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Abstract

The problem of estimation of density functionals like entropy and mutual information has received 

much attention in the statistics and information theory communities. A large class of estimators of 

functionals of the probability density suffer from the curse of dimensionality, wherein the mean 

squared error (MSE) decays increasingly slowly as a function of the sample size T as the 

dimension d of the samples increases. In particular, the rate is often glacially slow of order 

O(T−γ/d), where γ > 0 is a rate parameter. Examples of such estimators include kernel density 

estimators, k-nearest neighbor (k-NN) density estimators, k-NN entropy estimators, intrinsic 

dimension estimators and other examples. In this paper, we propose a weighted affine combination 

of an ensemble of such estimators, where optimal weights can be chosen such that the weighted 

estimator converges at a much faster dimension invariant rate of O(T−1). Furthermore, we show 

that these optimal weights can be determined by solving a convex optimization problem which can 

be performed offline and does not require training data. We illustrate the superior performance of 

our weighted estimator for two important applications: (i) estimating the Panter-Dite distortion-

rate factor and (ii) estimating the Shannon entropy for testing the probability distribution of a 

random sample.

1 Introduction

Non-linear functionals of probability densities f of the form G(f) = ∫g(f(x), x)f(x)dx arise in 

applications of information theory, machine learning, signal processing and statistical 

estimation. Important examples of such functionals include Shannon g(f, x) = −log(f) and 

Rényi g(f, x) = fα −1 entropy, and the quadratic functional g(f, x) = f2. In these applications, 

the functional of interest often must be estimated empirically from sample realizations of the 

underlying densities.

Functional estimation has received significant attention in the mathematical statistics 

community. However, estimators of functionals of multivariate probability densities f suffer 

from mean square error (MSE) rates which typically decrease with dimension d of the 

sample as O(T−γ/d), where T is the number of samples and γ is a positive rate parameter. 

Examples of such estimators include kernel density estimators [18], k-nearest neighbor (k-

NN) density estimators [4], k-NN entropy functional estimators [9, 17, 13], intrinsic 

dimension estimators [17], divergence estimators [19], and mutual information estimators. 

This slow convergence is due to the curse of dimensionality. In this paper, we introduce a 

simple affine combination of an ensemble of such slowly convergent estimators and show 

that the weights in this combination can be chosen to significantly improve the rate of MSE 
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convergence of the weighted estimator. In fact our ensemble averaging method can improve 

MSE convergence to the parametric rate O(T−1).

Specifically, for d-dimensional data, it has been observed that the variance of estimators of 

functionals G(f) decays as O(T−1) while the bias decays as O(T−1/(1+d)). To accelerate the 

slow rate of convergence of the bias in high dimensions, we propose a weighted ensemble 

estimator for ensembles of estimators that satisfy conditions .1(2.1) and .2(2.2) defined 

in Sec. II below. Optimal weights, which serve to lower the bias of the ensemble estimator 

to O(T −1/2), can be determined by solving a convex optimization problem. Remarkably, this 

optimization problem does not involve any density-dependent parameters and can therefore 

be performed offline. This then ensures MSE convergence of the weighted estimator at the 

parametric rate of O(T−1).

1.1 Related work

When the density f is s > d/4 times differentiable, certain estimators of functionals of the 

form ∫g(f(x), x)f(x)dx, proposed by Birge and Massart [2], Laurent [11] and Giné and Mason 

[5], can achieve the parametric MSE convergence rate of O(T −1). The key ideas in [2, 11, 5] 

are: (i) estimation of quadratic functionals ∫f2(x)dx with MSE convergence rate O(T −1); (ii) 

use of kernel density estimators with kernels that satisfy the following symmetry constraints:

(1.1)

for r = 1,.., s; and finally (iii) truncating the kernel density estimate so that it is bounded 

away from 0. By using these ideas, the estimators proposed by [2, 11, 5] are able to achieve 

parametric convergence rates.

In contrast, the estimators proposed in this paper require additional higher order smoothness 

conditions on the density, i. e. the density must be s > d times differentiable. However, our 

estimators are much simpler to implement in contrast to the estimators proposed in [2, 11, 

5]. In particular, the estimators in [2, 11, 5] require separately estimating quadratic 

functionals of the form ∫f2(x)dx, and using truncated kernel density estimators with 

symmetric kernels (1.1), conditions that are not required in this paper. Our estimator is a 

simple affine combination of an ensemble of estimators, where the ensemble satisfies 

conditions .1 and .2. Such an ensemble can be trivial to implement. For instance, in this 

paper we show that simple uniform kernel plug-in estimators (3.3) satisfy conditions .1 

and .2.

Ensemble based methods have been previously proposed in the context of classification. For 

example, in both boosting [16] and multiple kernel learning [10] algorithms, lower 

complexity weak learners are combined to produce classifiers with higher accuracy. Our 

work differs from these methods in several ways. First and foremost, our proposed method 

performs estimation rather than classification. An important consequence of this is that the 

weights we use are data independent, while the weights in boosting and multiple kernel 

learning must be estimated from training data since they depend on the unknown 

distribution.
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1.2 Organization

The remainder of the paper is organized as follows. We formally describe the weighted 

ensemble estimator for a general ensemble of estimators in Section 2, and specify conditions 

.1 and .2 on the ensemble that ensure that the ensemble estimator has a faster rate of 

MSE convergence. Under the assumption that conditions .1 and .2 are satisfied, we 

provide an MSE optimal set of weights as the solution to a convex optimization(2.3). Next, 

we shift the focus to entropy estimation in Section 3, propose an ensemble of simple 

uniform kernel plug-in entropy estimators, and show that this ensemble satisfies conditions 

.1 and .2. Subsequently, we apply the ensemble estimator theory in Section 2 to the 

problem of entropy estimation using this ensemble of kernel plug-in estimators. We present 

simulation results in Section 4 that illustrate the superior performance of this ensemble 

entropy estimator in the context of (i) estimation of the Panter-Dite distortion-rate factor [6] 

and (ii) testing the probability distribution of a random sample. We conclude the paper in 

Section 5.

Notation—We will use bold face type to indicate random variables and random vectors and 

regular type face for constants. We denote the statistical expectation operator by the symbol 

 and the conditional expectation given random variable Z using the notation . We also 

define the variance operator as [X] = [(X − [X])2] and the covariance operator as 

Cov[X, Y] = [(X − [X])(Y − [Y])]. We denote the bias of an estimator by .

2 Ensemble estimators

Let l̄ = {l1, .., lL} denote a set of parameter values. For a parameterized ensemble of 

estimators {Êl}l∈l̄ of E, define the weighted ensemble estimator with respect to weights w = 

{w(l1), …, w(lL)} as

where the weights satisfy Σl∈l̄w(l) = 1. This latter sum-to-one condition guarantees that Êw 

is asymptotically unbiased if the component estimators {Êl}l∈l̄ are asymptotically unbiased. 

Let this ensemble of estimators {Êl}l∈l̄ satisfy the following two conditions:

• .1 The bias is given by

(2.1)

where ci are constants that depend on the underlying density,  = {i1, .., iI} is a 

finite index set with cardinality I < L, min( ) = i0 > 0 and max( ) = id ≤ d, and 

ψi(l) are basis functions that depend only on the estimator parameter l.

• .2 The variance is given by
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(2.2)

Theorem 1: For an ensemble of estimators {Êl}l∈l̄, assume that the conditions .1 and .2 

hold. Then, there exists a weight vector wo such that

This weight vector can be found by solving the following convex optimization problem:

(2.3)

where ψi(l) is the basis defined in (2.1).

Proof: The bias of the ensemble estimator is given by

(2.4)

Denote the covariance matrix of {Êl; l ∈ l̄} by ΣL. Let Σ̄
L = ΣLT. Observe that by (2.2) and 

the Cauchy-Schwarz inequality, the entries of Σ̄
L are O(1). The variance of the weighted 

estimator Êw can then be bounded as follows:

(2.5)

We seek a weight vector w that (i) ensures that the bias of the weighted estimator is O(T−1/2) 

and (ii) has low ℓ2 norm ||w||2 in order to limit the contribution of the variance, and the 

higher order bias terms of the weighted estimator. To this end, let wo be the solution to the 

convex optimization problem defined in (2.3). The solution wo is the solution of

Sricharan et al. Page 4

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where A0 and b are defined below. Let a0 be the vector of ones: [1, 1…, 1]1×L; and let ai, for 

each i ∈  be given by ai = [ψi(l1), .., ψi(lL)]. Define 

 and b = [1; 0; 0; ..; 0](I+1)×1.

Since L > I, the system of equations A0w = b is guaranteed to have at least one solution 

(assuming linear independence of the rows ai). The minimum squared norm 

is then given by

Consequently, by (2.4), the bias . By (2.5), the estimator 

variance [Êw0] = O(LηL(d)/T). The overall MSE is also therefore of order O(LηL(d)/T).

For any fixed dimension d and fixed number of estimators L > I in the ensemble 

independent of sample size T, the value of ηL(d) is also independent of T. Stated 

mathematically, LηL(d) = Θ(1) for any fixed dimension d and fixed number of estimators L 

> I independent of sample size T. This concludes the proof.

In the next section, we will verify conditions .1(2.1) and .2(2.2) for plug-in estimators 

Ĝk(f) of entropy-like functionals G(f) = ∫g(f(x), x)f(x)dx.

3 Application to estimation of functionals of a density

Our focus is the estimation of general non-linear functionals G(f) of d-dimensional 

multivariate densities f with known finite support  = [a, b]d, where G(f) has the form

(3.1)

for some smooth function g(f, x). Let  denote the boundary of . Assume that T = N +M 

i.i.d realizations {X1, …, XN, XN+1, …, XN+M} are available from the density f.

3.1 Plug-in estimators of entropy

The truncated uniform kernel density estimator is defined below. For any positive real 

number k ≤ M, define the distance dk to be: dk = (k/M)1/d. Define the truncated kernel region 

for each X ∈  to be Sk(X) = {Y ∈  : ||X − Y ||∞ ≤ dk/2}, and the volume of the truncated 

uniform kernel to be Vk(X) = ∫Sk(X) dz. Note that when the smallest distance from X to  is 

greater than dk/2, . Let lk(X) denote the number of samples falling in 

. The truncated uniform kernel density estimator is defined 

as
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(3.2)

The plug-in estimator of the density functional is constructed using a data splitting approach 

as follows. The data is randomly subdivided into two parts {X1, …, XN } and {XN+1, …, 

XN+M} of N and M points respectively. In the first stage, we form the kernel density estimate 

f̂k at the N points {X1, …, XN } using the M realizations {XN+1, …, XN+M}. Subsequently, 

we use the N samples {X1, …, XN} to approximate the functional G(f) and obtain the plug-

in estimator:

(3.3)

Also define a standard kernel density estimator f̃k, which is identical to f̂k except that the 

volume Vk(X) is always set to the untruncated value Vk(X) = k/M. Define

(3.4)

The estimator G̃
k is identical to the estimator of Györfi and van der Meulen [8]. Observe 

that the implementation of G̃
k, unlike Ĝk, does not require knowledge about the support of 

the density.

3.1.1 Assumptions—We make a number of technical assumptions that will allow us to 

obtain tight MSE convergence rates for the kernel density estimators defined above. ( .0) : 

Assume that k = k0Mβ for some rate constant 0 < β < 1, and assume that M, N and T are 

linearly related through the proportionality constant αfrac with: 0 < αfrac < 1, M = αfracT and 

N = (1 − αfrac)T. ( .1) : Let the density f be uniformly bounded away from 0 and upper 

bounded on the set , i.e., there exist constants ε0, ε∞ such that 0 < ε0 ≤ f(x) ≤ ε∞ < ∞ ∀x ∈ 

. ( .2): Assume that the density f has continuous partial derivatives of order d in the 

interior of the set , and that these derivatives are upper bounded. ( .3): Assume that the 

function g(f, x) has max{λ, d} partial derivatives w.r.t. the argument f, where λ satisfies the 

condition λβ > 1. Denote the n-th partial derivative of g(f, x) wrt x by g(n)(f, x). ( .4): 

Assume that the absolute value of the functional g(f, x) and its partial derivatives are strictly 

upper bounded in the range ε0 ≤ f ≤ ε∞ for all x. ( .5): Let ε ∈ (0, 1) and δ ∈ (2/3, 1). Let 

(M) be a positive function satisfying the condition (M) = Θ(exp(−Mβ(1 − δ))). For some 

fixed 0 < ε < 1, define pl = (1 − ε)ε0 and pu = (1 + ε)ε∞. Assume that the conditions

i.
,

ii.
,

iii.
,
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iv.
,

are satisfied by h(f, x) = g(f, x), g(3)(f, x) and g(λ)(f, x), for some constants G1, G2, 

G3 and G4.

These assumptions are comparable to other rigorous treatments of entropy estimation. The 

assumption ( .0) is equivalent to choosing the bandwidth of the kernel to be a fractional 

power of the sample size [15]. The rest of the above assumptions can be divided into two 

categories: (i) assumptions on the density f, and (ii) assumptions on the functional g. The 

assumptions on the smoothness, boundedness away from 0 and ∞ of the density f are 

similar to the assumptions made by other estimators of entropy as listed in Section II, [1]. 

The assumptions on the functional g ensure that g is sufficiently smooth and that the 

estimator is bounded. These assumptions on the functional are readily satisfied by the 

common functionals that are of interest in literature: Shannon g(f, x) = −log(f)I(f > 0) + I(f = 

0) and Rényi g(f, x) = fα−1I(f > 0) + I(f = 0) entropy, where I(.) is the indicator function, and 

the quadratic functional g(f, x) = f2.

3.1.2 Analysis of MSE—Under the assumptions stated above, we have shown the 

following in the Appendix:

Theorem 2: The biases of the plug-in estimators Ĝk, G̃
k are given by

where c1,i, c1 and c2 are constants that depend on g and f.

Theorem 3: The variances of the plug-in estimators Ĝk, G̃
k are identical up to leading 

terms, and are given by

where c4 and c5 are constants that depend on g and f.

3.1.3 Optimal MSE rate—From Theorem 2, observe that the conditions k → ∞ and k/M 

→ 0 are necessary for the estimators Ĝk and G̃
k to be unbiased. Likewise from Theorem 3, 

the conditions N → ∞ and M → ∞ are necessary for the variance of the estimator to 

converge to 0. Below, we optimize the choice of bandwidth k for minimum MSE, and also 

show that the optimal MSE rate is invariant to the choice of αfrac.
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Optimal choice of k: Minimizing the MSE over k is equivalent to minimizing the square of 

the bias over k. The optimal choice of k is given by

(3.5)

and the bias evaluated at kopt is Θ(M−1/1+d).

Choice of αfrac: Observe that the MSE of Ĝk and G̃
k are dominated by the squared bias 

(Θ(M−2/1+d)) as contrasted to the variance (Θ(1/N + 1/M)). This implies that the asymptotic 

MSE rate of convergence is invariant to the selected proportionality constant αfrac.

In view of (a) and (b) above, the optimal MSE for the estimators Ĝk and G̃
k is therefore 

achieved for the choice of k = Θ(M1/(1+d)), and is given by Θ(T−2/(1+d)). Our goal is to 

reduce the estimator MSE to O(T−1). We do so by applying the method of weighted 

ensembles described in Section 2.

3.2 Weighted ensemble entropy estimator

For a positive integer L > I = d−1, choose l̄ = {l1, …, lL} to be positive real numbers. Define 

the mapping  and let k̄ = {k(l); l ∈ l̄}. Define the weighted ensemble estimator

(3.6)

From Theorems 2 and 3, we see that the biases of the ensemble of estimators {Ĝk(l); l ∈ l̄} 

satisfy .1(2.1) when we set ψi(l) = li/d and  = {1, .., d−1}. Furthermore, the general form 

of the variance of Ĝk(l) follows .2(2.2) because N, M = Θ(T). This implies that we can use 

the weighted ensemble estimator Ĝw to estimate entropy at O(LηL(d)/T) convergence rate by 

setting w equal to the optimal weight wo given by (2.3).

4 Experiments

We illustrate the superior performance of the proposed weighted ensemble estimator for two 

applications: (i) estimation of the Panter-Dite rate distortion factor, and (ii) estimation of 

entropy to test for randomness of a random sample.

For finite T direct use of Theorem 1 can lead to excessively high variance. This is because 

forcing the condition (2.3) that γw(i) = 0 is too strong and, in fact, not necessary. The careful 

reader may notice that to obtain O(T−1) MSE convergence rate in Theorem 1 it is sufficient 

that γw(i) be of order O(T−1/2+i/2d). Therefore, in practice we determine the optimal weights 

according to the optimization:

(4.1)
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The optimization (4.1) is also convex. Note that, as contrasted to (2.3), the norm of the 

weight vector w is bounded instead of being minimized. By relaxing the constraints γw(i) = 0 

in (2.3) to the softer constraints in (4.1), the upper bound η on  can be reduced from the 

value ηL(d) obtained by solving (2.3). This results in a more favorable trade-off between 

bias and variance for moderate sample sizes. In our experiments, we find that setting η = 3d 

yields good MSE performance. Note that as T → ∞, we must have γw(i) → 0 for i ∈  in 

order to keep ε finite, thus recovering the strict constraints in (2.3).

For fixed sample size T and dimension d, observe that increasing L increases the number of 

degrees of freedom in the convex problem (4.1), and therefore will result in a smaller value 

of ε and in turn improved estimator performance. In our simulations, we choose l̄ to be L = 

50 equally spaced values between 0.3 and 3, ie the li are uniformly spaced as

with scale and range parameters a = 10 and x = 3 respectively. We limit L to 50 because we 

find that the gains beyond L = 50 are negligible. The reason for this diminishing return is a 

direct result of the increasing similarity among the entries in l̄, which translates to 

increasingly similar basis functions ψi(l) = li/d.

4.1 Panter-Dite factor estimation

For a d-dimensional source with underlying density f, the Panter-Dite distortion-rate 

function [6] for a q-dimensional vector quantizer with n levels of quantization is given by 

δ(n) = n−2/q ∫ fq/(q+2)(x)dx. The Panter-Dite factor corresponds to the functional G(f) with 

g(f, x) = n−2/qf−2/(q+2)I(f > 0) + I(f = 0). The Panter-Dite factor is directly related to the Rényi 

α-entropy, for which several other estimators have been proposed [7, 3, 14, 12].

In our simulations we compare six different choices of functional estimators - the three 

estimators previously introduced: (i) the standard kernel plug-in estimator G̃
k, (ii) the 

boundary truncated plug-in estimator Ĝk and (iii) the weighted estimator Ĝw with optimal 

weight w = w* given by (4.1), and in addition the following popular entropy estimators: (iv) 

histogram plug-in estimator [7], (v) k-nearest neighbor (k-NN) entropy estimator [12] and 

(vi) entropic k-NN graph estimator [3, 14]. For both G̃
k and Ĝk, we select the bandwidth 

parameter k as a function of M according to the optimal proportionality k = M1/(1+d) and N = 

M = T/2.

We choose f to be the d dimensional mixture density f(a, b, p, d) = pfβ(a, b, d) + (1−p)fu(d); 

where d = 6, fβ(a, b, d) is a d-dimensional Beta density with parameters a = 6, b = 6, fu(d) is 

a d-dimensional uniform density and the mixing ratio p is 0.8. The reason we choose the 

beta-uniform mixture for our experiments is because it trivially satisfies all the assumptions 

on the density f listed in Section 3.1, including the assumptions of finite support and strict 

boundedness away from 0 on the support. The true value of the Panter-Dite factor δ(n) for 

the beta-uniform mixture is calculated using numerical integration methods via the 
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‘Mathematica’ software (http://www.wolfram.com/mathematica/). Numerical integration is 

used because evaluating the entropy in closed form for the beta-uniform mixture is not 

tractable.

The MSE values for each of the six estimators are calculated by averaging the squared error 

[δ̂
i(n) − δ(n)]2, i = 1, .., m over m = 1000 Monte-Carlo trials, where each δ̂

i(n) corresponds to 

an independent instance of the estimator.

4.1.1 Variation of MSE with sample size T—The MSE results of the different 

estimators are shown in Fig. 1(a) as a function of sample size T, for fixed dimension d = 6. It 

is clear from the figure that the proposed ensemble estimator Ĝw has significantly faster rate 

of convergence while the MSE of the rest of the estimators, including the truncated kernel 

plug-in estimator, have similar, slow rates of convergence. It is therefore clear that the 

proposed optimal ensemble averaging significantly accelerates the MSE convergence rate.

4.1.2 Variation of MSE with dimension d—For fixed sample size T and fixed number 

of estimators L, it can be seen that ε increases monotonically with d. This follows from the 

fact that the number of constraints in the convex problem 4.1 is equal to d + 1 and each of 

the basis functions ψi(l) = li/d monotonically approaches 1 as d grows, . This in turn implies 

that for a fixed sample size T and number of estimators L, the overall MSE of the ensemble 

estimator should increase monotonically with the dimension d.

The MSE results of the different estimators are shown in Fig. 1(b) as a function of 

dimension d, for fixed sample size T = 3000. For the standard kernel plug-in estimator and 

truncated kernel plug-in estimator, the MSE increases rapidly with d as expected. The MSE 

of the histogram and k-NN estimators increase at a similar rate, indicating that these 

estimators suffer from the curse of dimensionality as well. On the other hand, the MSE of 

the weighted estimator also increases with the dimension as predicted, but at a slower rate. 

Also observe that the MSE of the weighted estimator is smaller than the MSE of the other 

estimators for all dimensions d > 3.

4.2 Distribution testing

In this section, we illustrate the weighted ensemble estimator for non-parametric estimation 

of Shannon differential entropy. The Shannon differential entropy is given by G(f) where 

g(f, x) = −log(f)I(f > 0) + I(f = 0). The improved accuracy of the weighted ensemble 

estimator is demonstrated in the context of hypothesis testing using estimated entropy as a 

statistic to test for the underlying probability distribution of a random sample. Specifically, 

the samples under the null and alternate hypotheses H0 and H1 are drawn from the 

probability distribution f(a, b, p, d), described in Section IV.A, with fixed d = 6, p = 0.75 

and two sets of values of a, b under the null and alternate hypothesis, H0 : a = a0, b = b0 

versus H1 : a = a1, b = b1.

First, we fix a0 = b0 = 6 and a1 = b1 = 5. The density under the null hypothesis f(6, 6, 0.75, 

6) has greater curvature relative to f(5, 5, 0.75, 6) and therefore has smaller entropy. Five 

hundred (500) experiments are performed under each hypothesis with each experiment 

consisting of 1000 samples drawn from the corresponding distribution. The true entropy and 
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estimates G̃
k, Ĝk and Ĝw obtained from each instance of 103 samples are shown in Fig. 2(a) 

for the 1000 experiments. This figure suggests that the ensemble weighted estimator 

provides better discrimination ability by suppressing the bias, at the cost of some additional 

variance.

To demonstrate that the weighted estimator provides better discrimination, we plot the 

histogram envelope of the entropy estimates using standard kernel plug-in estimator, 

truncated kernel plug-in estimator and the weighted estimator for the cases corresponding to 

the hypothesis H0 (color coded blue) and H1 (color coded red) in Fig. 2(b). Furthermore, we 

quantitatively measure the discriminative ability of the different estimators using the 

deflection statistic , where μ0 and σ0 (respectively μ1 and σ1) are the 

sample mean and standard deviation of the entropy estimates. The deflection statistic was 

found to be 1.49, 1.60 and 1.89 for the standard kernel plug-in estimator, truncated kernel 

plug-in estimator and the weighted estimator respectively. The receiver operating curves 

(ROC) for this entropy-based test using the three different estimators are shown in Fig. 3(a). 

The corresponding areas under the ROC curves (AUC) are given by 0.9271, 0.9459 and 

0.9619.

In our final experiment, we fix a0 = b0 = 10 and set a1 = b1 = 10 − δ, perform 500 

experiments each under the null and alternate hypotheses with samples of size 5000, and 

plot the AUC as δ varies from 0 to 1 in Fig. 3(b). For comparison, we also plot the AUC for 

the Neyman-Pearson likelihood ratio test. The Neyman-Pearson likelihood ratio test, unlike 

the Shannon entropy based tests, is an omniscient test that assumes knowledge of both the 

underlying beta-uniform mixture parametric model of the density and the parameter values 

a0, b0 and a1, b1 under the null and alternate hypothesis respectively. Figure 4 shows that the 

weighted estimator uniformly and significantly outperforms the individual plug-in estimators 

and comes closest to the performance of the omniscient Neyman-Pearson likelihood test. 

The relatively superior performance of the Neyman-Pearson likelihood test is due to the fact 

that the weighted estimator is a nonparametric estimator that has marginally higher variance 

(proportional to ) as compared to the underlying parametric model for which the 

Neyman-Pearson test statistic provides the most powerful test.

5 Conclusions

We have proposed a new estimator of functionals of a multivariate density based on 

weighted ensembles of kernel density estimators. For ensembles of estimators that satisfy 

general conditions on bias and variance as specified by .1(2.1) and .2(2.2) respectively, 

the weight optimized ensemble estimator has parametric O(T−1) MSE convergence rate that 

can be much faster than the rate of convergence of any of the individual estimators in the 

ensemble. The optimal weights are determined as a solution to a convex optimization 

problem that can be performed offline and does not require training data. We illustrated this 

estimator for uniform kernel plug-in estimators and demonstrated the superior performance 

of the weighted ensemble entropy estimator for (i) estimation of the Panter-Dite factor and 

(ii) non-parametric hypothesis testing.
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Several extensions of the framework of this paper are being pursued: (i) using k-nearest 

neighbor (k-NN) estimators in place of kernel estimators; (ii) extending the framework to the 

case where support  is not known, but for which conditions .1 and .2 hold; (iii) using 

ensemble estimators for estimation of other functionals of probability densities including 

divergence, mutual information and intrinsic dimension; and (iv) using an l1 norm ||w||1 in 

place of the l2 norm ||w||2 in the weight optimization algorithm (2.3) so as to introduce 

sparsity into the weighted ensemble.
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Appendices: Outline of appendix

We first establish moment properties for uniform kernel density estimates in Appendix A. 

Subsequently, we prove theorems 2 and 3 in Appendix B.

A Moment properties of boundary compensated uniform kernel density 

estimates

Throughout this section, we assume without loss of generality that the support  = [−1, 1]d. 

Observe that lk(X) is a binomial random variable with parameters M and Uk(X) = Pr(Z ∈ 

Sk(X)). The probability mass function of the binomial random variable lk(X) is given by

Define the error function of the truncated uniform kernel density,

(A.1)

Also define the error function of the standard uniform kernel density,

and note that when X ∈ (k), ẽk(X) = êk(X).

A.1 Taylor series expansion of coverage

For any X ∈ , the coverage function Uk(X) can be represented by using a d order Taylor 

series expansion of f about X as follows. Because the density f has continuous partial 

derivatives of order d in , for any X ∈ ,

(A.2)
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where ci,k are functions which depend on k and the unknown density f. This implies that the 

expectation of the density estimate is given by

(A.3)

A.2 Concentration inequalities for uniform kernel density estimator

Because lk(X) is a binomial random variable, standard Chernoff inequalities can be applied 

to obtain concentration bounds on lk(X). In particular, for 0 < p < 1/2,

(A.4)

Let (X) denote the event (1 − pk)MUk(X) < lk(X) < (1+ pk)MUk(X), where pk = 1/(kδ/2) for 

some fixed δ ∈ (2/3, 1). Then, for k = O(Mβ),

(A.5)

where (M) satisfies the condition limM→∞ Ma/ (M) = 0 for any a > 0. Also observe that 

under the event (X),

(A.6)

A.3 Bounds on uniform kernel density estimator

Let Br(X) be an Euclidean ball of radius r centered at X. Let X be a Lebesgue point of f, i.e., 

an X for which

Because f is an density, we know that almost all X ∈  satisfy the above property. Now, fix ε 

∈ (0, 1) and find εr > 0 such that

For small values of k/M, Bεr(X) ⊂ Sk(X) and therefore
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(A.7)

This implies that under the event (X) defined in the previous subsection,

(A.8)

Let (X) denote the event that f̂k(X) = 0. Let (X) denote the event 1 <= lk(X) <= (1 − 

pk)MUk(X) and (X) denote lk(X) >= (1 + pk)MUk(X). Then conditioned on the event (X)

(A.9)

and conditioned on the event (X)

(A.10)

Observe that (X), (X), (X) and (X) form a disjoint partition of the event space.

A.4 Bias

Lemma 4: Let γ(x, y) be an arbitrary function with d partial derivatives wrt x and supx,y |γ(x, 

y)| < ∞. Let X1, .., XM, X denote M + 1 i.i.d realizations of the density f. Then,

(A.11)

where c1,i(γ(x, y)) are functionals of γ and f.

Proof: To analyze the bias, first extend the density function f as follows. In particular, 

extend the definition of f to the domain  = [−2, 2]d while ensuring that the extended 

function fe is differentiable d times on this extended domain. Let sk(X) = {Y : ||X − Y||1 ≤ 

dk/2} be the natural un-truncated ball. Let uk(X) = ∫z∈sk(X) fe(z)dz. Define the function f̄k(X) 

= uk(X)/(k/M). For any X ∈ , using this extended definition,

(A.12)

where ci are only functions of the unknown density fe. Also define f̌k(X) = [f̂k(X)|X]. Define 

the interior region (k) = {X ∈  : sk(X) ∩  = ϕ}. Note that f̄k(X) = f̌k(X) for all X ∈ (k). 

Now,
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(A.

13)

A.4.1 Evaluation of I—

(A.14)

where c11,i(γ(x, y)) are functionals of γ(x, y) and its derivatives.

A.4.2 Evaluation of II—Let m = M/2, kM = k/M and km = (k/m)1/d. Define mappings , 

and :  − (k) →  as follows. Let u(X) denote the unit vector from the origin to X, and 

define (X) = u(X) ∩ . Let (m) be a reference set. Define (X) = u(X) ∩ (m). Let lb(X) 

= || (X) − X||. Finally define (X) = n(X)u(X), where n(X) satisfies || (X) − (X)|| = 

(m/k)1/dlb(X). For each X ∈  − (k), let lr(X) = || (X) − (X)|| and lmax(X) = || (X) − 

(X)||. Let  denote the set of all unit vectors:  =  u(X). Observe that, by definition, 

the shape of the regions Sk(X) and Sm( (X)) is identical. This is illustrated in Fig. 4.

Analysis of f̄m( (X)), f̌m( (X)): (X) can represented in terms of (X) as (X) = (X)

+ls(X)u(X). Using Taylor series around (X), f̌m( (X)) can then be evaluated as

(A.15)

where the functionals  depend only on the shape of the regions Sk(X) or Sm( (X)) and 

therefore only on (X). Similarly,

(A.16)

where the functionals  again depend only on (X). This implies that for any fixed u ∈ 

and corresponding Xb ∈ , for any function η(x) and positive integer q ∈ {1, .., d}, 

integration over the line l(Xb) = {Xb − cu(Xb); c ∈ (0, lmax(Xb))}

(A.17)

and
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(A.18)

where the functions c`i,q,η (Xb) and c`i,q,η (Xb) depend only on Xb, q, η and are independent 

of Z and k.

Analysis of f̄k(X), f̌k(X): (X) can be represented in terms of X as (X) = X + kmlr(X)u(X). 

Identically, this gives,

(A.19)

and

(A.20)

This implies that for any fixed u ∈  and corresponding Xb ∈ , integration over the line 

l(Xb) = {Xb − cu(Xb); c ∈ (0, kmlmax(Xb))}

(A.21)

and

(A.22)

Analysis of II: 

(A.

23)

where c12,i(γ(x, y)) are functionals of γ(x, y) and its derivatives. This implies that
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(A.24)

where the functionals c1,i(γ(x, y)) are independent of k.

A.5 Central Moments

Since lk(X) is a binomial random variable, we can easily obtain moments of the uniform 

kernel density estimate in terms of Uk(X). These are listed below.

Lemma 5: Let γ(x) be an arbitrary function satisfying supx |γ(x)| < ∞. Let X1, .., XM, X 
denote M + 1 i.i.d realizations of the density f. Then,

(A.25)

(A.26)

where c2(γ(x)) is a functional of γ and f.

Proof: When r = 2,

(A.27)

For any integer r ≥ 3,

(A.28)

Observe that Vk(X) = Θ(k/M) and therefore . This implies,

When X ∈ (k), ẽk(X) = êk(X). Also Pr(X ∈ (k)) = o(1). This result in conjunction with the 

fact that ẽk(X) = (MVk(X)/k) êk(X), and Vk(X) = Θ(k/M) gives
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A.6 Cross moments

Let X and Y be two distinct points. Clearly the density estimates at X and Y are not 

independent. Observe that the uniform kernel regions Sk(X), Sk(Y) are disjoint for the set of 

points given by Ψk:= {X, Y}: ||X − Y||1 ≥ 2(k/M)1/d, and have finite intersection on the 

complement of Ψk.

Intersecting balls

Lemma 6: For a fixed pair of points {X, Y} ∈ Ψk, and positive integers q, r,

Proof: For a fixed pair of points {X, Y} ∈ ΨK, the joint probability mass function of the 

functions lk(X),lk(Y) is given by

Denote the high probability event (X)∩ (Y) by (X, Y). Define l̂k(X), l̂k(Y) to be binomial 

random variables with parameters {Uk(X), M − q} and {Uk(Y), M − r} respectively. The 

covariance between powers of density estimates is then given by
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Then, the covariance between the powers of the error function is given by

Disjoint balls—For , there is no closed form expression for the covariance. 

However we have the following lemma by applying the Cauchy-Schwartz inequality:

Lemma 7: For a fixed pair of points ,
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Joint expression

Lemma 8: Let γ1(x), γ2(x) be arbitrary functions with 1 partial derivative wrt x and supx |

γ1(x)| < ∞, supx |γ2(x)| < ∞. Let X1, .., XM,X, Y denote M + 2 i.i.d realizations of the 

density f. Then,

(A.

29)

(A.

30)

where c5(γ1(x), γ2(x)) is a functional of γ1(x), γ2(x) and f.

Proof: Let the indicator function 1Δk(X, Y) denote the event . Then

where ‘I’ stands for the contribution form the intersecting balls and ‘D’ for the contribution 

from the dis-joint balls. I and D are given by

When 1Δk(X, Y) ≠= 0, we have . Then,

where the bound is obtained using the Cauchy-Schwarz inequality and using Eq.A.28. Also,

(A.31)

This gives
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Again, since X ∈ (k) implies ẽk(X) = êk(X) and Pr(X ∈ I(k)) = o(1),

This concludes the proof.

B Bias and variance results

Lemma 9: Assume that U(x, y) is any arbitrary functional which satisfies

i.
,

ii.
,

iii.
,

iv.
.

Let Z denote Xi for some fixed i ∈ {1, ..,N}. Let ζZ be any random variable which almost 

surely lies in the range (f(Z), f̂k(Z)). Then,

Proof: We will show that the conditional expectation [|U(ζZ, Z)| | ] < ∞. Because 0 < ε0 

< f(X) < ε∞ < ∞ by ( .1), it immediately follows that

Also observe that ε0 < f(Z) < ε∞ and therefore pl < f(Z) < pu. Finally observe that the events 

(Z) and (Z) occur with probability O( (M)). Using (A.8), (A.9), (A.10), conditioned on 

,

(B.

1)
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Proof of Theorem 2

Proof: Using the continuity of g‴(x, y), construct the following third order Taylor series of 

g(f̂k(Z), Z) around the conditional expected value f̌k(Z) = [f̂k(Z) | Z].

where ζZ ∈ (f̌k(Z), f̂k(Z)) is defined by the mean value theorem. This gives

Let . Direct application of Lemma 9 in conjunction with assumption ( .

5) implies that [Δ2(Z)] = O(1). By Cauchy-Schwarz and applying Lemma 5 for the choice 

q = 6,

By observing that the density estimates {f̂k(Xi)}, i = 1, …, N are identical, we therefore have

By Lemma 4 and Lemma 5 for the choice q = 2, in conjunction with assumptions ( .3) and 

( .4), this implies that

where the last but one step follows because, by (A.3), we know f̌k(Z) = f(Z) + o(1). This in 

turn implies c2(f2(x)g″(f̌k(x), x)) = c2(f2(x)g″(f(x), x)) + o(1). Finally, by assumptions ( .2) 

and ( .4), the leading constants c1,i and c2 are bounded.

Note that the natural density estimate f̃k(X) is identical to the truncated kernel density 

estimate f̂k(X) on the set X ∈ (k). From the definition of set (k), Pr(Z ∉ = ) = 

O((k/M)1/d) = o(1).
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(B.

2)

Using the exact same method as in the Proof of Theorem 2, using (A.3) and (A.25), and the 

fact that Pr(Z ∉ = (k)) = O((k/M)1/d) = o(1), we have

Because we assume that g satisfies assumption ( .5), from the proof of Lemma 9, for Z ∈ 

− (k), we have [g(f̃k(Z), Z) − g(f(Z), Z)] = O(1). This implies that,

(B.3)

This implies that

Proof of Theorem 3

Proof: By the continuity of g(λ)(x, y), we can construct the following Taylor series of 

g(f̌k(Z), Z) around the conditional expected value f̌k(Z).

where ξZ ∈ (g( [f̌k(Z)], g(f̌k(Z))). Denote (gλ(ξZ, Z))/λ! by Ψ(Z). Further define the 

operator (Z) = Z − [Z] and
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The variance of the estimator ĜN(f̂k) is given by

Because X1, X2 are independent, we have [(p1)(p2 + q2 + r2 + s2)] = 0. Furthermore,

Applying Lemma 5 and Lemma 8, in conjunction with assumptions ( .3) and ( .4), it 

follows that

• [p1
2] = [g(f̌k(Z), Z)] = c4(g(f̌k(x), x))

•

•

•

Since q1 and s2 are 0 mean random variables

Direct application of Lemma 9 in conjunction with assumptions ( .5) implies that 

[Ψ2(Z)] = O(1). Note that from assumption ( .3), . In a similar manner, it 

can be shown that  and . This implies that

where the last but one step follows because, by (A.3), we know f̌k(Z) = f(Z) + o(1). This in 

turn implies c4(g(f̌k(x), x)) = c4(g(f(x), x)) + o(1) and c5(g′(f̌k(x), x), g′(f̌k(x), x)) = c5(g′(f(x), 

x), g′(f(x), x)) + o(1). Finally, by assumptions ( .2) and ( .4), the leading constants c4 and 

c5 are bounded.
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Because of the identical nature of the expressions of êk(X) and ẽk(X) in Lemma 5 and 

Lemma 8, it immediately follows that

This concludes the proof of Theorem 3.
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Figure 1. 
Variation of MSE of Panter-Dite factor estimates using standard kernel plug-in estimator 

[14], truncated kernel plug-in estimator (3.3), histogram plug-in estimator[17], k-NN 

estimator [20], entropic graph estimator [18] and the weighted ensemble estimator (3.6).

(a) Variation of MSE of Panter-Dite factor estimates as a function of sample size T. From 

the figure, we see that the proposed weighted estimator has the fastest MSE rate of 

convergence wrt sample size T (d = 6).

(b) Variation of MSE of Panter-Dite factor estimates as a function of dimension d. From the 

figure, we see that the MSE of the proposed weighted estimator has the slowest rate of 

growth with increasing dimension d (T = 3000).
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Figure 2. 
Entropy estimates using standard kernel plug-in estimator, truncated kernel plug-in estimator 

and the weighted estimator, for random samples corresponding to hypothesis H0 and H1. 

The weighted estimator provides better discrimination ability by suppressing the bias, at the 

cost of some additional variance.

(a) Entropy estimates for random samples corresponding to hypothesis H0 (experiments 1–

500) and H1 (experiments 501–1000).

(b) Histogram envelopes of entropy estimates for random samples corresponding to 

hypothesis H0 (blue) and H1 (red).
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Figure 3. 
Comparison of performance in terms of ROC for the distribution testing problem. The 

weighted estimator uniformly outperforms the individual plug-in estimators.
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Figure 4. 
Illustration for the proof of Lemma 4.
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