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Strongly Consistent Model Order Selection for Estimating

2-D Sinusoids in Colored Noise

Mark Kliger and Joseph M. Francos ∗

Abstract

We consider the problem of jointly estimating the number as well as the pa-

rameters of two-dimensional sinusoidal signals, observed in the presence of an

additive colored noise field. We begin by elaborating on the least squares estima-

tion of 2-D sinusoidal signals, when the assumed number of sinusoids is incorrect.

In the case where the number of sinusoidal signals is under-estimated we show

the almost sure convergence of the least squares estimates to the parameters of

the dominant sinusoids. In the case where this number is over-estimated, the

estimated parameter vector obtained by the least squares estimator contains a

sub-vector that converges almost surely to the correct parameters of the sinu-

soids. Based on these results, we prove the strong consistency of a new model

order selection rule.
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1 Introduction

We consider the problem of jointly estimating the number as well as the parameters of two-

dimensional sinusoidal signals, observed in the presence of an additive noise field. This problem is,

in fact, a special case of a much more general problem, [5]: From the 2-D Wold-like decomposition

we have that any 2-D regular and homogeneous discrete random field can be represented as a

sum of two mutually orthogonal components: a purely-indeterministic field and a deterministic

one. In this paper we consider the special case where the deterministic component consists of a

finite (unknown) number of sinusoidal components, while the purely-indeterministic component

is an infinite order non-symmetrical half plane, (or a quarter-plane), moving average field. This

modeling and estimation problem has fundamental theoretical importance, as well as various

applications in texture estimation of images (see, e.g., [4] and the references therein) and in wave

propagation problems (see, e.g., [14] and the references therein).

Many algorithms have been devised to estimate the parameters of sinusoids observed in white

noise and only a small fraction of the derived methods has been extended to the case where the noise

field is colored (see, e.g., Francos et. al. [3], He [8], Kundu and Nandi [11], Li and Stoica [12], Zhang

and Mandrekar [13], and the references therein). Most of these assume the number of sinusoids

is a-priori known. However this assumption does not always hold in practice. In the past three

decades the problem of model order selection for 1-D signals has received considerable attention.

In general, model order selection rules are based (directly or indirectly) on three popular criteria:

Akaike information criterion (AIC), the minimum description length (MDL), and the maximum

a-posteriori probability criterion (MAP). All these criteria have a common form composed of two

terms: a data term and a penalty term, where the data term is the log-likelihood function evaluated

for the assumed model. The problem of modelling multidimensional fields has received much less

attention. In [9], a MAP model order selection criterion for jointly estimating the number and the

parameters of two-dimensional sinusoids observed in the presence of an additive white Gaussian

noise field, is derived. In [10], we proved the strong consistency of a large family of model order

selection rules, which includes the MAP based rule in [9] as a special case.

In this paper we derive a strongly consistent model order selection rule, for jointly estimating

the number of sinusoidal components and their parameters in the presence of colored noise. This

derivation extends the results of [10] to the case where the additive noise is colored, modeled by

an infinite order non-symmetrical half-plane or quarter-plane moving average representation, such

that the noise field is not necessarily Gaussian. To the best of our knowledge this is the most

general result available in the area of model-order selection rules of 2-D random fields with mixed

spectrum.
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The proposed criterion has the usual form of a data term and a penalty term, where the first

is the least squares estimator evaluated for the assumed model order and the latter is proportional

to the logarithm of the data size.

Since we evaluate the data term for any assumed model order, including incorrect ones, we

should consider the problem of least squares estimation of the parameters of 2-D sinusoidal signals

when the assumed number of sinusoids is incorrect. Let P denote the number of sinusoidal signals

in the observed field and let k denote their assumed number. In the case where the number of

sinusoidal signals is under-estimated, i.e., k < P , we prove the almost sure convergence of the

least squares estimates to the parameters of the k dominant sinusoids. In the case where the

number of sinusoidal signals is over-estimated, i.e., k > P , we prove the almost sure convergence

of the estimates obtained by the least squares estimator to the parameters of the P sinusoids in

the observed field. The additional k − P components assumed to exist, are assigned by the least

squares estimator to the dominant components of the periodogram of the noise field.

Finally, using this result, we prove the strong consistency of a new model order selection

criterion and show how different assumptions regarding a noise field parameters affect the penalty

term of the criterion. The proposed criterion completely generalized the previous results [9], [10],

and provides a strongly consistent estimator of the number as well as of the parameters of the

sinusoidal components.

2 Notations, Definitions and Assumptions

Let {y(n,m)} be a real valued field,

y(n,m) =
P
∑

i=1

ρ0i cos(ω
0
i n+ υ0

im+ ϕ0
i ) + w(n,m), (1)

where 0 ≤ n ≤ N−1, 0 ≤ m ≤ M−1 and for each i, ρ0i is non-zero. Due to physical considerations

it is further assumed that for each i, |ρ0i | is bounded .

Recall that the non-symmetrical half-plan total-order is defined by

(i, j) � (s, t) iff (i, j) ∈ {(k, l)|k = s, l ≥ t} ∪ {(k, l)|k > s,−∞ ≤ l ≤ ∞} . (2)

Let D be an infinite order non-symmetrical half-plane support, defined by

D =
{

(i, j) ∈ Z
2 : i = 0, 0 ≤ j ≤ ∞

}

∪
{

(i, j) ∈ Z
2 : 0 < i ≤ ∞,−∞ ≤ j ≤ ∞

}

. (3)
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Hence the notations (r, s) ∈ D and (r, s) � (0, 0) are equivalent.

We assume that {w(n,m)} is an infinite order non-symmetrical half-plane MA noise field, i.e.,

w(n,m) =
∑

(r,s)∈D
a(r, s)u(n− r,m− s), (4)

such that the following assumptions are satisfied:

Assumption 1: The field {u(n,m)} is an i.i.d. real valued zero-mean random field with

finite variance σ2, such that E[|u(n,m)|α] < ∞ for some α > 3 .

Assumption 2: The sequence a(i, j) is an absolutely summable deterministic sequence, i.e.,

∑

(r,s)∈D
|a(r, s)| < ∞. (5)

Let fw(ω, υ) denote the spectral density function of the noise field {w(n,m)}. Hence,

fw(ω, υ) = σ2

∣

∣

∣

∣

∑

(r,s)∈D
a(r, s)ej(ωr+υs)

∣

∣

∣

∣

2

. (6)

Assumption 3: The spatial frequencies (ω0
i , υ

0
i ) ∈ (0, 2π)× (0, 2π), 1 ≤ i ≤ P are pairwise

different. In other words, ω0
i 6= ω0

j or υ0
i 6= υ0

j , when i 6= j.

Let {Ψi} be a sequence of rectangles such that Ψi = {(n,m) ∈ Z
2 | 0 ≤ n ≤ Ni − 1, 0 ≤ m ≤

Mi − 1}.

Definition 1: The sequence of subsets {Ψi} is said to tend to infinity (we adopt the notation

Ψi → ∞) as i → ∞ if

lim
i→∞

min(Ni,Mi) = ∞,

and

0 < lim
i→∞

(Ni/Mi) < ∞.

To simplify notations, we shall omit in the following the subscript i. Thus, the notation Ψ(N,M) →
∞ implies that both N and M tend to infinity as functions of i, and at roughly the same rate.

Definition 2: Let Θk be a bounded and closed subset of the 4k dimensional space R
k ×

((0, 2π)× (0, 2π))k × [0, 2π)k where for any vector θk = (ρ1, ω1, υ1, ϕ1, . . . , ρk, ωk, υk, ϕk) ∈ Θk the

coordinate ρi is non-zero and bounded for every 1 ≤ i ≤ k while the pairs (ωi, υi) are pairwise

different, so that no two regressors coincide. We shall refer to Θk as the parameter space.

From the model definition (1) and the above assumptions it is clear that

θ0k = (ρ01, ω
0
1, υ

0
1, ϕ

0
1, . . . , ρ

0
k, ω

0
k, υ

0
k, ϕ

0
k) ∈ Θk.
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Define the loss function due to the error of the k-th order regression model

Lk(θk) =
1

NM

N−1
∑

n=0

M−1
∑

m=0

(

y(n,m)−
k
∑

i=1

ρ0i cos(ω
0
i n+ υ0

im+ ϕ0
i )

)2

. (7)

A vector θ̂k ∈ Θk that minimizes Lk(θk) is called the Least Square Estimate (LSE). In the case

where k = P , the LSE is a strongly consistent estimator of θ0P (see, e.g., [11] and the references

therein).

3 Strong Consistency of the Over- and Under-Determined

LSE

In the following subsections we establish the strong consistency of this LSE when the number of

sinusoids is under-estimated, or over-estimated. The first theorem establishes the strong consis-

tency of the least squares estimator in the case where the number of the regressors is lower than

the actual number of sinusoids. The second theorem establishes the strong consistency of the least

squares estimator in the case where the number of the regressors is higher than the actual number

of sinusoids.

3.1 Consistency of the LSE for an Under-Estimated Model Order

Let k denote the assumed number of observed 2-D sinusoids, where k < P . For any δ > 0, define

the set ∆δ to be a subset of the parameter space Θk such that each vector θk ∈ ∆δ is different

from the vector θ0k by at least δ, at least in one of its coordinates, i.e.,

∆δ =

[

k
⋃

i=1

Riδ

]

∪
[

k
⋃

i=1

Φiδ

]

∪
[

k
⋃

i=1

Wiδ

]

∪
[

k
⋃

i=1

Viδ

]

, (8)

where

Riδ =
{

θk ∈ Θk : |ρi − ρ0i | ≥ δ; δ > 0
}

,

Φiδ =
{

θk ∈ Θk : |ϕi − ϕ0
i | ≥ δ; δ > 0

}

,

Wiδ =
{

θk ∈ Θk : |ωi − ω0
i | ≥ δ; δ > 0

}

,

Viδ =
{

θk ∈ Θk : |υi − υ0
i | ≥ δ; δ > 0

}

. (9)
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To prove the main result of this section we shall need an additional assumption and the

following lemmas:

Assumption 4: For convenience, and without loss of generality, we assume that the sinusoids

are indexed according to a descending order of their amplitudes, i.e.,

ρ01 ≥ ρ02 ≥ . . . ρ0k > ρ0k+1 . . . ≥ ρ0P > 0 , (10)

where we assume that for a given k, ρ0k > ρ0k+1 to avoid trivial ambiguities resulting from the case

where the k-th dominant component is not unique.

Lemma 1.

lim inf
Ψ(N,M)→∞

inf
θk∈∆δ

(

Lk(θk)− Lk(θ
0
k)
)

> 0 a.s. (11)

Proof: See Appendix A for the proof.

Lemma 2. Let {xn, n ≥ 1} be a sequence of random variables. Then

Pr{xn ≤ 0 i.o.} ≤ Pr{lim inf
n→∞

xn ≤ 0}, (12)

where the abbreviation i.o. stands for infinitely often.

Proof: See Appendix B for the proof.

The next theorem establishes the strong consistency of the least squares estimator in the case

where the number of the regressors is lower than the actual number of sinusoids.

Theorem 1. Let Assumptions 1-4 be satisfied. Then, the k-regressor parameter vector θ̂k =

(ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂k, ω̂k, υ̂k, ϕ̂k) that minimizes (7) is a strongly consistent estimator of θ0k =

(ρ01, ω
0
1, υ

0
1, ϕ

0
1, . . . , ρ

0
k, ω

0
k, υ

0
k, ϕ

0
k) as Ψ(N,M) → ∞. That is,

θ̂k → θ0k a.s. as Ψ(N,M) → ∞. (13)

Proof: The proof follows an argument proposed by Wu [15], Lemma 1. Let

θ̂k = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂k, ω̂k, υ̂k, ϕ̂k) be a parameter vector that minimizes (7). Assume that the

proposition θ̂k → θ0k a.s. as Ψ(N,M) → ∞ is not true. Then, there exists some δ > 0, such that

([1], Theorem 4.2.2, p. 69),

Pr(θ̂k ∈ ∆δ i.o.) > 0. (14)

This inequality together with the definition of θ̂k as a vector that minimizes Lk implies

Pr( inf
θk∈∆δ

(

Lk(θk)−Lk(θ
0
k)
)

≤ 0 i.o.) > 0. (15)
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Using Lemma 2 we obtain

Pr( lim inf
Ψ(N,M)→∞

inf
θk∈∆δ

(

Lk(θk)− Lk(θ
0
k)
)

≤ 0) ≥ Pr( inf
θk∈∆δ

(

Lk(θk)− Lk(θ
0
k)
)

≤ 0 i.o.) > 0, (16)

which contradicts (11). Hence,

θ̂k → θ0k a.s. as Ψ(N,M) → ∞. (17)

Remark: Lemma 1 and Theorem 1 remain valid even under less restrictive assumptions

regarding the noise field {w(n,m)}. If the field {u(n,m)} is an i.i.d. real valued zero-mean

random field with finite variance σ2, and the sequence a(i, j) is a square summable deterministic

sequence, i.e.,
∑

(r,s)∈D a2(r, s) < ∞, then Lemma 1 and Theorem 1 hold.

3.2 Consistency of the LSE for an Over-Estimated Model Order

Let k denote the assumed number of observed 2-D sinusoids, where k > P . Without loss of

generality, we can assume that k = P + 1, (as the proof for k ≥ P + 1 follows immediately

by repeating the same arguments). Let the periodogram (scaled by a factor of 2) of the field

{w(n,m)} be given by

Iw(ω, υ) =
2

NM

∣

∣

∣

∣

∣

N−1
∑

n=0

M−1
∑

m=0

w(n,m)e−j(nω+mυ)

∣

∣

∣

∣

∣

2

. (18)

The parameter spaces ΘP , ΘP+1 are defined as in Definition 2.

Theorem 2. Let Assumptions 1-4 be satisfied. Then, the parameter vector

θ̂P+1 = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂P , ω̂P , υ̂P , ϕ̂P , ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1) ∈ ΘP+1 that minimizes (7) with

k = P+1 regressors as Ψ(N,M) → ∞ is composed of the vector θ̂P = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂P , ω̂P , υ̂P , ϕ̂P )

which is a strongly consistent estimator of θ0P = (ρ01, ω
0
1, υ

0
1, ϕ

0
1, . . . , ρ

0
P , ω

0
P , υ

0
P , ϕ

0
P ) as Ψ(N,M) →

∞; of the pair of spatial frequencies (ω̂P+1, υ̂P+1) that maximizes the periodogram of the observed

realization of the field {w(n,m)}, i.e.,

(ω̂P+1, υ̂P+1) = argmax
(ω,υ)∈(0,2π)2

Iw(ω, υ), (19)

and of the element ρ̂P+1 that satisfies

ρ̂2P+1 =
2

NM
Iw(ω̂P+1, υ̂P+1) . (20)
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Proof: Let θP+1 = (ρ1, ω1, υ1, ϕ1, . . . , ρP , ωP , υP , ϕP , ρP+1, ωP+1, υP+1, ϕP+1), be some vector

in the parameter space ΘP+1. We have,

LP+1(θP+1) =
1

NM

N−1
∑

n=0

M−1
∑

m=0

(

y(n,m)−
P+1
∑

i=1

ρi cos(ωin+ υim+ ϕi)

)2

= 1
NM

N−1
∑

n=0

M−1
∑

m=0

(

y(n,m)−
P
∑

i=1

ρi cos(ωin+ υim+ ϕi)

)2

+ 1
NM

N−1
∑

n=0

M−1
∑

m=0

(

ρP+1 cos(ωP+1n+ υP+1m+ ϕP+1)

)2

− 2
NM

N−1
∑

n=0

M−1
∑

m=0

(

y(n,m)−
P
∑

i=1

ρi cos(ωin+ υim+ ϕi)

)(

ρP+1 cos(ωP+1n+ υP+1m+ ϕP+1)

)

= LP (θP ) +
ρ2
P+1

2
+ 1

2NM

N−1
∑

n=0

M−1
∑

m=0

ρ2P+1 cos(2ωP+1n+ 2υP+1m+ 2ϕP+1)

− 2
NM

N−1
∑

n=0

M−1
∑

m=0

w(n,m)ρP+1 cos(ωP+1n+ υP+1m+ ϕP+1)

− 2
NM

N−1
∑

n=0

M−1
∑

m=0

(

P
∑

i=1

ρ0i cos(ω
0
i n + υ0

im+ ϕ0
i )−

P
∑

i=1

ρi cos(ωin + υim+ ϕi)

)

(

ρP+1 cos(ωP+1n+ υP+1m+ ϕP+1)

)

= H1(θP+1) +H2(θP+1) +H3(θP+1)

(21)

where, θP = (ρ1, ω1, υ1, ϕ1, . . . , ρP , ωP , υP , ϕP ) ∈ ΘP and,

H1(θP+1) = LP (ρ1, ω1, υ1, ϕ1, . . . , ρP , ωP , υP , ϕP ) = LP (θP ), (22)

H2(θP+1) =
ρ2P+1

2
− 2

NM

N−1
∑

n=0

M−1
∑

m=0

w(n,m)ρP+1 cos(ωP+1n+ υP+1m+ ϕP+1), (23)

H3(θP+1) =
1

2NM

N−1
∑

n=0

M−1
∑

m=0

ρ2P+1 cos(2ωP+1n+ 2υP+1m+ 2ϕP+1)

− 2

NM

N−1
∑

n=0

M−1
∑

m=0

( P
∑

i=1

ρ0i cos(ω
0
i n + υ0

im+ ϕ0
i )−

P
∑

i=1

ρi cos(ωin+ υim+ ϕi)

)

(

ρP+1 cos(ωP+1n+ υP+1m+ ϕP+1)

)

. (24)

Let θ̂P = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂P , ω̂P , υ̂P , ϕ̂P ) be a vector in ΘP that minimizes H1(θP+1) =

LP (θP ). From [11] (or using Theorem 1 in the previous section),

θ̂P → θ0P a.s. as Ψ(N,M) → ∞. (25)

The function H2 is a function of ρP+1, ωP+1, υP+1, ϕP+1 only. Evaluating the partial derivatives

ofH2 with respect to these variables, it is easy to verify that the extremum points ofH2 are also the
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extremum points of the periodogram of the realization of the noise field. Moreover, let ρe, ωe, υe, ϕe

denote an extremum point of H2. Then at this point

H2(ρ
e, ωe, υe, ϕe) = −Iw(ω

e, υe)

NM
. (26)

Hence, the minimal value of H2 is obtained at the coordinates ρP+1, ωP+1, υP+1, ϕP+1 where

the periodogram of {w(n,m)} is maximal. Let ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1 denote the coordinates that

minimize H2. Then we have

(ω̂P+1, υ̂P+1) = argmin
(ω,υ)∈(0,2π)2

H2(ρP+1, ωP+1, υP+1, ϕP+1) = argmax
(ω,υ)∈(0,2π)2

Iw(ω, υ), (27)

and

ρ̂2P+1 =
2

NM
Iw(ω̂P+1, υ̂P+1). (28)

By Assumption 1, 2 and Theorem 1, [13], we have

sup
ω,υ

Iw(ω, υ) = O(logNM). (29)

Therefore,

H2(ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1) = O

(

logNM

NM

)

. (30)

Let θ̂P+1 ∈ ΘP+1 be the vector composed of the elements of the vector θ̂P ∈ ΘP and of

ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1, defined above, i.e.,

θ̂P+1 = (ρ̂1, ω̂1, υ̂1, ϕ̂1, . . . , ρ̂P , ω̂P , υ̂P , ϕ̂P , ρ̂P+1, ω̂P+1, υ̂P+1, ϕ̂P+1).

We need to verify that this vector minimizes LP+1(θP+1) on ΘP+1 as Ψ(N,M) → ∞ .

Recall that for ω ∈ (0, 2π) and ϕ ∈ [0, 2π)

N−1
∑

n=0

cos(ωn+ ϕ) =
sin
(

[N − 1
2
]ω + ϕ

)

+ sin
(

ω
2
− ϕ

)

2 sin
(

ω
2

) = O(1). (31)

Hence, as N → ∞
1

logN

N−1
∑

n=0

cos(ωn+ ϕ) = o(1) , (32)

and consequently

1

N

N−1
∑

n=0

cos(ωn+ ϕ) = o

(

logN

N

)

. (33)
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Next, we evaluate H3. Consider the first term in (24). By (33) we have

1

2NM

N−1
∑

n=0

M−1
∑

m=0

ρ2P+1 cos(2ωP+1n + 2υP+1m+ 2ϕP+1) = o

(

logNM

NM

)

, (34)

for any set of values ρP+1, ωP+1, υP+1, ϕP+1 may assume.

Consider the second term in (24). By (33) and unless there exists some i, 1 ≤ i ≤ P , such

that (ωP+1, υP+1) = (ω0
i , υ

0
i ), we have as Ψ(N,M) → ∞,

1

NM

N−1
∑

n=0

M−1
∑

m=0

P
∑

i=1

ρ0iρP+1 cos(ω
0
i n+ υ0

im+ϕ0
i ) cos(ωP+1n+ υP+1m+ϕP+1) = o

(

logNM

NM

)

, (35)

for any set of values ρP+1, ωP+1, υP+1, ϕP+1 may assume.

Assume now that there exists some i, 1 ≤ i ≤ P , such that (ωP+1, υP+1) = (ω0
i , υ

0
i ). Since by

assumption there are no two different regressors with identical spatial frequencies, it follows that

one of the estimated frequencies (ωi, υi) is due to noise contribution. Hence, by interchanging the

roles of (ωP+1, υP+1) and (ωi, υi), and repeating the above argument we conclude that this term

has the same order as in (35). Similarly, for the third term in (24): By (33) and unless there exists

some i, 1 ≤ i ≤ P , such that (ωP+1, υP+1) = (ωi, υi), we have as Ψ(N,M) → ∞,

1

NM

N−1
∑

n=0

M−1
∑

m=0

P
∑

i=1

ρiρP+1 cos(ωin+ υim+ ϕi) cos(ωP+1n + υP+1m+ ϕP+1) = o

(

logNM

NM

)

. (36)

However such i for which (ωP+1, υP+1) = (ωi, υi) cannot exist, as this amounts to reducing the

number of regressors from P + 1 to P , as two of them coincide. Hence, for any θP+1 ∈ ΘP+1 as

Ψ(N,M) → ∞
H3(θP+1) = o

(

logNM

NM

)

. (37)

On the other hand, the strong consistency (25) of the LSE under the correct model order assump-

tion implies that as Ψ(N,M) → ∞ the minimal value of LP (θP ) = σ2
∑

(r,s)∈D a2(r, s) a.s., while

from (30) we have for the minimal value of H2 that H2(θP+1) = O
(

logNM

NM

)

. Hence, the value

of H3(θP+1) at any point in Θp+1 is negligible even relative to the values LP (θP ) and H2(θP+1)

assume at their respective minimum points. Therefore, evaluating (21) as Ψ(N,M) → ∞ we have

LP+1(θP+1) = LP (θP ) +H2(ρP+1, ωP+1, υP+1, ϕP+1) +H3(θP+1)

= LP (θP ) +H2(ρP+1, ωP+1, υP+1, ϕP+1) + o

(

logNM

NM

)

. (38)

Since LP (θP ) is a function of the parameter vector θP and is independent of ρP+1, ωP+1, υP+1, ϕP+1,

while H2 is a function of ρP+1, ωP+1, υP+1, ϕP+1 and is independent of θP , the problem of min-

imizing LP+1(θP+1) becomes separable as Ψ(N,M) → ∞. Thus minimizing (38) is equivalent
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to separately minimizing LP (θP ) and H2(ρP+1, ωP+1, υP+1, ϕP+1) as Ψ(N,M) → ∞. Using the

foregoing conclusions, the theorem follows.

3.3 Discussion

In the above theorems, we have considered the problem of least squares estimation of the param-

eters of 2-D sinusoidal signals observed in the presence of an additive colored noise field, when

the assumed number of sinusoids is incorrect. In the case where the number of sinusoidal signals

is under-estimated we have established the almost sure convergence of the least squares estimates

to the parameters of the dominant sinusoids. This result can be intuitively explained using the

basic principles of least squares estimation: Since the least squares estimate is the set of model

parameters that minimizes the ℓ2 norm of the error between the observations and the assumed

model, it follows that in the case where the model order is under-estimated the minimum error

norm is achieved when the k most dominant sinusoids are correctly estimated. Similarly, in the

case where the number of sinusoidal signals is over-estimated, the estimated parameter vector ob-

tained by the least squares estimator contains a 4P -dimensional sub-vector that converges almost

surely to the correct parameters of the sinusoids, while the remaining k−P components assumed

to exist, are assigned to the k − P most dominant spectral peaks of the noise power to further

minimize the norm of the estimation error.

4 Strong Consistency of a Family of Model Order Selec-

tion Rules

In this section we employ the results derived in the previous section in order to establish the strong

consistency of a new model order selection rule.

It is assumed that there are Q competing models, where Q is finite, Q > P , and that each com-

peting model k ∈ ZQ = {0, 1, 2, . . . , Q − 1} is equiprobable. Following the MDL-MAP template,

define the statistic

χξ(k) = NM logLk(θ̂k) + ξk logNM, (39)

where ξ is some finite constant to be specified later, and Lk(θ̂k) is the minimal value of the error

variance of the least squares estimator.

10



The number of 2-D sinusoids is estimated by minimizing χξ(k) over k ∈ ZQ, i.e.,

P̂ = argmin
k∈ZQ

{

χξ(k)

}

. (40)

Let

A :=

∑

(r,s)∈D
∑

(q,t)∈D |a(r, s)a(q, t)|
∑

(r,s)∈D a2(r, s)
. (41)

The objective of the next theorem is to prove the asymptotic consistency of the model order

selection procedure in (40).

Theorem 3. Let Assumptions 1-4 be satisfied. Let P̂ be given by (40) with ξ > 14A. Then as

Ψ(N,M) → ∞
P̂ → P a.s. (42)

Proof:

For k ≤ P ,

χξ(k − 1)− χξ(k)

= NM logLk−1(θ̂k−1) + ξ(k − 1) logNM −NM logLk(θ̂k)− ξk logNM

= NM log

(Lk−1(θ̂k−1)

Lk(θ̂k)

)

− ξ logNM. (43)

From Theorem 1 as Ψ(N,M) → ∞

θ̂k → θ0k a.s., (44)

and

θ̂k−1 → θ0k−1 a.s. (45)

From the definition of Lk(θ̂k), and (44)

Lk(θ̂k) =
1

NM

N−1
∑

n=0

M−1
∑

m=0

(

y(n,m)−
k
∑

i=1

ρ̂i cos(ω̂in+ υ̂im+ ϕ̂i)

)2

= 1
NM

N−1
∑

n=0

M−1
∑

m=0

(

P
∑

i=1

ρ0i cos(ω
0
i n + υ0

im+ ϕ0
i ) + w(n,m)−

k
∑

i=1

ρ̂i cos(ω̂in+ υ̂im+ ϕ̂i)

)2

−→
Ψ(N,M)→∞

1
NM

N−1
∑

n=0

M−1
∑

m=0

(

P
∑

i=k+1

ρ0i cos(ω
0
i n + υ0

im+ ϕ0
i ) + w(n,m)

)2

.

(46)
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From Lemma 3 in Appendix C we have that as Ψ(N,M) → ∞

sup
ω,υ

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

w(n,m) cos(ωn+ υm)

∣

∣

∣

∣

∣

→ 0 a.s. (47)

Hence, from the Assumption 3, (31), (47) and the Strong Law of Large Numbers, we conclude

that as Ψ(N,M) → ∞

Lk(θ̂k) → σ2
∑

(r,s)∈D
a2(r, s) +

P
∑

i=k+1

(ρ0i )
2

2
a.s. (48)

and similarly

Lk−1(θ̂k−1) → σ2
∑

(r,s)∈D
a2(r, s) +

P
∑

i=k

(ρ0i )
2

2
a.s. (49)

Since logNM

NM
tends to zero, as Ψ(N,M) → ∞, then as Ψ(N,M) → ∞

(NM)−1(χξ(k − 1)− χξ(k)) → log

(

1 +
(ρ0k)

2

2σ2
∑

(r,s)∈D a2(r, s) +
∑P

i=k+1(ρ
0
i )

2

)

a.s. (50)

Since log

(

1+
(ρ0

k
)2

2σ2
P

(r,s)∈D a2(r,s)+
PP

i=k+1(ρ
0
i )

2

)

is strictly positive, then χξ(k− 1) > χξ(k). Hence,

for k ≤ P , the function χξ(k) is monotonically decreasing with k.

We next consider the case where k = P + l for any integer l ≥ 1.

Based on [13], Theorem 1 and Assumptions 1, 2 we have that

lim sup
Ψ(N,M)→∞

sup
ω,υ

Iw(ω, υ)

sup
ω,υ

fw(ω, υ) log(NM)
≤ 14 a.s. (51)

Based on an extension of Theorem 2 we have that a.s. as Ψ(N,M) → ∞

LP+l(θ̂P+l) = LP (θ̂P )−
Ul

NM
+ o

(

logNM

NM

)

, (52)

where

Ul =

l
∑

i=1

Iw(ωi, υi), (53)

is the sum of the l largest elements of the periodogram of the noise field {w(s, t)}. Clearly

Ul ≤ l sup
ω,υ

Iu(ω, υ). (54)

12



Similarly to (43), a.s. as Ψ(N,M) → ∞,

χξ(P + l)− χξ(P )

= NM logLP+l(θ̂P+l) + ξ(P + l) logNM −NM logLP (θ̂P )− ξP logNM

= ξl logNM +NM log

(

1− Ul

NMLP (θ̂P )
+ o

(

logNM

NM

)

)

= ξl logNM −
(

Ul

LP (θ̂P )
+ o(logNM)

)

(1 + o(1))

= logNM

(

ξl − Ul

LP (θ̂P ) logNM
+ o(1)

)

≥ logNM

(

ξl −
l sup

ω,υ

Iw(ω, υ)

LP (θ̂P ) logNM
+ o(1)

)

= l logNM

(

ξ −
sup
ω,υ

Iw(ω, υ)

sup
ω,υ

fw(ω, υ) logNM

sup
ω,υ

fw(ω, υ)

LP (θ̂P )
+ o(1)

)

, (55)

where the second equality is obtained by substituting LP+l(θ̂P+l) using the equality (52). The third

equality is due to the property that for x → 0, log(1 + x) = x(1 + o(1)), where the observation

that the term Ul

NMLP (θ̂P )
tends to zero a.s. as Ψ(N,M) → ∞ is due to (51).

From [11] (or using Theorem 1 in the previous section),

θ̂P → θ0P a.s. as Ψ(N,M) → ∞. (56)

Hence, the strong consistency (56) of the LSE under the correct model order assumption implies

that as Ψ(N,M) → ∞
LP (θ̂P ) → σ2

∑

(r,s)∈D
a2(r, s) a.s. (57)

On the other hand using the triangle inequality

sup
ω,υ

fw(ω, υ) ≤ σ2
∑

(r,s)∈D

∑

(q,t)∈D
|a(r, s)a(q, t)|. (58)

Substituting (51),(57) and (58) into (55) we conclude that

χξ(P + l)− χξ(P ) > 0 (59)

for any integer l ≥ 1. Therefore, a.s. as Ψ(N,M) → ∞, the function χξ(k) has a global

minimum for k = P .
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5 Special Case

Introducing some additional restrictions on the structure of the noise field, we can establish a

tighter (in terms of ξ) model order selection rule. We thus modify our earlier Assumption 1, 2

regarding the noise field as follows:

Assumption 1’ The noise field {w(n,m)} is an infinite order quarter-plane MA field, i.e.,

w(n,m) =

∞
∑

r,s=0

a(r, s)u(n− r,m− s) (60)

where the field {u(n,m)} is an i.i.d. real valued zero-mean random field with finite variance σ2,

such that E[u(n,m)2 log |u(n,m)|] < ∞.

Assumption 2’ The sequence a(i, j) is a deterministic sequence which satisfied the condition

∞
∑

r,s=0

(r + s)|a(r, s)| < ∞. (61)

In this case, based on [7], Theorem 3.2 and Assumption 1’, 2’ we have that

lim sup
Ψ(N,M)→∞

sup
ω,υ

Iw(ω, υ)

sup
ω,υ

fw(ω, υ) log(NM)
≤ 8 a.s. (62)

The results of Theorem 1 and 2 are not affected by this assumption. The only change is in

Theorem 3. Therefore we can formulate the next theorem:

Theorem 4. Let Assumptions 1’, 2’, 3 and 4 be satisfied. Let P̂ be given by (40) with ξ > 8A.

Then as Ψ(N,M) → ∞
P̂ → P a.s. (63)

The proof of this theorem is identical to the proof of Theorem 3, where instead of (51) we

employ the inequality in (62).

6 Conclusions

We have considered the problem of jointly estimating the number as well as the parameters of

two-dimensional sinusoidal signals, observed in the presence of an additive colored noise field.

We have established the strong consistency of the LSE when the number of sinusoidal signals is
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under-estimated, or over-estimated. Based on these results, we have proved the strong consistency

of a new model order selection rule for the number of sinusoidal components.

Appendix A

Lemma 1.

lim inf
Ψ(N,M)→∞

inf
θk∈∆δ

(

Lk(θk)− Lk(θ
0
k)
)

> 0 a.s. (64)

Proof:

In the following we first show that on ∆δ the sequence Lk(θk) − Lk(θ
0
k) (indexed in N,M)

is uniformly lower bounded by a strictly positive constant as Ψ(N,M) → ∞. Since the se-

quence elements are uniformly lower bounded by a strictly positive constant the sequence of infi-

mums, inf
θk∈∆δ

(Lk(θk)−Lk(θ
0
k)), is uniformly lower bounded by the same strictly positive constant

as Ψ(N,M) → ∞, and hence, lim inf
Ψ(N,M)→∞

inf
θk∈∆δ

(Lk(θk)− Lk(θ
0
k)).

Thus, we first prove that the sequence Lk(θk)−Lk(θ
0
k) is uniformly lower bounded away from

zero on ∆δ as Ψ(N,M) → ∞.

Lk(θk)− Lk(θ
0
k)

= 1
NM

N−1
∑

n=0

M−1
∑

m=0

(

y(n,m)−
k
∑

i=1

ρi cos(ωin+ υim+ ϕi)

)2

− 1
NM

N−1
∑

n=0

M−1
∑

m=0

(

y(n,m)−
k
∑

i=1

ρ0i cos(ω
0
i n+ υ0

im+ ϕ0
i )

)2

= 1
NM

N−1
∑

n=0

M−1
∑

m=0

(

P
∑

i=1

ρ0i cos(ω
0
i n + υ0

im+ ϕ0
i ) + w(n,m)−

k
∑

i=1

ρi cos(ωin+ υim+ ϕi)

)2

− 1
NM

N−1
∑

n=0

M−1
∑

m=0

(

P
∑

i=k+1

ρ0i cos(ω
0
i n+ υ0

im+ ϕ0
i ) + w(n,m)

)2

= 1
NM

N−1
∑

n=0

M−1
∑

m=0

(

k
∑

i=1

ρ0i cos(ω
0
i n + υ0

im+ ϕ0
i )−

k
∑

i=1

ρi cos(ωin+ υim+ ϕi)

)2

+ 2
NM

N−1
∑

n=0

M−1
∑

m=0

(

P
∑

i=k+1

ρ0i cos(ω
0
i n+ υ0

im+ ϕ0
i )

)

(

k
∑

i=1

ρ0i cos(ω
0
i n+ υ0

im+ ϕ0
i )−

k
∑

i=1

ρi cos(ωin+ υim+ ϕi)

)

+ 2
NM

N−1
∑

n=0

M−1
∑

m=0

w(n,m)

(

k
∑

i=1

ρ0i cos(ω
0
i n+ υ0

im+ ϕ0
i )−

k
∑

i=1

ρi cos(ωin+ υim+ ϕi)

)

= I1 + I2 + I3.

(65)

Thus, to check the asymptotic behavior of L.H.S. of (65) we have to evaluate lim
Ψ(N,M)→∞

(I1+I2+I3)
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for all vectors θk ∈ ∆δ:

lim
Ψ(N,M)→∞

I1 = lim
Ψ(N,M)→∞

1
NM

N−1
∑

n=0

M−1
∑

m=0

(

k
∑

i=1

ρ0i cos(ω
0
i n+ υ0

im+ ϕ0
i )

)2

− lim
Ψ(N,M)→∞

[

2 1
NM

N−1
∑

n=0

M−1
∑

m=0

k
∑

i=1

k
∑

j=1

ρiρ
0
j cos(ωin + υim+ ϕi) cos(ω

0
jn+ υ0

jm+ ϕ0
j )

]

+ lim
Ψ(N,M)→∞

1
NM

N−1
∑

n=0

M−1
∑

m=0

(

k
∑

i=1

ρi cos(ωin + υim+ ϕi)

)2

= T1 + T2 + T3.

(66)

Recall that for |ρ| < ∞ and ϕ ∈ [0, 2π)

lim
N→∞

1

N

N−1
∑

n=0

ρ cos(ωn+ ϕ) = 0, (67)

uniformly in ω on any closed interval in (0, 2π). The same equality is hold for the sine function.

Hence, due to Assumption 3 and (67), we have

T1 = lim
Ψ(N,M)→∞

1

NM

N−1
∑

n=0

M−1
∑

m=0

( k
∑

i=1

ρ0i cos(ω
0
i n+ υ0

im+ ϕ0
i )

)2

=

k
∑

i=1

(ρ0i )
2

2
, (68)

independently of θk.

Also,

T3 = lim
Ψ(N,M)→∞

1
NM

N−1
∑

n=0

M−1
∑

m=0

(

k
∑

i=1

ρi cos(ωin + υim+ ϕi)

)2

=
k
∑

i=1

(ρi)2

2

+ lim
Ψ(N,M)→∞

1
NM

N−1
∑

n=0

M−1
∑

m=0

k
∑

i=1
i 6=j

k
∑

j=1

ρiρj cos(ωin+ υim+ ϕi) cos(ωjn+ υjm+ ϕj).
(69)

Since the pairs (ωi, υi) are pairwise different, then on any closed interval in (0, 2π) the sequence of

partial sums 1
NM

N−1
∑

n=0

M−1
∑

m=0

k
∑

i=1
i 6=j

k
∑

j=1

ρiρj cos(ωin+ υim+ ϕi) cos(ωjn+ υjm+ ϕj) converges uniformly

to zero as Ψ(N,M) → ∞.

Hence,

T3 =
k
∑

i=1

(ρi)
2

2
, (70)

as Ψ(N,M) → ∞ uniformly on ∆δ.

Leaving T2 unchanged we obtain

lim
Ψ(N,M)→∞

I1 =
k
∑

i=1

(

(ρ0i )
2

2
+ (ρi)2

2

)

− lim
Ψ(N,M)→∞

2
NM

N−1
∑

n=0

M−1
∑

m=0

k
∑

i=1

k
∑

j=1

ρiρ
0
j cos(ωin+ υim+ ϕi) cos(ω

0
jn+ υ0

jm+ ϕ0
j),

(71)

16



uniformly on ∆δ.

Using the similar considerations to those employed in the evaluation of (68) we obtain

lim
Ψ(N,M)→∞

I2 = lim
Ψ(N,M)→∞

[

2
NM

N−1
∑

n=0

M−1
∑

m=0

(

P
∑

i=k+1

ρ0i cos(ω
0
i n + υ0

im+ ϕ0
i )

)

(

k
∑

i=1

ρ0i cos(ω
0
i n + υ0

im+ ϕ0
i )−

k
∑

i=1

ρi cos(ωin + υim+ ϕi)

)]

= − lim
Ψ(N,M)→∞

[

2
NM

N−1
∑

n=0

M−1
∑

m=0

k
∑

i=1

P
∑

j=k+1

ρiρ
0
j cos(ωin + υim+ ϕi) cos(ω

0
jn+ υ0

jm+ ϕ0
j )

]

.

(72)

By Lemma 3 in Appendix C, we have that a.s. as Ψ(N,M) → ∞ :

sup
θk∈∆δ

∣

∣

∣

∣

∣

2

NM

N−1
∑

n=0

M−1
∑

m=0

w(n,m)

( k
∑

i=1

ρ0i cos(ω
0
i n+ υ0

im+ ϕ0
i )−

k
∑

i=1

ρi cos(ωin + υim+ ϕi)

)

∣

∣

∣

∣

∣

→ 0.

(73)

Hence I3 → 0 a.s. as Ψ(N,M) → ∞ uniformly on ∆δ. Using (71), (72) and (73) we conclude

that a.s.

lim
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)) =

k
∑

i=1

(

(ρ0i )
2

2
+ (ρi)2

2

)

− lim
Ψ(N,M)→∞

2
NM

N−1
∑

n=0

M−1
∑

m=0

k
∑

i=1

P
∑

j=1

ρiρ
0
j cos(ωin+ υim+ ϕi) cos(ω

0
jn+ υ0

jm+ ϕ0
j).

(74)

To complete the evaluation of (74) we consider the vectors θk ∈ ∆δ. Let us first assume that

∆δ ≡ Rqδ for some q, 1 ≤ q ≤ k. Thus, the coordinate ρq of each vector in this subset is different

from the corresponding coordinate ρ0q by at least δ > 0. Consider first the case where all the other

elements of the vector θk ∈ Rqδ are identical to the corresponding elements of θ0k. Since by this

assumption ωj = ω0
j , υj = υ0

j , ϕj = ϕ0
j for 1 ≤ j ≤ k, and ρj = ρ0j for 1 ≤ j ≤ k, j 6= q, on this set

we have

lim
Ψ(N,M)→∞

(

Lk(θk)− Lk(θ
0
k)
)

=

(

ρ0q√
2
− ρq√

2

)2

− lim
Ψ(N,M)→∞

2

NM

N−1
∑

n=0

M−1
∑

m=0

k
∑

i=1
i 6=j

P
∑

j=1

ρiρ
0
j cos(ωin+ υim+ ϕi) cos(ω

0
jn + υ0

jm+ ϕ0
j)

=

(

ρ0q√
2
− ρq√

2

)2

≥ δ2

2
> 0, (75)

uniformly in ρq, where the second equality is due to Assumption 3 and following the arguments

employed to obtain (70).

Assume next that θk ∈ Rqδ (i.e., the coordinate ρq is different from the corresponding coor-

dinate ρ0q by at least δ > 0) and that in addition, there exists an element ρt of θk, such that
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1 ≤ t ≤ k, t 6= q and |ρt − ρ0t | ≥ λ, λ > 0 while all the other elements of the vector θk are identical

to the corresponding elements of θ0k. Following a similar derivation to the one in (75) we conclude

that

lim
Ψ(N,M)→∞

(

Lk(θk)− Lk(θ
0
k)
)

=

(

ρ0q√
2
− ρq√

2

)2

+

(

ρ0t√
2
− ρt√

2

)2

≥ δ2

2
+

λ2

2
>

δ2

2
, (76)

uniformly in ρq and ρt.

Consider the case where θk ∈ Rqδ while there exists an element ϕl of θk ∈ Rqδ, such that

|ϕl − ϕ0
l | ≥ η, η > 0 and all the other elements of the vector θk are identical to the corresponding

elements of θ0k. Following a similar derivation to the one in (75) we conclude that

lim
Ψ(N,M)→∞

(

Lk(θk)− Lk(θ
0
k)
)

=

{

(

ρ0q√
2
− ρq√

2

)2

+ (ρ0l )
2 − (ρ0l )

2 cos(ϕl − ϕ0
l ), l 6= q

(ρ0q)
2

2
+ (ρq)2

2
− ρ0qρq cos(ϕq − ϕ0

q), l = q

>
δ2

2
, (77)

uniformly in ρq and ϕl.

Finally, consider the case where θk ∈ Rqδ while there exists an element ωl of θk ∈ Rqδ, such that

|ωl − ω0
l | ≥ η, η > 0 and all the other elements of the vector θk are identical to the corresponding

elements of θ0k. Following a similar derivation to the one in (75) we conclude that

lim inf
Ψ(N,M)→∞

(

Lk(θk)−Lk(θ
0
k)
)

=

{

(

ρ0q√
2
− ρq√

2

)2

+ (ρ0l )
2, l 6= q

(ρ0q)
2

2
+ (ρq)2

2
, l = q

>
δ2

2
, (78)

uniformly in ρq and ωl.

From the above analysis it is clear that lim
Ψ(N,M)→∞

(Lk(θk)−Lk(θ
0
k)) is lower bounded by δ2

2

uniformly in Rqδ.

Following similar reasoning, the next subset we consider is Wqδ∪Vqδ. We first consider a subset

of this set:

Λ =
{

θk ∈ Wqδ ∪ Vqδ : ∃p, k + 1 ≤ p ≤ P, (ωq, υq) = (ω0
p, υ

0
p)
}

⊂ Wqδ ∪ Vqδ (79)

This subset includes vectors in Θk, such that their coordinate pairs (ωq, υq) are different from the

corresponding pairs of θ0k and equal to some pair (ω0
p, υ

0
p) where p ≥ k+1. As above, the minimum

is obtained when all the other elements of θk are identical to the corresponding elements of θ0k.

Hence, uniformly on Λ, we have

lim
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)) ≥

(ρ0q)
2

2
+ (ρq)2

2
− ρ0pρq

=
(ρ0q)

2

2
− (ρ0p)

2

2
+

(

ρ0p√
2
− ρq√

2

)2

≥ (ρ0q)
2

2
− (ρ0p)

2

2
= ǫΛ > 0,

(80)
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where the last inequality is due to Assumption 4.

On the complementary set:

Λc = (Wqδ ∪ Vqδ) \Λ =
{

θk ∈ Wqδ ∪ Vqδ : (ωq, υq) 6= (ω0
p, υ

0
p), ∀p, k + 1 ≤ p ≤ P

}

(81)

we have
lim

Ψ(N,M)→∞
(Lk(θk)− Lk(θ

0
k)) ≥

(ρ0q)
2

2
+ (ρq)2

2
≥ (ρ0q)

2

2
= ǫΛc > 0.

(82)

Finally, on the set Φqδ the coordinate ϕq of the each vector in this subset is different from the

corresponding coordinate ϕ0
q by at least δ > 0. As in previous cases , the minimum is obtained

when all the other elements of θk ∈ Φqδ are identical to the corresponding elements of θ0k. Hence,

uniformly on Φqδ, we have

lim
Ψ(N,M)→∞

(Lk(θk)− Lk(θ
0
k)) ≥ (ρ0q)

2 − (ρ0q)
2 cos(ϕq − ϕ0

q) ≥ (ρ0q)
2(1− cos δ) = ǫΦqδ

> 0. (83)

Let ǫq = min( δ
2

2
, ǫΛ, ǫΛc , ǫΦqδ

). Collecting (75),(80), (82) and (83) together we conclude that

the sequence Lk(θk) − Lk(θ
0
k) is lower bounded by ǫq > 0 uniformly on Rqδ ∪ Φqδ ∪Wqδ ∪ Vqδ as

Ψ(N,M) → ∞.

By repeating the same arguments for every q, 1 ≤ q ≤ k, and by letting ǫ = min(ǫ1, . . . , ǫk), we

conclude that the sequence Lk(θk)−Lk(θ
0
k) (indexed in N,M) is lower bounded by ǫ > 0 uniformly

on ∆δ as Ψ(N,M) → ∞.

Hence, it follows that sequence inf
θk∈∆δ

(Lk(θk)−Lk(θ
0
k)) (indexed in N,M) is also asymptotically

lower bounded by ǫ > 0, i.e.,

inf
θk∈∆δ

(

Lk(θk)−Lk(θ
0
k)
)

≥ ǫ, (84)

as Ψ(N,M) → ∞.

Hence, by the definition of lim inf

lim inf
Ψ(N,M)→∞

inf
θk∈∆δ

(

Lk(θk)− Lk(θ
0
k)
)

≥ ǫ > 0. (85)

Appendix B

Lemma 2. Let {xn, n ≥ 1} be a sequence of random variables. Then

Pr{xn ≤ 0 i.o.} ≤ Pr{lim inf
n→∞

xn ≤ 0} (86)
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Proof: Let (Ω,Σ, p) be some probability space. Let {xn(ω), n ≥ 1} be a sequence of random

variables. Let {An ∈ Σ, n ≥ 1} be a sequence of subsets of Ω, such that An = {ω ∈ Ω : xn(ω) ≤ 0}.
Define

Am
n =

∞
⋃

n=m

{ω : xn ≤ 0} . (87)

Then

Am
n ⊆ {ω : inf

n≥m
xn ≤ 0} . (88)

Hence ∞
⋂

m1

Am
n ⊆

∞
⋂

m1

{ω : inf
n≥m

xn ≤ 0} . (89)

Consider the R.H.S. of (89), and let ym(ω) = inf
n≥m

xn. Since for all ω ∈
∞
⋂

m1

{ω : inf
n≥m

xn ≤ 0},
ym(ω) ≤ 0 for all m, then by definition sup

m

ym(ω) ≤ 0 as well. On the other hand if sup
m

ym(ω) ≤ 0,

then for all m, ym(ω) ≤ 0. Hence we have the following set equality

∞
⋂

m1

{ω : inf
n≥m

xn ≤ 0} = {ω : sup
m

inf
n≥m

xn ≤ 0}. (90)

Rewriting (89) we have

∞
⋂

m=1

∞
⋃

n=m

An ⊆ {ω : sup
m

inf
n≥m

xn ≤ 0} = {ω : lim inf
n→∞

xn(ω) ≤ 0}, (91)

where the equality on the R.H.S. of (91) follows from the definition of lim inf
n→∞

(·) of a sequence xn.

Also by definition,
∞
⋂

m1

∞
⋃

n=m

An = lim sup
n→∞

An. Hence, (see, e.g., [1], p. 67)

lim sup
n→∞

An = {ω : xn(ω) ≤ 0 i.o.} ⊆ {ω : lim inf
n→∞

xn(ω) ≤ 0}. (92)

Due to the monotonicity of the probability measure, the lemma follows.

Appendix C

Let D be an infinite order non-symmetrical half-plane support defined as in (3) and let D(k, l)

be a finite order non-symmetrical half-plane support, defined by

D(k, l) =
{

(i, j) ∈ Z
2 : i = 0, 0 ≤ j ≤ l

}

∪
{

(i, j) ∈ Z
2 : 0 < i ≤ k,−l ≤ j ≤ l

}

(93)

Let the field {w(n,m)} be defined as in (4), and the field {u(n,m)} is an i.i.d. real valued

zero-mean random field with finite second order moment, σ2. The sequence a(i, j) is a square

summable deterministic sequence,
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∑

(r,s)∈D
a2(r, s) < ∞. (94)

The next lemma is an extension of a lemma originally proposed by Hannan, [6] for the case of

1-D signals. Similar result can be found in [11], Lemma 2, but with only a partial proof. Since

this lemma is crucial for our work we will prove it here.

Lemma 3.

sup
ω,υ

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

w(n,m) cos (ωn+ νm)

∣

∣

∣

∣

∣

→ 0 a.s. as Ψ(N,M) → ∞ (95)

Proof:

First, it is easy to see that,

sup
ω,υ

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

w(n,m) cos (ωn+ νm)

∣

∣

∣

∣

∣

≤

sup
ω,υ

∣

∣

∣

∣

∣

1

2NM

N−1
∑

n=0

M−1
∑

m=0

w(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

+ sup
ω,υ

∣

∣

∣

∣

∣

1

2NM

N−1
∑

n=0

M−1
∑

m=0

w(n,m)e−j(ωn+νm)

∣

∣

∣

∣

∣

. (96)

Hence it is sufficient to prove the lemma for exponentials, i.e., we wish to prove that

sup
ω,υ

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

w(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

→ 0 a.s. as Ψ(N,M) → ∞ (97)

Define the set D(k, l)C = D \D(k, l). Then,

w(n,m) =
∑

D(k,l)

a(r, s)u(n− r,m− s) +
∑

D(k,l)C

a(r, s)u(n− r,m− s) = v(n,m) + z(n,m). (98)

Then,

sup
ω,υ

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

z(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

≤ 1

NM

N−1
∑

n=0

M−1
∑

m=0

|z(n,m)| ≤
{

1

NM

N−1
∑

n=0

M−1
∑

m=0

z2(n,m)

}
1
2

. (99)

By the SLLN, the R.H.S. of the last inequality convergence, almost surely, to

E[z(0, 0)2]
1
2 =



σ2
∑

D(k,l)C

a(r, s)2





1
2

, (100)
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which due to (94) may be made arbitrary small by taking k and l sufficiently large.

Hence it is sufficient to prove the lemma with w(n,m) replaced by v(n,m).

sup
ω,υ

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

v(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

≤
∑

D(k,l)

|a(r, s)| sup
ω,υ

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

u(n− r,m− s)ej(ωn+νm)

∣

∣

∣

∣

∣

.(101)

Since the summation is finite and {u(n,m)} is i.i.d., it is sufficient to prove the lemma with

w(n,m) replaced by u(n,m). Thus, we consider the mean square of the discussed supremum

E



sup
ω,υ

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

2




= E

[

sup
ω,υ

1

(NM)2

N−1
∑

n=0

M−1
∑

m=0

N−1
∑

k=0

M−1
∑

l=0

u(n,m)u(k, l)ej(ω(n−k)+ν(m−l))

]

. (102)

By letting,

n− k = p,

m− l = r,
(103)

substitute,

N−1
∑

n=0

N−1
∑

k=0

=
∑

|p|<N

∑

n∈SN

,

M−1
∑

m=0

M−1
∑

l=0

=
∑

|r|<M

∑

m∈SM

,

(104)

where,

SN = {n ∈ Z : max(0, p) ≤ n ≤ min(N − 1, p+N − 1)},
SM = {m ∈ Z : max(0, r) ≤ m ≤ min(M − 1, r +M − 1)},

(105)

and,

∑

n∈SN

1 =

{

N − p, p ≥ 0

N + p, p < 0
= N − |p| ,

∑

m∈SM

1 =

{

M − r, r ≥ 0

M + r, r < 0
= M − |r| .

(106)
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Hence, rewriting (102) we have

1

(NM)2
E



sup
ω,υ

∑

|p|<N

∑

|r|<M

∑

n∈SN

∑

m∈SM

u(n,m)u(n− p,m− r)ej(ωp+νr)





=
1

(NM)2
E









N−1
∑

n=0

M−1
∑

m=0

u(n,m)2 + sup
ω,υ

∑

|p|<N

p 6=0

∑

|r|<M

r 6=0

∑

n∈SN

∑

m∈SM

u(n,m)u(n− p,m− r)ej(ωp+νr)









≤ 1

(NM)2















NMσ2 +
∑

|p|<N

p 6=0

∑

|r|<M

r 6=0

E

[∣

∣

∣

∣

∣

∑

n∈SN

∑

m∈SM

u(n,m)u(n− p,m− r)

∣

∣

∣

∣

∣

]















, (107)

where in the first equality we split up the sum into the squared term and the remainder, and then

employ the triangular inequality.

Let us investigate the second term on the R.H.S. of (107). From the Cauchy-Schwartz inequal-

ity, for any r.v. x, E [|x|] ≤ E
[

|x|2
]

1
2 , hence

E

[∣

∣

∣

∣

∣

∑

n∈SN

∑

m∈SM

u(n,m)u(n− p,m− r)

∣

∣

∣

∣

∣

]

≤ E





∣

∣

∣

∣

∣

∑

n∈SN

∑

m∈SM

u(n,m)u(n− p,m− r)

∣

∣

∣

∣

∣

2




1
2

=

(

∑

n∈SN

∑

m∈SM

∑

n′∈SN

∑

m′∈SM

E[u(n,m)u(n− p,m− r)u(n′, m′)u(n′ − p,m′ − r)]

)
1
2

=

(

∑

n∈SN

∑

m∈SM

σ4

) 1
2

= σ2(N − |p|) 1
2 (M − |r|) 1

2 . (108)

which follows from the observation that for p, r 6= 0, the fourth order moment of the field {u(n,m)}
equals zero for all n 6= n′ or m 6= m′.

Hence we can finally write

23



E



sup
ω,υ

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

2




≤ 1

(NM)2















NMσ2 +
∑

|p|<N

p 6=0

∑

|r|<M

r 6=0

σ2(N − |p|) 1
2 (M − |r|) 1

2















≤ σ2

(NM)2
{NM + 4(NM)

3
2} ≤ K

(NM)
1
2

= O(N− 1
2M− 1

2 ). (109)

where K some finite positive constant.

Now following the ideas of Doob, [2]( ch. X, 6), let R and S be some positive integers such

that N > Rδ, and M > Sδ, for δ > 2. Hence, for any such choice of N and M , from (109),

E



sup
ω,υ

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

2


 ≤ K

(RS)
δ
2

. (110)

Hence, if we take N = N(R) and M = M(S) to be the smallest integers not smaller then Rδ

and Sδ, respectively, then (110) still holds.

Hence, by Chebyshev inequality for every ǫ > 0

P



sup
ω,υ

∣

∣

∣

∣

∣

∣

1

N(R)M(S)

N(R)−1
∑

n=0

M(S)−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

∣

≥ ǫ





≤

E



sup
ω,υ

∣

∣

∣

∣

∣

1
N(R)M(S)

N(R)−1
∑

n=0

M(S)−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

2




ǫ2
≤ K

ǫ2(RS)
δ
2

(111)

and then since δ > 2

∞
∑

R=1

∞
∑

S=1

P



sup
ω,υ

∣

∣

∣

∣

∣

∣

1

N(R)M(S)

N(R)−1
∑

n=0

M(S)−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

∣

> ǫ



 ≤
∞
∑

R=1

∞
∑

S=1

K

ǫ2(RS)
δ
2

< ∞.(112)

Hence, by the Borel-Cantelly lemma,

sup
ω,υ

∣

∣

∣

∣

∣

∣

1

N(R)M(S)

N(R)−1
∑

n=0

M(S)−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

∣

→ 0 a.s. as Ψ(R, S) → ∞. (113)
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Now,

sup
N(R)≤N≤N(R+1)

M(S)≤M≤M(S+1)

sup
ω,υ

∣

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

u(n,m)ej(ωn+νm) − 1

NM

N(R)−1
∑

n=0

M(S)−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

∣

≤ sup
N(R)≤N≤N(R+1)

M(S)≤M≤M(S+1)

sup
ω,υ

1

NM

∣

∣

∣

∣

∣

∣

N(R)−1
∑

n=0

M−1
∑

m=M(S)

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

∣

+ sup
N(R)≤N≤N(R+1)

M(S)≤M≤M(S+1)

sup
ω,υ

1

NM

∣

∣

∣

∣

∣

∣

N−1
∑

n=N(R)

M(S)−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

∣

+ sup
N(R)≤N≤N(R+1)

M(S)≤M≤M(S+1)

sup
ω,υ

1

NM

∣

∣

∣

∣

∣

∣

N−1
∑

n=N(R)

M−1
∑

m=M(S)

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

∣

= I1 + I2 + I3. (114)

Consider the first term in the previous equation. Using the triangular inequality

I1 ≤
1

M(S)

M(S+1)−1
∑

m=M(S)



sup
ω

1

N(R)

∣

∣

∣

∣

∣

∣

N(R)−1
∑

n=0

u(n,m)ejωn

∣

∣

∣

∣

∣

∣



 . (115)

Let

ũ(m) = sup
ω

1

N(R)

∣

∣

∣

∣

∣

∣

N(R)−1
∑

n=0

u(n,m)ejωn

∣

∣

∣

∣

∣

∣

. (116)

Since {u(n,m)} is i.i.d., it is clear that {ũ(m)} is an i.i.d. sequence of random variables. Moreover,

from [6] (or by repeating the derivation in (98)-(110) for the process u(n,m) with a fixed m) we

have

E
[

ũ(m)2
]

= E



sup
ω

1

N(R)

∣

∣

∣

∣

∣

∣

N(R)−1
∑

n=0

u(n,m)ejωn

∣

∣

∣

∣

∣

∣

2

 ≤ K1

R
δ
2

. (117)

Taking the mean of the square of the I1 we have

E
[

|I1|2
]

≤ 1

M(S)2

M(S+1)−1
∑

m=M(S)

M(S+1)−1
∑

m′=M(S)

E [ũ(m)ũ(m′)]

≤ 1

M(S)2

M(S+1)−1
∑

m=M(S)

M(S+1)−1
∑

m′=M(S)

E
[

ũ(m)2
] 1

2 E
[

ũ(m′)2
] 1

2

≤ K1(M(S + 1)− 1−M(S))2

R
δ
2M(S)2

≤ K

R
δ
2S2

. (118)
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Using once again the Chebyshev inequality and the Borel-Cantelli lemma we have that I1 → 0

a.s. as Ψ(R, S) → ∞. Repeating the same consideration for I2 we have that I2 → 0 a.s. as

Ψ(R, S) → ∞. Finally, for I3 we have

E[|I3|2] ≤ E





∣

∣

∣

∣

∣

∣

1

N(R)M(S)

N(R+1)−1
∑

n=N(R)

M(R+1)−1
∑

m=M(S)

|u(n,m)|

∣

∣

∣

∣

∣

∣

2



=
1

(N(R)M(S))2

N(R+1)−1
∑

n=N(R)

M(S+1)−1
∑

m=M(S)

N(R+1)−1
∑

n′=N(R)

M(S+1)−1
∑

m′=M(S)

E[|u(n,m)u(n′, m′)|]

≤ σ2 (N(R + 1)− 1−N(R))2(M(S + 1)− 1−M(S))2

(N(R)M(S))2
≤ K

(RS)2
. (119)

Using again the Chebyshev inequality and the Borel-Cantelli lemma we have that I3 → 0 a.s.

as Ψ(R, S) → ∞.

Finally, we have that

sup
ω,υ

∣

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

u(n,m)ej(ωn+νm) − 1

NM

N(R)−1
∑

n=0

M(S)−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

∣

→ 0 a.s. (120)

for all N(R) ≤ N < N(R + 1) and M(S) ≤ M < M(S + 1), as Ψ(R, S) → ∞, and hence as

Ψ(N,M) → ∞,

Since N(R)
N(R+1)

→ 1 and M(S)
M(S+1)

→ 1 as Ψ(R, S) → ∞ we can replace 1
NM

in the second term by
1

N(R)M(S)
. Therefore, we have

sup
ω,υ

∣

∣

∣

∣

∣

∣

1

NM

N−1
∑

n=0

M−1
∑

m=0

u(n,m)ej(ωn+νm) − 1

N(R)M(S)

N(R)−1
∑

n=0

M(S)−1
∑

m=0

u(n,m)ej(ωn+νm)

∣

∣

∣

∣

∣

∣

→ 0 a.s. (121)

From (121) and (113) the lemma follows.
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