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Dual universality of hash functions and its
applications to quantum cryptography

Toyohiro Tsurumaru and Masahito Hayashi

Abstract—In this paper, we introduce the concept of dual
universality of hash functions and present its applicatios to
quantum cryptography. We begin by establishing the one-to-
one correspondence between a linear function familyz and a
code family C, and thereby defining e-almost dual universak
hash functions, as a generalization of the conventional unérsak

hash functions. Then we show that this generalized (and thus

broader) class of hash functions is in fact sufficient for the
security of quantum cryptography. This result can be explaned
in two different formalisms. First, by noting its relation t o the
0-biased family introduced by Dodis and Smith, we demonstrag
that Renner’s two-universal hashing lemma is generalizeda our
class of hash functions. Next, we prove that the proof techgue
by Shor and Preskill can be applied to quantum key distribution
(QKD) systems that use our generalized class of hash functie
for privacy amplification. While Shor-Preskill formalism r equires
an implementer of a QKD system to explicitly construct a linar
code of the Calderbank-Shor-Steane type, this result remas the
existing difficulty of the construction a linear code of CSS ode
by replacing it by the combination of an ordinary classical eror

correcting code and our proposed hash function. We also show

that a similar result applies to the quantum wire-tap channd.

Finally we compare our results in the two formalisms and show
that, in typical QKD scenarios, the Shor-Preskill-type argiment
gives better security bounds in terms of the trace distanceral
Holevo information, than the method based on thed-biased
family.

I. INTRODUCTION

hash functions guaranteeing the strong security. If sudassc
exists, we might realize a strongly secure privacy amptifica
with a smaller complexity. It is known that the class of
universa} hash functions is included in the classaflmost
universa} hash function$§|5],[[43]. However, as is shown in
Sectior VIII-B, there exists an example oflmost universal
hash functions that cannot yield the strong security. Hewee
have to consider another type of generalization of the aéss
universa} hash functions.

In this paper, in order to seek such a larger class, we restric
our hash functions to linear functions on a finite-dimenalon
space over the finite fielf, because a larger part of hash
functions with a smaller complexity are linear. Under the
restriction, we can find a one-to-one correspondence batwee
a hash function and a linear code by considering the kernel
of the hash function. Focusing on the dual code of the code
corresponding to the given hash function, we propose the
class ofe-almost dual universalhash functions as a class
of families of linear hash functions satisfying the followi
conditions:

1) The class of families of hash functions contains the class
of universaj hash functions.

2) Any family of hash functions in this class yields the
strong security when the generating key rate is suffi-
ciently small.

Extracting secure uniform random number is an impor- Hence, the relation among class of families of hash func-
tant task for cryptographic applications with the preseng®ns is summarized as Figl 1.
of quantum leaked information as well as that of classical

leaked information. For the quantum setting, several etdra

are proposed, e.g., 2-universal hashing [35], approxirate

universal hashing [40], sample-and-hash| [28], one-bitaext

tors [27], and Trevisan's extractor|[1]. In this paper, we
focus on universal hash functions[[5] which has a variety

of cryptographic applications, for example, for the inf@m

tion theoretically secure signatures, the hash functians f
for privacy amplification [[30], [[B], [[15] and for the wire-

tap channel[20],[121]. The class of universdlash function
families is the largest class of families of hash functiom@ag

known classes of families of hash functions guaranteeirg th
strong security. However, there might exist a larger cldss o
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Fig. 1. Relation among hash functions (wherncreases as a polynomial

of n). The modified Toeplitz matrices are given by a concatenatis, /) of
the Toeplitz matrixX and the identity matrix/, mentioned in Sectiof]ll.

This fact can be shown by two different approaches. In the

first approach, we focus on the concept of thieiased family,
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which was introduced by Dodis and Smifhl [9]. Their resulta linear space, and thus can be considered as a code. This
have also been extended to the quantum casé ([10], or Lemeoarespondence does not only allow us to define the code
of this paper). Since the main purpose of their origindhmily C of a given universal hash function famil§, but
results is to correct errors without leaking partial infation, also the dual code familg corresponding to it. Under this
they do not treat hash functions and privacy amplification. ketting, interestingly, a simple algebraic argument shihas
this paper, adding an appropriate discussion to their teesuhe universality ofC (i.e., the property o€ being universa)
concerning thes-biased family, we show the strong securityalso guarantees that ¢f- (see Fig[ll). For example, (1) if
for the case where-almost dual universalhash functions are C is universal, or equivalently, 1-almost universalthenC+
applied in the privacy amplification with a sufficient sa@éfi is 2-almost universa) but nevertheless, (2) for arralmost
bits. Since the bound (Lemrha 3) derived by this approach hasiversal code familyC with € > 1, the dual code family
a form similar to that by Renner [35], we need to apply this not necessarilg-almost universal as can be seen from an
method of smoothind [22]. We call this approach thbiased explicit counterexample. These results lead us to intreduc
approach. new class of hash functions called asalmostdual universaj
In the second approach, we focus on the relation betweash function family, as a set of hash functions whose kernel
the phase error probability and the leaked information mivédorm an e-almost dual universalcode family. This concept
by the security proof [18]/[17]/ [34] of a QKD protocol calle is indeed a generalization of the conventional univengalit
the Bennett-Brassard 1984 (BB84) protoc¢al [2]. The key poisince a universalhash function family is a special case of
of this approach is the error correction in the phase basis byr c-almostdual universaj family.
using a certain type of random coding. Hence we call this In Section[1ll, we note a simple relation between ouf “
approach the phase error correction approach. almost dual universa} family” and the concept of thed*
While both approaches derive similar conclusions qualithiased family”, originally introduced by Dodis and SmitH [9
tively, the security bounds are different even when the sarfog correcting errors without leaking partial informatioBy
e-almost dual universalhash functions are applied. In this re-using this relation, we demonstrate that Renner’s two-ansi|
spect, the phase error correction approach has two ademntagashing lemmal[35, Lemma 5.4.3] can be extended to the
over thed-biased approach. As the first advantage, in the casase where an-almost dual universal hash function family is
of the BB84 QKD protocol via a depolarizing channel, as igsed. Note here that in Ref§) [9], [10], they did not refes thi
shown in Sectiof VII-C, the phase error correction approacklation with privacy amplification. This result means tiz
yields better bounds in terms of the trace distance and ldolavashing lemma is valid for a broader class of hash functions
information, than the&j-biased approach. than previously thought, since the conventional type of-two
Next in order to explain the second advantage, we considativersal hash functions is a special case of@aimost dual
the case where we apply the privacy amplification after thaiversaj hash functions.
error correction. In this setting, we treat a pair of two cgde In Section[1\M, we introduce the concept of the permuted
i.e., the larger code for the error correction, and the smnallcode family, as the set of codes obtained by permuting bits
code for privacy amplification. Then the second advantage @ffa given code”. Then we show the existence of a cade
the phase error correction approach is that it can guarantggose permuted famil¢¢ is (n + 1)-almost dual universa)
the strong security with a larger class of families of codeith n being the bit length ofC. The codeC of this type
pairs, than thé-biased approach. In fact, in order to guarantas particularly useful when the setting of our communicatio
the strong security in this setting, th&biased approach model is invariant under bit permutations, since the awerag
requirese-almost dual universalhash functions for a fixed performance of the cod€' equals that of ar{n 4 1)-almost
error correction code. However, in the phase error cowactidual universal code family. Due to this property, the permuted
approach, we can relax this requirement for the family ofecodtode family plays a key role in showing the existence of a
pairs. That is, this approach guarantees the strong sgcudéterministic hash function that works universally forfeliént
with a larger class of families of code pairs. As a concretgpes of channels.
example of advantage of this concept, we note the constructi In Section[V, as a preparation for later sections, we apply
of an appropriate deterministic hash function for a givewrer the results of Sectiorisl Il aiidV to error correction. We show
correction code, which needs the treatment of the secwity that a codeC € C serves as a good code when it is chosen
such a larger class of families of code pairs. That is, emptpy randomly from ars-almost universal code familyC.
the phase error correction approach, we can show the egésten In Section[V], we apply these results to the security proof
of a deterministic hash function for a given error correctioof a QKD protocol called the Bennett-Brassard 1984 (BB84)
code that is universally secure under the independent gmatocol [2]. We use the proof technique of the Shor-Préskil
identical condition. type, which reduces the security of a secret key to the
The organization of this paper is as follows. We begiarror correcting property of the Calderbank-Shor-Ste@&)
in Section[dl by reviewing the conventional universal hashuantum error correcting code (e.gd., [37],1[13], 1[41],1[18]
functions, i.e., the properties efalmost universalfunctions. This proof technique is elegant and widely used, but also
Then we restrict ourselves to linear hash functions overigefinhas a drawback. That is, it requires the implementation of
field F%, and establish a one-to-one correspondence betwélea classical CSS code in actual QKD systems, which can be
a linear hash function familyF and a linear code familg, difficult especially for large block lengths (This is not tbase
by using the simple fact that a kernel of a linear function fr Renner’'s method, where universdlash functions can be



used for privacy amplification). Our result solves this diffiThe parametet appearing in[{l1) is shown to be confined in
culty; even when one usesalmostdual universaj functions the region

for privacy amplification, the security can be shown in the e > |A[ — |B| )
Shor-Preskill formalism. Note here again that the conwerai ~ JAl -1

universaj function family is a special case of ouralmost 5. in particular, a function family attaining the equality
dual universal families. of (@) is called anoptimally universal function family[38].

Then, in Sectiof VlI, we apply our results on QKD 10 theyn the other hand, a familf with = = 1 is simply called a
guantum wire-tap channel. In this model, a sender Alice hﬁﬁiversa& function family.

channels to two receivers, i.e., an authorized receiver, Bob rhare are three important examples of universaish
and an unauthorized receiver Eve, often referred to as & Wikgtion families:

tapper. The channels from Alice to Bob and to Eve are not
necessarily restricted to any type, but we assume that they
are both specified when we analyze the security. The main
issue here is to obtain an upper bound of leaked information
with with appropriate transmission rates. The net transiois
rate can be given as the information transmission R{teo

Bob minus the sacrifice bit rat®. The former rate can be
treated in the framework of error correcting code. The tatte
rate corresponds to a privacy amplification process.

Example 1 Toeplitz matrices (see, e.g.._[29]). Let
{M, |r € I} be a set of allm x n Toeplitz matrices.
Then for an inputr € F3, the outputy € F5* of function
fr is given byy = xM.,..

« Example 2 Modified Toeplitz matrices (see, e.d., [20]).
Let7T = {7, |r € I} be a set of alln x (n—m) Toeplitz
matrix. Then letM, = (T, 1,) be anm x n matrix
defined by a concatenation @f. and them-dimensional

Under these settings, in Section VIl, we consider a specific gﬂelnélft);ur:gfigﬁ{fm-igozvif; |Sputf ZEQ the outputy
type of the quantum wire-tap channel where Alice and Bob 2 r159 Yy = w i

are connected by the Pauli channnel. By applying our resukese (modified) Toeplitz matrices are particularly useful
on QKD to this model, we show that ap-almost dual in practice, because there exists an efficient multiplicati

universa function family is sufficient for removing Eve's algorithm using the fast Fourier transform algorithm with
information. Then by using the invariance of the chann&PMPlexityO(nlogn) (see, e.g.[[12]). . o
under bit permutations, we also show the existence of aln this paper, we focus only on linear functions over a finite
: 0 .
deterministic hash function that works universally, trtthe field Fo. We assume that sets, B are Iy, I3' respectively
hash function whose construction does not depend on #fih 7 = m, andf, are linear functions oveF,. Note that,
phase error probability caused by the wire-tapper. We alfbthis case, there is a kemnél, corresponding to eactf.,
clarify that our evaluation is better than theviased approach Which is a vector space of — m dimensions or more. Also
based on giver [9]/[10]/[22]. note that, conversely, when given a vector subsggce Fy
Finally, in Sectio VIIl, we discuss the relation with exigg O 7 — 7 dimensions or more, one can always construct a
results. In Subsectidi VIIIEA, we summarize the relationhwi lInéar function
existing results. In _SubsectiB,_ we proyide an e>_<dnmp fr:F} > F2/C, =F5 with maxl, = m. 3)
of an e-almost universal hash function family that yields T
insecure bits. In Sectidn_VIIIC, we consider the case whelidhis means that, by considering,. as an error-correcting
one applies the privacy amplification after the error cdioec codd, we can always identify a linear hash functignand a
Then, we show that the phase error correction approach @ror correcting code, f

guarantee the strong security with a larger class of famdie  In this terminology, sincen — min, dimC,. = m, the
code pairs than thé-biased approach. definition of e-universaj function family of [1) takes the form
Il. DUAL UNIVERSALITY OF A CODE FAMILY Vo € Fz \ {0}, Pr {f"(x) - O} s277, “)

A. Linear universal hash functions as a linear code family which can further be rewritten as

We start by reviewing the basic properties of univer$aish Vo € F3\ {0}, Pr[z e C,] < 2minrdimCrng  (5)
functions. Consider setd and B, and also a function family _ ]
F consisting of functions fromi to B; that is, F is a set of ThiS shows that the set of kern€l= {C\|r € I} contains
function F = {f,|r € I'} with f, : A — B, whereI denotes sufficient information for determining if a function familfy =
a set of indices: of hash functions. Our purpose is to select/r|r € I} IS a-_almost umversalor not. o _
. with an equal probability and use them as a hash function, 10 see this in more detail, we give explicit constructions.
and for this purpose, we always lgt| > [B| > 2. We say FOr later convenience, we denote a generating matrix of & cod
that a function familyF is c-almost universal [5], [43], if, C by G(C), so that the rows of#(C) are basis vectors '

for any pair of different inputs:;,z2, the collision probabilit
yp P 1:L2 P y 1For the present, we take a standpoint that any vector Subspat) is a

of their outputs Is upper bounded as code, whether or not it can actually correct errors.
2Note thatdim C = dim Ker f. = n — [, is not a constant in general.
Pr(f(21) = fr(22)] For example, for the function family defined by multiplicati of all normal
1 c (i.e., unmodified) Toeplitz matrices of Exampledim C'. varies fromn —m

#{rel|fr(z1)=fr(z2)} <

(1) to n depending on- € I. The special case afim C'. being a constant will

B |I| | | . be discussed in detail in Sectipn 11-C.



We also denote a parity check matrix 6fby H(C), hence  We also introduce the notion of dual universality as follows
one may choosél (C) = G(C*). If one wants to construct

C, from f,, let z be a column vector, and define a linear Definition 4: We say that a code famil§ is e-almost dual
function f, asy = f.(z) = M,z by using anm x n-matrix universa} of maximum (minimum) dimension , if the dual
M,.. Here M, corresponds to a parity check matrix of errorfamily C* is e-almost universal of minimum (maximum)
correcting codeC,., and thus the row vectors o/, spans dimensiont.

C:-. Conversely, if one wants to construct a linear functiolence, accordingly,

f,‘ : F3 — F3* from a codeC,., do as follows: First, lef, :=
dim C;+ < m, and take a basis @f;- c F} as{uy,...,u,},
and a basis ofy* as{vy, ..., v, }. Then define a matrix/, =
S v, and letf, () = M.

ambiguity that comes from choices of bages} and{v;}. By

Definition 5: A linear function family 7 = {f.|r € I} is
e-almost dual universg] if the kernelsC,. of f,. form ane-
almost dual universalcode family.

An explicit example of a dual universalfunction family
(with ¢ = 1) can be given by the modified Toeplitz matrices
(Example 2) mentioned earlief [18], i.e., a concatenation

It should be noted that, in fact, this constructionfpﬂwas an
the above procedure’ even when one Constrﬁbtgrom fT, (X, I) of the Toeplitz matrixX and the |dent|ty matri¥. This
and thenﬁ from the obtained”,., f; and f,, may not equal example is particularly useful in practice because it ishbot
in general. In this paper, however, we do not worry abotfliversa and dual universal(c.f., Fig.[1), and also because
this ambiguity, because (i) the ambiguity does not affeet tihere exists an efficient algorithm with complexiy(n log n).
property off, beinge-almost universal and (i) the ambiguity ~ Indeed, since Condition(6) coincides witfi (5), it seems it i
is absent after all when we actually implement and operatgough to use only Conditiofl](6). In the case of Example 1,
universal hash functions for cryptographic purposes; ichsu@ large part of Kernels o/, takes their dimension to be the
cases, we never think w’r as a vector space, but rathemaximum dimensiom —m of the code fam”y Then, Kernels
specify matrices\/, or basis sets of’, explicitly. Note that a ©Of M, forms ane-almost universalcode family of maximum
similar situation happens with error-correcting codes a#;w dimensionn — m with e = 1.
i.e., it is convenient to interpref, as a mathematical vector However, when we consideralmost dual universalfamily
space when one analyzes the code theoretically, but inimacpf hash functions, our situation becomes more complex.én th
one can never implement a code as a program or a circt@se of Example 1, a large part of dual codes of Kernels of

without specifying the basis vectors, or equivalently,aeity /- takes their dimension to be the minimum dimension
check and the generating matrices. of the code family. In this case, the vecterbelongs to the

dual code of Kernel ofM,. if and only if  can be written
as a linear combination of row vectors &f,. Hence, we can
show that

From these arguments, we define the universality of error-

correcting codes as follows. S . .
Definition 1: We define the minimum (respectively, max-Which implies tha{ A7 |r € I} is ans-almost, dual universal
imum) dimension of a code familg = {C,|r € I} as code family function family withe = 1. Hence, Condition{7)

tmin = mine;dimC, = minyern — I (respectively, 'S egsr?nglal fo&-allllmlost.dual universality e follow _
fmae i= Maxpe 7 dim C,. = maxye 1 — ). With these preliminaries, we can present the following main

Definition 2: We define the dual code famiy- of a given theorem of this section:

linear code familyC = {C..|r € I} as the set of all dual codes Th_eo_rem 1:inen an e-almost universa| cod_e faimi_lyc
of C,. Thatis,CL = {CL|r € I}. of minimum dimensiont, the dual code familyC—- is a

Definition 3: We say that a linear code famiy= { C,. C 2(1 N Qt_ng). +e N 1)2*-almost L_miversal codenfamily with
F%|r € I} of minimum dimensiont,;, is an s-almost maximum d|m¢nsiom N t.' Thatis, forv € I3\ {0}, the
universay code family of minimum dimension,,;, , if the dual code familyC~ satisfies
following condition is satisfied PrizeCi] <(1-2""e)2 " 4o — 1. (8)

In other words, the code famil§ is also2(1 —2¢"¢) + (¢ —
1)2t-almost dual universal
Proof: For z,y € F3, let

P Prlz e C)], 9)
Ve {y € F3|(z,y) = 0} = {=,0}*,  (10)

where(x,y) denotes the inner product af y. Since#(V,, \

{0}) =21 —1,
Z 2t=ne

B. Dual universality of a code family

Prlz € (Ker M,)*] < 2™,

Vo € F3\ {0}, Prlzr € C,] < 2tmin=¢, (6)

Relaxing Conditior 6, we say that a linear code fandily=
{C, C Fy|r € I} of maximum dimensiort,,, is ane-
almost universal code family of maximum dimensioty;, ,
if the following condition is satisfied

Vo € Fy\ {0}, Prlz e C,] < 2tmax""g, (7
As in the case of a universalunction family,e is bounded

2t_n5(2n_1 _ 1) —
from below by [2) ag > (2" —2"~*)/(2" —1). For the case

Va
wheree achieves this minimum, we say thétis optimally YEVAL0)
universaj. Similarly, if ¢ = 1, we callC a universal code 2 Z Prly € C,]. (11)
family. yeVa\{0}



Now, (i) If = € C’TL, it means that”, c V., and we have
dim(C, N'V,) = dim C, > t. Hence it follows that#(C,. N
V2 \ {0}) = #(C, \ {0}) > 2¢ — 1. On the other hand, (i) If
x ¢ C-, we havedim(C,.NV,) > t—1, and thus#(C,. NV, \
{0}) > 27" — 1. Because .y, \ 1oy Prly € C;] is equal to
the average of the number & (C,. NV, \ {0}), relations (i)
and (ii) yields

Z Prly € C;]

UGVI\{O}

sz(2t - 1) + (1 - pm)(2t_1 - 1)

=20ty p, 2071 1. (12)

Combining [11) and(12), we ha@—" (2"~ —1)e > 2= 1 +
P21 — 1, which leads to inequality{8). [

Theorem 2:Inequality [8) of Theoreml1 is tight. That is, forso that the right hand side dfl(8) equals 1.

an integert < n, an element: € F3 \ {0}, and a positive real
numbers < 12:22% there exists am-almost universal code
family C with minimum dimensiort satisfying the equality of
@B).
In the above theorem, the real numker 12:22% is the
maximum number satisfyingl — 2t="¢)27 1 + ¢ — 1 < 1.

Proof: Fix z € F3. Then define a code familyl =
{4,} in Fy as follows. Choose randomly andimensional
subspace off, = {y € F3|(x,y) = 0}. That is, select
linearly independent elements frovf) randomly, and let them
span a subspacé,. Then one has:

t

on-1_1"

We also define another code famif/= {B,} as follows.
First choose & — 1-dimensional subspace df, randomly,
and then include an additional basis elemert V. to it, so

yeVy\{0}, Priye 4,]= (13)

Corollary 1: The following relations hold for a code family
C and the dual familyC+:

1) If C is optimally universal, Ct is also optimally
universaj. In other words, an optimally universaflam-
ily C is also optimally dual universal
If C is universaj (i.e., 1-almost universa), C* is 2-
almost universal In other words, a universafamily C
is also2-almost dual universal
Fore > 1, however, are-almost universal family C is
not necessarily’-almost dual universal That is, there
is an example of ag-almost universal family C with
max, Prjzr € Cit] = 1.

Proof: Items 1 and 2 are obvious. For item 3, choase
[ |

2)

3)

C. Case of sujective linear function family

Some linear function familiegF = {f, : Fy — Fy*|r € I}
consist only of surjective functiong,, i.e., functions f,
satisfyinglm f,, = FJ* for all » € I. In this case, it is straight-
forward to show that the dimension of the corresponding code
family C = {C.. | r € I} is constantdim C,. = dim Ker f, =
n—m.

The goal of this subsection is to demonstrate that, for
these particular families, the definitions and the theoreins
the previous section concerning dual univerdahctions can
be greatly simplified. We take this particular case, because
we believe that it provides an intuitive picture on resulfs o
the previous subsections; e.g., the dual universality can b
discussed directly without mentioning the correspondindec
family C. However, at the same time, it should also be noted
that there are many useful examplesnafn-surjectivehash

that they form an-dimensional subspace in total. Then thg,nction families including Toeplitz matrices of Example 1

following inequalities hold:

2t=1_ 1
y & Vi, Prly € B,] =2'""", (15)

Finally, define a code familg = {C,.} by combining.4
with probability p, and B with probability 1 — p, wherep is
defined by

pi=(1-2""e) 27 4o — 1. (16)

Hence in the rest of paper, we dwt restrict ourselves to
surjective function family; instead we consider genenabdr
hash functions as defined in the previous subsection.

We begin by defining duality of surjective function families

Definition 6: Given two surjective linear functiong
Fy — F3 andg : F§ — F3~™, we say thatf and g
are dual functions ifKer f = (Ker g)t, or equivalently, if
Kerg = (Ker f)*.

We note that a similar definition can be found in Ref./[34]. It

One may wonder that this construction using probability is straightforward to generalize this notion to functiomftes:

deviates from our definition of universatode family that

each elemen€, is chosen with the uniform probability. One Definition 7: Given two function families consisting only

way to cure this problem is to include multiple copieso&nd
B in C. For example, ifp = a/b with a,b € N, then construct
C as a combination o copies ofA andb — a copies of.

From [13), [(T4), and((15), it is straightforward to see that

C is e-almost universal Also note, sincer € C;- holds only

when A is chosen, we have
Pr [:E € Cﬂ =p. a7

Hence,C indeed attains the equality dfl(8). [ ]

of surjective functions and having the same index I,

F {fr:Fy = F5 |r eI},
g {gr : Fy = F2"™"|r e I},

we say thatF and G are dual families, iff, andg, are dual
functions for allr € I.

Recall from Definition[b that a function familyF is e-
almost dual universaliff the corresponding code familg =
{Ct|r € I} = {(Ker f,)*|r € I} is e-almost universal

We give some useful examples of Theordms 1 [dnd 2. Wer a dual pair of surjective familied andg, this is equivalent
apply these results to several communication models im late the condition thatCt = {Kerg,|r € I} is e-almost

sections.

universad. Then by noting the definition of universalitgiven



in (@), we can redefine the universality of surjective faesli
in a simpler way:

Definition 8: A surjective function familyF is e-almost
universay, iff its dual function familygG is e-almost universal

Theoren{]L can also be simplified as:

Corollary 2: If a surjective function familyF = {f, :
Fy — T3 |r € I} is e-almost universal then its dual
function family ¢ = {g, : F} — F3 ™|r € I} is
2(1 —27™¢) + (e — 1)2"~™-almost universal

It is convenient to consider these statements in terms of

matrices. Take an arbitrary pair of surjective linear fims,

By considering a universality of a dual code family of such
extended code family, we are naturally led to the following
definition of universal subcode families.

Definition 10: Let C; C F7 be a fixedn-dimensional code.
A code familyCy = {C5 | r € I} is called a subcode family
of C4, if eachC, . is a subcode of, i.e.,Vr € I, Cy, C Cj.
A subcode familyC, of C; is called ans-almost universal
subcode family of”; with minimum (or maximum) dimension
t, if
Ve e (4 \ {0}, Pr [:c S 02_’7‘] < ot=me,

Definition 11: Let C; C F7% be a fixedn-dimensional code.

f:Fy = Fy' andg, : F5 — F;~™. Thenf can be written as A code familyC, = {C,,, | € I} is called a subcode family
a matrix multiplicationy = =M, with inputz and outputy, of ¢, if eachC,, is a subcode of;, i.e., Vr € I, Cy, C
and with M being anm x n matrix. Similarly, g can also be ¢,. A subcode familyC, of C; is called ans-almost dual
expressed ag = 2N with an (n — m) x n matrix N. Since ynijversaj subcode family of”; with minimum (or maximum)
the row vectors of/, N form a basis of Ker f)*, (Kerg)*™, dimensiont, if the extended code familg- of Ci- is ane-
respectively, we conclude thgtand g are dual functions iff ajmost universalextended code family of’;- with maximum
MNT =0. (or minimum) dimensiom — t. Similarly, an extended code
Hence, a straightforward way of constructing a pairG  family C of C; is called ane-almost dual universalextended
of dual family is as follows: First choose a code family= " code family ofC;, with minimum (or maximum) dimensiot
{C;- |r € I} of a fixed dimension. Then define functiofis  if a subcode familyC;- of Cy- is called are-almost universal
by y = 2G(C;) with G(C;.) being the generating matrix of subcode family of; with maximum (or minimum) dimension
C,, and g, by y = zH(C,) with H(C,) being the parity , — ¢,
check matrix. In this case, iF is e-universaj, then one can  One explicit construction of, is to first letD = {D, €
guarantee thag is ¢'-universa, with ¢ and¢’ related as in F*|r < I} be a universal code family with minimum
Theorent . dimensiont, and then define generating matrix 6%, € Co
One useful example that fits this construction is the familyy G(C» ) :== G(D,.)G(C). For these types of codes as well,
of all modified Toeplitz matrices, given as Example 2. In thigze can prove a theorem similar to Theordrms 1 [and 2.
case, the presence of the identity matfjx maximizes rank  Theorem 3:Let C; C F% be a fixedm-dimensional code,
M, and guarantees the surjectivity of the correspondingtineand C2 be anc-almost universal subcode familyC, of C;
function. It is easy to see that the dual families are defined with minimum dimensiont < m. Then the dual code family
N, = (In—m,T)'), which is another class of modified ToeplitzCs- is a2(1 — 2¢~™¢) 4 (¢ — 1)2¢-almost universal extended
matrices (noteM/,. NI = 0). code (subcode) family afi- with maximum dimensiom —¢.
Still, it should also be noted that there are many useftihat is,
examples ohon-surjectivehash function family. For example, 1 1 t—m _\o—it+1
for the normal Toeplitz matrices of Example 1, the rank o?x €F\Cp, Pr [m < CZ’T} s (1-277e)2 te 2118.)
T, ranges from zero ton depending on (consider the case
where its rows are periodic). Hence in the rest of this paper, In other words, the subcode famifl is also a2(1—2"""¢) +
do not restrict ourselves to surjective function familystead (¢ —1)2‘ -almost dual universalextended code family of’;.

. . . h . H 1
we consider general linear hash functions as defined in theMloreover, for an integet < m, an element: € F» \ Ct,

previous subsection. and a positive real number < 127‘22% there exists an-
almost universal subcode familyC, of C; with minimum
dimensiont satisfying the equality of(18).

D. Generalization to subcode, extended code, and code pair Proof: For an c-almost universal subcode (extended

families code) family C, of Ci, the equivalence relation§’;

For the application to quantum key distribution, it is ConvéFQm/Cf = F3' hold. The proofs of the above theorems with
nient to generalize the concept of a univessadde family to 2~ ¢an be applied to this theorem. u

thoseC = {C4,,} consisting solely of extended codesG. Theorem 4:Let C; C IFS_ be a fixedm-dimensional <_:ode,
Definition 9: Let Cy C F3 be a fixedm-dimensional code. and C; be ane-almost universal extended code family’,
A code family C; = {Ca, |r € I} is called an extended of C7 with minimum dimensiont > m. Then the dual code

H Lo t—n t—m H
code family of Cy, if eachC,,, is an extended code af, family C5- is a2(1 _f ")+ (¢ — 1)2" " -almost universal
ie.Vr € I, C, C Cy,. An extended code familg of C; ;ubcode family ofC;- with maximum dimensiom — ¢. That

is called ans-almost universal extended code family of’; IS,
with minimum (or maximum) dimensioty if

PrizeCy,] <(1—-2""g)27mHl 41 (19)

for vz € Ci- \ {0}. In other words, the extended code family
Cyis also &(1—2'""¢)+(e—1)2!~™ -almost dual universal
subcode family ofC.

Vo € F3\ Oy, Prlz € Cy,] = Pr[[z] C Cy,] <2 ",

where[z] denotes the coset with the representative F3 /C;.



Furthermore, for an integen < t < n, an elementr €
Ci \ {0}, and a positive real number < % there
exists ans-almost universal extended code familg, of C;
with minimum dimensiort satisfying the equality of(19).

Proof: Similarly, for an e-almost universal extended
code family C2 of Cp, the equivalence relationB} /Cy =

Ci- = F3~™ hold. Under this equivalences, ,/C; can be

Hence anec-almost dual universalcode family yields a
0-biased family. For a partially eavesdropped random viable
A and ad-biased family of random variable§V,.}, that is
independent from Eve’s random variable, Dodis and Srith [9]
proposed the protocol

(A, W,)— A+ W, (22)

regarded as subspace 8~ with the minimum dimension for error correction with leaking partial information. Inder

t —m. The proofs of the above theorems wiffj~"™ and the to evaluate the leaked information of this protocol, they

minimum dimensiont — m can be applied to this theorenm showed the classical version of the following lemma (Lemma
Furthermore, when the cod@; is randomly chosen, the[d). Fehr and Schaffner [10] extended it to the quantum case in

concept of an extended code famify(’;,}, can be gen- order to discuss the property of the protocol against a guant

eralized to the following way. In this case, we define thattacker.

property ‘e-almost universal for a family of a pair of codes
{Cl,r C OQ,T}T-

Definition 12: A family of a pair of codes[C; . C Ca -}
is called ans-almost universal code pair familywith mini-

In this section, with the help of Lemmds 1 ahH 2, we
evaluate the leaked information after the privacy amplifica
by ane-almost dual universalcode family.

Given a classical-quantum staié? = 3~ P4(a)|a)(a|®

mum (or maximum) dimensiohwhen it satisfies the condition p¥ on Ha ® Hg, and a normalized state” on H g, Renner

t = mindim Cs - (max dim C )
Vo € Fy\ {0}, Priz € Cy,. \ C1,] <2/ .

Since any:-almost universalextended code familyCs .},
of the codeC; gives ans-almost universal code pair family
{C1 C Cs,}, the concept &-almost universal code pair
family” is generalization of &-almost universal extended
code family”.

[35] defines
di(A: E|ptF) = | pMF — pihi @ P, (23)
and
do(A - E|pE o)

o~ Ha(A|E[p" P[0 _ iTr((a_E)fl/4 B(yE)~1/4)2

Hy(A|E|p P o)

Considering the dual codes, we obtain the following defini- ._ _ log, Tr (I ® GE)—1/4pA,E(I 2 O,E)—l/4)2

tion.

Definition 13: a family of a pair of code$C, , C Cs .}, IS
called ans-almost dual universalpair family with maximum
(or minimum) dimensiont if a family of a pair of codes
{C3, c Cf,}, is ane-almost universal code pair family
with minimum (or maximum) dimension — t.

Since any:-almost dual universalsubcode family{ Cs ..}, of
the codeC; gives anc-almost dual universalcode pair family
{Cs, C C4},, the concepté-almost dual universaicode pair
family” is generalization of £-almost dual universalsubcode
family”.

IIl. THE §-BIASED FAMILY

Next, according to Dodis and Smith[9], we introduée
biased family of random variablgg¥,.}. For a givend > 0,
a family of random variable§W,.} onF% is calledd-biased

when the inequality
E, (Ew, (-1)""")? < 6 (20)

holds for anyx € F3, x # 0.

Huin(A|E|p™"F o)
= —log, (I @ 0®) 1 2ptE (T @ o®) 12

As relations among these quantities, Renhelr [35, Lemma]5.2.
shows

di(A: E|p™P) <AL do(A : ElpAE|oB)  (24)
Hy(A|E|pllo) > Huin(A|E|pl|o) (25)

For a distributionP" on A, we define another classical-
quantum statep®E « PV = " PW(w)> PA(a)la +
w){a+w|®p¥, which describes the output state of the protocol
(22). Then, the following lemma holds.

Lemma 2 ([10, Theorem 3.2])For any c-q sub-statg-”
onH, ® Hp and any stater” on H g, a d-biased family of
random variable§W,.} on A satisfies

ErdQ(A . E|pA,E * PWT”O_E) S 5227H2(A|E|pA’E”a-E).
(26)
Based on the above lemma, we can evaluate the average
performance of the privacy amplification kyalmost dual

We denote the random variable subject to the uniforomiversal code family as follows.

distribution on a cod€’ € Fy by We. Then,

- 0 ifze¢Ct
Bwe(=1) WC:{ | Hefor

Using this relation, we obtain the following lemma.
Lemma 1:When a code famiyC = {C, C F3}, with

(21)

Lemma 3:Given a classical-quantum stgié-” on H 4 ®
HE and a stater” on Hg. When {C,} is a e-almost dual
universaj code family with minimum dimensiom, the family
of hash functionq f¢,}, satisfies

E,dy(fe, (A) : Blp"F|o”) < e2AIER

AE o F)

(27)

minimum dimensionn — m is e-almost dual universal, the That is, anye-almost dual universalhash function family

family of random variable§W¢_} onF} is ve2—™-biased.

{f+}+ satisfies the above inequality.



Using [24) and[(Z5), we obtain terminology ‘0-biased family” for describing a family

nem_ 1 AB| B of hash functions.

Epdi(fo,(A) : Blp™F) <273 ATl 2) The correspondence holds only when-biased family
<e2" 7"~ Hun (Al Elp™ Fllo™) is given as the uniform distribution on a code. Other

(28) d-biased families do not necessarily have such corre-
spondence.

3) If we study hash functions only in terms of the concept

of the d-biased family, their relation with universahash

functions family becomes obscure.

Thus we have obtained thealmost dual universal version
of Theorem 5.5.1 of Renner_[B5]. Hence, the two-universal
hashing lemma and other results as given in Reriner [35] can
be generalized to our-almost dual universal hash functions.
Note here that, as we have shown in Secfidn I, the conven- IV. PERMUTED CODE FAMILY
tional universal function family is a special case of our o o ]
almost dual universalfamilies. In the following, in order to N Some applications, our setting is invariant under permu-

distinguish the method given in Sectidns VI dndlVIl, we cafgtions of the order of bits iff’y. For example, in wire-tap
this approach to the privacy amplification lyalmost dual channels which we consider in later sections, independeht a
universal code family, thed-biased approach. identically distributed (i.i.d.) channels are assumed #ngs

Proof: Due to LemmdR2, we obtain the protocol is invariant under permutations of bits. Then a
codeC C F% has the same performance as any bit-permuted
E,dy(A: E|phP « PVer||oP) < eammom HUAIBRID. coge ofC.
(29)  In order to formulate such situations, we introduce the
Now, we focus on the relatiod = A/C x C 2 fo x C for permuted code familgf a codeC' as a code family consisting

any codeC. That is, any: € A can be uniquely specified by a°f Pit-permuted codes off

coset elemeniu] = a + C and a codewordy € C. We regard Cc = {o(C)|o € S, }. (30)
[a] as the hash valug(a) of a. Then, for Py (w) = 27™, we ) _

obtain HereS,, denotes the symmetric group of degreeando (i) =
j means that € S,, mapsi to j, wherei,j € {1,...,n}.

ptEx PV =" 27N " PA(a)a+ w)ala +w| @ pf The codes(C) is the one obtained by permuting bits 6f
weCl a by a permutatiory; if x = (x1,...,2,) € C, thenz? :=

= Y wwiwle Y PUa)llabe(ld @ pf)  @ow:-- s Tow) € 0(C). o |

weC [a]eA/C In what follows, we denote the distribution of the Hamming

weight & of codewords inC' by Pr¢; that is, the number of
codewords with weight: contained inC' is |C|Prc (k). In
order to characterize the permuted code fardity when the
In the second and the third lines, we used a new set @fmension of a cod€ is ¢, we define

basis such thata)s = |w)w ® |[a])r. Probability P*([a]) . py

denotes that of a coset elemeat occurring: P4 ([a]) := ex(C) = %27”" = %}5(“ (31)
> wee PA(a + w), and similarly,p[’i} the mixed state cor- £(C) = max; <p<n ex (O). (32)
responding to[a], i.e., p{}; = X ,cc Pite- Then by the T
definition of dy, we have

> 2w (w| © pfeAE,
wel

Lemma 4:The permuted code familgq is ¢(C')-almost
universaj code family.

do(A : E|ptE « PVe | o) Proof: Any code C’ € Cc has the weight distribution
=2""dy(fo(A) : E|pfe B ||oF) Prc. By averaging them over all” € Cc, we see that code
_o-my A) - BlpAE | o F family C also has the weight distributidPrc. That is, a code
o 2(fo(4) - Elp™=lo™). C’ € C¢ contains2'Prq (k) elements of weighk on average.
Therefore, [[2B) implies On the other hand, the number of elementsc F3 with
. _ AE| B e Ho (ALE A E o B weight £ is (Z) and due to the symmetry @~ under bit
E,27"dy(fc, (A) : Elp*E|o?) < e27mamH2 (AT lom) permutations, each of them is contained in sofffec Cc
which implies [27). m With the same probability. Thus, an elemente F3 with

Remark 1:One might think that the concept of-almost \INCenghEk]g belongs to the cod€” € C¢ with the probability
dual universal hash function family” is not needed because OTTC' By taking the maximum with respect fg we can
the correspondence betweensaalmost dual universalhash show that any element € F3 belongs to the cod€’ € Cc

function family and a-biased family given in Lemnid 1. How- with the probabilitys(C')2¢~". Hence, we obtain the desired

ever, if we replace the terminology-almost dual universal argument. [ ]
hash function family” by the terminologys*biased family”, Theorem 5:For anyl < ¢ < n, there exists a-dimensional
we make a serious confusion by the following reasons.  codeC € F% such that(C) < n + 1.

1) The concept of thed‘biased family” is defined for a Proof: Let C be a universal code family. Then,

family of random variables while the concept of the “ Eex(C) < 1. The Markov inequality yields
almost dual universalhash function family” is defined

for a family of hash functions. It is confusing to use the Pr{ey(C) 2 n+1} <

33
——. (33)



and thus family C for error correction, and show that it indeed serves
. as a good code. As previous work, for example, Brassard
Pr{ei(C) <n+1,....ea(C) <n+1} and Salvail applied universatodes in the context of infor-

=Pr U {ex(C) >n+1} < L mation reconciliation (Refl[]4], Theorem 6). Muramatsu and
1<k<n n+1 Miyake have also studied a similar problem using a somewhat
Hence. there exists a code such that generalized definition of universal hash functions! [33]rd1e
’ we present a much simpler evaluation by employing a more
er(C) <n+1 (34) restrictive condition for the family of codes than [33].
fork=1,...,n. m We consider a noisy channel with the additive noise, and
Combining Lemm&l4 and Theordrh 5, we obtain the follovflenote the probability that the noises F5 occurs byP™ (x).
ing proposition. We also denote byX (k) the probability that an error with the

Proposition 1: For any 1 < t < n, there exists a- Hamming weightk occurs. In this channel, the sender Alice
dimensional code” such that the permuted code famiiy: Uses ane-almost universal code family as error correcting
is n + 1-almost universal codes. The receiver Bob applies the maximum likelihood

Indeed, Shulman et al [36] discussed the average of dtecoder to his bits. In order to evaluate the performance of
coding error probability under the permuted code familyhe decoder, we focus on the decoding error probability, i.e
However, we do not consider the average of decoding erfde probability that the decoder makes a wrong guess. We
probability, here. We show the relation with the concept ¢tenote this probability for a fixed cod€ by F.(C). From
e-almost universal while they did not treat the relation with NOW on, we often treat a cod€ as a random variable that
the concept. is randomly chosen with the equal probability from the

Similarly, we can define the permuted code pair familglmost universalcode familyC. For example, we denote the
for a given pair of code€’, C C; as the family of code expectation of variablel with respect to the random variable

pairs Ce,co, = {0(C2) C o(Ci)lo € S,}. We define C asEcecA. Inthis notation, the main purpose of this section
£(C1/Cs) = maxi<p<n ex(C1) — ex(Ca) Igfl As a gener- @s to evaluat&Eccc P.(C), i.e., the average aP.(C) whenC
alization of Lemma}4, we obtain the following lemma. is randomly chosen frord.

Lemma 5:The permuted code pair familCc, ¢, is First, for the sake of simplicity, we evaluate performance
£(C1/Cz)-almost universal code pair family. of the minimum Hamming distance decoder. Note that the

This lemma can be shown by the same discussion as thecoding error probability of this decodeEceccPha(C),
proof of Lemmé&.b. Furthermore, we can show the followingan be used as an upper bound BaccP.(C), since the
theorem. maximume-likelihood decoder provides the minimum decod-

Theorem 6:For anyt < n and a codeCy, there exists ing error probability P.(C'). We assume that ous-almost
a t-dimensional codeC; € F4 such thatCy C C; and universaj code familyC has the maximum dimensiof,.;
e(C1/Cs) <n+1. hence the decoder outputs,., bits, and the code rate is
This theorem can be shown in the same way as Thebfem 5Ry= t,,.,/n. Now suppose that a bit flipx of Hamming
choosing the codé€’; from a universal extended code family weight £ occurs in the channel (i.e., an input is mapped

of Cs. to w + x). In this case, success and failure of the decode
Combining Lemmal5 and Theordrh 6, we obtain the followsy the minimum decoding is written by, (2, C). That
ing proposition. is, the success (the failure) is denoted Byy(z,C) = 0

Proposition 2: For any1 < t < n and a codeCs, there (P,q4(z,C) = 1). Then the decoder fails if there exists another
exists at-dimensional extended codg; of C, such that the code elementy € C with Hamming weight< k; in other
permuted code pair famil§c, ¢, is ann+1-almostuniversal  words, if {y € F% : |y| < k,y # 2} N (C\ {0}) # 0. Then,
code pair family.

Considering the dual codes, we obtain the following propo-

sitti)m. I | e Pua(z,C) =1[{y € Fy : |y| < k,y #z} N (C\ {0}) # (]
roposition 3: For any1 < ¢t < n and a code(Cs,
there exists @-dimensional subcodé€’; of Cy such that the < Z 1y € (C\ {0}, (35)

permuted code pair familgc, ¢, is ann + 1-almost dual vilyl<kyre

universaj code pair family.
o - n
Proposition[ can be shown by substitutioy and Cj where1[A] is the indicator function defined to bewhen A

into C> and €'y in Proposition2. In later sections, we USq a4 and to be) otherwise. For a fixed elemept due to

these results for showing the existence of deterministshha- - jition [7), anye-almost universal code familyC satisfies
function that work universally for quantum wire-tap chalsne

V. APPLICATION TO ERROR CORRECTING CODES Ececlly € C] = Pry € €] < 2tmex—"¢ (36)
In this section, as a preliminary for later section, we apply
the results of Sectioflll to error correction. We use a code
C € C chosen randomly from am-almost universal code for y # 0. When averaged ovef' € C, combining [[35) and
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(36), we can evaluate the average probabilityRpfi(x, C) Theorem 7:When PX (z) is given as the:-th independent
and identical distribution of the distributidi — p, p), then the
EcecPha(z,C) < Ecec Z 1y € (C'\ {0})] average decoding error probability of error correctiomgsin

yily| <k,y#az e-almost universal code familyC with maximum dimension
< FEcec Z 1y € (C\ {0})] tmax = n.R satisfies
y:lyl<k : so—n[—sR+Eq(s,p)]
EcecPe(C) < min £°2 ol (39)
= FEcec Z 1y € C] -
y:ly| <k,y#0 where
1+s
= Z Feec 1[y S C] EO(&p) =5 — 10g2 pﬁ + (1 —p)ﬁ . (40)
y:ly|<k,y#0 ) . . ] .
< Z tmax—1 This theorem is shown in Appendik]A. The function

Ey(s,p) defined in [(4D) is in fact the specialized form of
Gallager'sEy(s, p) for the binary symmetric channel and the
uniform input distribution[[111]. Hence by using the methdd o

where the final inequality follows from the fact thatlll] the right hand side o{(39) can be used to evaluate the

Z/_g: (n) < ognh(min{k/n,1/2}) (see, e.g., Lemma 4.2.2 Ofexponentlal decreasing rate Bf:c¢ P.(C) with respect ton
=0 2 as follows.

y:|y|<k,y#0
< 2nh(min{k/n,1/2})2tmax—n€

24)). i i ; < .
\[/ve]%aéleso by noting the obvious bounlcee Pra(z; ©) < 1, Corollary 3: Under the same conditions as Theoréim 7,
EcecP.(C) can be bounded from above as
. —n[l—h(min{|z|/n,1/2})—R]
EcecPua(z; C) < €2 @37 EcecP.(C) < 2 "E(ED) max{e, 1} (41)
for e > 1, where[a] ;. := max{a,0} for a € R. where E(R, p) is Gallager’s reliability function
Since the behavior of the minimum Hamming distance
decoder is independent of parameterthe bound[(37) can E(R,p) == ooax —sR+ Eo(s, p). (42)
easily be generalized to the case in the following way where .
a weight distributionPX (k) of errors is given. In particular, E(R, p) is strictly positive fork < 1 — h(p).
Proof of Corollary[3: The first half of the corollary is
EcecP.(C) =Ecec Z PX(2)Ppa(z;C) obvious. Denote the argument of the maximumEby(s p) =
2F#0€F} —sR+ Eo(s,p). ThenEg(0,p) = 0, and 2 LEr(s,p)] a— =
_ ) 1—h(p)—R>0if R<1-h(p). HenceER(s p) attains its
= PX(z)EcecPualz; C - .
m;ge:w (v)EoecPralw; €) positive maximum value at € (0, 1]. (Also see Ref.[[11].)m
X n[1—h(min{|zl/n.1/2})— F] The exponential decreasing raf&( R, p) of (@) can also
< e Z P (x)2” + be verified from [[3B) by using the type methad [8] wher:
r#0€Fy 1/2. For this purpose, we introduce the divergence function
n . = =2 SinceP* (k) < 2-nd(allp)
_ X (1yo—n[1—h(min{k/n,1/2})—R] d(qllp) := qlog £+ (1—¢q)log 1= <
- 5ZP (k)2 o (38)  with q = k/n “for the blnary symmetric channell[8] and

S hepnyo PX (k) < 274017210 the right hand side of(38)
As to the asymptotic behavior, one can easily see that, whean be evaluated as

the probability PX{k|l — h (min{k/n,1/2}) > R + &} n

approaches for sufficiently smalls > 0, the right hand side e PX (k)2 nihimintk/n 1721 =R,

of ([38) converges to zero. We note that Inequality (38) isluse k=0

in Ref. [23] to prove the security of the BB84 protocol for the ~ <g(2-"4(1/2lIp)

case of finite key Iength_s. _ _ +n/2 + 1J max PX(k)2—n[1—h(k/n)—R]+)
Remark 2: The essential point for the above evaluation for <n/2

EcecPe(C) is the exchange of the orders pf , andEcec. <|n/2+2]e max 2 n(1-h(@)—Rly+ddllp)

For a fixed errorz, the e-almost universality guarantees the 0<g<1/2

evaluation of the averagBccc Pua(z; C) as [37). If we fix a =|n/2 + 2|e2 " mino<g<i/2 [L-hl@) =Rl +dldllp) — (43)

code(, we cannot obtain a similar evaluation.

Next we consider the cases of finite In this case it
is not easy to calculate similar bounds, hence we furth
assume that the channel is memoryless. That is, the pratpabil iy [1 — n(q) — R]; + d(g|lp) = max —sR+ Ey(s,p).
distribution PX of errors z is assumed to be the binaryo<e¢<1/2 0<s<1/2
distribution with probabilityp. In this channel, wherp is (44)
less thanl /2, the maximum-likelihood decoder is equivalentrhe proof of this relation is given, e.g., in Csiszar-Kerg]
to the minimum Hamming distance decoder. In this case, hya more genera| form. However, since a Simp|er proof of
modifying Gallager’s bound for the random coding[11], w§ZZ) can be given by using the property of additive channels,
can obtain the following simple bound. we reproduce it in Appendix]B for readers’ convenience.

One can see that the exponential decreasing raté_of (43)
ié‘lrdeed equal€(R, p) by using the relation
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Now, we consider the case where the sender and the receivkis theorem is also shown in AppendiX A in a way similar
use a fixedi-dimensional code&” that satisfies the conditionto Theoreni].
of Theorenib, i.e., a cod€ whose permuted code famie
is (n + 1)—a|most universal If the error distributionPX is Finally, for a given code’,, we can choose another fixed
permutation invariant, e.g., if the channel is binary syrtriog codeC satisfying the condition of Theorem 6, i.€; C C;
we haveP.(C) = P.(o(C)) for any permutationr € S,, ande(C;/C2) < n + 1. We then assume that the sender
which implies thatP (C') = Eyes, P(o(C)). In other words, and the receiver use this fixed pair for error correction.
one may evaluate, (C) as if the code familf’c were actually |f the distribution PX is permutation invariant, we have
used. Thus, by applying (89) and by noting+ 1 > 1, we P,(C,/Cy) = P.(0(C1)/0(Cy)) for any permutation € S,,,
obtain the inequality which implies thatP,(C,/Cs) = Eoes, Pe(o(C1)/a(Ch)).

—nE(R, Thus one may evaluat®.(C,/C5) as if then + 1-almost
P(C) < (n+1)2 v (45) universaj permuted exten((jed/CO()je pair famly.,c, were
with R = t/n. Note that the cod€ satisfies this inequalities actually used. Applyingd(47), we obtain the inequality
for any p.

In the rest of this section, we show that the above results
also hold for the case where the information is encoded by
the cosetC, /Cs of two given codesC; and C, satisfying
Cy C C1 C F3. These codes are used for constructions of the
guantum Calderbank-Shor-Steane (CSS) codes, and for this
reason, they are often called the classical CSS codes.dn thi
section, we restrict ourselves to the following type of sieal
communication. A message to be sent is a cpget C,/Cs,
and when the sender wants to sénd she chooses an element
randomly from the set + C> with the equal probability and
sends it. On the receiver’s side, Bob first applies the masximu
likelihood decoder of’; on the received sequence and obtaingote that the cod€’; satisfies this inequality for any.
an elementy € C;. Then, he obtains a cosgj] € Cy/Cs
as the final decoded message. We denote the decoding error
probability of this decoder by, (C;/C5).

We assume that the subcodg is fixed, and the larger
code C; is randomly chosen with the equal probability
from the e-almost universal extended code familg of Cs
with maximum dimensiont,,,,.. Again, the purpose of the
following discussion is to evaluatBc, ccP.(C1/Cs). By a
similar argument as above, when the bit flip error occurg on
bits in the noisy channel, we can show tl&t, c¢c P.(C1/C5)
is less than min{2rh(min{k/n.1/2})cotmax—n 11 <
go—nll=h(min{k/n,1/2H-Rly R — tmax/n for e > 1. VI. QUANTUM KEY DISTRIBUTION
Thus, for any weight distributiod®X of errors, we have

P.(C1/C5) < (n+1)2 "EEP), (49)

EciecPe(C1/C2) < 6ZpX(k)2_n[1_h(min{k/n’1/2})_R}*-
k=0
(46)

If we further assume the channel is memoryless, as a
generalization of Theorein] 7 and Corolldryy 3, we have the
following.

Theorem 8:When PX (z) is given as the:-th independent
and identical distribution of the distributiofl — p, p), then
ane-almost universalextended code familg of Cy with the
maximum dimension,,., = nR satisfies

Ec,ecP.(C1/C2) < 0?3121 52— sR+Bo(sp)], (47)

In this section, we show the strong security whenean
almost dual universal hash function family is applied in the
quantum key distribution (QKD). For this purpose, we apply
the results of previous sections to the phase error cooretti
the security proof of quantum key distribution (QKD). Hence
we call this approach the phase error correction approach.

In QKD, Alice and Bob need to perform a key distillation
and thus protocol to generate a secret key from the sifted key that
E P, < 9—nE(Rp) n a8 they _obtamed as a _result of the quantum communication. We
crecPe(C1/C2) < max{e, 1} (48) consider the following type of the BB84 protocol using a
Further, the above inequalities are valid even witheaimost function family 7 = {f, : F3* — FL|r € I} for privacy
universaj extended code pair familyC; C Cs}. amplification.
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BB84 protocol using universal hash function family: BB84 protocol using code familgs:

1) Alice and Bob establish sifted keys, and estimate 1) Alice and Bob establish sifted keys, kg € F5
the bit error rate by the usual procedure of the by the same procedure as in the above protocol.
BB84 protocol, such as the one given[in|[37]. That 2) Alice picks R4 € Cy randomly and sends =
is, ka @® R4 to Bob over the public channel.

a) Alice sends Bob qubit states chosen ran- 3) Bob calculatesip = v @ kg, and by correcting
domly out of{|0..), |1.), |0.), [1.)}. its errors usingCy, he obtainsR; € C;. (Thus

b) Bob receives and measures them with ran- R4 = R} with high probability.)
domly chosen base§:, z}. 4) Alice selects cod€’; , randomly and announces

C) By using the authenticated pub||C channel, it to Bob. They both obtain secret keys as cosets
Bob announces his measurement bases| for of Gy, i8.,S4 = Ra+ Co,, Sp = R+ Car.

all qubits, and they keep only the bits fq
which they chose the same basis.

d) They reveal randomly sampled bits over the
public channel, and calculate the estimated
bit error rate. If the rate is too high, they
abort the protocol.

As a result, Alice and Bob obtains sifted key
ka,kp € FY, respectively.

2) Alice picks a random number, € TF,, and
announce® = k4 & G(Cy)r%, with & denoting
XOR.

3) Bob calculatesRg = kg @ v and by correcting
its errors usingCy, he obtainsR; € Cy. Then
he calculate raw bitp € F, satisfying Rg =
G(C1)rL. (Thusra = rg with high probability).

4) Alice selects a linear universaffunction f, : _ XZ T 5z z gzt
F7* — F. randomly and announces it to Bob. Mlp)= > PH@ 2" X (27X, (50)

-

For the sake of simplicity, we will restrict ourselves toshi
protocol for the rest of this section. We begin by reviewing
some of the known results and clarify notations. Assume that
the quantum channel between Alice and Bob is given by an
arbitrary quantum operation, and thus the sifted key is
affected by A. As discussed in[[17],[18], since the above
type of the BB84 protocol is invariant under twirling of qts)i
without loss of generality, one may consider the Pauli clehnn
A; obtained by twirling the original channel. The Pauli
channelA,; can generally be described by the joint probability
distribution PXZ of phase error and bit error (in this section,
we call an error in ther basis the phase error, and in the
basis the bit error). That is\; transforms am-qubit statep
to

x,z€FY
Then they calculate secret keys = f,-(r4) and ?
sp = fr(rB). where
Z*: = o' ®---®o",
By using the widely used proof technique due to Shor and X = ¢'®.. @0

Preskill [37], [13], [41], [18], the unconditonal security this
protocol has been shown for the case whereonsists of the i and 4. being the Pauli matrices, and —
completely random linear functions [41], [18]. On the othe(rxl’“_’mn)’ : = (z1,...,22) € {0,1}". We denote
hand, by using the quantum de Finneti representation theorqhe marginal distribution of phase error by (
Renner proved the unconditional security of the BB84 pmltocz . PXZ (2 2). As in the previous sectioﬁ?X(k) denotes
using universal hash functions for privacy amplification [35]'thé%]Fi§tributior; of the Hamming weightof z obeyingP™~ ().

In this section, we present a security proof of the Shor- L
Preskill-type that holds with a weaker condition 87 i.e., Ne)_(t, before C(_)n5|der|ng the sec_ret key_, we evaluate the
with F being ane-almost dual universalfamily. Note that Sec””tY of the sifted I_<eyu as an .|Ilustrat|or?. The result
the condition onF is indeed relaxed, since, as shown in Se@.ere will also be used n later sections on Wllre-tap cha,nnels
[ the universal function family is a limited case of-almost and randomness extraction. Lek, p _be Alice’s and Eve's
dual universaj families. tptal system when the whe_n the first stgp _of_ the protocol
(i.e., the quantum communication part) is finished. If one
employs the security criteria that takes into account thie un
Note also that our method has an extra advantage th@rsal composability [35], the security of the sifted keyca
unlike in [35], Alice and Bob do not need to perform randome evaluated by Eve's distinguishabilify 1,z — pa @ pr |,
permutations of the sifted key bits. Conversely, if the @nd \ith ,, .= Tr gpae and pg = Tr apa 8. Alternatively,
permutation is already implemented in one’s QKD system, ghe may evaluate the security by Eve’s Holevo information

if the channel is permutatic_m invariant, our ha_sh functian Cx :=Trpa.g(log pa.s—log pa®pr). These values are known
be replaced by the one using the deterministic code obtained

in Theoreni B, since the permuted codes of this code pair form Recall that

x) =

in our protocol, Alice is assumed to choose her

an (n + 1)-almost dual universalsubcode pair family. sifted key uniformly. Henceps z can generall be described as
PAE = Xy 30 0n) (V1 vn| @ pE (v, 0n),

. . .. . . where pg(vi,...,vn) denotes Eve's density matrix when Alice’s
For showing the security, it is convenient to rewrite thgfed key is v = (v1,...,0n). In this case, Trppap =

protocol in terms of the classical CSS code as follows. > s lv1, .., vn) (v, ..., va| gives the fully mixed state.

VL yeens Vn
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to be bounded from above &s [17], [18] g2~ US—hmin{k/n.1/2D)], converges to zero fon — oo.
Asymptotically, it is sufficient to sacrifice [ (ppn) + ] bits
lpas=papsl, < 2V2y/Po (51) by privacy amplification with an arbitrary > 0.
X < nn(Fpn), (52) From the above argument, we see that for the security of

where P, is the phase error probability of the channgl QKD, it is sufficient to choose the codg, from anc-almost
That is, Py, == 1 — PX(:U = 0™). The function,, is defined dual universa} subcode family ofC;, while the existing
as P results (e.g.,[[35]) guarantee the security only when thieco

1 1 log(1 o< 1/9 Cs is randomly chosen from a univergaubcode family of
N(z) = { 1_“7 ogz — (1 —=)log(l —z) +na !f = 1/2 C. Since a universalsubcode family of”; is a2-almost dual
+nT if 2> 1/2. hiversa subcode family ofC; (Theoreni®), our condition

(53) .
Now we turn to the security of the secret key. The onI? strictly weaker than that by [85]. .
It should also be noted that by setting, = F%, our

difference here is that the key is effectively sent through t ; ., .
guantum channel that is error-corrected by the quantum Cg@ument also applles to KO.aSh'.S proof t:echmque [26]t tha
code corresponding to the classical CSS c6teCs. Hence Is, random matrices appearing in Koashi's protocol can be
by using essentially the same argument as above, the s;ecJﬁPlaced by an almost. dual gmver;sabde family.

can be evaluated by the phase error probability that remainézurth_er' the above d|scu§3|on can be extended toaimost
after the quantum error correction. When one sees it in tid@l universal subcode pair family of C; C C'}. Now, we

hase basis (i.e., the basis), this probability is given by the €100S€m — [ dimensional subcodé’, of C'y such that the
secoding err(gr probability o)f the cFI)assicaI gSS %@/C{l dual codeC;- satisfies the condition of Theordrh 6. When the

which we denote byP,, (C’j/Cf). Then the security of the Pauli channel is permutation invariant, this code sati{®&s
secret key can be evaluated as|[1[7],/ [18] and [ZB) withe =n + 1.

lpae —pa®pell, < 2V24/Ppn (C5-/CF), (54) VIlI. QUANTUM WIRE-TAP CHANNEL
x < (Pph(er/Cf)) . (55) A. Evaluation by phase error correction approach

The same evaluation a§ {54) has been done by Ftenes#Slwe apply our results of the previous section on QKD
Theorem 5.1]. For the case 6f, = F?, essentially the same for showing the security in the quantum wire-tap channel
relation was noted by KoasHi [26] and Miyaderal[31]. model. In this model, the channel from Alice to Bob and the
Then we apply Theorefd 8 to'eva|ud:f9ﬂ (Cs-/Ci). Inour channel from Alice to Eve are both specified. Particularty, i
BB84 protocol, the subcod®, C C; is randomly chosen from this section, we assume that the channel from Alice to Bob
an s-almostdual universal subcode familg with minimum IS given by then-multiple use of the Pauli channel which
dimensionm — [ of a fixed codeC;. This corresponds to the s described by the joint distributio®”* of bit error and
case where the dual codg is chosen from the-almost phase error on a s_ingle qubit system. We also assume that
universaj extended code family of the fixed codg with phase error and bit error occur independently, and denote

maximum dimensiom — m + I. Thus by applying inequality the phase error probability by,,. This corresponds to a
@8), we have limited case of the Pauli channel discussed in the previ-

. ous section, i.e.PX" %" (z,z) = [[i_, PX(2;)P?(z;) with
Ec,ccPon (C;_/Clj_) < 8ZpX(k)2—n[5—h(min{k/n,1/2})]+’ PX(1) =1 — PX(0) = ppn. As to the channe! to Eve, we
=0 assume that Eve can access all part of the environment system
(56) corresponding to this channel.

. - ) . . Our goal is to show that Alice can send secret classical
whereS = (m — l)/n is the sacrificed bit rate, i.e. the ratio. 9

. ; o information via the quantum channel to Bob by the following
of bits reduced by privacy amplification. Therefore, frdml(5 . . .
&2, and from thyepconcgvity gf > V/Z, T — m, We have coding protocol (c.f. the paragraph below](45)). First,cAli

chooses a classical CSS cade C». A message to be sent is
Ec,ec llpae — pa @ pil| a coset[z] € C,/C5, and when the sender wants to sénf
- she chooses an element randomly from theaset Cy, with

§2\/§J 6ZpX(k)2fn[57h(min{k/n,1/2})]+’ (57) the equal probability and sends it. On the receiver’s siddy B

first applies the maximum likelihood decoder 6% on the
received bit sequence and obtains an elemeatC,. Then,
he obtains a coséy] € C;/C, as the final decoded message.
. S h(min{k/n. From Eve’s point of view, this protocol is equivalent to the
<1 <5ZPX(k)2 (S hmin{r/ '1/2})]+> : (58)  situation where Alice sends her classical informatjeh €
k=0 C4/Cs by encoding it to a statgx]) of the quantum CSS code

In practical QKD systems, the weight distributiéh needsto (see, e.g.[[37]). Hence we can evaluate the securify|dby
be estimated from the bit error rate of sampled bits (see, eftpe same argument as the previous section, i.e., by ing¢guali
[17], [18]). If the phase error raig,, = k/n is estimated to be (54) or by [55), depending on one’s security criteria. Byimpt
less than a certain valyg, with the exception of a negligiblly that the channel between Alice and Bob is i.i.d., we can apply
small probability, and ifS > h(ppn), then the argument a simple bound given in Theorelmh 8. Thus, if a fixed a code

k=0

EC2 ec X
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C1, and ane-almost dual universalsubcode family ofC of whereH;_,(p) := Llog,(p' % + (1 —p)'~*) andu(e,n) :=

C1 are used, the average 8}y, (C3-/C{) satisfies 54(;?%‘12) +n. Whene increases at most polynomialljz_{60) and

Ec,ecPon (CQL/C%) < 27 MB(=Spo) axfe 1}, (59) (64) give the same exponential evaluation:

. . . . -1 1
Heretmin = n(1 — S) is the minimum dimension of’z, and  liminf — log Ec, [|par — pa @ pelli = =E(1 — S, ppn).
tmax = 1S is the maximum dimension af’s-, which equals (67)
the sacrificed bit length. As one can see from Corolldry 3, the
exponential decreasing rafé (1 — 5, p,;) on the right hand However, fore > 1,
side of [59) is strictly positive fo' > h(ppn). By using [59), RHS of (60) 23/2, /¢
the averages of Eve’s distingushability1r — pa ® pp1 and RHS of Bd) (4 + (n+ 1)1/2 /&)
the Holevo informationy = Tr pag (log par — logpa ® pE)
can be evaluated as

— 0. (68)

Hence, we can conclude that the evaluat[od (60) by the phase
error correction approach gives a better evaluation|forgz —

Ec,ecllpae — pa ® pell pA® pe|L.
<9~ 3nBA=Sppn)+3 oy {Ve 1}, (60) In this case [(65) yields the following exponential evalomt
E for y:
Czec X 1 1
<n (2_”E(1_S’pph) max{e, 1}) . (61) hnniio%f o logEc,ecx 2 §E(1 =S, Ppn), (69)
with | = dim Cy — tmin being the length of message. which is better than that of(66), as is shown in Hayalshi [22].
o ) ] However, the evaluatiof (b1) by the phase error correction
B. Deterministic universal hash function approach gives the following:
In fact, the above argument is valid even far-almost dual 1
universa} code pair family. Since our setting is permutation liminf — log Ec,ecx > E(1 — S, ppn), (70)

n—oo N
invariant, a deterministic code pair given in Propositidn 3 . . . .

. . par g P which is twice of the above. Hence, in the case of QKD, we
can be used. That is, given a cod®, we can choose

anothert-dimensional subcodéh such thatCi: ¢ C5 and can conclude that the phase error correction approachtisrbet

£(C&/CL) < n+ 1. Then by combining{49)[(54), anﬂ55),than thed-biased approach based on Lenima 3.
we see that the security @f;, C> can be evaluated as
VIIl. RELATION WITH EXISTING RESULTS

_1 _ 3
lpar = pa® pply <V 41 273nPUSEm*s, 0 (62) A. Comparison with existing results

X <m ((” +1) 27"E(175’p"h)) (63)  In order to compare our results of this section with existing
with the message length — dimC, — t. Note that the ones, we here review the history of the studies of the infor-

construction of codeC, is universal in that it does not mation th_eoretlc secur_lty., .
depend on the value of,,. Hence, the linear map defined Wyner [44], and Csiszar and Korneér [7] showed the weak
by C; — C1/Cs can be pregarded as a type of deterministﬁecurity with the wire-tap channel model in terms of Maurer

universal hash function which is secure for independent afgd Wolf %3(;]'_ Csiszar [?] showed thde strong security le‘t_ht
identical applications of an arbitrarily given quantum PauS@Mme model in terms of Maurer and Wdlf [30]. Hayashil [16]
channel. gave the concrete exponential decreasing rate for thegstron

security with the same model. These studies use completely
C. Comparison withs-biased approach random coding as privacy amplification process. That is, no

Now, we treat the same setting as the above by using ﬂli{éear functions are used in this process. Bennett et ab_u[\ﬂ]
5-biased approach. When the subcade c C; is chosen Hastad et al.[[15] proposed to use univeydahsh functions

from an s-almost dual universal subcodefamily C of a _for privacy amplification. Maurer and V\_/olr _[30]_app|ied thig
fixed code C;, we can evaluate the average performanégea to_ the secret key agreement, which is dlfferent_settl_ng
after the combination of the error correction by and the form wire-tap channel. They showed the strong security with

privacy amplification byC, by using Lemma3 (thé-biased universa} hash functions for privacy amplification. Based
on these ideas, Hayashi_|20] showed the strong security

ap\?\;ﬁsﬁg)é 1, attaching the smoothing to Lemiiia 3, HayasIWith universaj hash funct!ons wh(_en the sacrifice bit rate is
[22] derived the following inequalities: greater than the mutual informatioh A : E). Muramatsu
and Miyake [32] considered a more general condition [33]
Ec,ecllpar — pa ® pelh than thes-almost universalfunctions of the code for privacy
<4+ (n+ 1)1/2\/5)2—%nE(1—S,pph) (64) amplification. Under this condition, they showed the weak

security However, Watanabe et al. [42] pointed out thatrthei
) method cannot derive the strong security based on Hayashi's
< ((4 + (n+1)/2/e)272n 05, p"h)) (65) idea [19] in the case of secret key agreement from correlated
source. Further, the impossibility of the strong securityler
the condition of:-almost universalwill be shown in Theorem
(66) by giving a counterexample. Overall, our concepitmost

ECz ecX

ECzECX
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universaj” is a larger class of hash function families than any Note also that the situation is quite different for theiased
known classes of linear hash function families guarantpeiapproach, because it requires hash functions to be aptexd a
the strong security. error correction. That is, one needs to performeaalmost
dual universal code family to a fixed code space. Hence,
the ¢-biased approach can guarantee the strong security only
with an e-almost dual universal subcodefamily of a fixed
Finally, as mentioned earlier, we present an example of thede C,. This relation among classes of code pair families
classical wire-tap channel model that can vividly contthst are summarized in Fidl 2.
properties of the-almostdual universality, and thez-almost In order to illustrate this advantage of the phase error
universality,. Tomamichel et al. showed that wheonverges correction approach with an example, let us take an arbitrar
to 1, any sequence of-almost universal subcode families codeCs, and choose a subcodg of C5 based on Proposition
(of Cy = F%) guarantees the strong seculfityi[40, Lemnth 1]3. Then, the permuted code pair family, -, is an(n+1)-
However, one sees that, # > 2, an e-almost universal almost dual universalcode pairfamily, but is not an(n+1)-
subcode family (ofC; = FZ) cannot necessarily guarantealmost dual universal subcodefamily of a fixed codeC;.
the strong security. In other words, the choice of the cod¢ence, as is discussed in Subsection MII-B, for a given
C, from ane-almost universal subcode family ofC; is not error correction cod€,, the phase error correction approach
sufficient for the strong security. Note that we have showguarantees the existence of a deterministic hash fundtiain t
in this section that the-almostdual universality, is indeed universally works for an independent and identical setting
sufficient for this purpose. Hence, at least in the settinthisf particular, if the error correcting cod€,; universally works
section, thes-almostdual universality, is the more relevant for additive errors given by an independent and identical
criterion for security. distribution, the code paiCs C C; universally works for
Theorem 9:Assume that the channel from Alice to Bob iserror correction as well as privacy amplification.
noiseless, and the channel to Eve is binary symmetric withHowever, in thed-biased approach, it is impossible to
error probabilityp. There exists an example of a 2-almostonstruct such a deterministic hash function because this
universaj code familyC for which the hash functions (i.e., approach cannot treat the security for (@ 1)-almost dual
F3 — F5/Cy with C; € C) cannot guarantee the stronguniversah code pairfamily.

B. e-almost dual universality vs. e-almost universality

security. Finally, we explain the relation of our results to a univer-
Proof: Choose an arbitrary universatode familyC’ = sal quantum CSS code found by Hamadal [14] for sending

{C} C F;‘l}. Then define another code family in FZ, quantum states. In his paper, he focused on an family of

consisting ofCy := {z||0|z € C4} with C} € C. Here, classical self-dual codes. Then combining qubits baseden t

a|lb denotes the concatenation af and b. Hence for any bit basis and qubits based on the phase basis, he succeeded
Cy € C, there existsC}, € C’, such thatCy consists of in constructing a universal quantum CSS code from a set of
x € C} concatenated with a zero. Note that the code familyniversal classical self-dual codes by choosifig = Cs.
C is obviously2-almost universal but its dual code family His code can be applied to QKD, where Alice can send
Ct cannot bes-almost universal for any e < 1, because information by using both of the bit basis and the phase
x=0...0l€C forall C ecC*. basis. On the other hand, it cannot be applied to our quantum
When Alice transmits a cosét] € F3/C> as her secret wire-tap channel model in a straightforward manner, where
message, she chooses [z] randomly and sends it to Bob.only the bit basis is used for sending the classical message.
Due to our construction of, the n-th bit of = is preserved This is because our method employs two codgsand Cs
in [z] as it is without being canceled by privacy amplificationchosen separately. Our method for constructing a detestigini
Since Eve receives this-th bit with the error probabilityp, universal hash function would not work either, if we were to
Eve’s mutual information regardirig] is greater than —h(p). restrict our codes to self-dual codes. Recall that the keytpo
Therefore, the strong security does not hold with these hashour method is the concept of a “permuted code pair family.”
functions. ]

IX. CONCLUSION

C. Deterministic universal hash function In this paper, we have first introduced the concept of “
When there exist errors, one needs error correction as walnost dual universalhash function family”. Then, we have
as hash functions. Here we denote the code for error casrectghown that the class efalmost dual universalhash function
by C; and the code for the hash function 6. Then, the familiesincludes the class of universalash function families.
relationC,  C; holds. Now, we consider what kind of code Employing the relation between quantum error correction
pairsC, C C, yields the strong security. and the security, we have shown that applicatiorz-aimost
First note that the phase error correction approach has @l universal hash function family yields the strong security.
additional advantage over thiebiased approach; that is, thee have also mentioned that the results concerningdthe
phase error correction approach allows us to use-almost biased family [[9], [10] imply this fact, while their origiha

dual universal code pairfamily C5 c Cy. result does not refer the privacy amplification.
We have compared these two approaches, i.e., the phase

4Their § corresponds ta2™ when the hit length of final keys is:. error correction approach and tlebiased approach in the
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example given
.............. in Subsection VIII.B

€ -almost

universal, subcode family of fixed code

modified Toeplitz
. R IR matrices

universal, subcode N\ ...

family of fixed code ~,.+*"

dual universal,
subcode family of
fixed code

permuted code pair family
given in Section IV

& -almost dual universal, subcode family
of fixed code

€ -almost dual
universal, code pair family

strongly secure code pair family

The phase error correction approach
guarantees this class.

Fig. 2. Relation among class of code pairs.

following two points. As the first point, we have shown that thdistribution (1 — p, p). Since the phase errar occurs onn-

phase error correction approach yields a better securitpdbo bits sequence with the probabilif§i} (x), applying Gallager’s
in terms of the trace distance and the Holevo informatiopyaluation[11] to this error probability, fod < s < 1 and
than thed-biased approach. As the second point, we have< a = ﬁ we obtain

shown that the phase error correction approach guararitees t

strong security with a larger class of protocols than &he n

biased approach when we apply error correction as well as P(C) < Z Px(y) Z (%ﬁ)

privacy amplification. yeFy zeC\{0} X
In particular, as a byproduct, we have shown the existence 3
. . . . . 1 1
of a universal code for privacy amplification with error @y~ = Z (P%(y)) T+ Z (P%(y +x)) T+
tion. Due to the above difference, the phase error cornectio  yery 2€C\{0}

approach can guarantee the existence of such a code, whijle . i
the 5-biased approach cannot. Thus, the error probabilityP(C) is bounded from above

by this value. Anye-almost universal code family sat-
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yEFy zEFyp
APPENDIXA ) ) . )
PROOFS OFTHEOREMSZIAND [8 where the concavity of — z* is used. Since the quantity

1 S
First, we show Theoreni] 7. Due to the linearity, it is(Eth“fn 2 zery P)?(y"‘x)m) does not depend op,
sufficient to evaluate the probability that the receivechalg jt can be replaced With(egtmaxfn S ern PR (I)ﬁ)s =
is erroneously decoded t0 \ {0} when0 € C is sent. Let L \S 2 ) _
P (z) be then-independent and identical extension of the"2*=>~*" (Zwng Py (;c)m) - Hence, the right hand side
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of (ZT) becomes We shall make frequent use of these formulas in what follows.

s Note thatFEy(s,p) can be rewritten as
D PR(y)teesastmeon (7 PR(a) v _ !
2 2 Eo(s.p) = s — (14 sh (775 ) -
1+s
. " First, we prove Equatior_(%#4) for the limited case where the
=g max—sn Z P%(x) T+ minimum is evaluated ovey = pg with 0 < 4 < 1.
z€Fy Lemma 6:If R < 1 — h(p),

—g595tmax—sngn[s—FEo(s,p)] (72)

o d(pollp) + [L — hipe) — Rl+ = E(R,p).  (73)
From this, we obtain Theorem 7.

Next, we show Theorerfl] 8. Due to the linearity, it is  Proof: Er(s,p) = —sR+ Ey(s,p) is convex with respect
sufficient to evaluate the probability that the receivechalg t0 s, SinceE%(s, p) = (14s) 739" (1/(1 + s)) > 0. We define
is erroneously decoded 16, \ C, when Alice send$ € C,. the critical rateRz. by
The difference from the above case is the derivatior of (71).

R.:=1-h (Pl/z) )

This part of derivation can be replaced as follows.
such that ifR < R, (resp.,R > R.), then 2Ez > 0

s=1 —
«  (resp,%5R| _ <0).
Then, if R < R., the maximum ofEr is attained at = 1:

Ec,ecPe(C1/C5)

< Boee y) PR@)™ | Y PRly+a)n
yeF? 2€C1\Cy E(R,p) = Egr(l,p)=-R+1-2¢(1/2)
L . ° = d(pij2||p) + 1= h(p1j2) — R
< 3 PR [Beee Y. PRly+ o)t = min d(psllp) +1— hipe) — R.
yeFy z€C1\C2 0<h<1
1 ] ° The last line follows by noting thad(pg||p) + 1 — h(pe) — R
< Z PL(y)t+s | g2tmax—n Z Py +z)Tr attains its minimum af = 1/2, since% [d(pollp) — h(pe)] =

y€Fy zcFy (6 — 1/2)¢"(0) with 4" (6) > 0. Also by noting thatl —

SN < . L
Combining this and[(42), we obtain_(47) and](48). Thi%(il/é) R 2 0for E < Re, we see thal({{3) is satisfied for
discussion can be extended to the case-almost universal -~ -

. : : On the other hand, i o 9Bn| <0, and
extended code pair family. Thus, we obtain Theofém 8. o5 < 0 from R - 1_ h(p). Thus thes_rr11aximum is

oo

attained atsg € (0,1] sl =0, ie.,
APPENDIX B S=SR
PROOF OFEQUATION 1 1 1
FoFQuATION B ( )— ( )=1—R. (74)
In order to prove this equation, it is convenient to introeluc 1+ sr 1+sr 1+sr
another binary distributior?y = (pg, 1 — py) that is derived Hence
from P = (p,1 — p), wherepy is defined by
0 E(R7p) = ER(SRap)
Dy = % I, 1 SR o 1
P’ -p) B l+sg) 1+sr \l+sg

with the convention thap® = 0 if p = 0. The distribution :d(P(HSR)*lHP)- (75)

Py, parameterized by a real numbiee 0, is often called the
exponential family ofP. We also define a functiom(9) by ~ Note that the condition[(T4) can also be written hs-
h (P(14sm)-1) —R = 0. Then by noting that(py ||p) —h(ps) is
$(0) :=1log [p” + (1 - p)’] . monotonically increasing fot /2 < 6 < 1, whereasd(py||p)
decreasing, we see that the minimum [of] (73) is attained for
0 = (1+ sr)~*. Hence [[7B) holds foz > R. as well. m
Proof of Equation[{44)1 et

Then the following relations are useful for simplifying cal
lations of divergencé(p||¢) and entropy:(p). Ford > 0, we

have
¥'(0) = —d(pollp) — h(pe), +"(0) =0, M, = 0r<nl£11 d(q|lp) + 1 — h(q) — R]+,
M, := min d —h — R|+.
h(p@) — _ew/(e) +w(9)’ 2 0<0<1 (p9||p) [ (p@) ]+
dh(ps) 0y (9) < 0 Then from Lemmd6, it suffices to show/; = M,. Since
do - M, < M, holds trivially, it remains to show\/; > M.
Denote the value of attaining the minimum of\/; by q.
d(pollp) = —9(0) — (1= 0)y'(9), Then we have

d(pellp) + h(pe) = —¢'(6). d(qllp) < d(pollp) (76)



since otherwise,

which contradictsM; < Ms,. The second line of (17) follows

My > d(pollp) +[1 — h(q) — R+

> d(pollp) +[1 = h(po) — R+ > M2,  (77)

by noting thath(q) < h(py) with p, being the uniform
distribution. Note that this is true even when= 0 (resp.
p = 1) because thei = 0 (resp.g = 1) due to the condition [24]
d(q|lp) < oc.

By a straightforward calculation, one can show that, given

an arbitrary combination ofp,q,0 satisfying d(q|lp) =
d(pep), .
h(po) — h(g) = 2 ©

holds.From[(7B)d(q|p) = d(p;|p) holds for somé < [0, 1].
Then by using[(78), we see thatp;) > h(¢), and thusM; >

Ms.
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