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Abstract—We study computation of a modulo-sum of two  We study the computation of a modulo-sum of two messages
binary source sequences over a two-user erasure .multiple eess over a multiple access channel, introduced in [6], [7]. Ehes
channel. The channel is modeled as a binary-input, erasure \yoks consider the Gaussian multiple access channel (MAC)
multiple access channel, which can be in one of three states . . . .

- either the channel output is a modulo-sum of the two input and observe that fpr a W'de range O_f S|gngl-to-n0|se_ ratio
symbols, or the channel output equals the input symbol on the (SNR), one can achieve higher rates using lattice codesadst

first link and an erasure on the second link, or vice versa. of ani.i.d. random code ensemble. Because of its additive na
The associated state sequence is independent and identlgal ture, the Gaussian MAC channel is well suited for computing
distributed. We develop a new upper bound on the sum-rate s modulo sum of two messages using lattice codes. A simple

by revealing only part of the state sequence to the transmiérs. . .
Our coding scheme is based on the compute and forward and the YPPEr bound, obtained by revealing one of the messages to the

decode and forward techniques. When a (strictly) causal fatback ~destination, suffices to establish the near-optimalityattide-
of the channel state is available to the encoders, we show tha based schemes for a wide range of channel parameters. ISimila

the modulo-sum capacity is increased. Extensions to the @®f schemes can also be developed for computation of a modulo-
lossy reconstruction of the modulo-sum and to channels invaing sum over the binary multiple-access channel
additional states are also treated briefly. ’

In the present paper we study a MAC channel model that
does not appear naturally matched for computing the modulo-
sum function. Our model is an erasure multiple access cthanne

Index Terms—Network Information Theory, Modulo-Sum
Computation, Multiple Access Channels, Erasure Channels,

Compute and Forward. . X . : . . ;
| INTRODUCTION with binary inputs. With a certain probablllty_, the d_estma
) o ) ~ observes a modulo-sum of the two transmitted bits whereas

In- many emerging applications in networked systems, it {§ith a certain probability the destination observes only on
sufficient for intermediate nodes to compute a function ef thy the two bits and an erasure symbol associated with the
source messages. For example in a two-way relay chanigher transmitted bit. We establish upper and lower bounds
the two users need to mutually exchange messages Usipdthe modulo sum capacity of such a channel model. The
a central relay node. It is natural that the relay node Or_‘bbper bound is tighter than the simple upper bound obtained
computes @ modulo-sum of the messages. In other appligy- revealing one of the messages to the destination. The
tions, the destination node may only be interested in SOMRKyer hound is based on compute-and-forward and decode-
pre-determined function of the observations made by remgigq-forward schemes used in earlier works. It can be acthieve
terminals. For example, in a temperature monitoring systegy, sing identical linear codebooks at the two senders. ¥ al
the fusion centre may only be interested in computing afiefly consider the case when there is strictly causal faekib
average of the observations made by each of the sensor nogege state sequence available from the destination (&sing

Korner and Marton([1] introduce a multi-terminal SOUrC\RQ) and show that the capacity can be increased compared
coding problem where the destination terminal is requi®d {, e case without such feedback.

pompute a modulo-sum of two binary sources. Each SOUICEE asure channel models are suitable when one considers
is revealed to one encoder and the source sequences nee

0 b d h that the destinati -control coding in the upper layers of the protocotkta
0 DE compressed suc at the destination can recover {0&em could be designed such that when both the transgnittin
modulo-two sum of the two binary source sequences. T

: o " des are active, the physical layer computes the modulo sum
authors establish the optimality of a scheme that usesiant of phy y b

i debooks f ing the tw the information bits and passes it to the upper layer. Due
IN€ar codebooks for compressing e tWo SOUrce SEqUENGES, ;o _off mechanisms a transmitting node may not be active

There has been a significant interest in both source and eharm each slot. This leads to erasures on the respective ligks a
coding techniques for in-network function computation ir&onsidered in this paper

recent times; see e.gl,|[2]=]16].
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particular we have:

x®y, s=0, eeve (2T N 212 1]

s=1, (1)

yooos=2 G (2 [T T2 [1 ]2

We assume that the receiver is revealed the pais). We

assume thafr(s = 1) = Pr(s =2) = andPr(s =0) = 1 — Revealed Locations

2¢ wheree satisfies) < ¢ < 1/2. The channel is memoryless

ie., Pr(s" = s") = [[™_, Pr(s; = s:). oo [[Y 2 [T 2 [172
A code of lengthn is defined as follows. Sendépbserves a Compound

messagev; uniformly and independently distributed over the  setup Revealed Locations

set[1,...,2""]. For sake of convenience we will represent chomnal 2 | 1 ‘ 2 n 1 ‘ 2 n 2 ‘ n

messagew; as a sequencé&!’® consisting ofnR indepen- J l

dent and equiprobable bits. We define= w; ® wy as the
exclusive-or oft77? @ b3~
The messages are mapped into codewortls= f,,(w;)

and vy — w-) respectively and the decoder is required t69- 1- Main Steps in the Upper Bound (fer = 1/3). The uppermost
Y g"( 2) p y 4 égure illustrates the erasure MAC model. Each square qoorets to one

produced :_hn(zn; s"). An_ error '5_ declared ifu # u}. channel use. The black squares correspons} te 0, i.e., z; = x; @ y;, the
A rate R is achievable if there is a sequence of encodessaded grey squares correspond;te= 1, i.e., z; = x; and the white squares

and decoders such that the error probability goes to zero agerrespond tas; = 2 i.e., z; = y;. Our upper bound reveals the location of
s; = 2 to both the transmitters non-causally. Since the tranersitare not

approaches infinity. The largest achievable rate is defised gare of the location of the grey and black squares, any oadhi genie-

the modulo-sum capacity aided channel must also be decodable when the black and gueyes are
interchanged. This compound setup results in a tighter ruppend than the
usual cut-set bound.

Revealed Locations

IIl. MAIN RESULTS

We state the main results in this section.
The proposed upper bound is tighter than a genie-aided
bound where one of the messages, say is revealed to

) the decoder. We provide the key-steps in the upper bound
We propose the following lower bound on the modulo-suferivation below.

capacity.

A. Lower Bound

1) Revealing Side Information to the Transmitte@ur key
Proposition 1. The modulo-sum capacity is lower bounded bstep is to reveal part of the state sequence to the encoders. |

the following expression: particular define the setd = {i:s; =1}, B={i:s;, =2}
1 andC = {i: s; = 0}. We illustrate the technique whenl| =
C>R = max{l — 2¢, 5} ) (2) |B| =IC| = %, which roughly corresponds to the case when

e = 1/3. We will use the notation/’ to denote the projection
The lower bound of R =1-—2¢ is attained using a of z" onto the indices € C etc.

compute-and-forward techniquél [7] where identical linear In our upper bound, we first reveal the knowledge Bf
codebooks are used by the two transmitters. The lower bouodthe two encoders non-causally. However the encoders are
R = 1/2 can be attained in several ways. Perhaps thet aware of the setgl andC. Note from [1) thatz} = yg,
simplest way is to transmit;, andw, to the destination us- z%; = x’; andz = x? & yg.
ing independent multiple-access channel codebdoKs [1&]. W 2) Independence of Input Signals from & w,: Observe
call this scheme decode-and-forward. Interestingly if v8e uthat yi is sub-sequence transmitted by user 2 and hence
identical codebooks at the two transmittersi[11] for deeodgdependent ofi = w; & we. Using this property we have:
and-forward, the ratd? = min(1/2,2¢) is achieved. As we

will show, a variant of the compute-and-forward scheme also nR = H(u) (4)
achievesRk = 1/4, whene > 1/4. = H(uly?) (5)
= H(ulys, x4, 2¢) +1(x4, 25 ulys) (6)

B. Upper Bound

IN

_ _ n(l—e) — H(xX}, 28 lyg, u) +n-o0,(1), (7)
We provide the following upper bound on the modulo-sum
capacity. where we use Fano’s inequality #1H (u[x’;, v, z2) < on(1)
Theorem 1. The modulo-sum capacity is upper bounded b"il/nd os(1) denotes a vanishing function in .
; P 3) Compound MAC ChanneDbserve that the same coding
the following expression: o
scheme must also work when the positions of sétandC
C<Rt— (1- 3€)+3+ 2-¢) (3) are interchanged. This results in

where (-)T equals zero if the argument inside is negative. nR<n(l—e)— H(xg, Z4lyg,u) +n-on(l).  (8)




Combining [T) and[{8) and ignoring the,(1) term, we D. Numerical Comparisons

obtain the following: Fig.[2 provides a numerical computation of the upper and
lower bounds for the Erasure MAC channel both with and
nR < n(l —¢e) — max (H(Xfia z0|yg,u), H(xg , Z4lys, U)) without feedback. The upper-most dotted curve corresponds

) to Rfz; = 1 — ¢ and is the upper bound on the capacity

1 with feedback. The lowermost curve, marked with backward
<n(l—g)—= <H(xj}l, zZByg, u)+H(x?, 2% |yg, u)> arrows, is the lower bound achieved by either the decode and
2 forward or the compute and forward schemes. The other solid
(10) curve is our new upper bound on the capacity without feedback

11 (cf Theoren{l). The fourth curve is the lower bound with

1
< TL(I - 6) - _H(Xn’zn’xn’znb/n’ U)
2 A ECTC AR feedback in Prop[]2. Interestingly we see that it lies above

=n(l—¢)— %H(Xﬁ,yg,xg’yﬂyg, u) (12) the upper bounq for certain. values gfthus establishir\g that
1 feedback helps in computation over the erasure multiplesscc
<n(l—¢g)-— §H(yﬁ,yg|yg, u) (13) channel.
1 .
<n(l—¢)— EH(yﬁ, velyg) (14) E. Lossy Reconstruction

While the focus of this paper is on lossless recovery, our
where [14) follows from the fact that the transmit sequenggeas can be also extended to lossy recovery. We illusthige t
by user2, y" is independent ofw; and hencew; ® wa. ith one example. As before we consider the case when the
Eq. (13) suggests that for the rate to be high}, ') and o transmitters observe i.i.d. equiprobable binary seqes

yg must be strongly correlated. However as we show beloys and % respectively. The receiver is interested in the
such a constraint can only reduce the upper bound obtaingddulo-sumu* — bk @ bk. However it suffices to output

by revealing one of the messages to the destination. any sequencé” that satisfies the distortion constraint

4) Penalty from Repetition CodingSuppose that the se- i
guencex™ is completely revealed to the destination. The E lzp(u} o) <D (19)
receiver only needs to compui® and hence we have: k = R

nR < H(y™) = H(y%, yelys) + H(yg) (15) Wherep(.,-) is the associated distortion measure. In this paper
N we select the erasure distortion measure i.e.,
Eliminating the joint entropy term between {14) ahd](15) we

get 0, U=u
plui)={1, G=x« (20)
gnR < %H(yg) +n(l—¢) (16) oo, otherwise

) ) We assume a bandwidth expansion factor ®f Thus the
By using the simple upper bounld (y) < |B| = ne we get nmber of channel uses is — k3 and the transmitters
R < 5= which agrees with[(3) foe = 1/3. generatex = fi(bF) for i = 1,2 and the receiver outputs
i* = gi(z",s™). A distortion D is achievable if there exist a
C. Causal State Feedback sequence of encoding and decoding functions that safiSy (1

) ask — oo. We develop bounds on the achievable distortion.
Consider the case when the encoders are revealed the state

sequences in a strictly causal manner. The encoding fursctid heorem 2. An achievable distortion for modulo-sum recon-
at time i can depend on the state sequence up to timel  Struction of equiprobable and independent binary sourees o
i.e.x; = fi(wi,sit) andy; = gi(wa,si ). the erasure multiple access channel satisfiég., < D <

N ) . Dipner Where
Proposition 2. The modulo-sum capacity the multiple access

channel with strictly causal state feedback is lower andaipp Dinner = (1 = BR7)* (21)
bounded byR;; < C < R, where Douter = (1= BRY) T (22)
R — 1 (17) where R~ and R are the lower and upper bounds on the
FB ™1 427 modulo-sum capacity stated (@) and (3) respectively and the
Rig=1-¢ (18) function(v)* equals zero ifv < 0 and equalsy otherwise.

In particular, examining the expression fbx,,., it can be
The lower bound is achieved by a two-phase protocol wheshown that uncoded transmission is sub-optimal even when

the users transmit uncoded bits in the first phase and us@ a= 1 i.e., there is no bandwidth mis-match. If the two
multiple-access code in the second phase. The upper boundssrs seleck!” = s for i = 1,2 then the destination must
the genie-aided bound where one of the messages is revededare an erasure whenewgr£ 0. It is easy to see that the
to the destination. The problem reduces to communicatiag taverage distortion for this technique equ2ds In contrast the
other message, say, to the destination. Feedback in such axpression(21) equalsgin(2e, %) wheng = 1. This is a strict
case is well known to not increase the point-to-point cagaciimprovement fore € (i, %)



0.9 o~ -

0.8 S.. RRRERS . f

o8 ™ e, -

0.5~

oal —— Upper Bound (Without Feedback) B

---- Lower Bound (With Feedback)

Modulo—-Sum Rate

02k T Lower Bound (Without Feedback) B

ol Upper Bound (With Feedback) b

0 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Erasure Probability: €

Fig. 2. Comparison of upper and lower bounds for the EraMA& channel with and without feedback.

F. Extended Multiple Access Channel A. Compute and Forward Scheme

We consider an extension of the model[ih (1) where whenWe use identical linear codebooks at the two transmitters
there are two additional states — either the decoder obserire the compute and forward scheme to achidve- 1 — 2¢.
both (x,y) or it observes an erasure. In particular we havgecall that the messages andw, are assumed to be binary

that,s € {0,1,2,3,4}, where valued sequences of lengtiR? bits i.e., we take
X@y, SZO, b,LT:[ble,,bZK] (26)
X, s=1, where K = nR denote the number of information bits in the
z=1y, s=2, (23) message. Letr be a matrix of dimension&” x n, and let each
(x,y), s=3 entry in G be sampled independently from an equiprobable

Bernoulli distribution. It is useful to express

Our upper and lower bounds can be naturally extended to _ _
the extended multiple access chaniiel (23). For simpliciéy where eachg; € {0,1}* is a length K binary valued

* s =4.

3

only focus on the lossless case. LRit(s = 1) = Pr(s = column_ vector. The transmitted sequence = [z1,...,2x]
2) = d0-¢, Pr(s = 0) = 6(1 — 2¢), Pr(s = 3) = v and at receiverl is expressed as:
Pr(s=4)=1—~v-4. xI =b? .G (28)
Proposition 3. The modulo-sum capacity of the extended = [blg,...,bTg,] (29)
multiple access channel if23) satisfiesR~ < C < RT, , . . . -
where: The transmitted sequeng€ at user2 is defined in a similar
manner.
R™ =~+ - max <1 (1— 25)) (24) The receiver is interested in computing
27
+ 2—e+(1-3e)" u” =b{ ®b3 = [b11 G b1, ..., bix G bax]. (30)
= 25 . . .
R 7+5< 3 > (25) Given our specific encoder, the received symbol can be ex-
pressed as:
We observe that the lower and upper bounds for the (b{ ®bl)g;, s =0,
extended model reduce to the corresponding bounds for the z; =4 blg;, s; =1, (31)
simplified model wheny = 0 and¢ = 1. bl 9
2 gu 57, - .

Our proposed decoder only uses the output of the channel
whens; = 0 and declares erasuressif#£ 0. Let GO = Gs,—0

We separately establish the achievability/of= 1 — 2 and be collection of column vectors iy whens; = 0. We use
R=1/2. the following lemma regarding?y:

IV. LowERBOUND: PROOF oFPrOR[I



Lemma 1. For everyé > 0, there exists a function,, s(1) and since the columns af; are independently sampled, it
that goes to zero as — oo, such that following holds: follows that,

Pr (rank(éo) > min(K,n(1 — 2 — 5))) > 1—ons(1). dim (col-space(é’i)) >n-min(e — g, R), i=1,2. (38)
(32)
Thus using the relation

The proof of Lemmdll is obtained by showing that, wit;,, (Col space(G1) N col- Space(GQ)): dim (col—space(@l))
high probability, each randomly selected column(ifis in a

general positionWe omit the proof. Clearly the receiver cant+dim (CO]-Space(ég))—dim (col-space(él) U col-space((?g))

uniquely recover(b? @ b)) from (39)
ZOT = (blT ® sz) - Go (33) it follows that with a probability that exceeds- o,, 5(1), we
if G has full row-rank, which holds i? < 1— 2 — 4. Since Nave that
d > 0 is arbitrary this establishes our first lower bound. dim (col—space((?l) A Col-space(ég)) > n-dys
. - A +
B. Achievability ofR = 1/2: Decode and Forward Approach =n(2e—R-9)
The rate R = 1/2 is achieved by transmitting both, (40)
and w, to the destination instead of taking advantage of thEhus one can find a matricéd; such that
fact that the destination only requireg ® w.. The multiple . .
GiM; =GaMy=A (41)

access capacity region is given by the convex hull of ratespai

(B, Ry) that satisfy: where A is a full-matrix of dimensiom x dj». The receiver

Ry < I(x;z,sly) (34) first computes
Ry < I(y;2,s|x) (35) (z4 @ z5)M = (b” @ bl) - A (42)
Ri+ Ry < I(x,y;2,5) (36)

and then needs to computbe @ b, from (b, @bg)T[GO Al.

Takingx andy to be independent equiprobable binary symsince the entries inGy and A are independent the rank of
bols we get that MAC Capacity region contaifts < 1 —¢, [, A] is, with high probability at-least(d;, + 1 — 2c — §).
Ry <1—eandR, + Ry < 1. Sincee < 1/2 the rate pair From [40) we can show thd = max(4, 1—2¢) is achievable.
R =Ry = % is achievable. Thus each user can transamit
at a rate ofR = 1/2 to the destination. The destination then V. UPPERBOUND: PROOE OFTHEOREMI
computesw; @ we. ' '

We begin with some notation. For a given sequente

Remark 1. The rate R = 1/2 can be achieved using (") = {i : s = 1} and B(s") = {i : s, = 2}. Let
decode and forward scheme even when the two transmitt E ny =
use identical codebooks. As established[inl [11], in additio, o sequence™ on the indices where; — 1 and use a similar

to (34)-(38), an additional constraint notation for other indices.

R<I(x,y;z,s|x®y)=2¢ Since the receiver decodes= w; & wy from its output,

from Fano’s inequality, we have that
must be satisfied when identical codebooks are used. Thus

the achievable rate now reduces Id = min(1/2, 2¢). Note —H (u]s™, 2" <6, (43)
that with with identical codebooks, the rate = 1/2 is n

achievable fore > 1/4, the region in which decode andfor some sequencg, that goes to zero as — oc.

forward dominates compute and forward discussed before. Now consider

= {z D8 = O} Define x; sm) to be the projection of

C. AchievingR = 1/2 with Compute and Forward nkt = Z(U) N (32)

The rateR = 1/2 can also be achieved using identical linear N (U|Sn) N (45)
codes if the receiver does not ignore the output wkeg 0. = H(uls ’yB(s")) (46)
Let Let GO = GIS =0 G1 GIS =1 and GQ GIS =) be the - n(sn + I(U, X.Z(S")’ Zg(sn)|5n7yg(sn)) (47)

projections ofG onto the indices where; = 0, s; = 1 apd
5 = 2 respectively. Followind (31), we left’ = (b{ +b3)Go, N Lo
7, = b{ G, andz} = bl G,. Furthermore along the lines of — H(x(sn)> 2(sm) 18" YB (s ) (48)
Lemmal[l, it follows that for anyy > 0, with a probability \ynere [@5) follows from the fact that the messageis
that exceeds — o, 5(1), we have that independent of the sequeneg. Eq. [46) follows from the
. A A . fact thatu = wy; @ wy is independent ofv, and hence also
dim (COl-Space(Gl) - COI-Space(GQ)) < n-min(2e +9, ) independent 01%/". E2q. 47 fgllows fromzthe chain rule of
(37)  mutual information and the application of Fano’s inequyalit

= n5n + H(X.Z(s")? Zg(s") |577,7 yg(s"))



We upper bound the first entropy term [n48) as follows. Now using [52) and the fact thaf, ¢ S™ we have
H (X} (sny 20(sm) |8 ¥VB(sn)) < H (XA (sny, Z8(smy|S™),  (49) nR <n(l —¢)+ndy,

< Y Pr(s" =s") (JAGsM)| +[C(sM)) (50) = Y H(X(en)s 2 m)[YB(sny Uy 8™ = ") Pr(s™ = ™).
Snes/n/ SneTrl
=n(l —¢) +nd, (51) (58)

where [49) follows from the fact that conditioning reduceﬁirnilarly applying [52) to the permuted sequende™) we
entropy. Eq.[(50) follows from the fact that bo#% and z" €

are binary sequences. Eg.{51) follows from the fact #fat R < n(1 —¢) + nd,—

is sampled i.i.d. from a distribution witRr(s = 0) =1 — 2¢

andPr(S _ 1) _ PY(S _ 2) —c. Z H(X_Z(ﬂ(s"))7Zg(ﬂ(sn))|yg(7r(s"))7 u, 577’ — Sn) PI’(S” — Sn).
Substituting [(B1L) into[{48) we have: " ETn (59)
nR <n(l —¢e) +ndp — H(X4(sn), 28(sm)[S™s YB(sn)» U252) Combining [58) and{89) we have that
_ nR<n(1—a)+n5
We now separately consider the cases when eitheér: <
% and When% <e€ S % - = Z { X.A(Tr Sn)),zc(ﬂ. S"))|-y6 (m(s™))> u, s" n)
S”ET
L <1 n n n n n n n
A. Case:z <e <3 +H(XA(sn)vzc(s")|YB(s")v u,s"=s )}Pr(s =s") (60)
Let 7,, C S™ be the set of all sequences such that

N . <n(l—¢)+nd,—
5 Yy s™ sn) S = s =
By the weak law of large numbers we have that(s” € Pt YA (sm Ye(sm VB(sm) S °
T.) > 1—46, andPr(s” € T,,) < 6, for some sequencé, " (61)

that approaches zero as— oc. )
Forpgachs" ¢ 7. we define a permutation function agvhere the last relation follows fromi (b7). Now observe that:
n

follows. Let A, (s") denotes the firstC(s™)| indices of s™ H(Y? oy Y2 oy oy, s™ = s™) Pr(s™ = s™) (62)
where s; = 1 and Ax(s™) denotes the remaining indices. 57;5 Aoy FCm BT

Thus A(s™) = A;(s")UA2(s™) and every element inl; (s™) n o om

is smaller than every element ofy(s"). The permutation = > nPi(s" =s") <néy (63)
function 7(s™) is chosen such that(n(s")) = A;(s") and smeTs

Ai(m(s™)) = C(s"™). FurthermoreAs(n(s™)) = Ax(s™) where the second step follows from the fact that the sequence

and B(n(s")) = B(s"). Note that|A(s")| = |A(r(s™))|, y" is binary valued and the last step follows from the fact that
IB(s™)| = |B(w(s™))| and |C(s™)| = |C(w(s™))| holds. Fur- Pr(s™ € 7,) > 1 — 6, holds. Now observe that

thermore since the probability of each sequence only depend " " n nom n o

on its type, we hav@®r(s” = s") = Pr(s" = n(s")) for each D HYy(on) Yoom Yiony, " = 5") Pr(s" = s") (64)

s"eT,. ST
Observe that for eack” = s™ € 7,, we have that, = Y H(Yh (o) Yoo Vi) 8" = s") Pr(s" = s")
s"eES,
H(Xn "aznsn |yn5" YU, Sn) n n n n n n n
A(sm)r Ze(sm) 1YB(sm) - Z H(yk, sy Ye(am) |VB(any 8" = ™) Pr(s™ = s™)
HH (X (sm)) Z8(n(5m) |V B(m(s7)) 5 S™) (53) sheTy
:H(XAl(sn) XA2(S")’ZC(5")|yB(s")? .s") (65)
HH O, (n(sm))» X (n(57))2 Zen(57) W B(r(sm)) U S™) 2 H(y, (sv)r Ye(sm) YB(sm),S") = 1. (66)

(54) Substituting into[(6l1) we arrive at:

= H(x} (s")’Xj}l (Sn),zg(sn)|yg(sn),u,s") 1
, ’ nR <n(l—¢)+2nbn — SH(YZ, sy, Yo(sm) [ YB(sm):5™)

+ H(Xg‘(s"ﬁXj}lz(sn)a Z_Zl (s™) |yg(5n)7ua Sn) (55) (67)
2 H (X, (sm) Xy (5m)2 205 X (s ZAs (sm) [YB(s s ™) 1
(56) n(l—e) +2ndy, (YC(s")b/B (s1):S")- (68)
> H (YA, (sm): YC(sm) | YB(sm): S™) (57)

Also since the decoder is abIe to compute ® wy from
where [55h) follows from the construction of the permutatiofz™, s™), we have:
functionr(-). Eq. [56) follows from the chain rule of the en-

tropy function and the fact that conditioning reduces gutro it = H(W2 D w) (69)
Eq. (57) follows from the fact that” = x™ @ y™ and the fact H (wa|w1) (70)
that (s, y™) is independent ofw; & ws). H(wa|wy,s™) (71)



H (wz|w1,s",xﬁ(sn),xg(sn)) (72) u = w; ® wsy is independent ofv, and hence/”. Following
. . . N the sequence of steps similar [a](68) we have that:
=H (W2|W175 7XA(sn)7XC(sn)ayB(5”)7yC(sn))

1 n n n n
+ I(Wg;yg(sn), yg(sﬂ)|W1, 5"7 Xj}l(sn)’ Xg(s")) (73) nRk < n(l — E) + 2n5n — EH(yA(sn),ycl (sn)|y3(sn), S )

< nbn + H(Yg(snys Ye(sm)lS™) (74) 1 (84)
where [7D) follows from the fact that; and w, are inde-  Following the sequence of steps leading[id (75) we have

pendent. Eq[{741) follows from the fact that the state segeien

is independent ofw, , w»).Eq. [72) follows from the fact that "B < 10n + H(Y¢, (sn) 8" Vi(sm)) + H(YB(sn)s Yy (sm)[5"™):
from construction(x); ..\, x¢(s»)) consists entirely of symbols (86)
transmitted by user and hence is independentwf. Finally, Combining [86) and[{85) we have

Eq. (73) follows by applying Fano’s inequality sineg & w, 5 . )

Eg\r;ebte;];ecoded frorfz™, s™). Combining [(68) and[{15) we §nR < §n5n +n(l—¢)+ §H(yg(5n),y&(sn)|s") (87)

5 1
< 5ndyp +n(l —e) + S E[|B(s")| + [C2(s™)[]  (88)

gR <(l-o)+ g(sn + %E [2i|3(s")|] (76) . 2
" < —nd, +n(l —e) + = (1 — 2¢). (89)

1 5 2 2

1 et 25, (77)
22 Sinceé,, vanishes to zero, as — oo, R < 2= holds, which
Sinced,, vanishes to zero as — oo we recoverR < 2z= as completes the proof.

required. Thus we have established TheorEn 1 fio€ ¢ < 1/3 and

1/3 < e < 1/2. Fore = 1/3 the upper bound follows by
) observing that the capacity is monotonically decreasing in
B. Casel) <e <3 and the upper and lower limits to the upper bound function at

We let 7, C S™ to be the set of all sequences such that= 1/3 both equal5/9.
IC(s™)| > |A(s™)|. From the weak law of large numbers we
have thatPr(s™ € 7,) > 1 — 4, andPr(s" ¢ Ty,) < 4y, for VI. CODING TECHNIQUE WITH FEEDBACK
some sequencé, that goes to zero as — oco.

Split the setC(s™) as a union of two sets i.e((s") =
Ci(s™) U Ca(s™). Let C1(s™) be the first|A(s™)| elements
of C(s") i.e., |C1(s™)| = | A(s™)| and each index ir€C;(s™)
be smaller than each index ifi;(s™). We let =(s™) be
a permutation function such that (s™) = A(x(s™)) and
A(s™) = Cy(m(s™)). Let Co(s™) = Ca(m(s™)) and B(s™) =
B(m(s™)).

Following the the sequence of steps similarffd (57) we h

We provide a sketch of the achievable rate with feedback
stated in Prop[J2. We use a two phase protocol. In the first
phase encoders and 2 transmitby; and by; respectively for
i = 1,2...,n. For those indices where = 0 the receiver
obtainsby; ® by;. Among the remaining indices usetsand
2 constructw, = {blj}j:5j22 and Wy = {b2j}j:5j:1- In
the second phase, the messages and,; are transmitted
to the destination using a multiple access channel code. By

a\é%mputing the capacity region of the associated multiple

that for eachs™ € 7n, access channel (c.f[(84)-(36)), it can be verified that the
H(xf}l(sn),zg(sn)lyg(sn),u,s") number Qf charllnel Esels in this phasems2na. Thus the
" ” N " total rate is~ —%— = 175 as required.
FH (X (7)) 28 (n(5m) |V B(m (7)) 5") (78)  The upper bound is obtained by revealing one of the

= H (XJ(sn): 20, (sm)2 20 (sm) [YB () U S™) messages, say;, to the destination. Thus only, needs to
FH (X o)y 2% anys 20 oy |V oy ol ™ (79) be comm_ur_ncated to the receiver. For such a p_omt—to—pomt
n( cil n) Al 72 Gl 73' 5( )n )n n problem, it is well known that feedback does not increase the
2 H (XG5, 22, (s)s Za(sm)2 XC (sm)0 Za(sm) [YB(am) 1 ™) capacity ofC =1 —e. ThusR* =1 — ¢ is an upper bound
(80) even when feedback is available to the transmitters.
= H(Xft(sn)a X&(sn)a 232(5”)7)/_2(5")1 y€1<sn>|y£<sn>,u, s")

(81) VIl. L OSSYRECONSTRUCTION
> H(yg, (snys Yoa(smy[YB(snys uss™) (82) e establish the bounds stated in Theorleim 2. For the
- H (Y&(sn)a)’ﬁ(sn)|yg(sn)a sn) (83) achievability scheme, both the users only encode first &

source symbols. The encoding functions at the two users are
where [79) follows from the construction of the permutatioselected in order to communicate the modulo-siim= bfl@
function 7(-) and the fact thaC(s") = Cy(s") U Ca(s"). b%' in a lossless manner. Thus usegenerates” = f; (b¥)
Eq. (80) follows from the chain rule of entropy and the facind user2 generatesy” = f»(b5) where the encoding
that conditioning reduces entropy. Ef.](81) follows frone thfunctions are selected according to either the compute-and
fact thatz" = x" @ y". Eq. [83) follows from the fact that forward or decode-and-forward schemes discussed préyious



It follows that the decoder can recovef' with high proba- Evaluating for the equi-probable input distribution we @av
bility if k1 < nR~ where R~ = max{1,1 — 2¢} is our best that
achievable rate. The decoder declares an erasure for alémd

j € [k1 + 1,k]. The associated distortion per symbol satisfies Ri<0(1—¢)+n (103)
Ry <6(1—¢)+~ (104)
(k— k)t
Dinner — T (90) Rl + R2 S 1) + 2’7 (105)
= (1-8R)". (91) Sinces < 1/2 it follows that Ry = Ro = 16 + v is
: o . ) 2 .
as required. For establishing an outer bound on the achievap achievable rate-pair. This establishes that= 30 + 7 is

achievable.
When identical linear codebooks are used for decode and
forward, following [11] we require an additional constragm

distortion we note that applying rate-distortion theorenthe
erasure distortion metric and i.i.d. equiprobable binayrses,
we have [[1V] thatR(D) = 1 — D. Furthermore from the

definition of the rate-distortion function note thatif is an the rate:
achievable distortion metric then: R<I(x,y;z,s|x®y) =+ 20¢
kR(D) < I(u*;d") (92)  and hence the achievable rate reduceR te -+ min(2¢, 2).
< I(u*; 2", s") (93) As the decode-and-forward scheme only dominates:for
— I(4F s 1/4, there is no penalty from the additional rate constraint
= I(u"; z"|s"™) 94) . L .
. . . . involved from using identical codebooks.
= L(u™; X sm)s YB(sm)» Z(sm)|S™) (95)  To establish thatR~ = y + 6(1 — 2¢) is also achievable,
= [(u’f;Xﬁ(sn)7zg(sn)|5"7yg(sn)) (96) we use identical linear codebooks at the two transmitters. |
< nR* ©@7) particular transmittei computesx” = bT'G and transmitter

2 computesy” = bl'G' where the entries ofy ¢ Fj/*"
where [[98) follows from the data processing theorem &nH (9die sampled i.i.d. from an equiprobable Bernoulli disthiit.
follows from the fact that the source sequences are indegpgndThe receiver only keeps the output symbols corresponding to
of the state of the channel{95) follows from the structure ¢ = 0 ands = 4. Whens = 4 it computesz = x @ y from

the channel where the setgs™), B(s™) andC(s™) are defined the received paifx, y). Thus the total fraction of non-erasures
in the beginning of Section]V an@(96) follows from the facat the receiver isy + (1 — 2¢). It can then be shown, as in
that yj .., is @ subsequence of the codewgrd transmitted Prop.[1 thatR = v + §(1 — 2¢) is achievable.

by user2 which is independent off and hence/* = s @ s¥,

since the sequences are i.i.d. and equiprobable. Applyieg § poof of Upper BoundZ3)

same steps as in our upper bound (€.LI (47)) we have that Our upper bound analysis closely follows the proof of

pto 1= 3)F+2-¢ (98) Theoren{lL. We only illustrate the main points of difference

3 due to the addition of the two extra state values. Following
Thus we have that the steps leading td_(#8), we can show that

Doutcr Z (1 - BR+)+ (99) TLR S non(l) + H(X_Z(s")a Zg(sn)a Xg(s")|sn7yg(s")a yg(s"))
whereR™ is defined via[(98). = H(XY(sn), Z0(sm)» XD(sm)| S YB(sn) Us YD(sm))-
(106)
VIII. EXTENDED MULTIPLE ACCESSCHANNEL: PROOF  where the setst, B and(C are as defined in Secti¢d V and let

OF PrROR[3 D(s") = {i:s; =3} andE(s") = {i: s; = 4}.

In this section we establish the upper and lower boundsThrough standard arguments we have
stated in Prop[]3. Recall that for the extended model the

channel output can take one of five possible valudx:(z = H(x4(sn)> 2C(sm) XD(sm) 5™ YB(sm) YD(sm)) (107)

x) =Pr(z=y)=0-¢ Pr(z = xdy) = 51 — 2), S EfJA(s")+[C(s") + [D(s™)]] = nd(1 —€) + ny.

Pr(z=(x,y))=~vandPr(z=%)=1-4§ — . (108)
From [106), dropping the,, (1) terms to keep the expressions

A. Proof of Lower BoundZ4) compact, we have

We first show thatR~ = 1§ + v is achievable by com-
S : 2 ; nR <né(l —e)+ny—
municating two independent messages to the receiver each at . . . . .
rate R~. Recall that any achievable rate péit;, R,) of the H(xX(snys 28 (sm ) Xp(smy 5™ YB(snys s YD (smy)- - (109)

multiple-access channel can be computed via We assume thad < ¢ < 1/3 and let 7, denote all

Ry < I(x;zly,s), (100) sequences™ such that|C(s")[ > [A(s")|. As before let
_ C(s™) = Ci(s™) U Ca(s™) where C(s™) denotes the first
< .

Ry < Ily;zlx. ) (101) |A(s™)| elements ofC(s™). From the weak law of large

Ri+ Ry < I(x,y;2]s) (102) numbersPr(s™ € 7,,) > 1 — 0,,(1) holds.



Letw(s™) denote a permutation ef* such that; (r(s")) =
A(s™) and A(w(s™)) = C1(s™). Furthermore lef3(n(s™)) =
B(s™) andCa(m(s™)) = C2(s™) be satisfied. Also the se®
and £ are invariant under this permutation mapping. Apply-
ing (109) to the sequence(s™) we have that

We

(1
nR <ndé(l —¢)+ ny—

H (X (sm))5 Z8(m(sm)) XD (s7)) 5" YB(sm)> U YD(sm) )-
(110)

By following the steps leading t¢_(B3) we can show that
H (X (snys 28(sm)s XD(sm) 1™ Vi(sm)s YD (s U)
H (X (r(sm)) 28(m(sm)) XD((s))|S™ s VB(sm)» Us YD(smy) (111)
= H(YA(sm)> Yo, (s)|S™ s YB(smys Us YD (sm))- (112)
It follows from (I09), [II0) and(112) that

(113)

Furthermore ifx™ is revealed to the decoder, it follows that
the decoder must decode,. Thus

(7]
(8]

[l
nR < H(yg(sny, Ye(sn)s YD(sm)ls™) (114)

=H(y£<sn>, yz’é(sn),y&(sn)IS") + H(Y&(snﬂsna yz’gl(sn),yz’é(sn)) [10]
(115)
< n(y+de) +n(l —3e)d + H(ye, (sn)|s": YB(sn)s YD (sm))-
(116)
[12]
Combining [ZIB) and (116) to eliminate the entropy term we
have that

[11]

[13]

§nRS §n'y—i—mS(l— 16)—1-2(1 —3¢)9, (117)
2 2 2 2
. . [14]
which results in
R<y+6 (—2 - +3(1 - 35)) (118) 05]

- . [16]
for e < 1/3. Fore > 1/3, one can similarly establish that

2—5)

which completes the upper bound analysis.

[17]

ngg( (119)

IX. CONCLUSIONS

We study computation of the modulo-sum of two messages
over a multiple access channel with erasures. Unlike the
Gaussian channel model, this model does not have a suitable
structure to directly compute the modulo sum. Our main tesul
is an upper bounding technique that converts the setup to
a compound multiple-access channel and results in a tighter
upper bound than the usual cut-set bound. Using this bound
we establish that a simple ARQ type feedback can increase
the modulo-sum capacity for our channel. We also consider th
case when a lossy reproduction of the modulo-sum is required
and observe that uncoded transmission is sub-optimal even
when there is no bandwidth mismatch.

While function-computation over Gaussian networks has
recently received a significant attention, the problemiideas

understood when we consider other relevant channel models.
hope that techniques developed in this paper are useful in
other related problems in this emerging area.

REFERENCES

J. Korner and K. Marton, “How to encode the modulo-two sofnbinary
sources (corresp.)JEEE Trans. Inform. Theoryol. 25, pp. 219-221,
1979.

H. Yamamoto, “Wyner-ziv theory for a general functiontbé correlated
sources."IEEE Trans. Inform. Theoryol. 28, pp. 803—-807, 1982.

H. Feng, M. Effros, and S. Savari, “Functional source ingdfor net-
works with receiver side information,” iRroc. Allerton Conf. Commun.,
Contr., Computing Montecillo, lllinois, 2004.

V. Doshi, D. Shah, M. Medard, and S. Jaggi, “Distributatchdtional
compression through graph coloring,” froc. Data Compression Conf.
2007.

D. Krithivasan and S. Pradhan, “Lattices for distritditeource coding:
Jointly gaussian sources and reconstruction of a lineastiom” IEEE
Trans. Inform. Theoryvol. 55, pp. 5628-5651, Dec. 2009.

M. P. Wilson, K. Narayanan, H. Pfister, and A. Sprintsaipitit physical
layer coding and network coding for bi-directional relayin IEEE
Trans. Inform. Theoryvol. 56, pp. 5641-5654, Nov. 2010.

B. Nazer and M. Gastpar, “Computation over multipleessx channels,”
IEEE Trans. Inform. Theoryol. 53, pp. 3498-3516, Oct. 2007.
——, “Compute-and-forward: Harnessing interferenceotiyh struc-
tured codes,|IEEE Trans. Inform. Theorwol. 57, pp. 6453-6486, Oct.
2011.

A. Sahebi and S. Pradhan, “On the capacity of abelian groodes
over discrete memoryless channels,Aroc. Int. Symp. Inform. Theary
2011.

R. Zamir, “Anti-structure
http://arxiv.org/abs/1109.04142011.
B. Hern and K. Narayanan, “Multilevel coding schemes ¢ompute-
and-forward,” inProc. Int. Symp. Inform. Theargt. Petersburg, Russia,
2011, pp. 1713-1717.

S. Agrawal and S. Vishwanath, “On the secrecy rate oérfetence
networks using structured codes,” Rroc. Int. Symp. Inform. Theagry
Soul, Korea, 2009.

X. He and A. Yener, “Providing secrecy with structureatles: Tools and
applications to two-user Gaussian channef&jbmitted to IEEE Trans.
Inform. Theory 2009.

T. Oechtering, E. Jorswieck, R. Wyrembelski, and H. [Bac“On the
optimal transmit strategy for the MIMO bidirectional breagt channel,”
vol. 57, pp. 3817-3826, Dec. 2009.

J. Zhang, U. Erez, M. Gastpar, and B. Nazer, “MIMO conepaind-
forward,” in Proc. Int. Symp. Inform. TheonBoul, Korea, 2009.

T. Philosof, R. Zamir, U. Erez, and A. Khisti, “Latticérategies for the
dirty multiple-access channellEEE Trans. Inform. Theorwol. 57, pp.
5006-5035, Aug. 2011.

T. M. Cover and J. A. Thomag&lements of Information Theary John
Wiley and Sons, 1991.

problems,” submitted,



	I Introduction
	II Problem Statement
	III Main Results
	III-A Lower Bound
	III-B Upper Bound
	III-B1 Revealing Side Information to the Transmitters
	III-B2 Independence of Input Signals from w1 w2
	III-B3 Compound MAC Channel
	III-B4 Penalty from Repetition Coding

	III-C Causal State Feedback
	III-D  Numerical Comparisons
	III-E Lossy Reconstruction
	III-F Extended Multiple Access Channel

	IV  Lower Bound: Proof of Prop. ??
	IV-A Compute and Forward Scheme
	IV-B Achievability of R=1/2: Decode and Forward Approach
	IV-C Achieving R=1/2 with Compute and Forward

	V  Upper Bound: Proof of Theorem ??
	V-A Case: 13 < 12
	V-B Case: 0 < 13

	VI Coding Technique with Feedback
	VII Lossy Reconstruction
	VIII Extended Multiple Access Channel: Proof of Prop. ??
	VIII-A Proof of Lower Bound (??)
	VIII-B Proof of Upper Bound (??)

	IX Conclusions
	References

