2
0

(
wT1

)2
g20σ

2
x (1− αgαx)wTw + ξ2

,

subject to σ2
xw

2
m ≤ PC

m, m = 1, . . . ,M,

(74)

in the sense that Fw is monotonically related to Jw through

Jw =
[

1
Fw

+ ρσ2

αhh
2
0

]−1
. Problem (74) is similar in form to

problem (65) and the solution can be obtained by applying
Proposition 6. We have

Jopt (P ) =

[
1

Fopt (a, b, c)
+

ρσ2

αhh
2
0

]−1
, where (75)

am =
√
αgαhg0h0, bm = σ2

xg
2
0(1− αgαx), cm =

√
PC
m

σ2
x
.

When all the constraints are active, the solution is

Jopt (P ) =

[
g20(1− αgαx)

∑
Pm + ξ2

αgαhg
2
0h

2
0σ
−2
x
(∑√

Pm
)2 +

ρσ2

αhh
2
0

]−1
, (76)

from which it is evident that the Fisher Information decreases
with more uncertainty in observation and channel gains (lower
values of αh and αg). This result will be useful later to derive
the collaboration gain for this example.

The following example considers a fully connected network.
Example 6: For the problem with a) fully connected topol-

ogy (A = 11T ) and b) uncorrelated channel gain uncertainty
(Σg is diagonal), we can start from (72), where the variable
of optimization is the entire matrix W ,

maximize
W

JW =

(
gTWh

)2
Tr
[
EgWExW

T
]
− η2 (gTWh)

2
+ ξ2

,

subject to
[
WExW

T
]
m,m
≤ PC

m, m = 1, . . . ,M.

(77)
Problem (77) can be simplified further based on the assump-
tion of diagonal Σg. However, the analysis is relegated to
Appendix E and we state just the result here.

Proposition 7: The optimal solution for Example 6 is

Jopt

(
P C
)

= J̃

[
1 +

1 + η2J̃

Fopt (a, b, c)

]−1
, where

a = g, b = diag
(
Σg
)
, and cm =

√
PC
m,

(78)

and J̃ = hT Σ̃
−1
h, Σ̃ = Σ + η2Σh, as defined in (50).

Optimality is achieved when the corresponding weights are

W opt = κtoptv
T , v = Σ̃

−1
h, κ =

1√
J̃(1 + η2J̃)

. (79)

Proof: See Appendix E.
From the formula for optimal weights W opt in (79), we

note that all the sensors have identical fusion rules (precisely,
the vector vT ) but they transmit using different transmission
power (according to κtopt). It may be surprising to note that
even though all the sensors are transmitting the same informa-
tion coherently, they may still refrain from using the maximum
power available (topt,m ≤ cm, in general). This is because
of the uncertainty in the channel (which is captured by the
diagonal entries of Σg). If a channel is too uncertain, allocating
a large amount of power to the sensor (even if the power is
locally available) may not be helpful for inference. Indeed,
all other parameters being constant, a higher magnitude of[
Σg
]
m,m

results in a lower value of dm (see problem (65))
and hence the power constraint is more likely to be inactive at
optimality. However, for perfect CSI (Σg = 0), all the sensors
must transmit with maximum power available.

We are now in a position to explicitly derive the formula
of collaboration gain for homogeneous networks. It must be
mentioned here that explicit formulas of CG for arbitrary prob-
lems are difficult to derive and we only provide the example of
homogeneous networks in this paper. As mentioned in Section
II-G, collaboration gain is a useful metric that indicates the
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efficacy of spatial collaboration for estimation.

D. Collaboration Gain for a Homogeneous Network

This analysis of homogeneous networks is particularly il-
lustrative since it is actually possible to derive closed-form
expressions of CG for a wide range of individual (and also
cumulative) power constraints. From the closed form Equation
of CG, we can actually predict the conditions for which
collaboration will be particularly effective. Specifically, we
will derive the formula for collaboration gain and analyze how
it depends on the problem parameters like size of the network,
noise correlation, observation/channel gain uncertainties and
power constraints.

1) Theoretical analysis for a homogeneous network: Let P
be the total power used in the network. For the cumulative-
constraint problem, P is a sufficient descriptor of the power
constraints. However, for the individual-constraint problem,
we have M different power constraints {P1, P2, . . . , PM},
which makes it difficult to analyze the problem theoretically.
Fortunately, for a large subset of those problems, only 2
summary-descriptors of {P1, P2, . . . , PM} suffice to charac-
terize the collaboration gain – namely, the cumulative power
P , and a skewness parameter κ, defined as,

κ ,
Psq

P
, Psq ,

(
M∑
m=1

√
Pm

)2

, P =

M∑
m=1

Pm. (80)

As a example, we refer to Equation (76), where the distortion
is seen to depend on only

∑
Pm (which is P ) and

(∑√
Pm
)2

(which is κP ). It is easy to see (applying Cauchy-Schwartz
inequality) that 1 ≤ κ ≤ M , where the limiting values have
distinct significance. The value κ = 1 implies that only one
of the sensors has all the power (P1 = P , say) while other
sensors have no power at all P2 = · · · = PM = 0. On the
other hand, the value κ = M implies that all sensors have
equal power allocated to them P1 = · · · = PM = P

M . Define
κM (a normalized8 version of κ) as

κM =
κ− 1

M − 1
∈ [0, 1]. (81)

A stronger rationale behind naming the parameter κ as skew-
ness is provided by the following result, which shows that
κ is monotonically related to another quantity that explicitly
enables power allocation in a skewed manner.

Lemma 8 (Parameter κ is an indicator of skewness):
Assume that power available at the M nodes are

P1 = P0, P2 = %P0, . . . , PM = %M−1P0, % ∈ [0, 1], (82)

so that % is an explicit measure of dissimilarity (or skewness)
among the power available at various nodes. Then (recall
definition of κ in (80)),

κ(%) =

(
1 +
√
%+ · · ·+

(√
%
)M−1)2

1 + %+ · · ·+ %M−1
(83)

8The parameter κM is similar in structure to the Chiu-Jain fairness metric
[29] used for congestion control in computer networks.

is a strictly monotonically increasing function of %. Note that
κ(% = 0) = 1 and κ(% = 1) = M .

Proof: See Appendix F.
The following proposition provides an explicit formula

for the collaboration gain in a homogeneous network with
equicorrelated parameters for both the individual-constraint
and cumulative-constraint problems. We would use Examples
3, 5 and 6 to establish this result, the derivation of which is
relegated to Appendix G.

Proposition 9: (Collaboration gain for a homogeneous net-
work): For the individual-constraint problem, let the node
indices be arranged (without loss of generality) in such a way
so that PC

1 ≤ · · · ≤ PC
M . Let P and κ denote the summary-

descriptors of {PC
1 , . . . , P

C
M} as per Equation (80). Assume,

PC
M ≤

∑M−1
m=1 P

C
m + ξ2

g20(1−αgαx)∑M−1
m=1

√
PC
m

2

. (84)

Then, all the power constraints are active at optimality, Pm =
PC
m, ∀m, for both distributed and connected topologies, and

the collaboration gain is

CG =

(
1− 1

M

) (
κ
M

1+(M−1)αg
1+(κ−1)αg

)(
1− κ−1

M−1
αg

1+P−1
g

)
(1− αx)(

1 + 1
Pg(1+(κ−1)αg)

)(
1 +

(κ−1)αg

1+P−1
g

αx

) ,

where Pg =
Pg20
ξ2

, αx =
ρ+ γαh

1 + γ
, γ =

η2h20
σ2

.

(85)

For the cumulative-constraint problem, the collaboration gain
is given by Equation (85) by setting κ = M .

Proof: See Appendix G.
Several remarks about Proposition (9) are in order. Condi-

tion (84) is basically an assumption that the power constraints
are not too skewed. In Equation (85) note that all the quantities
in parenthesis in the numerator denote quantities less than 1,
while those in the denominator are greater than one, so this
reaffirms the notion that collaboration gain is always less than
1. Furthermore,

a) Dependence on local-SNR γ, noise correlation ρ, and
observation gain uncertainty αh: Collaboration gain increases
with a decrease in αx, which means that CG increases as
a) Noise correlation decreases (smaller ρ), b) observation
gain uncertainty increases (smaller αh), and c) local SNR
decreases (smaller γ), provided ρ < αh (which is typically
true for a problem involving moderately correlated noise and
sufficiently certain observation gain). Hence, collaboration is
more effective when the local-SNR is small, measurement
noise is uncorrelated and observation gains are uncertain.

b) Dependence on (normalized) total power Pg, power
skewness κ and channel gain uncertainty αg: To understand
the effect of Pg, κ and M on collaboration gain, we simplify
Equation (85) by considering the large-M asymptotic regime.
Note that in general, an infinite number of sensors implies that
the Fisher Information is infinite and distortion is zero for both
distributed and connected topologies, which is a trivial regime
to consider. Towards the goal of analyzing regimes that incur
only finite distortion in the asymptotic limit, we consider two



UNDER REVIEW IN IEEE TRANSACTIONS ON INFORMATION THEORY 13

cases, as listed below.
First, we would consider the fixed-κ-large-P regime, which

signifies that the effective number of powered nodes are not
increasing with M (recall that κ = 1 implies that only one
node has all the power, regardless of M ), i.e., most of the
nodes are auxilliary nodes that provide their information to
the powered nodes which then communicate with the fusion
center. Hence, even with a large transmission power the
distortion at the FC is finite, which makes this regime non-
trivial. From (85), we note that

lim
M→∞
Pg→∞

CG =
(1− αx)αgκ(

1 + αg(κ− 1)
) (

1 + αxαg(κ− 1)
) . (86)

With the additional technical assumption that αg > 1
1+αx

(which basically means that the channel gains are sufficiently
certain), the collaboration gain (Equation (86)) decreases as κ
increases, and hence is maximum when κ = 1, at which point

CG = (1− αx)αg. (87)

That CG decreases with αx has already been discussed in
the previous remark, and also applies for this regime. We
conclude that in the fixed-κ-large-P regime, collaboration is
highly effective if there are only a few powered sensors (small
κ), and the channel gains (higher αg) are fairly certain.

Next, we consider the fixed-(κ/M)-finite-(P ×M) regime.
Here, the normalized skewness parameter κM is kept constant,
which means that effectively, the number of powered sensors
κ increase linearly with M (note the contrast with previous
regime). To keep the effective Fisher Information (and result-
ing distortion) finite, the total available power P must scale
inversely proportional9 to M . Let PM , PgM denote the
normalized total power, which is a finite constant. From (85),
we can derive that

max
PM

lim
M→∞

PgM=PM

CG =
1−√αx

1 +
√
αx
, when P ∗M =

1

κMαg
√
αx
.

(88)

This implies that collaboration is more effective for smaller αx,
a fact that was established earlier as well. We conclude that in
the fixed-(κ/M)-finite-(P ×M) regime, collaboration is most
effective when the normalized operating power is a particular
finite quantity, precisely P ∗M = 1

κMαg
√
αx

. Moreover, P ∗M
increases as the power constraints get more skewed (smaller
κM ) or the channel gains get more uncertain (smaller αg).

The assertions in Proposition 9 and the subsequent dis-
cussion are illustrated in Figure 5 for an example with the
following problem parameters η2 = 1

2 , σ2 = 1, ρ = 0.1,
g0 = h0 = 1 and αg = αh = 0.9. Contours of the actual
collaboration gain are computed numerically using procedure
outlined in Section III-C and displayed for a wide range of
cumulative power Pg, number of nodes M and skewness of

9Another asymptotic domain that is conceptually different but otherwise
would yield identical results is to keep the power P constant and let the
channel gains g scale at the rate of 1√

M
. The argument here is that, though the

network size increases with M , the channel capacity of the effective multiple-
input-single output (MISO) channel induced by the M sensors, precisely
1
2
log

(
1 +

P
∑M
m=1 g

2
m

ξ2

)
, is held constant.

power constraints. To illustrate the fixed-κ-large-P regime,
we have used κ = 1 (only one sensor has all the power)
in Figure 5(a). To illustrate the fixed-(κ/M)-finite-(P ×M)
regime, we have used κM = {1/3, 2/3, 1} in Figures 5(b),
5(c), and 5(d) respectively. To simulate a particular skewness
κ, the local power constraints are generated in accordance with
(82) by finding the corresponding value % through bisection
search (recall that % and κ are monotonically related, as per
Lemma 8). The active-constraint condition of Equation (84) is
depicted through the dotted line in Figures 5(b) and 5(c). The
portion of the figure to the right of the dotted line suggests
that one or more of the constraints are inactive, while the left
half denotes the region where all the constraints are active
and consequently Equation (85) is the accurate measure of
collaboration gain. No dotted lines appear in Figure 5(a) and
5(d) because all the constraints are trivially active in both the
cases, although for different reasons. For κ = 1, there is only
one sensor with all the power and hence it must transmit with
full power, which explains Figure 5(a). For κ = M , we have
equal power allocation (PC

m = PC, say) and condition (84)

reduces to PC ≤
(√

PC + ξ2

g20(1−αgαx)(M−1)
√
PC

)2
, which is

trivially satisfied for all PC.
For the problem parameters mentioned above, we calculate

that αx ≈ 0.37. For the fixed-κ-large-P regime, theoretical
justifications predict that the maximum gain possible (across
various problem conditions) is (1 − αx)αg ≈ 0.57, which
can be confirmed from the contours toward the top-right
corner of Figure 5(a). For the fixed-(κ/M)-finite-(P × M)
regime, theoretical predictions yield that the maximum gain
is 1−√αx

1+
√
αx
≈ 0.24, which can be validated from the innermost

contours of Figures 5(b), 5(c) and 5(d). Note that the contours
shifts to the left as κM increases. This is due to the fact that the
normalized power required to achieve maximum collaboration
gain decreases as κM become larger, a fact also discussed
above. In conclusion, for this particular problem instance, upto
57% (and 24%) of the distortion performance can be recovered
using collaboration in the fixed-κ-large-P regime (and fixed-
(κ/M)-finite-(P ×M)) regimes. We have established this fact
using both numerical results and theoretical insights.

2) Random geometric graphs: To demonstrate how the
distortion decreases with increasing collaboration, we consider
the following simulation setup. The spatial placement and
neighborhood structure of the sensor network is modeled as a
Random Geometric Graph, RGG(N, r) [30], where sensors
are uniformly distributed over a unit square and bidirec-
tional communication links are possible only for pairwise
distances at most r, i.e., the adjacency matrix is A such
that Ai,j = 1[di,j≤r]. Correspondingly, the cost matrix is a
{0,∞} matrix with the (i, j)th element being zero only if
di,j ≤ r, otherwise being infinity. We assume N = 20 sensor
nodes and gradually increase the radius of collaboration from
r = 0 (signifying distributed topology) to r =

√
2 (signifying

connected topology, since the sensors are placed in a unit
square). The simulated sensor network is depicted in Figure 6,
with collaboration radius r = 0.2. In general, for 0 < r <

√
2,

the network is only partially connected as in Figure 6.
We simulate a homogeneous network with the following
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Fig. 5. Collaboration gain in a homogeneous sensor network with skewed power constraints.
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Fig. 6. Random Geometric Graph with 20 nodes, used for example in Section
III-D2. Edges are shown for pairwise distance less than 0.2. The radius of
collaboration is depicted for sensors 1,2,3 and 17.

parameters σ2 = 1, ρ = 0 (independent noise), g0 = h0 = 1
and αg = αh = 0.9. To contrast the effect of prior uncertainty
on collaboration gain, we simulate two different variance of

the prior, η2 = 0.1 and 0.5. To illustrate the effect of power
constraints, we simulate a wide range of both cumulative-
power and skewness. We simulate three skewness conditions
– κM = 0.5, 0.75 and 1, the value of 1 implying equal power
allocation. The three values of cumulative-power that were
simulated were a) Pg = P ∗ = 1

0.75×20
1

αg
√
αx

(recall from the
discussion in Section III-D1 that, for κ = 0.75, this is a high-
CG operating region), b) Pg = P ∗/4 (depicting the low power
regime), and c) Pg = 4P ∗ (depicting the high power regime).

The simulation results are depicted in Figures 7-(a) and (b)
for the two values of prior uncertainty η2 = 0.1 and η2 = 0.5
respectively. Corresponding to these values of η2, the infinite-
power distortion D0, the maximum possible collaboration gain
CG* and the corresponding operating power P ∗ for κM =
0.75, are calculated by using (55) and (88),

η2 ↓ D0 CG* P ∗(κM = 0.75)
0.1 0.07 0.29 0.13
0.5 0.04 0.56 0.25.

(89)

With varying power availability and varying extent of
collaboration, the resulting distortion varies between D ∈
(D0, η

2), where the ranges are (0.07, 0.1) and (0.04, 0.5),
for the prior variance η2 = 0.1 and η2 = 0.5 respectively.
To compare the effect of collaboration across the two differ-
ent problem conditions, we depict the normalized distortion
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Fig. 7. Improved in distortion due to increasing collaboration among 20 nodes in a random geometric graph.

D−D0

η2−D0
in Figures 7-(a) and (b). Note that in this normalized

scale, the collaboration gain is simply the difference between
the right-most (distributed) and the left-most (connected) ends
of a curve. The efficacy of collaboration, as indicated by
the downward slope of the curves, is clearly demonstrated in
Figures 7-(a) and (b), where it is noted that a large part of the
overall gain is achieved only with partial collaboration, i.e.,
the distortion tends to saturate beyond a collaboration radius
of r ≈ 0.4. Hence, though the collaboration gain, as defined in
(30), requires a fully connected topology, a large part of that
gain can be realized with only a partially connected network.
Also, we note that the efficacy of collaboration diminishes
when the operating power is too small (Pg = P ∗/4) or too
large (Pg = 4P ∗), indicating the fact that collaboration in a
network should be used judiciously, specially when there are
costs associated with it. Finally, we note that the efficacy of
collaboration is higher when the prior has a lower variance
(the curves in Figure 7-(a) has more downward slope than
those in Figure 7-(b)). This observation is explained directly
by the comments following Proposition 9, where we argued
that collaboration gain increases with decreasing local-SNR.

IV. COLLABORATION WITH FINITE COSTS

In Section III, we have solved the optimal collaboration
problem for the situation when the cost of communication
for each link is either zero or infinity, i.e., Ci,j ∈ {0,∞}
(also termed as the ideal case). In this section, we address
the general problem where communication may incur a non-
zero but finite cost, i.e., 0 < Ci,j < ∞ (also termed as the
finite-cost case). Unlike the ideal case, finding the globally
optimal solution for the finite-cost case is a difficult problem
and there are no known numerical techniques that efficiently
solve this problem. In this section, we outline an efficient
(polynomial-time) numerical procedure that obtains a locally

optimal solution to the finite-cost problem. We first describe
our iterative solution for the individual-constraint problem.
The cumulative-constraint problem follows from similar ar-
guments and is described next. Lastly, solutions to both the
problems are demonstrated using numerical simulations.

A. Individual power constraint

We propose an iterative solution as follows. Let the collab-
oration topology and transmission power availability (for all
N nodes, in vector form) at iteration i be denoted by Ai and
P trans
i respectively. Note that the transmission power avail-

ability is the difference between the original power constraint
and the collaboration cost due to the topology Ai. For the nth

node, it means[
P trans
i

]
n

=
[
P C
]
n
−

M∑
m=1

[Ai]mnCmn. (90)

Note that for the auxiliary nodes n = M+1, . . . , N , the trans-
mission power availability

[
P trans
i

]
n

does not mean much,
since they cannot transmit to the FC anyway. For those sensors,
it is best if they use their entire resources for collaboration. Re-
call that the optimal distortion corresponding to any topology
A and transmission power constraint P trans can be obtained
from the discussion in Section III. Denote such a distortion
by DAopt

(
P trans). We start with a distributed topology, i.e.,

A1 = [IM |0] and follow a greedy algorithm. At iteration
i, we evaluate the distortion performance corresponding to
all incremental topologies of the form Ai +E(m,n), where
E(m,n) is an all-zero matrix except for the (m,n)th element,
which is 1 (signifying an incremental n → m link). There
are MN − nnz(Ai) such possibilities for selecting E(m,n),
each corresponding to a link that is current not being used
(equivalently [Ai]mn is zero). The number of such possibilities
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may even be lesser if there is not enough power to make a
link possible. For example, if Cmn >

[
P trans
i

]
n

, then the nth

node does not have sufficient power to use the n → m link
for collaboration. Among all such possible links, let n∗ → m∗

denote the link that provides the best distortion performance.
Then the iteration is concluded by augmenting the topology
with the edge n∗ → m∗. Thus, in compact notations, each
iteration is represented as,

(m∗, n∗) = arg min
m,n

[Ai]mn=0

Cmn≤[P trans
i ]

n

D
Ai+E(m,n)
opt

(
P trans
i − enCmn

)
,

Ai+1 = Ai +Em∗n∗ ,
(91)

where en is an all-zero vector with the exception of nth

element, which is 1. The iterations are terminated when one
of the following conditions is satisfied, a) there is no feasible
link, b) maximum number of iterations has exceeded a pre-
specified limit or c) there is not enough increment in (relative)
performance after a particular iteration, say, for a pre-specified
δ, if

D
Ai+1

opt

(
P trans
i+1

)
−DAiopt

(
P trans
i

)
η2 −D0

≤ δ. (92)

A rough estimate of computational complexity can be estab-
lished as follows. Recall from Section III-C that computing
DAopt(P ) is roughly O

(
M2L2

)
, where L = nnz(A). Assume

that the algorithm gets terminated after adding O(N) links,
which is to say that each node communicates with a fraction of
its neighbors at optimality. Since we start with the distributed
topology we have L = O(N) for all the iterations. Since
each of the iterations (as in (91)) require approximately MN
function evaluations, the total complexity of the finite-cost
collaborative power allocation problem is

O(M2N2)︸ ︷︷ ︸
evaluation
of Dopt

× O(MN)︸ ︷︷ ︸
evaluations
per iteration

× O(N)︸ ︷︷ ︸
number

of iterations

= O(M3N4). (93)

It must be emphasized here that (93) is only a rough (but
practical) measure of complexity and is not a rigorous bound.
It assumes a fixed number of iterations to solve a semidefinite
optimization problem (see discussion in Section III-C) and also
sufficiently high collaboration costs so that only O(N) links
are added starting from a distributed topology.

B. Cumulative power constraint

To solve the cumulative power-constraint problem, we pro-
ceed on similar lines. Let the cumulative power constraint
be PC and the cumulative transmission power availability at
iteration i be denoted by P trans

i , so that

P trans
i = PC −

M∑
m=1

N∑
n=1

[Ai]mnCmn. (94)

Denote the optimal distortion corresponding to any topology
A and transmission power constraint P trans (see Section III-B)
as DAopt

(
P trans

)
. Starting from a distributed topology, the best

collaboration link n∗ → m∗ is selected at each iteration
according to

(m∗, n∗) = arg min
m,n

[Ai]mn=0

Cmn≤P trans
i

D
Ai+E(m,n)
opt

(
P trans
i − Cmn

)
,

Ai+1 = Ai +Em∗n∗ ,
(95)

with the stopping criteria being similar to that described in the
previous subsection. As regards to computational complexity,
recall from (III-B) that the complexity of computing DAopt(P )

is O
(
L3
)
, where L = nnz(A). Assuming O(N) iterations

(as in the previous case) the overall complexity for the finite-
cost-collaborative cumulative-constraint problem is roughly

O(N3)︸ ︷︷ ︸
evaluation
of Dopt

× O(MN)︸ ︷︷ ︸
evaluations
per iteration

× O(N)︸ ︷︷ ︸
number

of iterations

= O(MN5). (96)

C. Numerical Simulations

To demonstrate the efficacy of collaboration in finite-cost
scenarios, we consider a random geometric graph of M =
N = 10 nodes. As in the previous examples, we consider a ho-
mogeneous network with the following parameters η2 = 0.5,
σ2 = 1, ρ = 0 (independent noise), g0 = h0 = 1 and αg =
αh = 0.9. The collaboration cost of link m → n is assumed
to increase quadratically with the distance between nodes m
and n. This is because the gain of a wireless channel is
often inversely proportional (upto a constant exponent) to the
distance between a source and a receiver [31]. Consequently,
to maintain a reliable communication link, the transmission
power has to be scaled up accordingly. In particular, we
assume

Cm,n = c0d
2
m,n, (97)

where dm,n denotes the distance between nodes m and n
and c0 is a constant of proportionality. For our numerical
simulations, we consider a wide range of c0, specifically
c0 ∈ [10−4, 104], to depict the effect of collaboration cost on
the distortion performance. A lower collaboration cost in effect
allows the network to collaborate more and thereby reduces
the distortion. We consider two magnitudes of total operating
power (namely, Pg = 1 and 3) for both the individual-
constraint and cumulative-constraint cases. For the individual-
constraint case, we consider two skewness conditions for the
power-constraint, namely κM = 0.5 and κM = 0.75. The
corresponding distortion curves are shown in Figure 8. For
very low values of the c0, the distortion converges to that in
a fully connected network. Similarly, for very high values of
the c0, no links are selected for collaboration, and the network
operates in a distributed manner. Since in our example, the
network is homogeneous, equal power allocation among nodes
is also the optimum power allocation for a cumulative-power-
constrained problem. Consequently, the performance of the
cumulative-constraint problem (dash-dotted lines) is always
better than that with individual power constraints (bold and
dashed lines). In conclusion, Figure 8 shows that in a homo-
geneous network, the estimation performance improves with
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higher operating power, less skewed power constraints and
lower collaboration cost among sensors, as expected.
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Fig. 8. Estimation with finite collaboration cost - an example with 10 sensor
nodes.

V. CONCLUSION

In this paper, we addressed the problem of collaborative
estimation in a sensor network where sensors communicate
with the FC using a coherent MAC channel. For the scenario
when the collaborative topology is fixed and collaboration
is cost-free, we obtained the optimal (cumulative) power-
distortion tradeoff in closed-form by solving a QCQP prob-
lem. With individual power constraints, we have shown that
the semidefinite relaxation technique can be used to obtain
precisely optimal numerical results. Several special cases are
presented as examples to highlight the problem conditions for
which collaboration is particularly effective. Through the use
of both theoretical and numerical results, we established that
collaboration helps to substantially reduce the distortion of
the estimated parameter at the fusion center, specially in low
local-SNR scenario. As future work, we wish to explore the
collaborative estimation problem when the parameter to be
estimated is a vector with correlated elements. The scenario
when collaboration is erroneous, as mentioned earlier, is also
important.

APPENDIX A
PROOF OF PROPOSITION 2

Since w = vec(W ) for a connected topology, we obtain
ΩP = Ex ⊗ I , G = I ⊗ g and

ΩJD =
(
Ex ⊗Eg

)
− η2GhhTGT

=
(
Ex ⊗Σg

)
+GΣ̃GT . (98)

Substituting the appropriate values in (44a), we have (assum-
ing all the inverses exist)

Jopt(P )
(a)
= hTGT

(
GΣ̃GT + Ω̃P

)−1
Gh

(b)
= hT

(
Σ̃ + Γ̃P

)−1
h

(c)
= hT

((
1 +

1

G

)
Σ̃ +

1

G η
2hhT

)−1
h

(d)
= J̃

[
1 +

1 + η2J̃

G

]−1
, (99)

where step (a) follows by defining Ω̃P , Ex ⊗ Σ̃g where Σ̃g
is already defined in (50). Step (b) follows from arguments
similar to those used in (46) and by defining (and subsequently
simplifying) Γ̃P as

Γ̃P ,
(
GT Ω̃

−1
P G

)−1
=
((
I ⊗ gT

) (
E−1x ⊗ Σ̃

−1
g

)
(I ⊗ g)

)−1
=
Ex

G , where G , gT Σ̃
−1
g g, (100)

step (c) follows from the fact that Ex = Σ̃+η2hhT , and step
(d) follows from the definition J̃ , hT Σ̃

−1
h and following

identities involving rank-1 updated matrix inverses. For any
scalars α 6= 0 and β, vector p and invertible matrix Q,(
αQ+ βppT

)−1
=
Q−1

α
− βQ−1ppTQ−1

α(α+ βQp)
, and (101)

pT
(
αQ+ βppT

)−1
p =

Qp
α+ βQp

, Qp , p
TQ−1p. (102)

From equations (44b) and discussion in Example 1, the
optimal weights are,

wopt ∝ Ω̃
−1
P GΣ̃

(
Σ̃ + Γ̃P

)−1
h, (from (44b))

∝ Ω̃
−1
P Gh

=
(
E−1x ⊗ Σ̃

−1
g

)
(h⊗ g)

=
(
E−1x h

)
⊗
(
Σ̃
−1
g g

)
(103)

which implies that W opt ∝ Σ̃
−1
g ghTE−1x . Step (a) follows

the fact that
(
Σ̃ + Γ̃P

)−1
h ∝ Σ̃

−1
h (see (101)).

From Corollary 2.3.5 of [32], the sum-rate required to
encode a single-dimensional real-valued Gaussian source with
variance η2, observed through the vector h and Gaussian
observation noise with covariance Σ, in such a way that
reconstruction incurs an average distortion of at most D,
satisfies

Rtot ≥
1

2
log

λ

D −D0
, where λ =

η4J0
1 + η2J0

. (104)

Since, for a fixed sum-power P , the sum-rate has to be lesser
that the (centralized) capacity of the coherent MAC channel,
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i.e., Rtot ≤ C, where C = 1
2 log(1 + ‖g‖2Pξ), we obtain

1 + ‖g‖2Pξ ≥
η4J0

(D −D0)(1 + η2J0)
. (105)

Replacing D by J (recall, J = 1
D− 1

η2 ) and after some algebra,
we obtain,

J ≤ J0
[
1 +

1 + η2J0
‖g‖2Pξ

]−1
. (106)

But the right hand side is precisely the distortion achieved by
a connected network (see (50) and note that G = ‖g‖2Pξ for
Σg = 0). This establishes the information theoretic optimality.

APPENDIX B

Lemma 10 (An inequality): For any N -dimensional vector
p and N ×N symmetric positive definite matrices A and B,

1

pT (A+B)
−1
p
≥ 1

pTA−1p
+

1

pTB−1p
. (107)

Proof: Since A,B ∈ S++, A−
1
2BA−

1
2 ∈ S++. Define

byU and Λ the following eigendecompositionA−
1
2BA−

1
2 =

UΛUT . Hence λn > 0,∀n. Define q = UTA−
1
2h. Note that

qTq = pTA−1p,

qTΛ−1q = pTB−1p, and

qT (I + Λ)−1q = pT (A+B)
−1
p.

(108)

Hence, to prove (107), it suffices to show that

1∑N
n=1

q2n
1+λn

≥ 1∑N
n=1 q

2
n

+
1∑N

n=1
q2n
λn

,

or equivalently, with an , 1
1+λn

and bn , 1+λn
λn

,

N∑
n=1

q2n

N∑
n=1

q2nanbn ≥
N∑
n=1

q2nan

N∑
n=1

q2nbn. (109)

Since λn > 0,∀n, both an and bn are decreasing functions
of λn. Hence inequality (109) follows from the Chebyshev’s
(sum) inequality (page 240, Equation 1.4, [33]). Equality holds
if and only if, for all indices k for which qk 6= 0 (denote such a
set by ixnz(q)), the eigenvalues are similar. That is, iff λk = λ,
∀k ∈ ixnz(q).

APPENDIX C
PROOF OF PROPOSITION 4

We would use Equation (44a). To start with, we note that
Gh is a multiple of 1 and both matrices ΩJD and ΩP has
an eigenvector as 1, where 1 has dimension L = MK. In
particular, careful inspection of (33) (the elements of matrices
Eg and Ex take two distinct values, diagonal and otherwise)
yields

Gh = g0h0
√
αgαh1,

ΩP1 = σ2
x (1 + (K − 1)αx) 1, and

ΩJD1 =
[
σ2

xg
2
0

{
1 + (K − 1)(αx + αg)

+(MK − 2K + 1)αxαg
}
− η2g20h20αgαhMK

]
1,

(110)

where σ2
x = σ2(1 + γ), αx = ρ+γαh

1+γ and γ =
η2h2

0

σ2 . Based
on the above equations, define scalars φ, µ, ν be such that
GhhTGT1 = φ1, ΩP1 = µ1 and ΩJD1 = (ν − η2φ)1, in
particular,

φ = g20h
2
0αgαhMK,

µ = σ2
x (1 + (K − 1)αx) , and

ν = σ2
xg

2
0

{
1 + (K − 1)(αx + αg) + (MK − 2K + 1)αxαg

}
,

(111)

From (44a), we therefore obtain

Jopt(P ) =
φ

ν + µ
Pξ
− η2φ, (112)

which when simplified further leads to (55). Since 1 is the
corresponding eigenvector, we also have wopt ∝ 1, i.e., the
sensors just average all the observations.

APPENDIX D
PROOF OF PROPOSITION 5

Our goal is to show that for any feasible J < Jopt, X R(J)
contains a rank-1 matrix. Specifically, we will show that

X̃ , arg max
X∈XR(J)

Tr [ΩPX] , (113)

which is the global optimizer to the (convex) semi-definite
optimization problem

minimize
X

Tr [ΩPX]

subject to Tr [(JΩJD −ΩJN)X] + Jξ2 ≤ 0,

Tr [ΩP,mX] ≤ PC
m, m = 1, . . . ,M,

−X � 0,

(114)

is rank-1. The Lagrangian of (114) is given by,

L(X, α,β,Z) = Tr [ΩPX]

+ α
(
Tr [(JΩJD −ΩJN)X] + Jξ2

)
+

M∑
m=1

βm

(
Tr [ΩP,mX]− PC

m

)
− Tr [XZ] ,

(115)

with the dual problem being,

maximize
α,β

αJξ2 −
M∑
m=1

βmP
C
m

subject to Z̃ , ΩP + α (JΩJD −ΩJN) +

M∑
m=1

βmΩP,m � 0,

α ≥ 0, β ≥ 0.
(116)

Also, we have the following complementary conditions (let
tilde denote respective values at optimality),

α̃
(

Tr
[
(JΩJD −ΩJN) X̃

]
+ Jξ2

)
= 0, (117a)

β̃m

(
Tr
[
ΩP,mX̃

]
− PC

m

)
= 0, m = 1, . . . ,M, (117b)

Tr
[
X̃Z̃

]
= 0. (117c)
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Without loss of generality, let X̃ = Ỹ Ỹ
T

(such a decompo-
sition is possible since X̃ is symmetric positive semidefinite).
Also denote the columns of Ỹ as w̃l ∈ RL for l = 1, 2, . . . , L,
so that Ỹ = [w̃1, w̃2, . . . , w̃L]. From (117c), we have

Tr
[
X̃Z̃

]
=

L∑
l=1

w̃T
l Z̃w̃l = 0, (118)

which coupled with the fact that Z̃ � 0 implies that

Z̃w̃l = 0, for all l = 1, . . . , L. (119)

Thus, from definition of Z̃ in (116), we conclude that w̃l-s
are the generalized eigenvectors that satisfy(

Ω̃ + α̃
(
JΩJD − ttT

))
w̃l = 0L, ∀ l, with

Ω̃ , ΩP +

M∑
m=1

β̃mΩP,m,

t , Gh (note ΩJN in (33)).

(120)

Hence it follows that for all l,((
Ω̃ + α̃JΩJD

)
− α̃ttT

)
w̃l = 0L,

⇔
(
IL −

(
Ω̃ + α̃JΩJD

)−1
α̃ttT

)
w̃l = 0L, (121)

⇒ w̃l ∝
(
Ω̃ + α̃JΩJD

)−1
t, (122)

where (121) is because ΩP is positive definite and hence the
matrix

(
Ω̃ + α̃JΩJD

)
is also positive definite and invertible,

and (122) follows from the fact that both α̃ and tT w̃l has to
be non-zero to satisfy (120). We thus conclude that

w̃l is unique upto its norm, ∀ l,
⇒ X̃ is a rank-1 matrix,

(123)

thereby establishing Proposition 5.

APPENDIX E
PROOF OF PROPOSITION 7

Problem (77) is equivalent to

maximize
W

JW =

(
gTWh

)2
Tr
[
EgWExW

T
]

+ ξ2
,

subject to
[
WExW

T
]
m,m
≤ PC

m, m = 1, . . . ,M,

(124)

in the sense that JW and JW are monotonically related
through JW = JW

1−η2JW
and W opt is the same for both

problems. This is further equivalent to

maximize
V

JV =

(
gTV hx

)2
Tr
[
EgV V

T
]

+ ξ2
,

subject to ‖vm‖2 ≤ PC
m, m = 1, . . . ,M,

(125)

by defining V , vm and hx such that

V ,WE
1
2
x =

v
T
1
...
vTM

 , and hx , E
− 1

2
x h. (126)

With a goal to reduce the number of optimization variables
from MN to M , we define the matrix transformation V →
V x as one that retains the norm of its individual row vectors
but otherwise aligns the rows to hTx , i.e.,

V x , t
hTx
‖hx‖

, tm , ‖vm‖ , so that

JV x = ‖hx‖2
(
gT t

)2
tTEgt+ ξ2

.

(127)

We would need the following result to proceed further.
Lemma 11: When Σg is diagonal,

JV ≤ JV x , for any V . (128)

Proof: To prove Lemma (11), we will show that

JV
‖hx‖2

(a)
≤

∥∥gTV ∥∥2
Tr
[
EgV V

T
]

+ ξ2

(b)
≤

(
gT t

)2
tTEgt+ ξ2

=
JV x

‖hx‖2
,

(129)

where (a) follows from definition of JV in (77) and Cauchy-
Schwartz inequality implying

(
gTV hx

)2 ≤ ||gTV ||2||hx||2,
and the last equality is due to definition of JV x in (127). Hence
it remains to prove (b), which can be established by showing

Tr
[((

tTΣgt
)
ggT −

(
gT t

)2
Σg

)
V V T

]
≤ 0, (130a)

and ξ2
(∥∥gTV ∥∥2 − (gT t)2) ≤ 0. (130b)

Define ḡ, V̄ and its aligned equivalent V̄ x as

ḡ , Σ
− 1

2
g g, V̄ , Σ

1
2
g V , so that

V̄ x = t
hTx
‖hx‖

, where t̄m = ‖v̄m‖ , or

t̄ = Σ
1
2
g t (since Σg is diagonal).

(131)

Note that Tr
[
V̄ V̄

T
]

= ‖t̄‖2. Condition (130a) is therefore
equivalent to showing

Tr
[(
‖t̄‖2 ḡḡT −

(
ḡT t̄

)2)
V̄ V̄

T
]
≤ 0,

or equivalently ‖t̄‖2
(∥∥ḡT V̄ ∥∥2 − (ḡT t̄)2) ≤ 0, (132)

which is similar to condition (130b). Thus it remains to
establish (130b), which is true because

∥∥gTV ∥∥2 (a)
=

∥∥∥∥∥
M∑
m=1

gmvm

∥∥∥∥∥
2

(b)
≤
∥∥∥∥∥
M∑
m=1

gm ‖vm‖
∥∥∥∥∥
2

(c)
=
(
gT t

)2
,

(133)

where (a) and (c) are due to definitions of vm and t re-
spectively, and (b) is due to Cauchy-Schwartz inequality,∥∥vTmvn∥∥ ≤ ‖vm‖ ‖vn‖ for all 1 ≤ m,n ≤ M . This
completes the proof.
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Note that JV x is a function of the vector t, whose elements
are non-negative (since tm is a norm). Therefore problem
(125), in conjunction with Lemma 11, is equivalent to

maximize
t

JV x (t) ,

subject to t2m ≤ PC
m, m = 1, . . . ,M,

(134)

through the relations V opt = topt
hTx
‖hx‖ and JV opt = JV x (topt).

Problem (134) is further equivalent to

maximize
t

Ft =

(
gT t

)2
tTΣgt+ ξ2

,

subject to t2m ≤ PC
m, m = 1, . . . ,M,

(135)

through the following relations between variables JV x (t) =
‖hx‖2 Ft

1+Ft
, which proves Proposition 7

APPENDIX F
PROOF OF LEMMA 8

We start by noting that for % ∈ (0, 1)

κ(%) =

(
1− %M2
1− % 1

2

)2
1− %

1− %M =
1− %M2
1 + %

M
2

1 + %
1
2

1− % 1
2

. (136)

We would show that dκ(%)
d% > 0 for % ∈ (0, 1). From (136),

dκ(%)

d%
=
%−

1
2 −M%

M
2 −1 − %M− 1

2 +M%
M
2(

1 + %
M
2

)2 (
1− % 1

2

)2 , (137)

the numerator of which can be rearranged as

%−
1
2

(
1− %M

)
−M%

M
2 −1 (1− %)

= %−
1
2 (1− %)

(
1 + %+ · · ·+ %M−1 −M%

M−1
2

)
= %−

1
2 (1− %)

bM2 c∑
m=1

(
%
m−1

2 − %M−m2

)2
, (138)

which is evidently a positive quantity. This completes the
proof.

APPENDIX G
PROOF OF PROPOSITION 9

We start with the cumulative-constraint case, for which we
will use the results from Example 3. From Equation (112) and
corresponding to the distributed (K = 1) and connected cases
(K = M ), we denote the constants {µ, ν} with subscripts 1, 2,
as {µ1, ν1} and {µ2, ν2} respectively, i.e.,

Jdist
opt (P ) =

φ

ν1 + µ1

Pξ
− η2φ, and

Jconn
opt (P ) =

φM

ν2 + µ2

Pξ
− η2φM ,

(139)

where φ = g20h
2
0αgαhM , ν1 = σ2

xg
2
0

(
1 + (M − 1)αgαx

)
,

µ1 = σ2
x , ν2 = σ2

xg
2
0

(
1 + (M − 1)αg

)
(1 + (M − 1)αx)

and µ2 = σ2
x (1 + (M − 1)αx). Applying the corresponding

distortion terms (note D =
(

1
η2 + J

)−1
) in (30), (note that

J0 = φM
ν2−η2φM therefore the denominator term of (30) is

η2 −D0 = η2φ
ν2

) the collaboration gain can be simplified as

CG =

Mµ1−µ2

Mµ1
+ Pξ

Mν1−ν2
Mµ1(

1 + 1
Pξ

µ2

ν2

)(
1 + Pξ

ν1
µ1

) . (140)

Each of the fragments can be simplified further, Mµ1−µ2

Mµ1
=

1
M (M − 1)(1 − αx), Mν1−ν2

Mµ1
=

g20
M (M − 1)(1 − αg)(1 −

αx), µ2

ν2
= 1

g20(1+(M−1)αg)
and ν1

µ1
= g20

(
1 + (M − 1)αgαx

)
.

Replacing these fragments in (140), defining Pg = Pξg
2
0 and

dividing both numerator and denominator by (1 + Pg) leads
to Equation (85) (with κ replaced by M ).

For the individual-constraint case, we would use Examples
5 (distributed) and 6 (connected) to compute the collaboration
gain. First we show that all the constraints are active for
both the distributed and connected cases if condition (84) is
satisfied. If we apply Proposition 6 to a homogeneous problem
with a1 = · · · = aM and b1 = · · · = bM , the active constraint
condition ΦM−1dM ≥ 1 simplifies to∑M−1

m=1 c
2
m + ξ2

bm∑M−1
m=1 cm

≥ cM . (141)

For the distributed case (Example 5), we refer to problem

(75) to find that bm = σ2
xg

2
0(1 − αgαx) and cm =

√
PC
m

σx
,

so that inequality (141) explicitly evaluates to condition (84).
For the connected case (specialized version of Example 6 for
homogeneous parameters), we refer to Equation (78) to note
that bm = g20(1 − αg) and cm =

√
PC
m, so that inequality

(141) evaluates to∑M−1
m=1 P

C
m + ξ2

g20(1−αg)∑M−1
m=1

√
PC
m

≥
√
PC
M , (142)

which is clearly true if condition (84) holds (since αx ∈ [0, 1]).

As regards collaboration gain, we proceed as we did
in the cumulative case. For the distributed (Equation (76))
and connected (Equation (78) with homogeneous parameters)
cases, we can rearrange the terms of Jopt(P ) to express
them in the form of (139), where the various constants
are now φ = g20h

2
0αgαhκ, ν1 = σ2

xg
2
0

(
1 + (κ− 1)αgαx

)
,

µ1 = σ2
x , ν2 = σ2

xg
2
0

(
1 + (κ− 1)αg

)
(1 + (M − 1)αx) and

µ2 = σ2
x (1 + (M − 1)αx). However, in this case J0 is

obtained not just by letting Pξ → ∞ (thereby letting µ
vanish), but also by setting κ = M in both φ and ν, i.e.,
J0 = φ(κ=M)M

ν2(κ=M)−η2φ(κ=M)M . Therefore the denominator term

of (30) is η2 −D0 = η2φ(κ=M)
ν2(κ=M) = η2φ

ν2
M
κ

(1+(κ−1)αg)
(1+(M−1)αg)

, which

is just a scaled version of η2φ
ν2

. Adjusting (140) for this scaling
and rest of the derivation remaining similar, we obtain

CG =

κ
M

(1+(M−1)αg)
(1+(κ−1)αg)

(
Mµ1−µ2

Mµ1
+ Pξ

Mν1−ν2
Mµ1

)
(

1 + 1
Pξ

µ2

ν2

)(
1 + Pξ

ν1
µ1

) , (143)

which is precisely Equation (85), thereby completing the
proof.
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TABLE I
MAIN RESULTS: CUMULATIVE POWER CONSTRAINT (EXAMPLES 1, 2 AND 3)

Cases Conditions
Optimal (equivalent)
Fisher Information

Optimal weights are
proportional to

(A)
General J = hTGT

(
ΩJD +

ΩP

Pξ

)−1
Gh w ∝

(
ΩJD +

ΩP

Pξ

)−1
Gh

(B)
Perfect CSI Σg = 0 J = hT

(
Σ̃ +

ΓP

Pξ

)−1
h w ∝ Ω−1P GΓP

(
Σ̃ +

ΓP

Pξ

)−1
h

(C)
Perfect OGI,
Perfect CSI,

[17]

Σh = 0,
Σg = 0 J = hT

(
Σ +

ΓP

Pξ

)−1
h w ∝ Ω−1P GΓP

(
Σ +

ΓP

Pξ

)−1
h

(D)
Distributed,

Uncorrelated,
Perfect OGI,
Perfect CSI,

[3]

A = I,

Σ is diagonal
Σh = 0,

Σg = 0

J =

N∑
n=1

h2n
σ2
n

[
1 +

1 + γn
Pξg2n

]−1
,

σ2
n , Σn,n, γn ,

η2h2n
σ2
n

W ∝ diag ([v1, v2, . . . , vN ]) ,

vn =
hn
gnσ2

n

[
1 +

1 + γn
Pξg2n

]−1

(E)
Connected A = 11T

J = J̃

1 +
1 + η2J̃

gT
(
Σg + I

Pξ

)−1
g


−1

,

J̃ , hT Σ̃
−1
h

W ∝ uvT , u =

(
Σg +

I

Pξ

)−1
g,

v = Σ̃
−1
h

(F)
Cycle topology,
Homogeneous,
Equicorrelated-

(Σ,Eh,Eg)

A = C(K),

h = h0
√
αh1,

Σh = h20(1− αh)I,

Σ = σ2R(ρ),

g = g0
√
αg1,

Σg = g20(1− αg)I

J =
h20
σ2

[
ρN + α̃h

(
ρN +

γ

N

)
+

1

N

(
α̃g +

1

Pξg20αg

){
γ + ρK + α̃h

(
ρK +

γ

K

)}]−1
,

ρt , ρ+
1− ρ
t

, γ ,
η2h20
σ2

, α̃ ,
1

α
− 1. w ∝ 1L.

Note: K = 1⇒ Distributed, K = N ⇒ Connected
αg = 1⇒ Perfect CSI, αh = 1⇒ Perfect OGI

Other definitions: ΓP ,
(
GTΩ−1P G

)−1
, Σ̃ , Σ + η2Σh, R(ρ) ,

(
(1− ρ)I + ρ11T

)
.

APPENDIX H
SUMMARY OF MAIN RESULTS (TABLES I AND II)
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