
ar
X

iv
:1

20
5.

09
97

v2
 [

cs
.I

T
]

 1
1

Se
p

20
14

Partial-MDS Codes and their Application to RAID

Type of Architectures

Mario Blaum, James Lee Hafner and Steven Hetzler

IBM Almaden Research Center
San Jose, CA 95120

October 15, 2018

Abstract

A family of codes with a natural two-dimensional structure is presented, inspired by
an application of RAID type of architectures whose units are solid state drives (SSDs).
Arrays of SSDs behave differently to arrays of hard disk drives (HDDs), since hard
errors in sectors are common and traditional RAID approaches (like RAID 5 or RAID
6) may be either insufficient or excessive. An efficient solution to this problem is given
by the new codes presented, called partial-MDS (PMDS) codes.

Keywords: Error-correcting codes, flash storage devices, solid state drives, RAID
architectures, hard errors, MDS codes, array codes, Reed-Solomon codes, Blaum-Roth
codes.

1 Introduction

Consider an array of, say, n storage devices. Each storage device contains a (large) number
of sectors, each sector protected by an error-correcting code (ECC) dealing with the most
common errors in the media. However, it may occur that one or more of the storage devices
experiences a catastrophic failure. In that case, data loss will occur if no further protection is
implemented. For that reason, the architecture known as Redundant Arrays of Inexpensive
Disks (RAID) was proposed [15].
The way RAID architectures work is by assigning one or more devices to parity. For

instance, take n sectors in the same location in each device (we call this set of n sectors, a
“stripe”): n−1 sectors carry information, while the nth is the XOR of the n−1 information
sectors. We repeat this for each stripe of sectors in the array. Such an architecture is called
a RAID 4 or a RAID 5 type of architecture. In what follows, we will call it RAID 5, the
difference between RAID 5 and RAID 4 consisting on the distribution of the parity sectors,

1

http://arxiv.org/abs/1205.0997v2

but we do not address this issue here. A RAID 6 architecture gives protection against two
catastrophic failures.
From a coding point of view, the model of failures corresponds to erasures, i.e., errors

whose location is known [29][30]. It is preferrable to use Maximum Distance Separable
(MDS) codes for RAID 6 types of architectures: in order to correct two erasures exactly two
parities are needed. There are many choices for MDS codes correcting two or more erasures:
we can use Reed-Solomon (RS) codes [31][35], or array codes, like EVENODD [4], RDP [11],
X-codes [43], B-codes [42], C-codes [28], Liberation codes [36], and others [5][39].
Architectures like RAID 5 and RAID 6 are efficient when the storage devices are hard

disk drives (HDDs). However, when using solid state drives (SSDs) like flash, these types
of architectures, by themselves, either are not efficient or they are wasteful. Arrays of SSDs
pose new challenges for code design, so we will spend the rest of this section addressing some
of them. Different ways to adapt RAID architectures to SSDs are being considered in recent
literature. For instance, ways to enhance the performance of RAID 5 are described in [2][21].
See also [16][20], where the internal ECC and a RAID type of architecture communicate. In
particular, [16] uses an adaptive method to increase the redundancy when the bit-error rate
increases.
Contrary to HDDs, SSDs degrade significantly in time and as a function of the number

of writes [33]. As time goes by and the number of writes increases, the likelihood of a
hard error in a sector also increases. A hard error occurs mainly when the internal ECC
of a sector is exceeded. In general, BCH codes [29][30] are used for the internal ECC of a
sector, although many other codes (including LDPC codes with soft decoding) are possible.
Moreover, in recent years some remarkable non-traditional approaches for the ECC that
exploit the assymetry of the SSD channel have been developed [3][19][22][23][24][25][26][32].
However, we do not address the internal ECC problem in this paper. The point is, a hard
error corresponds to an uncorrectable error in a sector. Normally, the ECC is coupled with a
Cyclic Redundancy Code (CRC), which detects the situation when the ECC miscorrects (the
ECC has an inherent detection capability that may not be sufficient, hence it often needs to
be reinforced by the CRC). There are several ways to implement the CRC, but we do not
address them here. We will assume instead that a hard error means that the information in
a sector is lost (an erased sector) and that we can detect this situation.
From the discussion above, we see that, contrary to arrays of HDDs, arrays of SSDs present

a mixed failure mode: on one hand we have catastrophic SSDs failures, as in the case of
HDDs. On the other hand, we also have hard errors, which in general are silent: their
existence is unknown until the sectors are accessed. This situation complicates the task of
a RAID type of architecture. In effect, assume that a catastrophic SSD failure occurs in
a RAID 5 architecture. Each sector of the failed device is reconstructed by XORing the
corresponding sectors in each stripe of the surviving devices. However, if there is a stripe
that in addition has suffered a hard error, such a stripe has two sectors that have failed.
Since we are using RAID 5, we cannot recover from such an event and data loss will occur.
A possible solution to the situation above is using a RAID 6 type of architecture, in which

two SSDs are used for parity. Certainly, this architecture allows for the recovery of two

2

erased sectors in the same stripe. However, such a solution is expensive, since it requires
an additional whole device to protect against hard errors. Moreover, two hard errors in a
stripe, in addition to the catastrophic device failure, would still cause data loss, and such
a scenario may not be unlikely, depending on the statistics of errors. We would like some
solution intermediate between RAID 5 and RAID 6 allowing the handling of hard errors
without the need of dedicating a whole second SSD to parity, and in addition being able to
handle at least two hard errors in the same stripe, a catastrophic failure having occurred.
In order to handle this mixed environment of hard errors with catastrophic failures, we

need to take into account the way information is written in SSDs, which is quite different
to the way it is done in HDDs. In an SSD, a new write consists of erasing first a number
of consecutive sectors and then rewriting all of them. Therefore, the short write operation
in arrays of SSDs (like one sector at a time) is not an issue here: each time a new write is
done, a group of, say, m sectors in each SSD is erased and then rewritten. So, the parity
needs to be recomputed as part of the new write. We can assume that the array consists
of m × n blocks (i.e., each block consists of m stripes), repeated one after the other. Each
m × n block is an independent unit, and we will show how to compute the parity for each
block. Also, each new write consists of writing a number of m× n blocks (this number may
be one, depending on the application, the particular SSD used, and other factors). Our goal
is to present a family of codes, that we call partial-MDS (PMDS) codes, allowing for the
simultaneous correction of catastrophic failures and hard errors.
The paper is organized as follows: in Section 2, we present the theoretical framework as

well as the basic definitions. In Section 3, we present our main construction. In Section 4,
we study the special case in which the general construction of Section 3 extends RAID 5,
and we find the general conditions for such codes to be PMDS. In Section 5, we study
specific cases with parameters relevant to applications, each case analyzed in a separate
subsection. In Section 6, we present an alternative construction to the one presented in
Section 3, we compare the two and we study some relevant special cases of this second
construction. In Section 7 we present a third construction for cases extending RAID 5. This
third construction is not as powerful as the the previous ones (it cannot handle three erasures
in the same stripe) but uses finite fields of smaller size, simplifying the implementation. In
Section 8, we compute the probability of data loss when a catastrophic device failure has
occurred under different scenarios. We conclude the paper by drawing some conclusions.
Although the results can be extended to finite fields of arbitrary characteristic, for sim-

plicity, we consider only fields of characteristic 2.

2 Partial-MDS codes

Consider an m × n array, each entry of the array consisting of b symbols (we assume that
each of the b symbols is a bit for the sake of the description, but in practice it may be a
much larger symbol). Each stripe in the array is protected by r parity entries in such a way
that any r erasures in the stripe will be recovered. In other words, each stripe of the array

3

P
P
P

P P P

Figure 1: A 4× 5 array with r=1 and s=2

H F
F
F H
F

F
F

H F H
F

Figure 2: 4× 5 arrays with a catastrophic failure and two hard errors

constitutes and [n, n− r, r+1] MDS code. In addition, we will add s extra “global” parities.
Those s extra parities may be placed in different ways in the array, but in order to simplify
the description we will place them in the last stripe. Being global means that these parities
affect all mn entries in the array. For instance, Figure 1 shows a 4× 5 array with r=1 and
s=2 such that the two extra global parities are placed in the last stripe.
The idea of a partial-MDS code (to be defined formally), is the following: looking at

Figure 1, assume that a catastrophic failure occurs (that is, a whole column in the array has
failed), and in addition, we have up to two hard errors anywhere in the array. Then we want
the code to correct these failures (erasures in coding parlance). The situation is illustrated
in Figure 2, where the hard errors are indicated with the letter ‘H’: the two hard errors may
occur either in different stripes or in the same stripe.
A natural way of solving this problem is by using an MDS code. In our 4×5 array example,

we have a total of 6 parity sectors. So, it is feasible to implement an MDS code on 20 symbols
with 6 parity symbols. In other words, a [20, 14, 7] MDS code (like a RS code). The problem
with this approach is its complexity. The case of a 4 × 5 array is given for the purpose of
illustration, but more typical values of m in applications are m=16 and even m=32. That
would give 18 or 34 parity sectors. Implementing such a code, although feasible, is complex.
We want that the code, in normal operation, utilizes its underlying RAID structure based
on stripes, like single parity in the case of RAID 5. The extra parities are invoked in rare
occasions. So, given this constraint of an horizontal code, we want to establish an optimality
criterium for codes, that we will call partial-MDS (PMDS) codes. In the case of the example
of RAID 5 plus two global parities, we want the code to correct up to one erasure per stripe,
and in addition, two extra erasures anywhere. For example, the code of Figure 1 is PMDS
if it can correct any of the situations depicted in Figure 2. Formally,

Definition 2.1 Let C be a linear [mn,m(n − r) − s] code over a field or ring such that
when codewords are taken row-wise as m× n arrays, each row belongs in an [n, n− r, r+ 1]
MDS code. Given (s1, s2, . . . , st) such that each sj ≥ 1 and

∑t
j=1 sj = s, we say that C is

4

(r; s1, s2, . . . , st)-erasure correcting if, for any 0 ≤ i1 < i2 < . . . < it ≤ m − 1, C can correct
up to sj + r erasures in each row ij of an array in C. We say that C is an (r; s) partial-MDS
(PMDS) code if, for every (s1, s2, . . . , st) such that each sj ≥ 1 and

∑t
j=1 sj = s, C is an

(r; s1, s2, . . . , st)-erasure correcting code.

In the next section we give a general construction of codes by providing their (mr+s)×mn
parity-check matrices. Some of these codes are going to be PMDS. In particular, we will
analize the case r=1 in Section 4 due to its important practical value, since it extends
RAID 5.

3 Code Construction

As stated in Section 2, our entries consist of b bits. We will assume that each entry is in a
ring. The ring is defined by a polynomial f(x) of degree b, i.e., the product of two elements in
the ring (taken as polynomials of degree up to b−1), is the remainder of dividing the product
of both elements by f(x) (if f(x) is irreducible, the ring becomes the field GF (2b) [31]).
Let α be a root of the polynomial f(x) defining the ring. We call the exponent of f(x),

denoted e(f(x)), the exponent of α, i.e., the minimum ℓ, 0 < ℓ, such that αℓ=1. If f(x) is
primitive [31], e(f(x)) = 2b − 1.
A special case that will be important in applications is f(x) =Mp(x) = 1 + x+ · · ·+ xp−1,

p a prime number. In this case, e(Mp(x)) = p and f(x) may not be irreducible. In fact, it
is not difficult to prove that f(x) is irreducible if and only if 2 is primitive in GF (p). So,
the polynomials of degree up to p − 2 modulo Mp(x) constitute a ring and not generally a
field. This ring was used in [7] to construct the Blaum-Roth (BR) codes, and for the rest of
the paper, we either assume that f(x) is irreducible or that f(x) =Mp(x), and p will always
denote a prime number.
We present next a general construction, and then we illustrate it with some examples.

Construction 3.1 Consider the binary polynomials modulo f(x), where either f(x) is irre-
ducible or f(x) =Mp(x), and let mn ≤ e(f(x)), where e(f(x)) is the exponent of f(x). Let
C(m,n, r, s; f(x)) be the code whose (mr + s)×mn parity-check matrix is

H(m,n, r, s) =

H(n, r, 0, 0) 0(n, r) . . . 0(n, r)
0(n, r) H(n, r, 0, r) . . . 0(n, r)

...
...

. . .
...

0(n, r) 0(n, r) . . . H(n, r, 0, (m − 1)r)

H(mn, s, r, 0)

(1)

where, if f(α) = 0, H(n, r, i, j) is the r × n matrix

5

H(n, r, i, j) =

αj2i α(j+1)2i α(j+2)2i . . . α(j+n−1)2i

αj2i+1
α(j+1)2i+1

α(j+2)2i+1
. . . α(j+n−1)2i+1

αj2i+2
α(j+1)2i+2

α(j+2)2i+2
. . . α(j+n−1)2i+2

...
...

...
. . .

...

αj2i+r−1
α(j+1)2i+r−1

α(j+2)2i+r−1
. . . α(j+n−1)2i+r−1

(2)

Let us point out that matrices H(n, r, i, j) as given by (2), in which each row is the square
of the previous one, were used in [12][14][37] for constructing codes for which the metric is
given by the rank, in [6] for constructing codes that can be encoded on columns and decoded
on rows, and in [27] for constructing the so called differential MDS codes.
Let us illustrate Construction 3.1 in the next example.

Example 3.1 Consider m=3 and n=5, then,

H(3, 5, 1, 3) =

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

1 α2 α4 α6 α8 α10 α12 α14 α16 α18 α20 α22 α24 α26 α28

1 α4 α8 α12 α16 α20 α24 α28 α32 α36 α40 α44 α48 α52 α56

H(3, 5, 2, 2) =

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 α α2 α3 α4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 α5 α6 α7 α8 α9 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 α10 α11 α12 α13 α14

1 α2 α4 α6 α8 α10 α12 α14 α16 α18 α20 α22 α24 α26 α28

1 α4 α8 α12 α16 α20 α24 α28 α32 α36 α40 α44 α48 α52 α56

So far we have not proved that Construction 3.1 provides PMDS codes. Actually, this is
not true in general. The answer depends on the particular parameters and on the polynomial
f(x) defining the ring or field.
We denote by (ai,j) 0≤i≤m−1

0≤j≤n−1
the received entries from a stored array in C(m,n, r, s; f(x)),

assuming that the erased ones are equal to 0. The first step to retrieve the erased entries
consists of computing the rm+s syndromes. Using the parity-check matrixH(m,n, r, s; f(x))
given by (1), the syndromes are

6

Sir =
n−1⊕

j=0

ai,j for 0 ≤ i ≤ m− 1 (3)

Sir+l+1 =
n−1⊕

j=0

α(ni+j)2lai,j for 0 ≤ i ≤ m− 1 , 0 ≤ l ≤ r − 2 (4)

Smr+u =
m−1⊕

i=0

n−1⊕

j=0

α(ni+j)(2r+u−1)ai,j for 0 ≤ u ≤ s− 1 (5)

After computing the syndromes, the erasures are recovered by solving a linear system
based on the parity-check matrix, provided that such a solution exists. In the next section,
we study the case r=1 and give necessary and sufficient conditions that determine whether
a C(m,n, 1, s; f(x)) code is PMDS.

4 The case r=1

In this section, we assume that r=1, thus, the parity-check matrix H(m,n, 1, s) given by (1)
can be written as

H(m,n, 1, s) = (H0(m,n, 1, s),H1(m,n, 1, s), . . . ,Hm−1(m,n, 1, s)) ,

where, for 0 ≤ j ≤ m− 1

Hj(m,n, 1, s) =

0
0
...
0

j→1
0
...
0

0
0
...
0
1
0
...
0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0
0
...
0
1
0
...
0

m

αjn αjn+1 . . . α(j+1)n−1

α2jn α2(jn+1) . . . α2((j+1)n−1)

α4jn α4(jn+1) . . . α4((j+1)n−1)

...
...

. . .
...

α2s−1jn α2s−1(jn+1) . . . α2s−1((j+1)n−1)

.

Assume that
∑t

j=1 sj = s for integers sj ≥ 1. According to Definition 2.1, we will char-
acterize when C(m,n, 1, s; f(x)) is (r; s1, s2, . . . , st)-erasure correcting. We need a series of
lemmas first.

7

Lemma 4.1 For s ≥ 1, code C(m,n, 1, s; f(x)) as given by Construction 3.1 is PMDS if and
only if:

1. code C(m,n, 1, s− 1; f(x)) is PMDS, and;

2. for any (s1, s2, . . . , st) such that
∑t

j=1 sj = s, for any 0 ≤ i2 < i3 < . . . < it ≤ m − 1,
and for any 1 ≤ j ≤ t and 0 ≤ lj,0 < lj,1 < · · · < lj,sj ≤ n− 1,

gcd

(
s1∑

u=1

(

1 + xl1,u−l1,0
)
)

+

t∑

j=2

xijn+lj,0−l1,0

sj∑

u=1

(

1 + xlj,u−lj,0
)

 , f(x)

 =1 (6)

Proof: Since f(x) is implicit, let us denote C(m,n, 1, s; f(x)) simply by C(m,n, 1, s).
Consider rows 0 ≤ i1 < i2 < · · · < it ≤ m − 1 such that row ij has exactly sj + 1 erasures
in locations (ij , lj,0), (ij , lj,1), . . . , (ij, lj,sj), for 0 ≤ lj,0 < lj,1 < · · · < lj,sj ≤ n − 1 and
∑t

j=1 sj = s. Assuming the erased entries to be equal to zero and computing the syndromes
according to (3) and (5), we obtain

sj
⊕

v=0

aij ,lj,v = Sij for 1 ≤ j ≤ t (7)

t⊕

j=1

sj
⊕

v=0

α2u(ijn+lj,v)aij ,lj,v = Sm+u for 0 ≤ u ≤ s− 1 (8)

The system given by (7) and (8) has a unique solution if and only if the (t + s)× (t + s)
matrix

c =
(

c1 c2 . . . ct
)

is invertible, where cj is the (t+ s)× (sj + 1) matrix

8

cj =

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

j→1 1 . . . 1
0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

αijn+lj,0 αijn+lj,1 . . . αijn+lj,sj

α2(ijn+lj,0) α2(ijn+lj,1) . . . α2(ijn+lj,sj)

α4(ijn+lj,0) α4(ijn+lj,1) . . . α4(ijn+lj,sj)

...
...

. . .
...

α2s−1(ijn+lj,0) α2s−1(ijn+lj,1) . . . α2s−1(ijn+lj,sj)

By row operations on c, we obtain a new (t+ s)× (t+ s) matrix

c′ =
(

c′1 c′2 . . . c′t
)

where c′j is the (t+ s)× (sj + 1) matrix

c′j =

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

j→1 1 . . . 1
0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

0 αijn+lj,0
(

1⊕αlj,1−lj,0
)

. . . αijn+lj,0
(

1⊕αlj,sj−lj,0
)

0 α2(ijn+lj,0)
(

1⊕α2(lj,1−lj,0)
)

. . . α2(ijn+lj,0)
(

1⊕α2(lj,sj−lj,0)
)

0 α4(ijn+lj,0)
(

1⊕α4(lj,1−lj,0)
)

. . . α4(ijn+lj,0)
(

1⊕α4(lj,sj−lj,0)
)

...
...

. . .
...

0 α2s−1(ijn+lj,0)
(

1⊕α2s−1(lj,1−lj,0)
)

. . . α2s−1(ijn+lj,0)
(

1⊕α2s−1(lj,sj−lj,0)
)

9

Notice that c is invertible if and only if c′ is invertible, if and only if the s × s matrix
c′′ =

(

c′′1 c′′2 . . . c′′t
)

is invertible, where

c′′j =

αijn+lj,0
(

1⊕αlj,1−lj,0
)

. . . αijn+lj,0
(

1⊕αlj,sj−lj,0
)

α2(ijn+lj,0)
(

1⊕α2(lj,1−lj,0)
)

. . . α2(ijn+lj,0)
(

1⊕α2(lj,sj−lj,0)
)

α4(ijn+lj,0)
(

1⊕α4(lj,1−lj,0)
)

. . . α4(ijn+lj,0)
(

1⊕α4(lj,sj−lj,0)
)

...
. . .

...

α2s−1(ijn+lj,0)
(

1⊕α2s−1(lj,1−lj,0)
)

. . . α2s−1(ijn+lj,0)
(

1⊕α2s−1(lj,sj−lj,0)
)

Dividing each row u, 0 ≤ u ≤ s, by α2u(i1n+l1,0), we obtain the s× s matrix

ĉ=
(

ĉ1 ĉ2 . . . ĉt
)

,

where

ĉ1 =

1⊕αl1,1−l1,0 . . . 1⊕αl1,s1−l1,0

1⊕α2(l1,1−l1,0) . . . 1⊕α2(l1,s1−l1,0)

1⊕α4(l1,1−l1,0) . . . 1⊕α4(11,s1−l1,0)

...
. . .

...

1⊕α2s−1(l1,1−l1,0) . . . 1⊕α2s−1(l1,s1−l1,0)

and, for 2 ≤ j ≤ t, making ij←ij − i1, we have

ĉj =

αijn+lj,0−l1,0
(

1⊕αlj,1−lj,0
)

. . . αijn+lj,0−l1,0
(

1⊕αlj,sj−lj,0
)

α2(ijn+lj,0−l1,0)
(

1⊕α2(lj,1−lj,0)
)

. . . α2(ijn+lj,0−l1,0)
(

1⊕α2(lj,sj−lj,0)
)

α4(ijn+lj,0−l1,0)
(

1⊕α4(lj,1−lj,0)
)

. . . α4(ijn+lj,0−l1,0)
(

1⊕α4(lj,sj−lj,0)
)

...
. . .

...

α2s−1(ijn+lj,0−l1,0)
(

1⊕α2s−1(lj,1−lj,0)
)

. . . α2s−1(ijn+lj,0−l1,0)
(

1⊕α2s−1(lj,sj−lj,0)
)

Therefore, the s × s matrix ĉ consists of a first row w0 followed by succesive rows wu,
where each row is the square of the previous row, i.e., wu =w2u

0 for 1 ≤ u ≤ s− 1. Matrix ĉ
is invertible if and only if its determinant is invertible. The determinant of a matrix of this
type is known [6]: it is the product of the XOR of all possible subsets of elements of the first
row. For example, if we have a matrix

γ1 γ2 γ3

γ2
1 γ2

2 γ2
3

γ4
1 γ4

2 γ4
3

 ,

10

then its determinant is γ1γ2γ3 (γ1⊕ γ2) (γ1⊕ γ3) (γ2⊕ γ3) (γ1⊕ γ2⊕ γ2). This result is proven
similarly to the one of Vandermonde matrices. For the sake of completeness, we prove it in
the Appendix.
The first row of matrix ĉ is given by

w0 = (w0,1, w0,2, . . . , w0,t),

where

w0,1 =
(

1⊕αl1,1−l1,0 , 1⊕αl1,2−l1,0 , . . . , 1⊕αl1,s1−l1,0
)

and, for 2 ≤ j ≤ t,

w0,j =
(

αijn+lj,0−l1,0
(

1⊕αlj,1−lj,0
)

, . . . , αijn+lj,0−l1,0
(

1⊕αlj,sj−lj,0
))

. (9)

Then, code C(m,n, 1, s) is PMDS if and only if the determinant det (ĉ) is invertible, if
and only if the XOR of any subset of the elements of w0 is invertible. Since w0 has s
elements, we may assume that if we XOR a number elements smaller than s, the result is
true by induction, so assume that we take the XOR of all the s elements in w0. Then, code
C(m,n, 1, s) is PMDS if and only if code C(m,n, 1, s− 1) is PMDS and

(
s1⊕

u=1

(

1⊕αl1,u−l1,0
)
)

⊕

t⊕

j=2

αijn+lj,0−l1,0

sj⊕

u=1

(

1⊕αlj,u−lj,0
)

 (10)

is invertible. But (10) is invertible if and only if (6) holds. ✷

Lemma 4.2 Consider a code C(m,n, 1, s; f(x)) and let sj ≥ 1 for 1 ≤ j ≤ t such that
∑t

j=1 sj = s. For each sj, if sj is odd, let s′j = sj , while if sj is even, let s′j = sj − 1 and
s′ =

∑t
j=1 s′j . Then, C(m,n, 1, s; f(x)) is (1; s1, s2, . . . , st)-erasure correcting if and only if

C(m,n, 1, s′; f(x)) is (1; s′1, s
′
2, . . . , s

′
t)-erasure correcting.

Proof: Consider (10). If sj is odd,

sj⊕

u=1

(

1⊕αlj,u−lj,0
)

= 1⊕
sj⊕

u=1

αlj,u−lj,0 , (11)

while if sj is even,

sj⊕

u=1

(

1⊕αlj,u−lj,0
)

=
sj⊕

u=1

αlj,u−lj,0

= αlj,1−lj,0

(

1⊕
sj⊕

u=2

αlj,u−lj,1

)

(12)

11

If s1 is even, making s′1= s1 − 1, according to (12) and (11), (10) becomes

αl1,1−l1,0

(

1⊕
s1⊕

u=2

αl1,u−l1,1

)

⊕

t⊕

j=2

αijn+lj,0−l1,0

sj⊕

u=1

(

1⊕αlj,u−lj,0
)

 =

αl1,1−l1,0

(

1⊕
s1⊕

u=2

αl1,u−l1,1

)

⊕

t⊕

j=2

αijn+lj,0−l1,1

sj⊕

u=1

(

1⊕αlj,u−lj,0
)

 =

αl1,1−l1,0

s1⊕

u=2

(

1⊕αl1,u−l1,0
)

⊕

t⊕

j=2

αijn+lj,0−l1,1

sj⊕

u=1

(

1⊕αlj,u−lj,0
)

 (13)

Since αl1,1−l1,0 is always invertible, then, by (10) and (13), if s1 is even, C(m,n, 1, s − 1)
is (1; s′1, s2, . . . , st)-erasure correcting if and only if C(m,n, 1, s) is (1; s1, s2, . . . , st)-erasure
correcting. Similarly, if 2 ≤ v ≤ t and sv is even, according to (12) and (11), (10) becomes

(
s1⊕

u=1

(

1⊕αl1,u−l1,0
)
)

⊕

(

αivn+lv,0−l1,0
sv⊕

u=1

(

1⊕αlv,u−lv,0
)
)

⊕

t⊕

j=2
j 6=v

αijn+lj,0−l1,0

sj⊕

u=1

(

1⊕αlj,u−lj,0
)

 =

(
s1⊕

u=1

(

1⊕αl1,u−l1,0
)
)

⊕

(

αivn+lv,1−l1,0

(

1⊕
sv⊕

u=2

αlv,u−lv,1

))

⊕

t⊕

j=2
j 6=v

αijn+lj,0−l1,0

sj
⊕

u=1

(

1⊕αlj,u−lj,0
)

 =

(
s1⊕

u=1

(

1⊕αl1,u−l1,0
)
)

⊕

(

αivn+lv,1−l1,0
sv⊕

u=2

(

1⊕αlv,u−lv,1
)
)

⊕

t⊕

j=2
j 6=v

αijn+lj,0−l1,0

sj⊕

u=1

(

1⊕αlj,u−lj,0
)

 (14)

By (10) and (14), we may claim that if sv is even for some 2 ≤ v ≤ t, then, making
s′v = sv − 1, C(m,n, 1, s − 1) is (1; s1, s2, . . . , sv−1, s

′
v, sv+1 . . . , st)-erasure correcting if and

only if C(m,n, 1, s) is (s1+1, s2+1, . . . , sv+1, . . . , st+1)-erasure correcting, completing the
proof. ✷

Lemma 4.3 Consider a code C(m,n, 1, s; f(x)) and let sj ≥ 1, each sj an odd number
for 1 ≤ j ≤ t such that

∑t
j=1 sj = s. Then, C(m,n, 1, s; f(x)) is (1; s1, s2, . . . , st)-erasure

12

correcting if and only if, for any 0 ≤ i2 < i3 < . . . < it ≤ m− 1 and for any 0 ≤ lj,0 < lj,1 <
. . . < lj,sj ≤ n− 1 for each 1 ≤ j ≤ t,

gcd

1 +
s1∑

u=1

xl1,u−l1,0 +
t∑

j=2

xijn+lj,0−l1,0

(

1 +
sj∑

u=1

xlj,u−lj,0

)

, f(x)

 = 1 (15)

Proof: Notice that in this case, (6) becomes (15). ✷

The combination of Lemmas 4.1, 4.2 and 4.3 gives the following theorem:

Theorem 4.1 For s ≥ 1, code C(m,n, 1, s; f(x)) as given by Construction 3.1 is PMDS if
and only if:

1. code C(m,n, 1, s− 1; f(x)) is PMDS, and;

2. for every (s1, s2, . . . , st) such that
∑t

j=1 sj = s and each sj is odd, for any 0 ≤ i2 <
i3 < . . . < it ≤ m − 1, and for any 1 ≤ j ≤ t and 0 ≤ lj,0 < lj,1 < · · · < lj,sj ≤ n − 1,
condition (15) holds.

Theorem 4.1 gives us conditions to check in order to determine if a code C(m,n, 1, s; f(x))
as given by Construction 3.1 is PMDS, but by itself it does not provide us with any family of
PMDS codes. Consider the ring of polynomials moduloMp(x), such thatmn < e(Mp(x)) = p.
There are cases in which Mp(x) is irreducible [7] and the ring becomes a field (equivalently,
2 is primitive in GF (p)). Notice that the polynomials in Theorem 4.1 have degree at most
mn − 1 < p − 1= deg(f(x)). Therefore, if Mp(x) is irreducible then all such polynomials
are relatively prime with Mp(x) and the code is PMDS. Let us state this fact as a theorem,
which provides a family of PMDS codes (it is not known whether the number of irreducible
polynomials Mp(x) is infinite):

Theorem 4.2 Consider the code C(m,n, 1, s;Mp(x)) given by Construction 3.1 such that
Mp(x) is irreducible (or equivalently, 2 is primitive in GF (p)). Then, C(m,n, 1, s;Mp(x)) is
PMDS.

So far we have dealt with general values of s. In the next section we examine special cases
that are important in applications.

5 Special cases

We examine each case into a separate subsection.

13

5.1 The case C(m, n, 1, 1; f(x))

Notice that C(m,n, 1, 1; f(x)) is always PMDS, since by Theorem 4.1, we have to check if
the binomials of type 1+xj for 1 ≤ j ≤ n−1 and f(x) are relatively prime. This is certainly
the case when f(x) is irreducible, but also when Mp(x) is reducible [7]. Let us state this
result as a lemma:

Lemma 5.1 Code C(m,n, 1, 1; f(x)) is always PMDS.

5.2 The case C(m, n, 1, 2; f(x))

This case is important in applications, in particular, for arrays of SSDs. Since
C(m,n, 1, 1; f(x)) is PMDS, Theorem 4.1 gives the following theorem for the case s=2:

Theorem 5.1 Code C(m,n, 1, 2; f(x)) is PMDS if and only if, for any 1 < i ≤ m − 1, and
for any 0 ≤ l1,0 < l1,1 ≤ n− 1, 0 ≤ l2,0 < l2,1 ≤ n− 1 ,

gcd
(

1 + xl1,1−l1,0 + xin+l2,0−l1,0
(

1 + xl2,1−l2,0
)

, f(x)
)

= 1 (16)

Given the practical importance of this case, let us examine the decoding (of which the
encoding is a special case) in some detail.
Consider a PMDS code C(m,n, 1, 2; f(x)), i.e., it satisfies the conditions of Theorem 5.1.

Without loss of generality, assume that we either have three erasures in the same row i0,
or two pairs of erasures in different rows i0 and i1, where 0 ≤ i0 < i1 ≤ m − 1. Consider
first the case in which the three erasures occur in the same row i0 and in entries j0, j1 and
j2 of row i0, 0 ≤ j0 < j1 < j2. Assuming initially that ai0,j0 = ai0,j1 = ai0,j2 =0, using (3)
and (5) ((4) is used only for r > 1), we compute the syndromes Si0 , Sm and Sm+1. Using
the parity-check matrix H(m,n, 1, 2) as given by (1), we have to solve the linear system

ai0,j0 ⊕ ai0,j1 ⊕ ai0,j2 = Si0

αi0n+j0ai0,j0 ⊕ αi0n+j1ai0,j1 ⊕ αi0n+j2ai0,j2 = Sm

α2(i0n+j0)ai0,j0 ⊕ α2(i0n+j1)ai0,j1 ⊕ α2(i0n+j2)ai0,j2 = Sm+1

The solution to this system is

ai0,j0 =

det

Si0 1 1
Sm αi0n+j1 αi0n+j2

Sm+1 α2(i0n+j1) α2(i0n+j2)

det

1 1 1
αi0n+j0 αi0n+j1 αi0n+j2

α2(i0n+j0) α2(i0n+j1) α2(i0n+j2)

14

ai0,j1 =

det

1 Si0 1
αi0n+j0 Sm αi0n+j2

α2(i0n+j0) Sm+1 α2(i0n+j2)

det

1 1 1
αi0n+j0 αi0n+j1 αi0n+j2

α2(i0n+j0) α2(i0n+j1) α2(i0n+j2)

ai0,j2 =

det

1 1 Si0

αi0n+j0 αi0n+j1 Sm

α2(i0n+j0) α2(i0n+j1) Sm+1

det

1 1 1
αi0n+j0 αi0n+j1 αi0n+j2

α2(i0n+j0) α2(i0n+j1) α2(i0n+j2)

Since matrix

1 1 1
αi0n+j0 αi0n+j1 αi0n+j2

α2(i0n+j0) α2(i0n+j1) α2(i0n+j2)

is a Vandermonde matrix,

det

1 1 1
αi0n+j0 αi0n+j1 αi0n+j2

α2(i0n+j0) α2(i0n+j1) α2(i0n+j2)

 = α4i0n+3j0+j1

(

1⊕αj1−j0
) (

1⊕αj2−j0
) (

1⊕αj2−j1
)

This determinant is easily inverted in a field, while in the ring of elements modulo Mp(x),
the elements 1⊕αj1−j0, 1⊕αj2−j0 and 1⊕αj2−j1 can be efficiently inverted (for details,
see [7]).
The encoding is a special case of the decoding. For instance, assume that we place the

two global parities in locations (m − 1, n − 3) and (m − 1, n − 2), as depicted in Figure 1.
After computing the parities ai,n−1 for 0 ≤ i ≤ m − 2 using single parity, we have to
compute the parities am−1,n−3, am−1,n−2 and am−1,n−1 using the method above. In particu-
lar, the Vandermonde determinant becomes (making i0=m − 1, j0 =n − 3, j1=n − 2 and
j2=n − 1) α4(m+n)−15 (1⊕α) (1⊕α2) (1⊕α) =α4(m+n)−15 (1⊕α4). So, we have to invert
only α4(m+n)−15 (1⊕α4) for the encoding and some operations may be precalculated, making
the encoding very efficient. We omit the details.
We analize next the case of two pairs of erasures in rows i0 and i1, 0 ≤ i0 < i1 ≤ m − 1,

and assume that the erased entries are ai0,j0 and ai0,j1 in row i0, 0 ≤ j0 < j1 ≤ n − 1, and
ai1,ℓ0 and ai1,ℓ1 in row i1, 0 ≤ ℓ0 < ℓ1 ≤ n− 1.
Again using the parity-check matrix H(m,n, 1, 2), we have to solve the linear system of 4

equations with 4 unknowns

15

ai0,j0 ⊕ ai0,j1 = Si0

ai1,ℓ0 ⊕ ai1,ℓ1 = Si1

αi0n+j0ai0,j0 ⊕ αi0n+j1ai0,j1 ⊕ αi1n+ℓ0ai1,ℓ0 ⊕ αi1n+ℓ1ai1,ℓ1 = Sm

α2(i0n+j0)ai0,j0 ⊕ α2(i0n+j1)ai0,j1 ⊕ α2(i1n+ℓ0)ai1,ℓ0 ⊕ α2(i1n+ℓ1)ai1,ℓ1 = Sm+1

where Si0 and Si1 are given by (3) and Sm and Sm+1 are given by (5). In order to solve this
linear system, we need to invert the determinant

det

1 1 0 0
0 0 1 1

αi0n+j0 αi0n+j1 αi1n+ℓ0 αi1n+ℓ1

α2(i0n+j0) α2(i0n+j1) α2(i1n+ℓ0) α2(i1n+ℓ1)

.

By row operations, we can easily see that this determinant is equal to the following deter-
minant times a power of α:

det

1 1 0 0
0 0 1 1
0 1⊕αj1−j0 0 α(i1−i0)n+ℓ0−j0(1⊕αℓ1−ℓ0)
0 1⊕α2(j1−j0) 0 α2((i1−i0)n+ℓ0−j0)(1⊕α2(ℓ1−ℓ0))

=

det

(

1⊕αj1−j0 α(i1−i0)n+ℓ0−j0(1⊕αℓ1−ℓ0)
1⊕α2(j1−j0) α2((i1−i0)n+ℓ0−j0)(1⊕α2(ℓ1−ℓ0))

)

Notice that this determinant corresponds to a 2 × 2 Vandermonde matrix, and it equals
1⊕αj1−j0 ⊕α(i1−i0)n+ℓ0−j0(1⊕αℓ1−ℓ0) times α(i1−i0)n+ℓ0−j0 (1⊕αj1−j0)

(

1⊕αℓ1−ℓ0
)

. We have

seen that the latter is easy to invert. Inverting 1⊕αj1−j0 ⊕α(i1−i0)n+ℓ0−j0(1⊕αℓ1−ℓ0), how-
ever, is not as neat as inverting binomials 1⊕αj when the size b of the symbols is a large
number. Since 1 + xj1−j0 + x(i1−i0)n+ℓ0−j0(1 + xℓ1−ℓ0) and f(x) are relatively prime by The-
orem 5.1, we can invert 1 + xj1−j0 + x(i1−i0)n+ℓ0−j0(1 + xℓ1−ℓ0) modulo f(x) using Euclid’s
algorithm. This operation may take some computational time, but it is not done very often.
When it is invoked, performance has already been degraded due in general to a catastrophic
failure. The emphasis here is on data recovery and not on performance, since data loss is
not acceptable.
Let us now analize some concrete PMDS codes C(m,n, 1, 2; f(x)). Consider first finite

fields GF (2b). In Table 1, we give the value b, the irreducible polynomial f(x) (in octal
notation), the exponent e(f(x)), and values m and n for which the code C(m,n, 1, 2; f(x)) is
PMDS according to Theorem 5.1. We have not checked all possible irreducible polynomials,
so we are not claiming that the values of m and n are maximal in each case, but it is certainly
feasible to do so. For extensive tables of irreducible polynomials, see [40].
Next, consider the case of codes C(m,n, 1, 2;Mp(x)). Theorem 4.2 solves the case in which

Mp(x) is irreducible, so assume that Mp(x) is not irreducible, i.e., the ring is not a field.

16

b f(x) e(f(x)) m n
8 4 3 5 255 5 5

5 6 7 85 7 5
4 3 3 51 10 5

9 1 0 2 1 511 20 6
1 2 3 1 73 10 7

10 3 0 2 5 1023 21 6
15 7

11 6 0 1 5 2047 29 6
25 7
22 8

5 3 6 1 2047 13 10
12 1 5 6 4 7 4095 67 6

58 7
50 8
24 9
22 10

b f(x) e(f(x)) m n
16 2 2 7 2 1 5 13107 404 6

346 7
303 8
269 9
242 10
164 11
160 12
59 16
45 17
53 18
24 20
19 22
21 23
18 24
17 25
16 26

Table 1: Some values of b, f(x), m and n for which codes C(m,n, 1, 2; f(x)) are PMDS

This ring was considered for the BR codes [7] because it allows for efficient correction of
erasures for symbols of large size without using look-up tables like in the case of finite fields.
We need to check all possible cases of Theorem 5.1 for different values of m and n, mn < p.
The results are tabulated in Table 2, which gives the list of primes between 17 and 257

for which Mp(x) is reducible (hence, 2 is not primitive in GF (p)), together with some values
of m and n, and a statement indicating whether the code is PMDS or not. For most such
primes the codes are PMDS. The only exceptions are 31, 73 and 89. The case p=89 is
particularly interesting, since for m=8 and n=11 as well as for m=n=9, the codes are not
PMDS. However, for m=11 and n=8, the code is PMDS, which illustrates the fact that
a code being PMDS does not depend only on the polynomial Mp(x) chosen, but also on m
and n.

5.3 The case C(m, n, 1, 3; f(x))

There are two ways to obtain s=3 as a sum of odd numbers: one is 3 itself, the other is
1 + 1 + 1. Then, by Theorem 4.1, we have

Theorem 5.2 Code C(m,n, 1, 3; f(x)) is PMDS if and only if code C(m,n, 1, 2; f(x)) is
PMDS, and, for 1 ≤ l1 < l2 < l3 ≤ n− 1,

gcd
(

1 + xl1 + xl2 + xl3 , f(x)
)

= 1 (17)

17

Prime m n PMDS?
17 4 4 YES
23 3 7 YES

4 5 YES
31 5 6 NO

6 5 NO
41 5 8 YES

6 6 YES
8 5 YES

43 5 8 YES
6 7 YES

47 4 11 YES
5 9 YES

71 7 10 YES
8 8 YES
10 7 YES

73 6 12 NO
7 10 NO
8 9 NO
9 8 NO

79 6 13 YES
7 11 YES
8 9 YES

89 8 11 NO
9 9 NO
11 8 YES

97 8 12 YES
10 9 YES
12 8 YES

103 9 11 YES
10 10 YES
11 9 YES

109 9 12 YES
10 10 YES
12 9 YES

113 10 11 YES
11 10 YES
12 9 YES

Prime m n PMDS?
127 11 11 YES

13 9 YES
137 11 12 YES

12 11 YES
13 10 YES
15 9 YES
16 8 YES

151 15 10 YES
16 9 YES

157 12 13 YES
13 12 YES
14 11 YES
15 10 YES
16 9 YES

167 12 13 YES
13 12 YES
15 11 YES
16 10 YES

191 13 14 YES
14 13 YES
17 11 YES

193 16 12 YES
199 14 14 YES

16 12 YES
223 15 14 YES

17 13 YES
229 15 15 YES

16 14 YES
233 15 15 YES

16 14 YES
239 15 15 YES

16 14 YES
241 16 15 YES
251 16 15 YES

25 10 YES
257 16 16 YES

32 8 YES

Table 2: Values of p such that 2 is not primitive in GF (p), and some codes
C(m,n, 1, 2;Mp(x)), mn < p.

18

and, for any 1 ≤ i2 < i3 ≤ m − 1, 0 ≤ l1,0 < l1,1 ≤ n − 1, 0 ≤ l2,0 < l2,1 ≤ n − 1 and
0 ≤ l3,0 < l3,1 ≤ n− 1,

gcd
(

1 + xl1,1−l1,0 + xi2n+l2,0−l1,0
(

1 + xl2,1−l2,0
)

+

xi3n+l3,0−l1,0
(

1 + xl3,1−l3,0
)

, f(x)
)

= 1 (18)

So, in order to check if code C(m,n, 1, 3; f(x)) is PMDS, we start checking if code
C(m,n, 1, 2; f(x)) is PMDS, like in the cases tabulated in Tables 1 and 2. Then we have to
check if the conditions (17) and (18) of Theorem 5.2 are satisfied.
For instance, the codes C(m,n, 1, 2; f(x)) in Table 1 are PMDS, but condition (18) in Theo-

rem 5.2 is quite restrictive and most of the entries do not correspond to codes C(m,n, 1, 3; f(x))
that are PMDS. In Table 2, however, several of the codes C(m,n, 1, 2;Mp(x)) that are
PMDS give codes C(m,n, 1, 3;Mp(x)) that are also PMDS. We give the results in Table 3,
which shows that for the primes 17, 43, 89, 127, 151, 241 and 257, and also for 89 with
(m,n) = (11, 8), the codes C(m,n, 1, 3;Mp(x)) are not PMDS, although the corresponding
codes C(m,n, 1, 2;Mp(x)) were PMDS.

5.4 The case C(m, n, 1, 4; f(x))

As done in Subsection 5.3, we have to start writing s=4 as all possible sums of odd numbers.
There are three ways of doing so: 4=1+3, 4=3+1 and 4=1+1+1+1. By Theorem 4.1,
we have:

Theorem 5.3 Code C(m,n, 1, 4; f(x)) as given by Construction 3.1 is PMDS if and only if
code C(m,n, 1, 3; f(x)) is PMDS, and, for any 1 ≤ i ≤ m − 1, 0 ≤ l1,0 < l1,1 ≤ n − 1 and
0 ≤ l2,0 < l2,1 < l2,2 < l2,3 ≤ n− 1,

gcd
(

1 + xl1,1−l1,0 + xin+l2,0−l1,0
(

1 + xl2,1−l2,0 + xl2,2−l2,0 + xl2,3−l2,0
)

, f(x)
)

= 1,

for any 1 ≤ i ≤ m− 1, 0 ≤ l1,0 < l1,1 < l1,2 < l1,3 ≤ n− 1 and 0 ≤ l2,0 < l2,1 ≤ n− 1,

gcd
(

1 + xl1,1−l1,0 + xl1,2−l1,0 + xl1,3−l1,0 + xin+l2,0−l1,0
(

1 + xl2,1−l2,0
)

, f(x)
)

= 1,

and for any 1 ≤ i2 < i3 < i4 ≤ m − 1, 0 ≤ l1,0 < l1,1 ≤ n − 1, 0 ≤ l2,0 < l2,1 ≤ n − 1,
0 ≤ l3,0 < l3,1 ≤ n− 1 and 0 ≤ l4,0 < l4,1 ≤ n− 1,

gcd
(

1 + xl1,1−l1,0 + xi2n+l2,0−l1,0
(

1 + xl2,1−l2,0
)

+

xi3n+l3,0−l1,0
(

1 + xl3,1−l3,0
)

+ xi4n+l4,0−l1,0
(

1 + xl4,1−l4,0
)

, f(x)
)

= 1.

Consider next a restricted situation for a code C(m,n, 1, 4; f(x)). In [27], codes were
constructed that can recover from an erased column together with a row with up to two
errors, or two different rows with up to one error each. From our coding point of view, a

19

Prime m n PMDS?
17 4 4 NO
23 3 7 YES

4 5 YES
31 5 6 NO

6 5 NO
41 5 8 YES

6 6 YES
8 5 YES

43 5 8 NO
6 7 NO

47 4 11 YES
5 9 YES

71 7 10 YES
8 8 YES
10 7 YES

73 6 12 NO
7 10 NO
8 9 NO
9 8 NO

79 6 13 YES
7 11 YES
8 9 YES

89 8 11 NO
9 9 NO
11 8 NO

97 8 12 YES
10 9 YES
12 8 YES

103 9 11 YES
10 10 YES
11 9 YES

Prime m n PMDS?
109 9 12 YES

10 10 YES
12 9 YES

113 10 11 YES
11 10 YES
12 9 YES

127 11 11 NO
13 9 NO

137 11 12 YES
12 11 YES

151 15 10 NO
16 9 NO

157 12 13 YES
16 9 YES

167 16 10 YES
191 17 11 YES
193 16 12 YES
199 16 12 YES
223 17 13 YES
229 16 14 YES

28 8 YES
233 23 10 YES
239 26 9 YES
241 16 15 NO

24 10 NO
251 25 10 YES
257 16 16 NO

32 8 NO

Table 3: Some codes C(m,n, 1, 3;Mp(x)) such that p ≤ 257 and Mp(x) is not irreducible

20

C(m,n, 1, 4; f(x)) code that is both (1;4)-erasure correcting and (1;2,2)-erasure correcting
will accomplish this (these conditions are actually stronger than those in [27], since they
do not require an erased column, the erasures can be anywhere in the row). For reasons of
space, we don’t address at this point the decoding algorithm for errors and we concentrate
on the existence of such a code.
Notice that, according to Lemma 4.3, a code C(m,n, 1, 4; f(x)) is (1;4)-erasure correcting,

if and only if for any 1 ≤ l1 < l2 < l3 ≤ n− 1, (17) holds.
Also by Lemma 4.3, a code C(m,n, 1, 4; f(x)) is (1;2,2)-erasure correcting, if and only if

for any 1 ≤ i ≤ m − 1 and 0 ≤ l1,0 < l1,1 ≤ n − 1, 0 ≤ l2,0 < l2,1 ≤ n − 1, (16) holds. But
(16) is exactly the condition for code C(m,n, 1, 2) to be PMDS by Theorem 5.1. Thus, we
have the following lemma:

Lemma 5.2 Code C(m,n, 1, 4; f(x)) is both (1;4)-erasure correcting and (1;2,2)-erasure cor-
recting if and only if code C(m,n, 1, 2; f(x)) is PMDS and, for any 1 ≤ l1 < l2 < l3 ≤ n− 1,
(17) holds.

We can verify in Table 2 that for the codes C(m,n, 1, 2;Mp(x)) that are PMDS, (17) holds.
Therefore, by Lemma 5.2, the corresponding codes C(m,n, 1, 4;Mp(x)) are both (1;4)-erasure
correcting and (1;2,2)-erasure correcting.

5.5 The case C(m, n, r, 1; f(x))

So far, in this section we have considered cases in which r=1. If r= s=1, we have seen in
Subsection 5.1 that the code is PMDS, so we examine here the case r > 1. Thus, assume
that row i, 0 ≤ i ≤ m − 1, has r + 1 erasures in locations 0 ≤ j0 < j1 < . . . < jr ≤ n − 1.
The following theorem is given without proof (it is proven similarly to the previous cases by
examining determinants):

Theorem 5.4 Consider code C(m,n, r, 1; f(x)). If r is even, then C(m,n, r, 1; f(x)) is PMDS
if and only if C(m,n, r− 1, 1; f(x)) is PMDS, while if r is odd, C(m,n, r, 1; f(x)) is PMDS if
and only if C(m,n, r − 1, 1; f(x)) is PMDS and, for any 1 ≤ l1 < l2 < . . . < lr ≤ n− 1,

gcd

(

1 +
r∑

u=1

xlu , f(x)

)

= 1 (19)

Since C(m,n, 1, 1; f(x)) is PMDS, by Theorem 5.4, also C(m,n, 2, 1; f(x)) is PMDS. Ac-
cording to (19), C(m,n, 3, 1; f(x)) and C(m,n, 4, 1; f(x)) are PMDS if and only if, for any
1 ≤ l1 < l2 < l3 ≤ n− 1, (17) holds.

21

5.6 The case C(m, n, 2, 2; f(x))

For C(m,n, 2, 2; f(x)) to be PMDS, it has to be both (2;2)-erasure correcting and (2;1,1)-
erasure correcting. As in the previous subsection, C(m,n, 2, 2; f(x)) will be (2;2)-erasure
correcting if and only if, for any 1 ≤ l1 < l2 < l3 ≤ n − 1, (17) holds. We have also seen at
the end of the previous subsection that this is equivalent to saying that code C(m,n, 3, 1; f(x))
is PMDS. By examining the conditions under which code C(m,n, 2, 2; f(x)) is (2;1,1)-erasure
correcting, we have the following theorem (again, without proof):

Theorem 5.5 Code C(m,n, 2, 2; f(x)) is PMDS if and only if code C(m,n, 3, 1; f(x)) is
PMDS and, for any 1 ≤ i ≤ m − 1, 0 ≤ l1,0 < l1,1 < l1,2 ≤ n− 1 and 0 ≤ l2,0 < l2,1 < l2,2 ≤
n− 1, if

g(x) = 1 + xl1,1−l1,0 + xl1,2−l1,0 + x2(l1,1−l1,0) + x2(l1,2−l1,0) + x(l1,1−l1,0)+(l1,2−l1,0) +

x2(in+l2,0−l1,0)
(

1 + xl2,1−l2,0 + xl2,2−l2,0 + x2(l2,1−l2,0) + x2(l2,2−l2,0) + x(l2,1−l2,0)+(l2,2−l2,0)
)

,

then gcd(g(x), f(x)) =1.

6 An alternative construction

In this section we present an alternative to Construction 3.1.

Construction 6.1 Consider the binary polynomials modulo f(x), where either f(x) is irre-
ducible or f(x) =Mp(x), and let mn ≤ e(f(x)). Let C(1)(m,n, r, s; f(x)) be the code whose
(mr + s)×mn parity-check matrix is

H(1)(m,n, r, s) =

H(1)(n, r, 0, 0) 0(n, r) . . . 0(n, r)

0(n, r) H(1)(n, r, 0, r) . . . 0(n, r)
...

...
. . .

...

0(n, r) 0(n, r) . . . H(1)(n, r, 0, (m − 1)r)

H(1)(mn, s, r, 0)

(20)

where, if f(α) = 0, H(1)(n, r, i, j) is the r × n matrix

H(1)(n, r, i, j) =

αij αi(j+1) αi(j+2) . . . αi(j+n−1)

α(i+1)j α(i+1)(j+1) α(i+1)(j+2) . . . α(i+1)(j+n−1)

α(i+2)j α(i+2)(j+1) α(i+2)(j+2) . . . α(i+2)(j+n−1)

...
...

...
. . .

...
α(i+r−1)j α(i+r−1)(j+1) α(i+r−1)(j+2) . . . α(i+r−1)(j+n−1)

(21)

and 0(n, r) is an r × n zero matrix.

22

Next we illustrate Construction 6.1 with some examples.

Example 6.1 Consider m=3 and n=5, then,

H(1)(3, 5, 1, 3) =

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

1 α2 α4 α6 α8 α10 α12 α14 α16 α18 α20 α22 α24 α26 α28

1 α3 α6 α9 α12 α15 α18 α21 α24 α27 α30 α33 α36 α39 α42

H(1)(3, 5, 3, 1) =

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 α α2 α3 α4 0 0 0 0 0 0 0 0 0 0
1 α2 α4 α6 α8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 α5 α6 α7 α8 α9 0 0 0 0 0
0 0 0 0 0 α10 α12 α14 α16 α18 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 α10 α11 α12 α13 α14

0 0 0 0 0 0 0 0 0 0 α20 α22 α24 α26 α28

1 α3 α6 α9 α12 α15 α18 α21 α24 α27 α30 α33 α36 α39 α42

H(1)(3, 5, 2, 2) =

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 α α2 α3 α4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 α5 α6 α7 α8 α9 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 α10 α11 α12 α13 α14

1 α2 α4 α6 α8 α10 α12 α14 α16 α18 α20 α22 α24 α26 α28

1 α3 α6 α9 α12 α15 α18 α21 α24 α27 α30 α33 α36 α39 α42

Notice that C(m,n, 1, 2; f(x)) and C(1)(m,n, 1, 2; f(x)) coincide. Let us analize in the next
subsections some special cases.

6.1 The case C(1)(m, n, r, 1; f(x))

Like in Subsection 5.5, we have to examine under which conditions code C(1)(m,n, r, 1; f(x))
is (1; r)-erasure correcting. Using the parity-check matrix H(1)(m,n, r, 1) as defined by (20),
C(1)(m,n, r, 1; f(x)) is (r; 1)-erasure correcting if and only if, for any 0 ≤ i ≤ m − 1 and for
any 1 ≤ j0 < j1 < . . . < jr, the Vandermonde determinant

23

det

1 1 . . . 1
αin+j0 αin+j1 . . . αin+jr

α2(in+j0) α2(in+j1) . . . α2(in+jr)

α3(in+j0) α3(in+j1) . . . α3(in+jr)

...
...

. . .
...

αr(in+j0) αr(in+j1) . . . αr(in+jr)

=
∏

0≤t<l≤r

(

αin+jt ⊕αin+jl
)

is invertible. Since this is always the case, we have the following theorem:

Theorem 6.1 Code C(1)(m,n, r, 1; f(x)) is PMDS.

Comparing Theorems 5.4 and 6.1, we conclude that codes C(1)(m,n, r, 1; f(x)) are prefer-
able to codes C(m,n, r, 1; f(x)) for r ≥ 2, since the former are PMDS without restrictions.

6.2 The case C(1)(m, n, 1, 3; f(x))

We give the following theorem without proof:

Theorem 6.2 Code C(1)(m,n, 1, 3; f(x)) as given by Construction 6.1 is PMDS if and only
if, for any 0 ≤ i1 6= i2 ≤ m − 1, 0 ≤ l1,0 < l1,1 < l1,2 ≤ n − 1 and 0 ≤ l2,0 < l2,1 ≤ n − 1,
f(α) = 0, the following matrix is invertible,

1⊕αl1,1−l1,0 1⊕αl1,2−l1,0 α(i2−i1)n+l2,0−l1,0(1⊕αl2,1−l2,0)
1⊕α2(l1,1−l1,0) 1⊕α2(l1,2−l1,0) α2((i2−i1)n+l2,0−l1,0)(1⊕α2(l2,1−l2,0))
1⊕α3(l1,1−l1,0) 1⊕α3(l1,2−l1,0) α3((i2−i1)n+l2,0−l1,0)(1⊕α3(l2,1−l2,0))

 (22)

and for any 1 ≤ i2 < i3 ≤ m − 1, 0 ≤ l1,0 < l1,1 ≤ n − 1, 0 ≤ l2,0 < l2,1 ≤ n − 1 and
0 ≤ l3,0 < l3,1 ≤ n− 1, the following matrix is invertible:

1⊕αl1,1−l1,0 αi2n+l2,0−l1,0(1⊕αl2,1−l2,0) αi3n+l3,0−l1,0(1⊕αl3,1−l3,0)
1⊕α2(l1,1−l1,0) α2(i2n+l2,0−l1,0)(1⊕α2(l2,1−l2,0)) α2(i3n+l3,0−l1,0)(1⊕α2(l3,1−l3,0))
1⊕α3(l1,1−l1,0) α3(i2n+l2,0−l1,0)(1⊕α3(l2,1−l2,0)) α3(i3n+l3,0−l1,0)(1⊕α3(l3,1−l3,0))

 (23)

Consider f(x) =Mp(x). We tested all prime numbers p such that 2 is primitive in GF (p)
up to p=227 (i.e., f(x) is irreducible), and we found out that the matrices given by (22)
and (23) are invertible in all instances. Thus, we have the following lemma:

Lemma 6.1 Consider the code C(1)(m,n, 1, 3;Mp(x) given by Construction 6.1 such that
Mp(x) is irreducible (or equivalently, 2 is primitive in GF (p)). Then, for 19 ≤ p ≤ 227, code
C(1)(m,n, 1, 3;Mp(x)) is PMDS.

24

Prime m n PMDS?
17 4 4 NO
23 3 7 NO

4 5 YES
31 5 6 NO

6 5 NO
41 5 8 NO

6 6 YES
8 5 YES

43 5 8 NO
6 7 NO

47 4 11 YES
5 9 YES

71 7 10 YES
8 8 YES
10 7 YES

73 6 12 NO
7 10 NO
8 9 NO
9 8 NO

79 6 13 YES
7 11 YES
8 9 YES

89 8 11 NO
9 9 NO
11 8 NO

97 8 12 YES
10 9 YES
12 8 YES

103 9 11 YES
10 10 YES
11 9 YES

Prime m n PMDS?
109 9 12 YES

10 10 YES
12 9 YES

113 10 11 NO
11 10 NO
12 9 NO

127 11 11 NO
13 9 NO

137 11 12 YES
12 11 YES
13 10 YES
15 9 YES
16 8 YES

151 15 10 NO
16 9 NO

157 12 13 YES
13 12 YES
16 9 YES

167 16 10 YES
191 17 11 YES
193 16 12 YES
199 16 12 YES
223 17 13 YES
229 16 14 YES

28 8 YES
233 23 10 YES
239 26 9 YES
241 24 10 NO
251 25 10 YES
257 16 16 NO

32 8 NO

Table 4: Some codes C(1)(m,n, 1, 3;Mp(x)) such that p ≤ 257 and Mp(x) is not irreducible

25

We leave as an open problem whether codes C(1)(m,n, 1, 3;Mp(x)) are PMDS when Mp(x)
is irreducible (this result was true for codes C(m,n, 1, 3;Mp(x)) by Theorem 4.2). For values
of p such that 2 is not primitive in GF (p), some results are tabulated in Table 4 for different
values of m and n. This table is very similar to Table 3.
Comparing Tables 3 and 4, we can see that for values of p, m and n for which
C(1)(m,n, 1, 3;Mp(x)) is PMDS, also C(m,n, 1, 3;Mp(x)) is PMDS. However, for p=23,
C(3, 7, 1, 3;Mp(x)) is PMDS but C(1)(3, 7, 1, 3;Mp(x)) is not, for p=41, C(5, 8, 1, 3;Mp(x)) is
PMDS but C(1)(5, 8, 1, 3;Mp(x)) is not, and for p=113, C(3, 7, 10, 11;Mp(x)),
C(3, 7, 11, 10;Mp(x)) and C(3, 7, 12, 9;Mp(x)) are PMDS but C(1)(3, 7, 10, 11;Mp(x)),
C(1)(3, 7, 11, 10;Mp(x)) and C

(1)(3, 7, 12, 9;Mp(x)) are not.

7 A Simplified Construction

In this section we present a construction that is an alternative to codes C(m,n, 1, s; f(x))
for 1 ≤ s ≤ 2. In the case of s=2, the new construction can correct the situation depicted
at the left of Figure 2, that is, two pairs of erasures in two different rows. It cannot correct
the situation at the right of Figure 2, i.e., three erasures in the same row. This is a tradeoff,
since the new construction, as we will see, uses a smaller finite field or ring. Explicitly:

Construction 7.1 Consider the binary polynomials modulo f(x), where either f(x) is ir-
reducible or f(x) =Mp(x), and let max{m,n} ≤ e(f(x)), where e(f(x)) is the exponent of
f(x). Let C(2)(m,n, 1, 2; f(x)) be the code whose (m+ 2)×mn parity-check matrix is

H(2)(m,n, 1, 2) =

1 1 . . . 1 0 0 . . . 0 . . . 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 . . . 0 0 0 . . . 0 . . . 1 1 . . . 1
1 α . . . αn−1 1 α . . . αn−1 . . . 1 α . . . αn−1

1 α . . . αn−1 α α2 . . . αn . . . αm−1 αm−2 . . . αm+n−2

C(2)(m,n, 1, 1; f(x)) is the code whose (m+1)×mn parity-check matrix is given by the first
m+ 1 rows of H(2)(m,n, 1, 2).

The following example illustrates Construction 7.1.

Example 7.1 Consider codes C(2)(3, 5, 1, 2;M5(x)) and C(2)(5, 3, 1, 2;M5(x)). Then, since
α5=1, their respective parity-check matrices are

H(2)(3, 5, 1, 2) =

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 α α2 α3 α4 1 α α2 α3 α4 1 α α2 α3 α4

1 α α2 α3 α4 α α2 α3 α4 1 α2 α3 α4 1 α

26

H(2)(5, 3, 1, 2) =

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 α α2 1 α α2 1 α α2 1 α α2 1 α α2

1 α α2 α α2 α3 α2 α3 α4 α3 α4 1 α4 1 α

The following lemma is immediate:

Lemma 7.1 The code C(2)(m,n, 1, 1; f(x)) given by Construction 7.1 is PMDS.

Comparing lemmas 5.1 and 7.1, both C(m,n, 1, 1; f(x)) and C(2)(m,n, 1, 1; g(x)) are PMDS,
where f(x) and g(x) are either irreducible or have the form Mp(x) for some prime number p.
However, the conditions on C(2)(m,n, 1, 1; g(x)) are less stringent. For instance, if we consider
the codes of Example 7.1 for Mp(x), we can see that we need to consider at least p=17 for
C(3, 5, 1, 1;Mp(x)) and C(5, 3, 1, 1;Mp(x)), while we may take p=5 for C(2)(3, 5, 1, 1;Mp(x))
and C(2)(5, 3, 1, 1;Mp(x)). Thus, although we are using a smaller field or ring, the PMDS
property is not lost. This is not the case for codes C(2)(m,n, 1, 2; f(x)): we immediately see
that the codes are not (1;2)-erasure correcting (and hence are not PMDS). However, they
are (1;1,1)-erasure correcting, as stated in the following lemma:

Lemma 7.2 The code C(2)(m,n, 1, 2; f(x)) given by Construction 7.1 is (1;1,1)-erasure cor-
recting.

Proof: Assume that we have two erasures in locations j0 and j1 of row i0 and two erasures
in locations ℓ0 and ℓ1 of row i1, where 0 ≤ i0 < i1 ≤ m − 1, 0 ≤ j0 < j1 ≤ n − 1 and 0 ≤
ℓ0 < ℓ1 ≤ n− 1. Using the parity-check matrix H(2)(m,n, 1, 2) as given in Construction 7.1,
these four erasures can be recovered if and only if

det

1 1 0 0
0 0 1 1
αj0 αj1 αℓ0 αℓ1

αi0+j0 αi0+j1 αi1+ℓ0 αi1+ℓ1

is invertible. By row operations, we find out that this determinant is invertible if and only
if 1⊕αj1−j0 , 1⊕αℓ1−ℓ0 and 1⊕αi1−i0 are invertible. But this is certainly the case if f(x) is
irreducible or f(x) =Mp(x), since j1 − j0, ℓ1 − ℓ0 and i1 − i0 are smaller than the exponent
of f(x). ✷

Lemma 7.2 is important in applications. Let us compare it with C(m,n, 1, 2; f(x)) codes
that are PMDS as given in Subsection 5.2. For the sake of discussion, let us assume

27

that max{m,n} ≤ 15, a situation that covers some practical applications. In the case
of C(m,n, 1, 2; f(x)), using Table 1, if n=15, we would need to operate on the field GF (216).
If we use a code C(2)(m,n, 1, 2; f(x)), we can take the finite field GF (24) as given by a prim-
itive polynomial, which has exponent 15. If we use GF (25) with a primitive polynomial,
we can increase m to 16, a value convenient in applications. If we use rings generated by
Mp(x) and we want m ≤ 17, n ≤ 17, by Table 2, we may use p=257 for a PMDS code
C(m,n, 1, 2;M257(x)). If we just implement a (1;1,1)-erasure correcting code for the same
values of m and n, we can do it with a code C(2)(m,n, 1, 2;M17(x)).
Let us point out that Construction 7.1 is closely related to Generalized Concatenated (GC)

codes [8][44]. For descriptions of GC codes, see also [9][13][41] and the references therein.
Implementations of GC codes are given by two-level ECC schemes [1][10][34], later improved
in the two-level [17][18] and the multilevel [38] Integrated Interleaving schemes.
Using ideas similar to the ones of GC codes we can extend Construction 7.1 to codes

that are (1;

s
︷ ︸︸ ︷

1, 1, . . . , 1)-erasure correcting (that we denote C(2)(m,n, 1, s; f(x))) as well as
other combinations by using horizontal and vertical codes, but for reasons of space we omit
them here. Moreover, as we will see in the next section, there is not much gain for codes
C(2)(m,n, 1, s; f(x)) and s ≥ 3 with respect to codes C(2)(m,n, 1, 2; f(x)) in a mixed envi-
ronment of catastrophic failures and hard errors.

8 Probability of Data Loss After One Disk Failure

In this section, we assume that a catastrophic device failure has occurred. We will make
a number of assumptions and we will compute the probability of data loss for the different
schemes presented in the paper as a function of the raw error probability p (a parameter
that, as we have discussed in the Introduction, degrades with time and with the number
of writes for SSDs). Specifically, we will compare (1; 2) PMDS codes and (1;1,1)-erasure
correcting codes, since both have the same redundancy (but the former is implemented over
a larger field). We assume that the information in each SSD is stored in pages, where each
page has size 4K and there are eight 512B sectors per page. Further, we assume that each
sector is protected by a t-bit error-correcting code, like a BCH code (for instance, t=15).
Each SSD device has M pages. For example, if a device has size 32 G, it has 8 million pages.
We assume that stripes are rows of pages in an m× n block.
Since we assume that one of the n devices has failed, if exactly one hard error has occurred

in at least three different stripes of an m-stripe block, we will have data loss. If a (1; 2)
PMDS code is used, three hard errors in the same stripe will also cause data loss, while if
a (1; 1, 1)-erasure correcting code is used, two hard errors in the same stripe are enough to
cause data loss.
As stated above, each codeword is in a BCH code with 512B information bytes (4096 bits).

The BCH code can correct up to t bit errors, so the redundancy is 13t bits, giving 195 bits
for t=15.

28

We want to compute first the probability P that a codeword cannot be decoded. This
will occur each time t+1 or more errors occur, and this event we assume is always detected
either by the BCH code itself or by the CRC. Therefore, we have:

P =
4096+13t∑

i=t+1

(

4096 + 13t

i

)

pi (1− p)4096+13t−i

Thus, since there are 8 sectors per page, the probability that in a page at least a codeword
is not corrected (i.e., a hard error) is

PH =
8∑

i=1

(

8

i

)

P i (1− P)8−i = 1− (1− P)8.

The probability of exactly one hard error in a stripe is

PHR=1 = (n− 1)PH(1− PH)
n−2

The probability of more than j hard errors in a stripe is

PHR>j =
n−1∑

i=j+1

(

n− 1

i

)

(PH)
i (1− PH)

n−i−1

The probability of exactly one hard error in at least three of the m stripes in a block is
then

PSm,1,3 =
m∑

i=3

(

m

i

)

(PHR=1)
i (1− PH)

(n−1)(m−i)

The probability of at least j + 1 hard errors in any of the m stripes of the block is

PSm,j+1,1 = mPHR>j

The probability of data loss in an m-stripe block of a (1;1,1)-erasure correcting code is
then given by

PS (1;1,1)EC = PSm,1,3 + PSm,2,1,

while the probability of data loss in an m-stripe block of a (1,2) PMDS code is given by

PS (1;2)PMDS = PSm,1,3 + PSm,3,1.

29

We can now compute the probability of data loss for both a (1;1,1)-erasure correcting code
and a (1;2) PMDS code. That will occur each time at least onem-stripe block has experienced
data loss. Thus, since we had assumed that there are M pages per device and that each
block has m stripes, there are M/m blocks (for 32G SSDs, and m=16, M/m=500, 000),
we obtain for a (1;1,1)-erasure correcting code,

PDL(1;1,1)EC =
M/m
∑

i=1

(

M/m

i

)
(

PS (1;1,1)EC

)i
(1− PS (1;1,1)EC)

(M/m)−i

and for a (1;2) PMDS code,

PDL (1;2)PMDS =
M/m
∑

i=1

(

M/m

i

)
(

PS (1;2)PMDS

)i
(1− PS (1;2)PMDS)

(M/m)−i

Looking at the probabilities of data loss in an m-stripe block for m=16 and 32G devices
in Table 5, we can see that in general PS (1;1,1)EC is dominated by PSm,2,1 (i.e., PS (1;1,1)EC ≈
PSm,2,1), while PS (1;2)PMDS is dominated by PSm,1,3 (i.e., PS (1;2)PMDS ≈ PSm,1,3). For that

reason, by increasing s, the probability of data loss of a (1;

s
︷ ︸︸ ︷

1, 1, . . . , 1)-erasure correcting
code is basically the same for any s ≥ 2 when a whole device has failed. In particular, for
s=m, we have RAID 6. Of course RAID 6 can tolerate a second device failure, but any
hard error in the case of two device failures will cause data loss.
Another conclusion from Table 5 is the advantage of using a (1;2) PMDS code over a

(1;1,1)-erasure correcting code, both codes having the same number of parity entries. As
stated in the Introduction, as the system ages, the bit error probability p degrades. So, a
natural question is, if we are monitoring p, which value allows us a reasonable expectation of
not experiencing data loss? For instance, when we reach p= .0007, according to Table 5, the
probability of miscorrection in case a device fails is 7.8E-5. This may be viewed as, less than
one in ten thousand systems will have data loss provided a device has failed, which may be
acceptable (depending on the application). However, if we used a (1;2) PMDS code, when
p= .0008, the probability of data loss is 6.3E-6, more than an order of magnitude better
than the (1;1,1)-erasure correcting code. So, the system is more reliable and allows further
degradation of the parameter p, increasing its lifetime.

9 Conclusions

We have presented two constructions of codes that are suitable for a flash array type of archi-
tecture, in which hard errors co-exist with catastrophic device failures. We have presented
specific codes that are useful in applications. Necessary and sufficient conditions for codes
satisfying an optimality criterion were given.

30

p .0001 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .001

P 4.1E-20 1.8E-15 7.9E-13 5.3E-11 1.3E-9 1.6E-8 1.2E-7 7.0E-7 3.1E-6 1.1E-5

PH 3.3E-19 1.4E-14 6.3E-12 7.9E-13 1.0E-8 1.3E-7 9.9E-7 5.6E-6 2.5E-5 9.0E-5

PS 16,1,3 2.5E-51 2.1E-37 1.8E-29 5.3E-24 7.2E-20 1.4E-16 6.8E-14 1.3E-11 1.1E-9 5.2E-8

PS 16,2,1 5.3E-35 3.3E-26 6.4E-21 2.9E-17 1.6E-14 2.5E-12 1.6E-10 5.1E-9 1.0E-9 1.3E-6

PS 16,3,1 5.7E-54 4.8E-40 4.1E-32 1.2E-26 3.1E-19 3.1E-19 1.6E-16 2.9E-14 2.5E-12 1.2E-10

PS (1;1,1)EC 1.7E-35 3.3E-26 6.4E-21 2.9E-17 1.6E-14 2.5E-12 1.6E-10 5.1E-9 1.0E-7 1.4E-6

PS (1;2)PMDS 2.5E-51 2.1E-37 1.8E-29 5.3E-24 7.2E-20 1.4E-16 6.8E-14 1.3E-11 1.1E-9 5.2E-8

PDL (1;1,1)EC 8.6E-30 1.7E-20 3.2E-15 1.4E-11 8.2E-9 1.3E-6 7.8E-5 2.5E-3 .05 .5

PDL(1;2)PMDS 1.2E-45 1.1E-31 8.9E-24 2.7E-18 3.6E-14 6.9E-11 3.4E-8 6.3E-6 5.4E-4 .026

Table 5: Probabilities of data loss for (1;1,1)-erasure correcting codes and (1;2) PMDS codes
for different values of bit error probability p in the presence of a catastrophic device failure

A Appendix

Lemma A.1 Let γ0, γ1, . . . , γs−1 be distinct elements in a field or ring of characteristic 2.
Consider the s× s matrix

Γ =

γ0 γ1 . . . γs−1

γ2
0 γ2

1 . . . γ2
s−1

γ4
0 γ4

1 . . . γ4
s−1

...
...

. . .
...

γ2s−1

0 γ2s−1

1 . . . γ2s−1

s−1

Then,

det Γ =
∏

S⊆{γ0,γ1...,γs−1}

⊕

i∈S

γi

Proof: We will do induction on s. The result is certainly true for s=1. Consider the
determinant of the matrix obtained by replacing γ0 in the first column of Γ by x, i.e.,

h(x) = det

x γ1 . . . γs−1

x2 γ2
1 . . . γ2

s−1

x4 γ4
1 . . . γ4

s−1
...

...
. . .

...

x2s−1
γ2s−1

1 . . . γ2s−1

s−1

Since h(x) has degree 2s−1, it has at most 2s−1 zeros. Notice that if S is one of the 2s−1

subsets of {γ1, γ2 . . . , γs−1} (including the empty subset), then
⊕

i∈S γi is a zero of h(x) (the

31

element 0 corresponding to the empty set), due to the linearity of the square operation in a
field of characteristic 2. Therefore, we can write,

h(x) = C
∏

S⊆{γ1,γ2...,γs−1}

(

x+
⊕

i∈S

γi

)

,

where

C = det

γ1 γ2 . . . γs−1

γ2
1 γ2

2 . . . γ2
s−1

γ4
1 γ4

2 . . . γ4
s−1

...
...

. . .
...

γ2s−2

1 γ2s−2

2 . . . γ2s−2

s−2

The result follows from the fact that h(γ0) = det(Γ) and by induction on the expression of
C above. ✷

References

[1] K. Abdel-Ghaffar and M. Hassner, “Multilevel codes for data storage channels,” IEEE
Trans. on Information Theory, vol. IT-37, pp. 735–41, May 1991.

[2] M. Balakrishnan, A. Kadav, V. Prabhakaran and D. Malkhi, “Differential RAID: Re-
thinking RAID for SSD reliability,” ACM Transactions on Storage (TOS), Vol. 6, Issue
2, Article 1, July 2010.

[3] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank
Modulation,” IEEE Trans. on Information Theory, vol. IT-56, pp. 3158–65, July 2010.

[4] M. Blaum, J. Brady, J. Bruck and J. Menon, “EVENODD: An Efficient Scheme for
Tolerating Double Disk Failures in RAID Architectures,” IEEE Trans. on Computers,
vol. C-44, pp. 192–202, February 1995.

[5] M. Blaum, P. G. Farrell and H. C. A. van Tilborg, “Array Codes,” Handbook of Coding
Theory, edited by V. S. Pless and W. C. Huffman, Elsevier Science B. V., Chapter 22,
1998.

[6] M. Blaum and R. J. McEliece, “Coding protection for magnetic tapes: a generalization
of the Patel-Hong code,” IEEE Trans. on Information Theory, vol. IT-31, pp. 690–693,
September 1985.

[7] M. Blaum and R. M. Roth, “New Array Codes for Multiple Phased Burst Correction,”
IEEE Trans. on Information Theory, vol. IT-39, pp. 66-77, January 1993.

32

[8] E. L. Blokh and V. V. Zyablov, “Coding of Generalized Concatenated Codes,” Problemy
Peredachii Informatsii, Vol. 10(3), pp. 218–222, 1974.

[9] M. Bossert, “Channel Coding for Telecommunications,” Ch. 9, Wiley, 1999.

[10] O. Collins, “Exploiting the Cannibalistic Traits of Reed-Solomon Codes,” IEEE Trans.
on Communications, Vol. 43, No. 11, pp. 2696–703, November 1995.

[11] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar, “Row-
diagonal parity for double disk failure correction,” Proc. 3rd Conf. File and Storage
Technologies - FAST’04, San Francisco, CA, March/April 2004.

[12] P. Delsarte, “Bilinear Forms over a Finite Field, with Applications to Coding Theory,”
J. Comb. Th. Series A, 25, pp. 226–241, 1978.

[13] I. Dumer, “Concatenated Codes and Their Multilevel Generalizations,” Handbook of
Coding Theory, edited by V. S. Pless and W. C. Huffman, Elsevier Science B. V.,
Chapter 23, 1998.

[14] E. M. Gabidulin, “Theory of codes with maximum rank distance,” Prob. Info. Trans.,
Vol. 21, No. 1, pp. 3–16, 1985.

[15] G. A. Gibson, “Redundant Disk Arrays,” MIT Press, 1992.

[16] K. M. Greenan, D. D. Long, E. L. Miller, T. J. E. Schwarz and A. Wildani, “Building
Flexible, Fault-Tolerant Flash-based Storage Systems,” Fifth Workshop on Hot Topics
in Dependability (HotDep09), Lisbon, Portugal, June 2009.

[17] J. Han and L. A. Lastras-Montaño, “Reliable Memories with Subline Accesses,” ISIT
2007, IEEE International Symposium on Information Theory, pp. 2531–35, June 2007.

[18] M. Hassner, K. Abdel-Ghaffar, A. Patel, R. Koetter and B. Trager, “Integrated Inter-
leaving – A Novel ECC Architecture,” IEEE Transactions on Magnetics, Vol. 37, No.
2, pp. 773–5, March 2001.

[19] Q. Huang, S. Lin and K. A. S. Abdel-Ghaffar, “Error-Correcting Codes for Flash Cod-
ing,” IEEE Trans. on Information Theory, vol. IT-57, pp. 6097–108, September 2011.

[20] W. Hutsell, “An In-depth Look at the RamSan-500 Cached Flash Solid State Disk,”
http://www.texmemsys. com/files/f000233.pdf.

[21] S. Im and D. Shin, “Flash-Aware RAID Techniques for Dependable and High-
Performance Flash Memory SSD,” IEEE Trans. on Computers, vol. C-60, pp. 80–922,
January 2011.

33

http://www.texmemsys

[22] A. Jiang, V. Bohossian and J. Bruck, “Rewriting Codes for Joint Information Stor-
age in Flash Memories,” IEEE Trans. on Information Theory, vol. IT-56, pp. 5300-13,
September 2010.

[23] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation for Flash Mem-
ories,” IEEE Trans. on Information Theory, vol. IT-55, pp. 2659-73, June 2009.

[24] A. Jiang, M. Schwartz and J. Bruck, “Correcting Charge-Constrained Errors in the
Rank-Modulation Scheme,” IEEE Trans. on Information Theory, vol. IT-56, pp. 2112-
20, April 2010.

[25] T. Klove, B. Bose and N. Eliaref, “Systematic, Single Limited Magnitude Error Cor-
recting Codes for Flash Memories,” IEEE Trans. on Information Theory, vol. IT-57, pp.
4477-87, July 2011.

[26] T. Klove, J. Luo, I. Naydenova and S. Yari, “Some Codes Correcting Asymmetric Errors
of Limited Magnitude,” IEEE Trans. on Information Theory, vol. IT-57, pp. 7459-72,
November 2011.

[27] L. A. Lastras-Montaño, P. J. Meaney, E. Stephens, B. M. Trager, J. O’Connor and
L. C. Alves, “A new class of array codes for memory storage,” Information Theory and
Applications Workshop (ITA), La Jolla, California, February 2011.

[28] M. Li and J. Shu, “C-Codes: Cyclic Lowest-Density MDS Array Codes Constructed
Using Starters for RAID 6,” IBM Research Report, RC25218, October 2011.

[29] S. Lin and D. J. Costello, “Error Control Coding: Fundamentals and Applications,”
Prentice Hall, 1983.

[30] S. Lin and D. J. Costello, “Error Control Coding (2nd Edition),” Prentice Hall, 2004.

[31] F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error-Correcting Codes,” North
Holland, Amsterdam, 1977.

[32] H. Mahdavifar, P. H. Siegel, A. Vardy, J. K. Wolf and E. Yaakobi, “A nearly optimal
construction of flash codes,” ISIT 2009, IEEE International Symposium on Information
Theory, pp. 1239–43, July 2009.

[33] Micron, “N-29-17: NAND Flash Design and Use Considerations Introduction,”
http://download.micron.com/pdf/technotes/nand/tn2917.pdf.

[34] A. Patel, “Two-Level Coding for Error-Control in Magnetic Disk Storage Products,”
IBM Journal of Research and Development, vol. 33, pp. 470–84, 1989.

[35] J. S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like
Systems,” Software – Practice & Experience, 27(9), pp. 995-1012, September 1997.

34

http://download.micron.com/pdf/technotes/nand/tn2917.pdf

[36] J. S. Plank, “The RAID-6 Liberation codes,” 6th USENIX Conference on File and
Storage Technologies, San Francisco, CA, pp. 97-110, 2008.

[37] R. M. Roth, “Maximum rank array codes and their application to crisscross error cor-
rection,” IEEE Trans. on Information Theory, vol. IT-37, pp. 328–336, March 1991.

[38] X. Tang and R. Koetter, “A Novel Method for Combining Algebraic Decoding and It-
erative Processing,” ISIT 2006, IEEE International Symposium on Information Theory,
pp. 474–78, July 2006.

[39] A. Thomasian and M. Blaum, “Higher Reliability Redundant Disk Arrays: Organi-
zation, Operation, and Coding,” ACM Transactions on Storage (TOS), vol. 5, No 3.
Article 7, November 2009.

[40] W. Wesley Peterson and E. J. Weldon, Jr., “Error-Correcting Codes,” MIT Press, Sec-
ond Edition, 1984.

[41] J. Wu and D. Costello, Jr., “New Multilevel Codes over GF (q),” IEEE Transactions on
Information Theory, vol. IT-38, pp. 933-939, May 1992.

[42] L. Xu, V. Bohossian, J. Bruck and D. G. Wagner, “Low-density MDS codes and factors
of complete graphs,” IEEE Trans. on Information Theory, vol. IT-45, pp. 1817–26,
September 1999.

[43] L. Xu and J. Bruck, “X-code: MDS array codes with optimal encoding,” IEEE Trans.
on Information Theory, vol. IT-45, pp. 272–76, January 1999.

[44] V. A. Zinoviev, “Generalized cascade codes,” Probl. Pered. Inform., vol. 12, no. 1, pp.
5-15, 1976

35

	1 Introduction
	2 Partial-MDS codes
	3 Code Construction
	4 The case r =1
	5 Special cases
	5.1 The case C(m,n,1,1;f(x))
	5.2 The case C(m,n,1,2;f(x))
	5.3 The case C(m,n,1,3;f(x))
	5.4 The case C(m,n,1,4;f(x))
	5.5 The case C(m,n,r,1;f(x))
	5.6 The case C(m,n,2,2;f(x))

	6 An alternative construction
	6.1 The case C(1)(m,n,r,1;f(x))
	6.2 The case C(1)(m,n,1,3;f(x))

	7 A Simplified Construction
	8 Probability of Data Loss After One Disk Failure
	9 Conclusions
	A Appendix

