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Abstract—We present a general approach to design-
ing capacity-approaching high-girth low-density parity-check
(LDPC) codes that are friendly to hardware implementation.Our
methodology starts by defining a new class ofhierarchical quasi-
cyclic (HQC) LDPC codes that generalizes the structure of quasi-
cyclic (QC) LDPC codes. Whereas the parity check matrices of
QC LDPC codes are composed of circulant sub-matrices, those
of HQC LDPC codes are composed of a hierarchy of circulant
sub-matrices that are in turn constructed from circulant sub-
matrices, and so on, through some number of levels. We show
how to map any class of codes defined using a protograph into a
family of HQC LDPC codes. Next, we present a girth-maximizing
algorithm that optimizes the degrees of freedom within the family
of codes to yield a high-girth HQC LDPC code. Finally, we
discuss how certain characteristics of a code protograph will
lead to inevitable short cycles, and show that these short cycles
can be eliminated using a “squashing” procedure that results in
a high-girth QC LDPC code, although not a hierarchical one. We
illustrate our approach with designed examples of girth-10QC
LDPC codes obtained from protographs of one-sided spatially-
coupled codes.

I. I NTRODUCTION

Two broad classes of methods have emerged for the con-
struction of low-density parity-check (LDPC) codes [1], [2].
One set of methods is based on highly random graph con-
structions, while the other is based on structured algebraic
constructions. It is now well-known that random constructions
(see, e.g., [3]–[7]) can produce LDPC codes that closely
approach the Shannon capacity. However, highly random
constructions are not easy to implement in hardware as the
irregular connections between check and variable nodes in the
code graph imply high wiring complexity. In actual imple-
mentations, more structured constructions have been strongly
preferred because they result in much more practical wiring
and more straightforward parallelism in the decoders.

Quasi-cyclic LDPC (QC LDPC) codes are a particularly
practical and widely-used class of structured LDPC codes.
These codes have a parity check matrix which is broken into
sub-matrices that have a circulant structure. QC LDPC codes
are featured in a variety of communications system standards,
such as IEEE 802.16e [8], DVB-S2 [9] and 802.11 [10]. In
view of their practicality, we focus in this paper on the design
of QC LDPC codes that have good decoding performance.

For nearly any application, it is important to optimize
decoding performance in the “water-fall” regime where the
signal-to-noise ratio (SNR) is relatively low. The standard way
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to do that for irregular random constructions is to use “density-
evolution” or “EXIT chart” techniques to obtain the degree
distribution that optimizes the code threshold in the asymptotic
limit of long block lengths [7]. These techniques can also be
adapted to QC LDPC codes [11].

However, for some applications, optimizing water-fall per-
formance is not sufficient, and one must also avoid the “error
floors” that plague many LDPC codes in the higher SNR
regime. An “error floor” in the performance curve means that
the decoding failure rate does not continue to decrease rapidly
as the SNR increases. Eliminating or lowering error floors
is particularly important for applications that have extreme
reliability demands, including magnetic recording and fiber-
optic communication systems.

In the past, QC LDPC codes have been constructed based
on a wide variety of mathematical ideas, including finite
geometries, finite fields, and combinatorial designs [2], [12]–
[18]. Recently, there has also been great interest in the class of
“convolutional” [19], [20] or “spatially-coupled” [21] LDPC
codes. These codes have much more structured than traditional
random constructions. They have also been shown, using
density evolution techniques, to approach Shannon capacity
closely, or even provably to achieve it on the binary erasure
channel (BEC) [21]. These codes are significant here, because
they can be implemented using quasi-cyclic constructions,and
they should thus be able to achieve very good performance
while retaining the practicality of other structured QC LDPC
codes. In this paper, we will focus on the design of QC
LDPC codes based on structures that let them perform near
the Shannon limit in the waterfall regime (such as spatially
coupled codes) but we also aim for excellent error floor
performance.

Error floor issues for LDPC codes are investigated in [22],
[23], which shows that error floors in belief propagation (BP)
LDPC decoders are generally caused by “trapping sets.” A
trapping set is a set of a small number of bits that reinforce
each other in their incorrect beliefs. Trapping sets of bitsare
invariably arranged in clustered short cycles in a code’s Tanner
graph [24]. Therefore, one way to try to remove trapping sets
is to design the code’s Tanner graph carefully so that the
dangerous clusters of short cycles do not exist.

An alternative, and at least conceptually simpler approach,
is to design codes with larger girths—the “girth” of a code is
the length of the shortest cycle in the code graph. By removing
short cycles, we remove large swaths of potentially dangerous
configurations of cycles and, at one fell swoop, hopefully
lower the error floor. Motivated by this idea, in this paper, we
focus on optimizing the girth of QC LDPC codes that have
also been optimized for waterfall performance. In this way we
hope to design a practical code that simultaneously has good
waterfall and error floor performance.

http://arxiv.org/abs/1111.0711v1
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There has been considerable work on optimizing girth
in LDPC codes. In [25] a progressive-edge growth (PEG)
algorithm is proposed for random LDPC codes. The PEG
technique is generalized to QC LDPC codes in [26]. Another
approach to optimizing the girth of QC LDPC codes is
studied in [27], where high-girth QC LDPC codes are obtained
using a random “guess-and-test” algorithm. Shortened array
codes with large girth are proposed in [30]. However, after
shortening, the resulting codes no longer have a quasi-cyclic
structure. In [31], another class of large girth QC LDPC codes
is designed, where the methodology is mainly for regular
LDPC codes.

In this paper, we propose a hill-climbing search algorithm
for optimizing girth that is more efficient than previous tech-
niques. The hill-climbing algorithm greedily adjusts an initial
QC LDPC code (hopefully) to find a code of short length
that meets the specified code and girth parameters. Since the
algorithm is greedy, it can get stuck in local minima. However,
given a set of parameters, the algorithm finds QC LDPC codes
of shorter length and in less time than guess-and-test or PEG.

Codes with good water-fall performance inevitably have
some irregularity in the degree-distribution of the factoror
variable nodes of the code graph. For the case of QC LDPC
codes, these irregular distributions are most easily described
in terms of “protographs” [28]. Protographs are variants of
Tanner graphs where bits and checks of the same type are
represented by a single “proto-bit” or “proto-check.” In the
case of QC LDPC codes, proto-bits can, for example, represent
sets of bits belonging to the same circulant sub-matrices.

The protographs that arise in codes that have been optimized
for waterfall performance typically have some pairs of proto-
bits and proto-checks that are connected by multiple edges.A
straightforward way to handle this would be to use QC LDPC
codes where the circulant matrices had rows and columns of
weight greater than one. However, as we shall see, this direct
approach inevitably introduces short cycles into the graph.

The tricky problem of creating QC LDPC codes with
good girth and that correspond to protographs optimized for
waterfall performance is solved in this paper by a some-
what complicated procedure. First, we need to introduce a
new family of generalized QC LDPC codes, which we call
“hierarchical” QC LDPC (HQC LDPC) codes. The parity
check matrices of these hierarchical codes consist of circulant
sub-matrices, which in turn consist of of circulant sub-sub-
matrices, and so on for multiple “levels.” We show that we can
directly transform any protograph with multiple edges between
proto-checks and proto-bits into atwo-levelHQC LDPC code
with circulant matrices with higher weight at second level.

It turns out that many different hierarchical QC LDPC codes
correspond to a particular protograph, and thus many degrees
of freedom exist following the “direct” transformation. We
use our hill-climbing algorithm to choose from this family to
get rid of as many short cycles as possible. However, HQC
LDPC codes with weights greater than one at higher levels
will also automatically have some short cycles, just as non-
hierarchical QC LDPCs do. Our hill-climbing algorithm can do
nothing about these “inevitable” cycles but it can, hopefully,
eliminate all short non-inevitable cycles. To get ride of the

inevitable cycles we introduce a “squashing” procedure. The
squashing step destroys the hierarchical structure of the code,
but the squashed code nevertheless remains a QC LDPC code
that corresponds to the desired protograph. The squashing
procedure is computationally trivial. This makes the two-step
procedure – first HQC LDPC then squash into a QC LDPC
code – much more computationally efficient than directly
applying our hill-climbing procedure to maximize the girthof
higher-weight QC LDPC codes with the desired protograph
structure. Thus hierarchical QC LDPC codes are a necessary
intermediate stage in the design of practical QC LDPC codes
that will simultaneously have good waterfall and error floor
performance.

The rest of the paper will explain in much more detail the
ideas outlined above. We begin in Section II by reviewing the
standard construction of QC LDPC codes in terms of their
parity check matrices. Then in Section III, we review the
standard Tanner graph representation of LDPC codes and the
“protograph” representation of structured codes. In Section IV
we show how short cycles can be identified from the parity
check matrix of a QC LDPC code. We discuss why the most
direct transformation of the protographs of interesting LDPC
codes, such as spatially coupled codes, into QC LDPC codes
will lead to inevitable short cycles in the Tanner graph of
the resulting codes. This leads us to the heart of our paper,
where we introduce hierarchical QC LDPC codes that can
be used to solve the problem of inevitable short cycles. In
Section V we introduce the most general form of HQC LDPC
codes and show that they can be described both in terms
of a multi-variate polynomial parity check matrix in multiple
variables and in terms of a tree structure. In Section VI, we
explain how to find cycles in the Tanner graphs of HQC
LDPC codes. In Section VII we describe our hill-climbing
algorithm for finding high girth QC LDPC codes and HQC
LDPC codes. In Section VIII, we discuss restricted two-level
HQC LDPC codes, the direct transformation of protographs
into such codes, and the “squashing” procedure that efficiently
eliminates inevitable cycles. Finally, in Section IX, we exhibit
high-girth QC LDPC codes that simultaneously have good
waterfall behavior (because they are spatially-coupled codes)
and have good error-floor behavior resulting from their high
girth (which in turn is a result of the fact that they are squashed
versions of HQC LDPC codes). Many details and lemmas are
deferred to the appendices.

II. QUASI-CYCLIC LDPC CODES

We begin by reviewing the construction of standard quasi-
cyclic low-density parity-check (QC LDPC) codes as previ-
ously described in the literature [2]. In section V we will
generalize these codes and introduce a novelhierarchical
family of QC LDPC codes.

Before considering the general case of standard QC LDPC
codes, it is helpful to start with an important special case,
that we will call “weight-I (J, L) regular” QC LDPC codes.
The parity check matrix of these codes consists ofJ · L sub-
matrices, each of which is ap×p circulant permutation matrix.

Let I i,p denote the circulant permutation matrix, or “cyclic
shift matrix,” obtained by cyclically right-shifting ap × p
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identity matrix byi positions, where0 ≤ i ≤ p−1; I0,p is thus
the p × p identity matrix. We often suppress the dependence
on p, writing I i instead ofI i,p. As an example, ifp = 4, then

I1 =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









.

We can write the parity check matrix of a weight-I(J, L)
regular QC LDPC code usingJ rows andL columns ofp×p
cyclic shift sub-matrices:

H =











I i1,1 I i1,2 · · · I i1,L
I i2,1 I i2,2 · · · I i2,L
...

. . .
...

I iJ,1 I iJ,2 · · · I iJ,L











. (1)

The blocklength of such a code isN = pL.
Using Ik = (I 1)k, we can re-write (1) as

H =











(I1)i1,1 (I 1)i1,2 · · · (I 1)i1,L

(I1)i2,1 (I 1)i2,2 · · · (I 1)i2,L
...

. . .
...

(I1)iJ,1 (I 1)iJ,2 · · · (I 1)iJ,L











. (2)

We can now abstractly representH as a matrix whose entries
are powers of a dummy variablex:

H(x) =











xi1,1 xi1,2 · · · xi1,L

xi2,1 xi2,2 · · · xi2,L

...
. . .

...
xiJ,1 xiJ,2 · · · xiJ,L











. (3)

The point of all these trivial re-writings will now become
clear: we can generalize such a matrixH(x) to a parity check
matrix whose entries arepolynomials in x, giving us the
polynomialparity check matrix of a standard QC LDPC code:

H(x) =











h1,1(x) h1,2(x) · · · h1,L(x)
h2,1(x) h2,2(x) · · · h2,L(x)

...
. . .

...
hJ,1(x) hJ,2(x) · · · hJ,L(x)











, (4)

where

hj,l(x) =

p−1
∑

s=0

cs[j, l]x
s (5)

for 1 ≤ j ≤ J , 1 ≤ l ≤ L.
For binary QC LDPC codes, which will be our focus for

the rest of this paper, the polynomial coefficientscs[j, l] must
all be 0 or 1.

Example 1:Let C be a length-9 QC LDPC code described
by

H=

















1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 1 1 0

















. (6)

For this codeJ = 2, L = 3, andp = 3, andH can equivalently
be written as

H =

[

I 0 I0 I0
0 I0 I 1 + I 2

]

. (7)

The polynomial version of the parity check matrix is

H(x) =

[

x0 x0 x0

0 x0 x1 + x2

]

=

[

1 1 1
0 1 x1 + x2

]

. (8)

In [29], Smarandache and Vontobel classified QC LDPC
codes according to the maximum weight among the circulant
sub-matrices in their parity check matrix, or equivalently,
according to the maximum weight of the polynomials in their
polynomial parity check matrix. (The weight of a polynomial
as simply the number of non-zero terms in that polynomial.)
They defined a “type-M ” QC LDPC code as one for which
the maximum weight among all polynomial entrieshj,l(x) in
H(x) is M . We will change their terminology slightly and call
such a code aweight-M QC-LDPC code

Sincewt(h2,3(x)) = 2 in the code of Example 1—that is,
h2,3(x) = x1+x2 is a binomial—and becausewt(h2,3(x)) ≥
wt(hj,l(x)) for all 1 ≤ j ≤ J , 1 ≤ l ≤ L, the code in
Example 1 is a weight-II QC LDPC code.

For any QC LDPC code, we define the vector of weight
sums

∑J
j=1 wt(hj,l(x)) for 1 ≤ l ≤ L, to be the “column

weight sum,”wtcol(H(x)), of H(x). We define the row weight
sumwtrow of H(x) similarly. Thus, the code of Example 1
has column and row weight sums

wtcol(H(x)) = [1 2 3]; wtrow(H(x)) = [3 3].

It should now be clear why we previously referred to codes
of the form of equation (1) or (3) as “weight-I” codes, as all the
entries in the polynomial parity check matrix are monomials.
The class of weight-I codes is more general than that shown
in equation (1) though: some of the cyclic shift sub-matrices
could be replaced with all-zeros matrices.

As we often work with weight-I QC LDPC codes, and these
codes are particularly important in practice, we introducesome
additional useful notation for them. We define thebase matrix
of a weight-I QC LDPC code to be theJ×L matrix of powers
(circulant shifts) that defines the code, i.e.,logx(H(x)) where
logarithms are taken entry-by-entry, and where we define
logx(0) to be−1, used to indicate an all-zero sub-matrix. For
example, the base matrix corresponding to the parity check
matrix (3) is simply

B =











i1,1 i1,2 · · · i1,L
i2,1 i2,2 · · · i2,L

...
. . .

...
iJ,1 iJ,2 · · · iJ,L











. (9)

III. G RAPHICAL REPRESENTATIONS OFQC LDPC CODES

As is very well known, an LDPC code can either be
represented by its parity check matrixH, or equivalently by
its Tanner graph [24]. A Tanner graph for an LDPC code is
a bi-partite graph consisting of “variable” nodes representing
the codeword bits, and “check” nodes representing the parity
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A B

1 2 3

Fig. 1. A simple protograph with three types of variables andtwo types of
checks.

A B

1 2 3

A B

1 2 3

(a)

(b)

Fig. 2. Two Tanner graphs corresponding to the protograph shown in Fig. 1.
The Tanner graph in (a) does not have a quasi-cyclic structure; the one in (b)
does, and in fact has the parity check matrix of the QC LDPC code given in
Example 1.

checks, where a variable node is connected to a check node
by an edge if and only if the corresponding entry inH is
nonzero. The degree of a node is defined as the number of
edges incident to that node.

A “protograph,” as introduced by Thorpe in [28], is a
template that can be used to derive a class of Tanner graphs.
Each node in a protograph represents a “type” of node in a
Tanner graph. The nodes will all be duplicatedp times in the
Tanner graph derived from the protograph.

As an example, consider Fig. 1, which shows a simple
example of a protograph that has three types of variable nodes
and two types of check nodes. This protograph tells us that
each check of type A should be connected to one variable of
each of the three types, and each check of type B should be
connected to one variable of type 2 and two variables of type
3. Similarly, each variable of type 1 should be connected to
one check of type A, and so on.

Fig. 2 shows two Tanner graphs derived from the protograph
of Fig. 1, withp = 3. Note that there are many possible Tanner
graphs that one can construct that correspond to a particular
protograph, and they need not necessarily have a quasi-cyclic

structure. The Tanner graph shown in Fig. 2 (a) is not quasi-
cyclic. But it is always easy to construct a quasi-cyclic version
of any protograph.

In fact, protographs can equivalently be described by a
“connectivity matrices.” A connectivity matrix has a number of
rows equal to the number of types of checks in the protograph
and a number of columns equal to the number of types of
variables. Each entry in the connectivity matrix tells you how
many edges there are connecting a type of check node to
a type of variable node in the protograph. For example, the
connectivity matrixC for the protograph in Fig. 1 would be

C =

[

1 1 1
0 1 2

]

. (10)

To derive a quasi-cyclic parity-check matrixH(x) from the
template specified by a particular protograph, one can simply
replace each entry in the equivalent connectivity matrix with
a polynomial of weight equal to the entry. We will call this
procedure a “direct transformation” of a protograph into a QC
LDPC code.

For example, the protograph in Fig. 1 which has the con-
nectivity matrixC given in (10), can be directly transformed
into a QC LDPC code with parity check matrix

H(x) =

[

xa xb xc

0 xd xe + xf

]

, (11)

wherea, b, c, d, e andf are integer exponents between0 and
p− 1, with e 6= f .

There are many possible direct transformations of a proto-
graph into a QC LDPC code, depending on what exponents
one chooses for the polynomials; one particular direct trans-
formation would convert this protograph into the QC LDPC
code with parity check matrix

H(x) =

[

x0 x0 x0

0 x0 x1 + x2

]

. (12)

which would correspond to the Tanner graph shown in
Fig. 2 (b) and the code given in Example 1.

IV. CYCLES IN QC LDPCCODES

In this section we discuss how to identify cycles in QC
LDPC codes from their parity check matrices. Each check
node in the Tanner graph of a code corresponds to a row in
its parity check matrix, and each variable node corresponds
to a column. A cycle is a path through nodes in the Tanner
graph, alternating between check and variable nodes, that
starts and ends at the same node. In terms of the code’s
parity check matrix, a cycle can be visualized as a sequence
of alternating vertical horizontal moves through the matrix
starting and ending on the same row of the matrix. A vertical
move (along a column) corresponds to choosing a second edge
connected to the same variable node that will form the next
step in the cycle. A horizontal move (along a row) corresponds
to choosing two edges connected to the same check node that
form part of the path.

For QC LDPC codes there are efficient ways to describe
sets of cycles in terms of the code’s polynomial parity
check matrix. In Section IV-A we introduce the basic ideas
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behind identifying cycles in weight-I QC LDPC codes. In
Section IV-B, we show how to identify cycles in QC LDPC
codes of arbitrary weight. Then, in Section IV-C, we show
that higher-weight QC LDPC codes with certain characteristics
inevitably have short cycles, and point out that this poses an
obstacle to constructing QC LDPC codes with good girth
and good waterfall performance—an obstacle that we will
overcome by introducing hierarchical QC LDPC codes.

A. Finding cycles in weight-I QC LDPC codes

To make the logic of the section introduction more concrete,
consider Fig. 3 which depicts the parity check matrix of a
weight-I QC LDPC code with parametersJ = 4, L = 9, and
p = 3. We focus in on the four3 × 3 cyclic shift matrices
(represented by the black squares)Ia, I b, I c, and Id. Two
choices for the parameters of these four matrices are shown
in the sub-figures:a = 0, b = 1, c = 2, andd = 1 on the left,
anda = 0, b = c = d = 1 on the right.

H  =

0   1   0
0   0   1

0   1   0
0   0   1
1   0   0

0   1   0
0   0   1
1   0   0

0   0   1
1   0   0
0   1   0

1   0   0 1   0   0
0   1   0
0   0   1

0   1   0
0   0   1
1   0   0

0   1   0
0   0   1
1   0   0

0   1   0
0   0   1
1   0   0

da

Ib Ic

II

Fig. 3. A parity-check matrix and four3× 3 circulant permutation matrices
(Ia, Ib, Ic and Id) selected from it. One set of parameters (lower left,a = 0,
b = 1, c = 2, d = 1 ) results in a cycle of length four. An alternate set
(lower right, a = 0, b = c = d = 1) results in a cycle of length twelve.

Consider any path through the base matrix of the code. Due
to the way we generate the code’s parity check matrix by
replacement of each base matrix entry by ap × p circulant
matrix, a path through the base matrix corresponds top paths
through the Tanner graph of the code. For any of these paths
through the Tanner graph to be a cycle, the path must end
at the same variable node from which it started. For this to
happen in a weight-I QC LDPC code, it is necessary for the
path through the base matrix to form a cycle, without passing
through any all-zeros matrices. But this is not sufficient, since
each cyclic shift matrix corresponds top parity andp variable
nodes. The path could end up at a different variable node in
the same cyclic shift matrix and not complete a cycle.

The necessary and sufficient condition for cycles to exist
is that when the path through the base matrix returns to the
starting entry, it returns to the same column of the cyclic shift
matrix from which it started. In the example of Fig. 3, consider
the path through the base matrix starting at the entry labeled a,
then progressing through the entries labeledb, c, andd in turn,

and terminating at the entry labeleda. The corresponding path
through the parity check matrix, with parameter settingsa = 0,
b = 1, c = 2, d = 1, is depicted in the left-hand example of
Fig. 3 and results in a cycle of length four. However, with the
slightly different choice of circulant shifts of the right-hand
example, a return to the same column of the cyclic shift matrix
occurs only after two more passes around the base matrix and
an overall cycle of length12.

We now specify the conditions on the{a, b, c, d} that
result in a cycle (in fact in a set ofp cycles). Calculate an
alternating sum of the shift indices associated with neighboring
permutation matrices along a given path, where every odd shift
index is subtracted rather than added. For example, consider
the left-hand path of Fig. 3. The sum is−a + b − c + d.
Each difference between neighboring shift indices in the sum
corresponds to the shift in what column (i.e., what variable
node) of the cyclic permutation matrices the path passes
through. Only if the differences sum to zero (mod-p) at the end
of the path will the path return to the same variable node in
the starting permutation matrix, thereby forming a cycle. For
the example of Fig. 3, the condition for a length-four cycle to
exist is:

(−a+ b− c+ d) mod p = 0, (13)

which is satisfied fora = 0, b = 1, c = 2, d = 1, but is not
satisfied bya = 0, b = c = d = 1.

B. Finding cycles in higher-weight QC LDPC codes

We now take a step up in complexity from weight-I QC
LDPC codes, and consider the more involved example of the
weight-II code of Example 1 from Section II. Recall that this
code is defined by the2× 3 polynomial parity-check matrix

H(x) =

[

x0 x0 x0

0 x0 x1 + x2

]

. (14)

In terms of the coefficientscs[j, l] defined byhj,l(x) =
∑p−1

s=0 cs[j, l]x
s (see (5)), we have that all the coefficients

cs[j, l] are equal to zero except forcs[j, l] = 1 when s = 0
and (j, l) equals(1, 1), (1, 2), (1, 3) or (2, 2), and fors = 1
or s = 2, when(j, l) = (2, 3).

Now, consider the following ordered series:

O = {(1, 2), (2, 2), (2, 3), (2, 3), (2, 3), (1, 3)} (15)

where each pair(j, l) in O satisfies1 ≤ j ≤ J = 2 and
1 ≤ l ≤ L = 3. This ordered series specifies a sequence of
rectilinear moves throughH(x). These moves are analogous
to those in Fig. 3 with the important distinction that if the
polynomial in position(j, l) has more than one term (that is,
cs[j, l] is non-zero for more than one value ofs), then the next
pair in the sequencecan be the same. For example, in (15)
the third, fourth, and fifth pairs are identical.

To specify a candidate cycle through the Tanner graph, we
associate a coefficient indexs with each pair(j, l) in O, such
that cs[j, l] 6= 0. We denote this series of coefficient indices
by S. To ensure that each step in the series corresponds to
traversing a distinct edge in the Tanner graph we require the
following of neighboring pairs(j−, l−) and(j+, l+) in O and
the corresponding neighboring coefficient indicess− and s+
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in S: if (j−, l−) = (j+, l+), then the corresponding indices
s− 6= s+.

The candidate cycle will actually be a cycle if the alternating
sum of coefficient indices inS modulop equals zero.

In our example, consider the two following choices for the
respective (ordered) sets of coefficient indices:

Sa = {0, 0, 2, 1, 2, 0} (16)

Sb = {0, 0, 1, 2, 1, 0}. (17)

Each of these choices corresponds to a cycle of length-6
through the Tanner graph of the code, illustrated in Fig. 4.
The alternating sums modulo-3 can be verified to be equal to
zero. Respectively these sums are:

(−0 + 0− 2 + 1− 2 + 0) mod3 = (−3) mod3 = 0

(−0 + 0− 1 + 2− 1 + 0) mod3 = (0) mod3 = 0.

0   1   0
0   0   1

1   0   0
0   1   0
0   0   1

1   0   0
0   1   0
0   0   1

0   1   1
1   0   1
1   1   0

1   0   0
0   1   0
0   0   1

1   0   0
0   1   0
0   0   1

1   0   0
0   1   0
0   0   1

0   1   1
1   0   1
1   1   0

1   0   0

Fig. 4. The two length-6 cycles through the Tanner graph of the weight-II
QC LDPC code of Example 1.

C. Inevitable cycles in higher-weight QC LDPC codes

Unfortunately, the logic described in the previous section
implies that higher-weight QC LDPC codes will inevitably
contain short cycles. Let us begin with a straightforward
and important theorem, already proven by Smarandache and
Vontobel [29], that states that any weight-III QC LDPC code
will inevitably contain cycles of length six. To prove this,we
note that we can choose a cycle with an ordered series

O = {(j, l), (j, l), (j, l), (j, l), (j, l), (j, l)} (18)

of six identical entries such that each pair(j, l) gives the row
j and columnl of the same weight-III polynomial in the parity
check matrixH(x). Suppose, without loss of generality, that
the weight-III polynomial has the formxa+xb+xc. Then we
can choose for the cycle an ordered set of coefficient indices
S = {a, b, c, a, b, c} and we will find that

(−a+ b− c+ a− b+ c) mod p = 0, (19)

automatically for anyp.
Smarandache and Vontobel also proved (see their Theorem

17) that if the parity check matrixH(x) of a weight-II QC
LDPC code contains two weight-two polynomials in the same
row or the same column, that code will inevitably have eight-
cycles. Again, this is easy to verify using our approach.
Suppose for example that the two weight-2 polynomials are
in the same rowj and two different columnsl1 and l2, and
that the polynomial at(j, l1) is xa+xb, while the polynomial

at (j, l2) is xc + xd. We can find an eight-cycle that has the
ordered series

O = {(j, l1), (j, l1), (j, l2), (j, l2), (j, l1), (j, l1), (j, l2), (j, l2)}
(20)

and the ordered set of indices

S = {a, b, c, d, b, a, d, c} (21)

so that we find

(−a+ b− c+ d− b+ a− d+ c) mod p = 0, (22)

regardless of the value ofp.
These inevitable six-cycles and eight-cycles at first sight

appear to put serious limitations on what protographs can be
converted into quasi-cyclic codes with high girth. We notedin
Section III that a protograph could be equivalently described
using a connectivity matrix, and that a parity check matrix of
a quasi-cyclic code could be derived from the connectivity
matrix by the “direct transformation” which replaces the
entries of the connectivity matrix by polynomials with weight
equal to the entry. We now see that if, for example, the
protograph has a type of variable that is connected to a type of
check by three edges, a direct transformation will inevitably
lead to six-cycles in the obtained QC LDPC code.

(a)

(b)

Fig. 5. Protographs for “one-sided” spatially-coupled codes as described in
[21]. The QC LDPC code constructed by a direct transformation from the
protograph in (a) will inevitably have eight-cycles because the check type at
the right end is connected by two edges to the bit types above and below it. The
QC LDPC code constructed by a direct transformation from theprotograph
in (b) will inevitably have six-cycles because there exist bits types at the right
end that are connected by three edges to a check type.

Furthermore, protographs with higher edge weights are
not particularly exotic. Consider for example the protographs
shown in Fig. 5, which are the protographs for “one-sided”
spatially coupled codes as described by Kudekar et al. [21].
Notice that if we used a direct transformation to convert
these protographs into QC LDPC codes, the QC LDPC codes
corresponding to the protographs in Fig. 5 (a) would inevitably
have eight-cycles, while those in Fig. 5 (b) would inevitably
have six-cycles.
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It turns out that there do exist techniques to construct QC
LDPC codes corresponding to these protographs that have
girth of 10 or greater, but to understand these techniques, we
need to make an apparent detour, and introducehierarchical
QC LDPC codes.

V. H IERARCHICAL QC LDPCCODES

We now introducehierarchical QC LDPC codes (HQC
LDPC codes), motivated by the fact that these codes will
ultimately enable us to solve the problem of constructing QC
LDPC codes corresponding to protographs with multiple edges
between check and variable types, without creating inevitable
short cycles in the Tanner graph of the code. However, because
these codes may eventually have other applications, we present
their construction in a form that is actually more general than
we will need for the purpose of eliminating inevitable short
cycles.

A hierarchical QC LDPC code is formed from “levels”
that each have a quasi-cyclic structure. The structure can
be specified in two equivalent, complementary forms: one in
terms of the polynomial parity check matrices of these codes,
and another in terms of the “tree structure” of these codes.

A. Parity check matrices of hierarchical QC LDPC codes

Before fully defining HQC LDPC codes formally, it is easier
to have a concrete example in mind.

Example 2:Consider the polynomial parity check matrix
specified in equation (23) withp = 8. Because the highest
weight of any of the polynomial entries is2, (e.g.,h1,3(x) =
x1+x7), and because there are12 columns in the matrix, this
is a length-96 weight-II QC LDPC code.

But note that this parity check matrix has additional struc-
ture which makes it ahierarchicalQC LDPC code. In partic-
ular, in this example, each3 × 3 sub-matrix of polynomials
in (23) has a circulant structure, as do both the left-hand and
right-hand sets of2× 2 sub-matrices of3× 3 sub-matrices.

Just as we use polynomials in the dummy variablex to
represent the underlying circulant sub-matrices in a standard
QC LDPC code, we can use a bi-variate polynomial in the
two dummy variablesx andy to represent both the circulant
matrices represented by the variablex in (23) as well as
the circulant arrangements within each3 × 3 sub-matrix of
polynomials inx. The latter circulant structure we represent
using the dummy variabley. We can further represent the
2× 2 circulant structure of3× 3 circulant sub-matrices using
the additional dummy variablez.

Thus, in equation (24) we contract the6 × 12 polynomial
parity check matrixH(x) of equation (23) into the2 × 4 bi-
variate polynomial parity check matrixH(x, y). As we use this
example to illustrate many aspects of the ensuing discussion,
please make sure you think about and understand why, e.g.,
the upper right3×3 sub-matrix inH(x) is represented by the
bi-variate polynomialx2 + x5y + y2 in H(x, y).

We can repeat the process to contractH(x, y) into the1×2
tri-variate polynomial parity check matrixH(x, y, z) given in
equation (25).

Each of the three contractions of the parity check matrix of
this code into the polynomial parity check matrices represented
by (23), (24), and (25), corresponds to a “level” in the
hierarchy of this 3-level HQC LDPC code.

In this example, we started with a polynomial parity check
matrix H(x), and contracted it first toH(x, y) and then to
H(x, y, z). When constructing an HQC LDPC code, it is often
more natural to go in the other direction—expanding a matrix
like H(x, y, z) into H(x) and then ultimately into the full
parity check matrix whose entries are ones and zeroes. To
expand a polynomial matrix, we obviously need to know the
size of the circulant matrices at every level.

We now present a formal definition of the family ofK-level
hierarchical QC LDPC codes which generalizes our example.

Definition 1: A hierarchical QC LDPC code withK levels
is defined by aJ[K] × L[K] multi-variate polynomial parity
check matrixH(·) in K variables. The entry in thejth row and
lth column ofH(·), 1 ≤ j ≤ J[K], 1 ≤ l ≤ L[K] is aK-variate
polynomialhj,l(·, . . . , ·) over theK variables,x[1], . . . , x[K].
The maximum exponent of any of these polynomials inx[k],
1 ≤ k ≤ K, is p[k] − 1. The coefficient associated with the
term xs1

[1] · x
s2
[2] · · ·x

sK
[K] where0 ≤ sk ≤ p[k] − 1 for all k is

cs1,...,sK [j, l]. With these definitions we defined the code by
the J[K] · L[K] polynomials

hj,l(x[1], . . . ,x[K]) =
p[K]−1
∑

sK=0

. . .

p[1]−1
∑

s1=0

cs1,...,sK [j, l]

(

K
∏

k=1

xsk
[k]

)

. (26)

The parity check matrix of such a code is obtained by replacing
each of theJ[K] · L[K] entries ofH(x[1], . . . , x[K]) with the
sub-matrix

p[K]−1
∑

sK=0

. . .

p[1]−1
∑

s1=0

cs1,...sK [j, l]
(

IsK1,p[K]
⊗ . . . ⊗ I s11,p[1]

)

, (27)

where ⊗ denotes a Kronecker product. Defining the recursive
relationsJ[k−1] = J[k] · p[k] andL[k−1] = L[k] · p[k], where
0 ≤ k ≤ K, the parity check matrix thus constructed has
J[0] = J[K] ·

∏K
k=1 p[k] rows andL[0] = L[K] ·

∏K
k=1 p[k]

columns.

While the definition of HQC LDPC codes holds more
generally for codes defined in fields other than GF(2), in this
paper we exclusively considerbinaryQC LDPC codes wherein
all cs1,...,sK [j, l] are binary. We return to our previous example
to illustrate our definitions.

Example 2 (continued):The code of this example is a three-
level HQC LDPC code. To cast this example into the language
of Definition 1 we first identifyx with x[1], y with x[2], and
z with x[3].

In this examplep[1] = 8, p[2] = 3, p[3] = 2. Therefore,
J[3] = 1, L[3] = 2; J[2] = 2, L[2] = 4; J[1] = 6, L[1] = 12;
andJ[0] = 48, L[0] = 96.
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H(x) =

















x2 0 x1 + x7

x1 + x7 x2 0
0 x1 + x7 x2

0 x7 1 + x6

1 + x6 0 x7

x7 1 + x6 0

0 0 0
0 0 0
0 0 0

x2 x5 1
1 x2 x5

x5 1 x2

0 x7 1 + x6

1 + x6 0 x7

x7 1 + x6 0

x2 0 x1 + x7

x1 + x7 x2 0
0 x1 + x7 x2

x2 x5 1
1 x2 x5

x5 1 x2

0 0 0
0 0 0
0 0 0

















(23)

H(x, y) =

[

x2 + (x+ x7)y2 x7y + (1 + x6)y2 0 x2 + x5y + y2

x7y + (1 + x6)y2 x2 + (x+ x7)y2 x2 + x5y + y2 0

]

(24)

H(x, y, z) =
[

x2 + (x+ x7)y2 + (x7y + (1 + x6)y2)z
∣

∣

∣
(x2 + x5y + y2)z

]

(25)

We can rewrite, e.g., the termh1,1(x, y, z) of (25) as

h1,1(x[1], x[2], x[3])

= x2
[1] +

(

x[1] + x7
[1]

)

x2
[2] +

(

x7
[1]x[2] +

(

1 + x6
[1]

)

x2
[2]

)

x[3]

=
1
∑

s3=0

2
∑

s2=0

7
∑

s1=0

cs1,s2,s3 [1, 1]x
s1
[1]x

s2
[2]x

s3
[3],

where all coefficientscs1,s2,s3 [1, 1] are zero except for
c2,0,0[1, 1] = c1,2,0[1, 1] = c7,2,0[1, 1] = c7,1,1[1, 1] =
c0,2,1[1, 1] = c6,2,1[1, 1] = 1.

Rather than expandingH(x[1], . . . , x[K]) into a full parity
check matrix as in (27), one often wants to generate the form
given in equation (4) of the polynomial parity check matrix
H(x[1]) of a QC LDPC codein one variable. To do this we use
the construction of (27) for all but the first level. We replace
eachhj,l(x[1], . . . , x[K]) with the polynomial matrix inx[1]

p[K]−1
∑

sK=0

. . .

p[1]−1
∑

s1=0

cs1,...,sK [j, l]
(

IsK1,p[K]
⊗ · · · ⊗ Is21,p[2]

)

xs1
[1]. (28)

The matrixH(x[1]) is of sizeJ[1]×L[1]. We return once more
to our example to illustrate this idea.

Example 2 (continued):Consider the final term of
h1,1(x[1], x[2], x[3]), namely(1+x6

[1])x
2
[2]x[3], corresponding to

the non-zero coefficientsc0,2,1[1, 1] andc6,2,1[1, 1]. According
to equation (28), The contribution of this term toH(x[1]) is

c0,2,1[1, 1]
(

I 1,2 ⊗ I 21,3
)

x0
[1] + c6,2,1[1, 1]

(

I1,2 ⊗ I21,3
)

x6
[1],

wherex0
[1] = 1, c1,2,1[1, 1] = c6,2,1[1, 1] = 1 and

I 1,2 ⊗ I21,3 =

















0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

















. (29)

Referring back to the left-hand six-by-six sub-matrix of
H(x, y, z) in (23) we can confirm the correctness of this
pattern, as a1 + x6 term appears in each of the non-zero
entries in the matrix of equation (29).

Having worked this example, we can now see how the
form of equation (28) nicely reveals the structure of HQC

LDPC codes. Each row and each column of the matrix
IsK1,p[K]

⊗ · · · ⊗ I s21,p[2]
has exactly one non-zero element. If the

coefficientcs1,s2,...,sK [j, l] is non-zero, the permutation matrix
Is11,p[1]

(equivalent to the termxi1
[1]) is added at the location of

each of these non-zero elements.

Finally, we note that the polynomial parity check ma-
trix of a K-level HQC LDPC code can more generally be
expanded into a parity check polynomialH(x[1], . . . , x[K̃])

in K̃ variables whereK̃ < K. We call this the “level-
K̃” polynomial parity check matrix of the code. We derive
this matrix by expanding out all but the last̃K levels.
Replace eachhj,l(x[1], . . . , x[K]) with the polynomial matrix
in x[1], . . . , x[K̃]

p[K]−1
∑

sK=0

. . .

p[1]−1
∑

s1=0

cs1,...,sK [j, l]
(

IsK1,p[K]
⊗ · · · ⊗ I

sK̃+1

1,p[K̃+1]

)

K̃
∏

k=1

xsk
[k].

The matrixH(x[1], . . . , x[K̃]) has dimensionJ[K̃] × L[K̃].

B. Tree structure of HQC LDPC codes

We now show that we can alternately describe an HQC
LDPC code by specifying the code’stree structure. The tree
structure of any HQC LDPC code is defined by a matrix of
labeled trees, defined in Definition 2. These labeled trees quite
naturally reveal the hierarchical structure of the code. Wewill
show that there is a complete equivalence between Definition1
of the last section and the definitions of this section. We can
start with Definition 1 and easily find the unique set of labeled
trees that specify the code or, starting from a tree structure,
find the unique HQC LDPC code that has that structure.

The reasons to consider this alternate description are two-
fold. First, the representations of this section help reveal
the hierarchical structure within the algebraic description of
Definition 1. Second, we will useunlabeledtrees to define a
family of HQC LDPC codes, and then will want to search for
a labeling within that family to optimize girth.

The basic observation that motivates the following defini-
tions is that the non-zero terms of the polynomials that define
any HQC LDPC code have ahierarchical clusteringthat can
be represented by a labeled tree. We formally define such a
labeled treeas follows.
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1 2

72

0 1 1

1 5 02607

0 2 1 02

Fig. 6. Example of the tree structure of a family of three-level hierarchical
QC LDPC codes. The left-hand tree isT1,1, the right-hand tree isT1,2.

Definition 2: A labeled treeT, corresponding to an entry in
the J[K] × L[K] multi-variate polynomial parity check matrix
H(·) in K variables defining aK-level HQC LDPC code, is
a depth-K tree. The root node of the tree is the single node
at the top (Kth) level. Each node at levelk, 1 ≤ k ≤ K, has
a number of edges connecting it to nodes in the next level
down. The number of edges must be an integer in the set
{1, . . . , p[k] − 1}.

Each edge below a node at levelk is labeled by an integer
in the set{0, 1, . . . , p[k] − 1}. Edges are termed “siblings” if
they share the same parent (i.e., are connected to the same
node at the higher level). The edge labels of sibling nodes
are constrained to be distinct. We refer to the edges below
the lowest nodes as “leaves.” We will have need to index the
edges at each level of the tree, so use|T[k]| to denote the
number of edges inT at level k, i.e., the set of edges that
have a parent node at levelk.

The code discussed in Example 2 is characterized by the
matrix of two labeled trees shown in Figure 6. The left-hand
tree characterizes the polynomialh1,1(x, y, z) and the right-
hand tree characterizesh1,2(x, y, z), both specified in (25).
Before understanding how these labeled trees relate to the
structure of the code we note that for this codep[1] = 8,
p[2] = 3 andp[3] = 2, and node and edge labels are within the
ranges specified by Definition 2.

The next definition relates these trees to the structure of the
code.

Definition 3: The tree structureof a K-level HQC LDPC
code is specified by a matrix of labeled treesT = {Tj,l},
1 ≤ j ≤ J[K], 1 ≤ l ≤ L[K]. To each leaf ofTj,l we
associate a single non-zero coefficientcs1,...,sK [j, l] in a one-
to-one manner. If the edge labels on the unique path from
the leaf to the root node aree1, . . . , eK then the non-zero
coefficient associated with the leaf isce1,...,eK [j, l] = 1.

In certain cases (corresponding to all-zero polynomials) we
want to define a “null” tree. This is a non-existent tree (and
therefore no edges exist so all coefficients are zero). We use
the special symbol∗ to denote the null tree. E.g.,T2,1 = ∗
for the code specified in (8).

The number of edges below levelK of tree Tj,l indi-
cates the number ofdistinct powers ofx[K] that appear in
hj,l(x[1], . . . , x[K]). Each node at levelK − 1 corresponds to
one of these terms. The number of edges below each of the

nodes at levelK − 1 indicates the number of distinct powers
of x[K−1] associated with that term, and so on down the tree.
The number of leaves in the tree equals the number of terms
in the polynomialhj,l(x[1], . . . , x[K]). The maximum number
of leaves below any of the lowest level nodes (across all(j, l)
pairs) tells us the weight of the code (weight-I, weight-II,etc.).
The edge labels indicate the exponents that define the non-zero
polynomials.

We can also define a more fine-grained “weight at level
k” of a hierarchical code by the maximum number of edges
below any of the nodes at levelk. A hierarchical code can have
different weights at different levels; for example, the code from
Example 2 with tree structure shown in Figure 6 is weight-II
at level 1 (the lowest level), weight-III at level 2, and weight-II
at level 3.

The following lemma shows that the two ways of concep-
tualizing HQC LDPC codes (Definition 1 or Definition 3) are
equivalent.

Lemma 1:There is a one-to-one mapping between any
HQC LDPC codes as defined in Definition 1 and a tree
structure, as defined in Definition 3.

Proof: We first show that any HQC LDPC code has
a tree structure that can be read off from the form of the
polynomials that make up its polynomial parity-check matrix.
To see this, start with Definition 1. TheJ[K]L[K] polynomials
each define one labeled tree. Using the distributive law, we
cluster the terms of each polynomial as much as possible (i.e.,
into the least-factored form of the polynomial). The resulting
(hierarchical) clustering of terms specifies a labeled tree.

Conversely, we now show that any set of labeled trees can
be uniquely mapped to an HQC LDPC code. Starting with the
set of labeled trees, we first solve for the non-zero coefficients
by concatenating edge labels on all paths from distinct leaves
to the root. Using the resulting set of non-zero coefficientsin
Definition 1 specifies the code.

Example 3:To understand the structure on the code im-
posed by the tree topology, consider again the two trees shown
in Fig. 6. By “tree topology,” we simply mean the unlabeled
versions of these trees. Each unlabeled tree has three levels and
there are two of them. From this we infer that these unlabeled
trees specify a family of three-level HQC LDPC codes where
J[3] = 1 andL[3] = 2. Since the maximum number of leaves
below a node at the first level is two, these trees specifies a
family of weight-II QC LDPC codes.

Now focus on the left-hand tree. To simplify notation, let
us again usex for x[1], y for x[2], and z for x[3]. Since the
number of leaves is six, we deduce thath1,1(x, y, z) has six
terms, i.e.,

h1,1(x, y, z) =

6
∑

i=1

xaiybizci,

where, usingp[1] = 8, p[2] = 3 and p[3] = 2, 0 ≤ ai ≤ 7,
0 ≤ bi ≤ 2, and 0 ≤ ci ≤ 1. Since the root node has two
edges, we deduce that these six terms are clustered into two
sets of polynomials defined byc1 = c2 = c3 andc4 = c5 = c6,
thus

(xa1yb1+xa2yb2+xa3yb3)zc1+(xa4yb4+xa5yb5+xa6yb6)zc4 .
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wherec1 6= c4. (Sincec1 andc4 are both binary, without loss
of generality we could setc1 = 0 and c4 = 1 at this point.)
Now from the second level in the tree we deduce that the terms
in zc1 group into two sets, one with two terms sob2 = b3.
The same happens with the terms inzc4 whereb5 = b6. This
tells us that the polynomials compatible with this tree have
the form

(xa1yb1 +(xa2 +xa3)yb2)zc1 +(xa4yb4 +(xa5 +xa6)yb5)zc4 ,
(30)

wherec1 6= c4, b1 6= b2, b4 6= b5, a2 6= a3 anda5 6= a6 (but,
e.g.,b1 = b4 is allowed).

One can now see that the topology of the unlabeled version
of the trees of Fig. 6 specifies a family of HQC LDPC codes, of
which the code considered in Example 2, and specified in (25),
is one member. As the last example illustrates, many degrees
of freedom remain within the specified family. In particular
these are the choice of theai, bi andci in (30), subject to the
constraintsc1 6= c4, b1 6= b2, . . . , a5 6= a6. In the algorithms
of Section VII, were we maximize the girth of our codes, we
search among these degrees of freedom, keeping the code’s
unlabeled tree structure fixed.

Finally, we note that in a non-hierarchical weight-I QC
LDPC code, the trees inT are quite simple. Each is either
the null tree or a tree that consists of a single root node with
a single leaf below it. No leaf has a sibling so no constraints
are placed on the choice of edge labels.

VI. CYCLES IN HIERARCHICAL QC LDPCCODES

We now state the necessary and sufficient conditions on the
polynomial parity check matrix of an HQC LDPC code for that
code to have a cycle of a particular length. These conditions
generalize those specified by Fossorier in [27] for weight-IQC
LDPC codes. They are also formalizations and generalizations
of the examples we gave for higher-weight QC LDPC codes in
Section IV-B; the main important new requirement compared
to those examples is that our cycles now need to be cycles at
all levels of the hierarchy simultaneously.

A. Finding cycles in HQC LDPC codes

We start by defining a path (or “candidate cycle”) through
a K-variate polynomial parity check matrix.

Definition 4: A length-2Λ path P through a K-variate
J[K] × L[K] polynomial parity check matrix matrixH(·) of
an HQC LDPC code is specified by two sets,O andS, i.e.,
P = {O,S}.

The first setO is an ordered series

O = {(j1, l1),(j2, l2),(j3, l3), · · · ,(j2Λ, l2Λ)} (31)

such that
(i) 1 ≤ jt ≤ J[K] and1 ≤ lt ≤ L[K] for all t, 1 ≤ t ≤ 2Λ,
(ii) j2Λ = j1 ,
(iii) jt = jt+1 for t ∈ Zeven (even integers),
(iv) lt = lt+1 for t ∈ Zodd (odd integers),
(v) |C[j, l]| > 0 for all (j, l) ∈ O, where the setC[j, l] is

defined to be the set of coefficients in the polynomial in
the jth row andlth column ofH(·) that are non-zero:

C[j, l] = {cs1,...,sK [j, l] : cs1,...,sK [j, l] 6= 0}. (32)

The second setS is a set of length-K vectors of coefficient
indices

S = {s[j1, l1], s[j2, l2], . . . , s[j2Λ, l2Λ]} (33)

where, as implied by the notation,(jt, lt) ∈ O for all t, 1 ≤
t ≤ 2Λ, and |S| = |O|. Furthermore,

(vi) the kth coordinate sk[j, l] of s[j, l] satisfies 0 ≤
sk[j, l] ≤ p[k] − 1 for all (j, l) ∈ O,

(vii) cs[j,l][j, l] ∈ C[j, l] for all (j, l) ∈ O, wherecs[j,l][j, l] is
a compact notation forcs1,...,sK [j, l].

(viii) if consecutive elements ofO are identical, i.e.,(jt, lt) =
(jt+1, lt+1) for somet, 1 ≤ t ≤ 2Λ, then s[jt, lt] 6=
s[jt+1, lt+1].

The above definition generalizes those definitions made and
used in Sections IV-A and IV-C for finding cycles in higher-
weight QC LDPC codes. In those sections the ordered set
O and coefficient indicesS were first introduced and their
characteristics were described. For examples ofO see (15),
(18), and (20), and for those ofS see (16), (17), and (21).
These examples illustrate the reasoning behind criteria (1)–(8)
in the definition above.

We now state the conditions for a length-2Λ path P =
{O,S} actually to correspond to length-2Λ cycles in the
Tanner graph. Consider the following alternating sums, one
for eachk, 1 ≤ k ≤ K:

Σ[k] =

2Λ
∑

t=1

(−1)tsk[jt, lt]. (34)

As reflected in the following theorem, these sums are the
generalization of the sum in (13) to HQC LDPC codes.

Theorem 1:A path length-2Λ pathP = {O,S} through the
K-variateJ[K] ×L[K] polynomial parity check matrix matrix
H(·) correspond to length-2Λ cycles in the Tanner graph if
and only if for everyk, 1 ≤ k ≤ K,

Σ[k] mod p[k] = 0. (35)

Proof: First consider the case whereK = 1, i.e., anon-
hierarchical QC LDPC code for which (35) corresponds to
Fossorier’s condition. Recall the logic of Section IV. In this
setting if condition (35) isnot satisfied, then the column of
the polynomial parity check matrix from which the path orig-
inates is distinct from the one on which the path terminates.
Since distinct columns of the polynomial parity check matrix
correspond to distinct sets of variable nodes in the Tanner
graph, this means that if (35) is not satisfied the path does not
correspond to a set of cycles.

In general, what condition (35) is helping us to understand is
whether, in the expanded parity check matrix at thenext lower
level, the path through the polynomial parity check matrix
corresponds to a set of path through the parity check matrix
that all correspond to cycles in the Tanner graph. In the case
of a non-hierarchical QC LDPC code there is only one level
of expansion, from the polynomial parity check matrix to the
parity check matrix. However, in an HQC LDPC code there
are multiple levels of expansion.



11

Now consider HQC LDPC codes whereK > 1. Given any
path consider whether condition (35) holds fork = K. If the
condition does not hold then, similar to Fossorier’s logic,the
path through the parity-check matrix at the next lower level,
i.e., through the level-(K−1) polynomial parity check matrix,
will not start and end in the same column. In the hierarchical
setting each column at levelK − 1 corresponds to a set of
variable nodes. However, due to the way we expand out the
parity-check matrix using Kronecker products in Definition1,
the sets of variable nodes corresponding to distinct columns
of the level-k polynomial parity check matrix for any givenk
are non-intersecting. A path that originates and terminates in
distinct subsets of the variable nodes cannot correspond toa
set of cycles. Thus, if (35) does not hold fork = K, the path
cannot correspond to a set of cycles.

On the other hand, if (35) is satisfied fork = K then cycles
may exist, depending on what happens at the lower levels.
Using the same argument we recurse down the levels from
k = K to k = 1. If there is anyk for which (35) is not
satisfied then the path originates from and terminate at distinct
variable nodes and therefore does not correspond to a set of
cycles. However, if (35) is satisfied for allk, 1 ≤ k ≤ K, then
the path originates and terminates on the same variable node
and cycles exists.

We immediately have the following theorem.
Theorem 2:A necessary and sufficient condition for aK-

level hierarchical QC LDPC code to have girth at least2(Λ+1)
is the following. For all paths through the polynomial parity
check matrix of length at most2Λ (path length at least four
and at most2Λ), condition (35) does not hold for at least one
k, 1 ≤ k ≤ K.

B. Examples

We now give examples of two paths through the polynomial
parity check matrix of the code of Example 2. In the first
we describe a path that corresponds to cycles through the
Tanner graph. We first consider the code as a QC LDPC
code (ignoring its hierarchical structure) and use Fossorier’s
condition to verify the existence of cycles. We then look at
the same code from a hierarchical perspective to illustrate
Theorem 2. In the second example we consider a path through
the same code that does not correspond to a cycle through the
Tanner graph.

Example 4: (Cycle in an HQC LDPC code)Consider again
the polynomial parity check matricesH(x) and H(x, y),
respectively specified in (23) and (24). First consider the non-
hierarchical description of the code specified byH(x). A cycle
of length-four exists traversing the pathP = {O,S} where

O = {(0, 0), (1, 0), (1, 5), (0, 5)}.

This corresponds to, in order, the four polynomials

x2 = c2[0, 0]x
2,

x+ x7 = c1[1, 0]x+ c7[1, 0]x
7,

x7 = c7[1, 5]x
7,

1 + x6 = c0[0, 5]x
0 + c6[0, 5]x

6.

Selecting outc2[0, 0], c1[1, 0], c7[1, 5] and c0[0, 5] means we
choose

S = {2, 1, 7, 0}.

We calculate the sum in (34) to be

Σ[1] mod 8 = (−2 + 1− 7 + 0) mod 8 = 0, (36)

wherep[1] = 8 for this code. This example confirms, in the
general notation, the test for cycles in non-hierarchical QC
LDPC codes already discussed in Sec. IV-A.

Now, consider the same cycle from the hierarchical per-
spective. With respect to the two-level representationH(x, y)
of (24) the same cycle through the Tanner graph corresponds
to the ordered series

O = {(0, 0), (0, 0), (0, 1), (0, 1)}.

Now we have polynomialsx2+(x+x7)y2 andx7y+(1+x6)y2

which, respectively, are

c2,0[0, 0]x
2 + c1,2[0, 0]xy

2 + c7,2[0, 0]x
7y2,

and

c7,1[0, 1]x
2 + c0,2[0, 1]xy

2 + c6,2[0, 1]x
7y2.

The same cycles correspond to the coefficient indices

S =

{[

2
0

]

,

[

1
2

]

,

[

7
1

]

,

[

0
2

]}

.

Note that the first sub-index of each coefficient corresponds
to the sub-index of the coefficients selected at the one-level
view. The alternating sums along the path are

Σ[1] mod 8 = (−2 + 1− 7 + 0) mod 8 = 0

Σ[2] mod 3 = (−0 + 2− 1 + 2) mod 3 = 0

where p[1] = 8 and p[2] = 3 for this code. While we do
not work out the example for the three-level representation
H(x, y, z) of (25), we note that the ordered traversed by this
cycle would beO = {(0, 0), (0, 0), (0, 0), (0, 0)}.

Example 5: (Non-cycle in an HQC LDPC code)We now
provide an example of a path throughH(x, y) for which
Σ[1] = 0 modp[1] but Σ[2] 6= 0 modp[2]. Let the ordered set
beO = {(0, 0), (1, 0), (1, 1), (0, 1)}. of (24) be(0, 0), (1, 0),
(1, 1), (0, 1). This corresponds to polynomialsx2+(x+x7)y2,
x7y+(1+x6)y2, x2+(x+x7)y2, andx7y+(1+x6)y2. We
select the set of set coefficient indices to be

S =

{[

2
0

]

,

[

6
2

]

,

[

2
0

]

,

[

6
2

]}

,

from which we can verify thatΣ[1] = 0 mod 8 but Σ[2] 6=
0 mod3. Hence while condition (35) holds at level one, it does
not hold at level two. Referring to the expandedH(x) in (23)
one can confirm this conclusion using the logic of Sec. IV-A.
In particular,x6 is located in the sixth column of the first
row of H(x), while the polynomialx2 traversed by the path
is located in the fifth column of the fifth row ofH(x).
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A1 A2 A3

a1 a2 a3

Fig. 7. The labeled trees in a restricted two-level HQC LDPC code will all
have two levels, with each node at the bottom level having exactly one leaf
below it.

C. Inevitable cycles in HQC LDPC codes

Since HQC LDPC codes are a generalization of QC LDPC
codes, they also have inevitable cycles. In this section we
describe how the logic and results of Sec. IV-C regarding
inevitable cycles extend to HQC LDPC codes. We illustrate
the logic for specific examples of HQC LDPC codes that we
will use in our design pipeline presented in Sec. VIII.

Recall that in Sec. IV-C we discussed two classes of
inevitable cycles. We first saw that there will inevitably be
cycles of length six in any weight-III QC LDPC code. We
also saw that the code will have eight-cycles if the polynomial
parity check matrixH(·) of a weight-II QC LDPC code
contains two weight-two polynomials in any row or in any
column.

We analogously find that there will inevitably be cycles of
length six for an HQC LDPC code if any labeled treeTj,l

in the tree matrix defining the code hasthree leaves. There
will inevitably be eight-cycles if, in any row or in any column
of the matrix of labeled trees defining the HQC LDPC code,
there is apair of labeled treesboth having two leaves.

The logic behind these statements is almost identical to the
earlier case. We describe it completely for the first situation.
We pick a length-six ordered seriesO equal to (18), i.e.,
O = {(j, l), (j, l), (j, l), (j, l), (j, l), (j, l)}, where (j, l) is
the index of the labeled treeTj,l that has three leaves.
Let the three length-K coefficient vectors correspond to the
three leaves besa, sb, sc and select the coefficient setS =
{sa, sb, sc, sa, sb, sc}. Then, because each element is both an
even and an odd element of the set, (35) is satisfied for everyk,
just as it was in the QC LDPC example of (19). The logic for
automatic eight-cycles follows from the analogous extensions
of the choices made in (20) and (21).

We now illustrate these points about inevitable cycles for
a subclass of two-level HQC LDPC codes that are described
solely by labeled trees with weight-one at the bottom level.
That is, none of the leaves of the trees have siblings. In
Sec. VIII-A we name such codesrestricted two-level HQC
LDPC codes. An example of such a tree is given in Fig. 7

Example 6: (Inevitable length-six cycle in HQC LDPC
codes)First consider any code containing a tree of the type
illustrated in Fig. 7. This code has three leaves and so,

according to our discussion, the code must contain six cycles.
Without loss of generality, let such a tree be located in row
j and column l of the parity check matrixH(x, y). The
polynomial has the form

xa1yA1 + xa2yA2 + xa3yA3 .

As discussed above, choose the ordered seriesO to be

O = {(j, l), (j, l), (j, l), (j, l), (j, l), (j, l)} (37)

and the ordered set of coefficient vectors to be

S =

{[

a1
A1

]

,

[

a2
A2

]

,

[

a3
A3

]

,

[

a1
A1

]

,

[

a2
A2

]

,

[

a3
A3

]}

. (38)

Cycles inevitably exist because

(−a1 + a2 − a3 + a1 − a2 + a3) mod p[1] = 0,

(−A1 +A2 −A3 +A1 −A2 +A3) mod p[2] = 0,

regardless of the values of the coefficients or ofp[1] or p[2].
Example 7: (Inevitable length-eight cycle in HQC LDPC

codes)Now suppose that the parity check matrix of a restricted
two-level HQC LDPC code contains two labeled trees in the
same row or column where both trees are similar to the one
depicted in Fig. 7, but with only two leaves each.

Suppose that the two weight-two polynomials are in
the same rowj but in two different columnsl1 and l2.
Let the polynomial at (j, l1) be xa1yA1 + xa2yA2 and
let the polynomial at(j, l2) be xb1yB2 + xb2yB2 . Con-
sider the same ordered series as in (20), i.e.,O =
{(j, l1), (j, ll), (j, l2), (j, l2), (j, l1), (j, l1), (j, l2), (j, l2)}, and
choose the ordered set of coefficient indices to be

S =

{[

a1
A1

]

,

[

a2
A2

]

,

[

b1
B1

]

,

[

b2
B2

]

,

[

a2
A2

]

,

[

a1
A1

]

,

[

b2
B2

]

,

[

b1
B1

]}

.

(39)
Eight cycles are inevitable because

(−a1+a2−b1+b2−a2+a1−b2+b1) modp[1] = 0,

(−A1+A2−B1+B2−A2+A1−B2+B1) modp[2] = 0,

regardless of the values of the coefficients or ofp[1] or p[2].

VII. M AXIMIZING THE GIRTH OF QC LDPCCODES

In this section we present the ideas behind our girth-
maximizing algorithms for QC LDPC and for HQC LDPC
codes. The latter is a generalization of the former. These
algorithms can rid the codes of all non-inevitable cycles.
In Sec. VIII we will describe a secondary procedure for
ridding the codes of their inevitable cycles. As the details
of the algorithms are somewhat involved, we choose only to
describe the basic ideas in the main text, and defer to the
appendices the details. The overall algorithms are described in
Appendix X-A while in Appendices X-B–X-D we describe the
subroutines that contain much of the computational complexity
(and descriptive intricacies).

In Section VII-A we describe the general idea of the
algorithms, which applies both to QC and to HQC LDPC
codes. Then, in Section VII-B we give more detail for the
case of weight-I QC LDPC codes. The discussion of the
generalization to HQC LDPC codes (which includes higher-
weight QC LDPC codes as a special case) is deferred to the
appendices.
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A. Girth maximization using hill climbing

The general idea of our algorithm (for both QC and HQC
LDPC codes) is as follows. We start by specify the desired tree
topology of the code by specifying a set of|T | unlabeledtrees.
We initialize our algorithm with a code chosen randomly from
the ensemble of codes that have the desired tree topology. This
means that we randomly assign labels to the treesT subject
to the constraints that sibling edges must have distinct labels.

Our algorithm iteratively updates a sequence of edge labels.
At each iteration it changes the single edge label to the value
that effects the greatest reduction in a cost function. The cost
function we use depends on the number of cycles in the current
code that have length less than the desired girth. Shorter
cycles are weighted to be more costly than longer cycles.
The algorithm terminates when either (a) the current values
of all coefficients give zero cost (and thus the code has the
desired girth), or (b) when we can no longer change any single
coefficient to a value that further reduces the cost (and thusthe
number of undesired cycles). When the tree topology of the
code implies the existence of inevitable cycles (b) will always
be the stopping criterion. Updates are performed subject to
the sibling constraint on edge labels. This preserves the tree
topology of the code and thus, e.g., the protograph structure
of the code is an invariant under the updates. We note that a
change in a single edge label will, in general, have a trickle-
down effect on a number of code coefficients (equal to the
number of leaves in the tree that are a descendent of that
edge).

The main challenge in implementing the algorithm lies in
book-keeping: tracking how many cycles of each length the
current code contains, and what the resulting number of cycles
will be if each edge label is changed to each of its other
possible value. The calculation becomes particularly involved
when one searches for codes of girth10 (which is the largest
girth for which we have so far implemented our algorithm)
because of the many possible ways that eight-cycles can form.

B. Girth maximizing algorithm for QC LDPC codes

In this section we present the main algorithmic ideas in
the simplified setting of weight-I QC LDPC codes. This
simplification also reduces notation. For the duration of this
section, we setp[1] = p, L[1] = L, J[1] = J . Further, path
elements are scalars sos[j, l] = s[j, l]. In a weight-I QC LDPC
each treeTj,l has a single edge andcs[j, l] 6= 0 for at most
one value ofs (if Tj,l = ∗ thencs[j, l] = 0 for all s). The set
of other possible edge labels are the set ofz, 0 ≤ z ≤ p− 1,
such thatz 6= s (there are no sibling edges so there are no
further constraints on the choice ofz).

We now define a set of cost vectors, each of which tracks the
cost (in terms of the weighted sum of the number of cycles) of
changing any edge label to each of its other possible values.
In particular, for each edge in eachTj,l 6= ∗ we define

Γj,l = [γ0, γ1, · · · , γp−1], (40)

whereΓj,l(z) is the cost we pay for assigningcz[j, l] = 1 for
each value ofz for 0 ≤ z ≤ p−1. If the desired code girth isg
then the costΓj,l is a linear function of the number of cycles

of each length that results from each possible choice forz.
The weight vectorw = [w2, w3, · · · , wg/2−1] defines the cost
function, wherewΛ is the cost assigned to each length-2Λ
cycles.

It is useful to visualize the set of cost vectors as a matrix
of vectors. For example, a regular(3, 6) LDPC code can be
represented as





Γ1,1 Γ1,2 Γ1,3 Γ1,4 Γ1,5 Γ1,6

Γ2,1 Γ2,2 Γ2,3 Γ2,4 Γ2,5 Γ2,6

Γ3,1 Γ3,2 Γ3,3 Γ3,4 Γ3,5 Γ3,6



 . (41)

Given a parity check matrixH and desired girthg, the cost
vectors are calculated via the following argument. We consider
the set of all possible and distinct length-2Λ paths per Def. 4,
i.e.,

PΛ = {P} = {O,S} s.t. |O| = |S| = 2Λ for all P ∈ PΛ,

for Λ = 1, . . . , g/2. For each pathP ∈ PΛ and each(jt, lt) ∈
O we consider the corresponding coefficients[jt, lt] ∈ S.
Assuming all otherdistinct coefficientss[jt′ , lt′ ] for t′ 6= t
are kept fixed we note the “guilty” value(s) ofs[jt, lt] to be
the valuez, 0 ≤ z ≤ p− 1, such that ifs[jt, lt] were changed
to z, then condition (35) would be satisfied. In other words, a
cycle would result.

For example, for a potential six-cycle, we know that a cycle
will exist if and only if −s[j1, l1] + s[j2, l2] − s[j3, l3] +
s[j4, l4]−s[j5, l5]+s[j6, l6] modp = 0. Suppose, for example,
that the current summed value of−s[j1, l1] + s[j2, l2] −
s[j3, l3] + s[j4, l4] − s[j5, l5] + s[j6, l6] mod p is equal to
one. Then, the guilty values fors[j1, l1], s[j3, l3], ands[j5, l5]
would be one less than their respective current values, and the
guilty values fors[j2, l2], s[j4, l4], ands[j6, l6] would be one
greater than their respective current values.

Computing “guilty” values is relatively uncomplicated for
paths consisting of2Λ distinct elements. It becomes more
complicated if some elements of the path appear more than
once. This can occur in potential eight-cycles and occurs, e.g.,
in the second example of Fig. 3. In such cases, we must
keep in mind that when such coefficients are changed, the
contribution to alternating sum can double, triple (e.g., in the
length-12 cycle of Fig. 3 because the path passes through
each sub-matrix three times), or contribute even more times.
Alternately, repeated elements can also cancel (if they enter
modulated by both+1 and −1), not contributing at all to
the sum. We deal with this complexity in Appendix X-B
by defining the “multiplicity” κ of a path element; used
in the cost calculating algorithms subsequently specified in
Appendices X-C and X-D.

VIII. D ESIGN PIPELINE FOR HIGH-GIRTH QC LDPC
CODES

In this section we describe our design procedure for high-
girth QC LDPC codes. We want to be able to map any in-
teresting protograph into a high-girth QC code. As mentioned
earlier, the protographs that motivate us have multiple edges
between variable types and check nodes (such as those shown
in Fig. 5) and thus QC LDPC codes created from them using
a direct transformation would suffer from inevitable cycles.
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In this section we show how to map such a protograph into
an “inflated” HQC LDPC code structure, on which we can use
the girth maximizing algorithm of Sec. VII to remove all non-
inevitable cycles. We then show how the resulting HQC LDPC
codes can be “squashed” down to yield a non-hierarchical QC
LDPC code which no longer contains the inevitable cycles and
which is a member of the family of codes described by our
protograph. The subclass of HQC LDPC codes with with we
work are therestricted two-level HQC LDPC codes, already
mentioned briefly in the examples of Sec. VI-C.

The outline of the section is as follows. In Sec. VIII-A
we fully define the class of restricted two-level HQC LDPC
codes. In Sec. VIII-B we show how to directly transform any
protograph into such a code. In Sec. VIII-C, we describe the
squashing procedure, and finally in Sec. VIII-D, we explain
the full design pipeline, including “inflating” the connectivity
matrix corresponding to the protograph, directly transforming
the inflated connectivity matrix into a family of restrictedtwo-
level HQC LDPC codes, maximizing the girth over that family,
and squashing the resulting HQC LDPC code.

A. Restricted two-level HQC LDPC codes

As “restricted two-level” implies, the hierarchy in restricted
two-level HQC LDPC codes has only two levels. The addi-
tional “restriction” is that the weight of the first (lowest)level
must be one. In terms of the tree structure description of these
codes, the labeled trees will all have a form like that shown in
Fig. 7, with the nodes at the bottom level each having exactly
one leaf, i.e., leafs have no siblings. In comparison, thereare
leaves in left-hand tree of Fig. 6 that do have siblings. Nodes
at the second level can have an arbitrary number of edges.

The fact that these codes have two levels means that they are
described by a polynomial parity check matrix in two dummy
variablesH(x, y). The restriction to the lowest level having
weight one means that any weight-w polynomial in the matrix
H(x, y) must have the form

xa1yA1 + xa2yA2 + ...+ xawyAw (42)

where all theAi exponents must be distinct. As usual, the
exponents are integers which range between0 andp[1]−1 for
the x exponents and0 andp[2] − 1 for the y exponents.

Because the weight at the lowest level is restricted to
be one, these codes, when described as standard QC LDPC
codes, look like weight-I QC LDPC codes, whose base matrix
is composed of circulant sub-matrices of sizep[2] by p[2].
In [29] Smarandache and Vontobel briefly introduce a further
restricted class of such QC LDPC codes (they also required
that the codes be weight-II at the second level and that
p[2] = 2) which they term “type-I QC codes based on double-
covers of type-II QC codes.”

B. Transforming protographs into Restricted Two-Level HQC
LDPC Codes

Recall that in Sec. III, we introduce a “direct transforma-
tion” to convert a protograph into an ordinary QC LDPC code.
The direct transformation replaces the connectivity matrix
equivalent to the protograph with a polynomial parity check

matrix H(x) whose polynomial entries had weight equal to
the entries in the connectivity matrix. A completely analo-
gous direct transformation exists for converting protographs
into restricted two-level HQC LDPC codes. One replaces
the connectivity matrix with a bi-variate polynomial parity
check matrixH(x, y) whose polynomial entries each have the
restricted form of (42) and have weight equal to the entries in
the connectivity matrix.

For example, the connectivity matrix corresponding to the
protograph depicted in Fig. 1 is

C =

[

1 1 1
0 1 2

]

. (43)

This matrix is directly transformed into a two-level restricted
HQC LDPC code with polynomial parity check matrix

H(x, y) =

[

xayA xbyB xcyC

0 xdyD xeyE + xfyF

]

, (44)

wherea, b, c, d, e, and f are integer exponents between0
andp[1]−1, andA, B, C, D, E, andF are integer exponents
between0 andp[2] − 1 that satisfyE 6= F .

C. Squashing sets of trees to eliminate inevitable cycles

Because restricted two-level HQC LDPC codes are weight-I
at the lowest level, they can also be considered weight-I QC
LDPC codes, and can therefore be described in terms of their
base matrix.1 In this section we develop a technique that
selectively removes rows or columns from the base matrix
describing a restricted two-level HQC LDPC code in a way
that eliminates all inevitable six- and eight-cycles from the
corresponding Tanner graphs of the code. There are two
underlying assumptions in this section. First, that via a girth-
maximization procedure the base matrix entries involved have
already been optimized to eliminate all non-inevitable cycles.
Second, we concentrate on restricted two-level HQC LDPC
codes wherep[2] = 4, which implies that the base matrix is
composed of circulant sub-matrices of size four by four.

There are two situations we will want to consider. Respec-
tively they will correspond to Ex. 6 and 7 of Sec. VI-C. The
full connection to these examples will only become clear in
the next section, when we explain our “inflation” procedure,
which has the effect of placing pairs of similarly structured
four by four sub-matrices on top of each other (or besides
each other).

The first situation involves a polynomial of weight 3 in the
polynomial parity check matrixH(x,y), which after inflation
will be converted into two polynomials of weight 3, e.g.,
h1,1(x, y) and h2,1(x, y), with identical y exponents, in the
same column of the polynomial parity check matrix. Assuming
a restricted two-level code withp[2] = 4, the corresponding
sub-matrices in the base matrix would respectively look some-

1Recall from Sec. II that the base matrix is the matrix of powers of the
polynomial parity check matrix expressed in a single dummy variable.
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thing like








a b c −1
−1 a b c
c −1 a b
b c −1 a

















d e f −1
−1 d e f
f −1 d e
e f −1 d









, (45)

where we recall that−1 represents thep[1] × p[1] all-zeros
matrix.

The second situation involves four polynomials of weight
2 arranged rectilinearly, e.g.,h1,1(x, y), h2,1(x, y), h1,2(x, y)
andh2,2(x, y),. Furthermore, after inflation, they exponents
of the polynomials in the same column will have the same
exponents, so that the corresponding sub-matrices would look
something like








a b −1 −1
−1 a b −1
−1 −1 a b
b −1 −1 a

















−1 c d −1
−1 −1 c d
d −1 −1 c
c d −1 −1

















e f −1 −1
−1 e f −1
−1 −1 e f
f −1 −1 e

















−1 g h −1
−1 −1 g h
h −1 −1 g
g h −1 −1









.

(46)
By the results of Sec. VI-C the first situation contains six-

cycles within each sub-matrix and the second situation con-
tains inevitable eight-cycles between the pair of sub-matrices
in each row and in each column. We argue that if we “squash”
the two matrices in the first example—by stacking the first two
rows of the upper matrix on the last two rows of the lower
matrix—then the matrix produced









a b c −1
−1 a b c
f −1 d e
e f −1 d









(47)

contains no six-cycles. Similar if we squash the matrices in
the second example then the resulting pair of matrices








a b −1 −1
−1 a b −1
−1 −1 e f
f −1 −1 e

















−1 c d −1
−1 −1 c d
h −1 −1 g
g h −1 −1









(48)

contains no eight-cycles.
Since by assumption there were no non-inevitable six-

or eight-cycles between the original matrices, to show our
assertion we need solely to demonstrate that the squashing
procedure removes all inevitable cycles. We argue this based
on the following lemma, proved in Appendix X-E.

Lemma 2:
(i) Any inevitable six-cycle within a polynomial of the form

xa1yA1 + xa2yA2 + xa3yA3 traverses three distinct rows
and three distinct columns of the corresponding base
matrix.

(ii) Any inevitable eight-cycles between a pair of polynomials
of the form xa1yA1 + xa2yA2 and xb1yB1 + xb2yB2

located in the same row (column) of the polynomial parity
check matrix traverses three distinct rows (columns) of
the corresponding base matrix.

Now, consider the squashing of the matrices in (45) into the
matrix in (47). Note that the latter matrix has onlytwo rows
from each of the matrices in (45). However, by Lemma 2-(i)
all inevitable cycles pass through three rows. Therefore, the
matrix in (47) does not contain any inevitable six-cycles.

Next, consider the squashing of the matrices in (46) into
the matrices in (48). First we a show that the squashing
procedure eliminate the automatic cycles between pairs of
matrices arising from pairs of weight-2 polynomials on the
same row of the polynomial parity check matrix. This follows
from Lemma 2-(ii) which tells us that these eight-cycles
traverse three distinct rows, because only two rows of each of
the matrices is retained. Next consider the inevitable cycles
between pairs of matrices arising from pairs of weight-2
polynomials in the same column of the polynomial parity
check matrix. Since we squash vertically, parts of all columns
of the base matrix are retained. However, if one examines (48)
one sees that the second and fourth columns of the left-
hand matrix only includes contributions from the upper left-
hand and bottom-left-hand matrices of (46), respectively.The
remaining inevitable cycles from (46) therefore cannot include
these columns. But, that leaves only two columns in the left-
hand matrix and by Lemma 2-(ii) we know that these in-
evitable cycles require three columns. Therefore the inevitable
cycles have been eliminated. The same logic holds for the
right-hand side of (48).

Note that for the above logic regarding eight-cycles to hold
it is important that they-exponents of the two matrices to be
squashed together (those in the same column) are the same.
Thus, e.g.,T1,1 T2,1 correspond to any two polynomials of
the form xayA + xbyB and xeyA + xfyB. Note also that
the same squashing procedure would work in the horizontal
direction as long as the matrices on the same row have the
samey-exponents. The logic is the same with the argument
for rows and columns reversed.

D. Design procedure for high-girth codes

We now turn to demonstrating how to construct a weight-I
QC LDPC code that does not have any six-cycles or eight-
cycles. We first sketch the procedure, depicted in Fig. 8 and
then illustrate the details with a worked design example.

Roughly speaking the procedure will start with a desired
protograph and code parameterp[1] (our procedure assumes
p[2] = 4). We first map the protograph into a connectivity
matrix, cf. (43). Depending on the weight and relative loca-
tions of the entries in the connectivity matrix, we “inflate”
the connectivity matrix. We then use the direct mapping of
Sec. VIII-B to produce a polynomial parity check matrix for
a restricted two-level HQC LDPC code. Next, using our max
girth algorithm we eliminate all non-inevitable six- and eight-
cycles. Finally, we use the squashing procedure of Sec. VIII-C
to eliminate inevitable cycles. Of course, the way in which we
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Fig. 8. The design procedure to produce high-girth codes. The inputs are a
protograph and the dimension of the first-level circulant matrices. The output
is a weight-I QC LDPC code.

inflate the code must be compatible with the way we squash
the code to produce a valid parity check matrix that meets the
parameters of interest. It should be emphasized that the LDPC
code resulting from this procedure will be a QC LDPC and
not ahierarchicalQC LDPC code, although the final structure
will be quite similar to that of an HQC LDPC code.

1) Inflate connectivity matrix: As indicated, the procedure
first produces the connectivity matrixC of the protograph,
which we assume has no entries greater than 3. (We make no
effort here to deal with inevitable cycles caused by weights
greater than 3). The “inflation” procedure works as follows.
We fist mark for duplication each row of the matrix with two
or more elements of value 2 or greater or a single element of
value 3. We also mark for duplication each column that has
two or more elements of value 2 or greater. Then we inflate
C to produce a new connectivity matrixC′ in which each
of the rows inC marked for duplication are duplicated. We
then inflate again to produceC′′ from C′ by duplicating each
of the marked columns. As will be evident when we get to
squashing, we must track in the matricesC′ andC′′ which
rows and columns are duplicated versions of each other. The
following example illustrates the inflating procedure.

Example 8:Suppose we start with a protograph that has the
connectivity matrix

C =

[

3 2 1
0 2 1

]

. (49)

The first row in this connectivity matrix contains an element
with value 3 (and also two elements of value 2 or greater), so
we mark it, and we also mark the second column because it
has two elements with value 2 or greater. Duplicating the first
row, we obtain

C′ =





3 2 1
3 2 1
0 2 1



 . (50)

Now duplicating the second column, we obtain the inflated
connectivity matrix

C′′ =





3 2 2 1
3 2 2 1
0 2 2 1



 . (51)

In C′′, the first and second rows, and also the second and third
columns, are tracked as duplicated versions of each other.

2) Directly transformation C′′ into H ′′(x, y): Next we
make a direct transformation of the inflated connectivity matrix

C′′ into the polynomial parity check matrixH′′(x, y) for a
two-level restricted HQC LDPC code withp[2] = 4. We
perform this transformation under one additional restriction.
The restriction is that they exponents in pairs of duplicated
rows or pairs of duplicated columns must be identical to each
other. The value ofp[1] is left as a design parameter.

Example 8 (continued):The inflated connectivity matrixC′′

is directly transformed into a polynomial parity check matrix
H′′(x, y), yielding the form

H′′(x, y) =

[

xayA+xbyB+xcyC xdyD+xeyE xfyD+xgyE xhyH

xiyA+xjyB+xkyC xlyD+xmyE xnyD+xoyE xpyH

0 xqyQ+xryR xsyQ+xtyR xuyU

]

.

Notice that they exponents in the first and second row and
in the second and third columns of this matrix have been
restricted to be identical to each other. Otherwise, all the
exponents are free parameters that satisfy0 ≤ ai ≤ p[1] − 1
for any x exponentai and0 ≤ Ai ≤ p[2] − 1 = 3 for any y
exponentAi.

3) Maximize the code’s girth: In the next step we apply
the girth-maximization algorithm of Sec. VII to produce a
set ofx-exponentsai andy-exponentsAi such that no short
cycles exist except those that are inevitable. Of course, the hill-
climbing algorithm of Sec. VII is just one possible approach.
Other algorithms could be used in its place. The polynomial
parity-check matrixH′′(x, y) obtained in this manner can be
converted into an equivalent base matrixB′′ for a weight-I QC
LDPC code.

Example 8 (continued):Using our girth-maximizing algo-
rithm, we find that withp[1] = 200 the following choices for
the x and y exponents inH′′(x, y) will create no six-cycles
or eight-cycles except for inevitable short cycles:
[

x128y1+x69y2+x118y3 x11y2+x121y3 x170y2+x109y3 x38y3

x63y1+x156y2+x38y3 x186y2+x183y3 x52y2+x146y3 x43y3

0 x100y0+x104y1 x187y0+x50y1 x59y1

]

.

The code with the above polynomial parity check matrix is
equivalent to a standard weight-I QC LDPC code with base
matrix B′′ given by


















−1 128 69 118 −1 −1 11 121 −1 −1 170 109 −1 −1 −1 38
118 −1 128 69 121 −1 −1 11 109 −1 −1 170 38 −1 −1 −1
69 118 −1 128 11 121 −1 −1 170 109 −1 −1 −1 38 −1 −1
128 69 118 −1 −1 11 121 −1 −1 170 109 −1 −1 −1 38 −1
−1 63 156 38 −1 −1 186 183 −1 −1 52 146 −1 −1 −1 43
38 −1 63 156 183 −1 −1 186 146 −1 −1 52 43 −1 −1 −1
156 38 −1 63 186 183 −1 −1 52 146 −1 −1 −1 43 −1 −1
63 156 38 −1 −1 186 183 −1 −1 52 146 −1 −1 −1 43 −1
−1 −1 −1 −1 100 104 −1 −1 187 50 −1 −1 −1 59 −1 −1
−1 −1 −1 −1 −1 100 104 −1 −1 187 50 −1 −1 −1 59 −1
−1 −1 −1 −1 −1 −1 100 104 −1 −1 187 50 −1 −1 −1 59
−1 −1 −1 −1 104 −1 −1 100 50 −1 −1 187 59 −1 −1 −1



















.

(52)
Notice that the base matrixB′′ is composed of4 by 4 circulant
sub-matrices.

4) Squash the base matrix to remove inevitable cycles:
We now have a base matrixB′′ corresponding to the inflated
connectivity matrixC′′. The next steps in our procedure will
remove columns and rows fromB′′ to obtain a base matrix
corresponding to our original connectivity matrixC.

First, we note that each column of the connectivity matrix
C′′ corresponds to four columns in the base matrixB′′. In
the next step of our procedure, we focus on the columns that
have been marked as duplicates inC′′. We retain the left two
columns and remove the right two columns inB′′ from the
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four that correspond to the left column of a duplicated pair in
C′′, and also remove the left two columns but retain the right
two columns inB′′ from the four that correspond to the right
column of a duplicated pair inC′′. We call the thinned-out
base matrix that is obtained from this procedureB′.

Example 8 (continued):Recall that the second and third
columns ofC′′ given in equation (51) have been marked as
duplicates of each other. So to obtainB′ from the base matrix
B′′ given in equation (52), we retain the left two columns from
the second four inB′, and the right two columns from the third
four in B′, so thatB′ is given by

B′ =



















−1 128 69 118 −1 −1 170 109 −1 −1 −1 38
118 −1 128 69 121 −1 −1 170 38 −1 −1 −1
69 118 −1 128 11 121 −1 −1 −1 38 −1 −1
128 69 118 −1 −1 11 109 −1 −1 −1 38 −1
−1 63 156 38 −1 −1 52 146 −1 −1 −1 43
38 −1 63 156 183 −1 −1 52 43 −1 −1 −1
156 38 −1 63 186 183 −1 −1 −1 43 −1 −1
63 156 38 −1 −1 186 146 −1 −1 −1 43 −1
−1 −1 −1 −1 100 104 −1 −1 −1 59 −1 −1
−1 −1 −1 −1 −1 100 50 −1 −1 −1 59 −1
−1 −1 −1 −1 −1 −1 187 50 −1 −1 −1 59
−1 −1 −1 −1 104 −1 −1 187 59 −1 −1 −1



















.

Now note that each row in the connectivity matrixC′

corresponds to four rows in the base matrixB′. In the final
step of our procedure, we focus on the rows that have been
marked as duplicates inC′. We retain the top two rows inB′

from the four that correspond to the top row in a duplicated
pair in C′, and we retain the bottom two rows inB′ from the
four that correspond to the bottom row of a duplicated pair in
C′. We call the base matrix obtained by this further thinning-
out procedureB; this is the base matrix that will correspond
to our original connectivity matrixC.

Example 8 (continued):The first and second rows ofC′

given in equation (50) have been marked as duplicates. That
means that we should retain the top two rows of the first group
of four rows fromB′, and the bottom two rows from the second
group of four rows. Thus, we obtain

B =











−1 128 69 118 −1 −1 170 109 −1 −1 −1 38
118 −1 128 69 121 −1 −1 170 38 −1 −1 −1
156 38 −1 63 186 183 −1 −1 −1 43 −1 −1
63 156 38 −1 −1 186 146 −1 −1 −1 43 −1
−1 −1 −1 −1 100 104 −1 −1 −1 59 −1 −1
−1 −1 −1 −1 −1 100 50 −1 −1 −1 59 −1
−1 −1 −1 −1 −1 −1 187 50 −1 −1 −1 59
−1 −1 −1 −1 104 −1 −1 187 59 −1 −1 −1











.

Notice that the code defined by the final base matrixB is
not a hierarchical QC LDPC code, because that base matrix
is constructed from 4 by 4 sub-matrices that are not circulant.
Still, the code is a member of the class defined by the original
protograph. In our example, each group of four rows and four
columns in the base matrix defines a type of check or bit. So
in our example, from the structure ofB, each check of the
first type will be connected to three bits of the first type, and
two bits of the second type, and so on, just as required by the
protograph.

In fact, any code defined by a base matrix of a form similar
to our B, for example of the form

B =











−1 a1 a2 a3 −1 −1 a4 a5 −1 −1 −1 a6
a7 −1 a8 a9 a10 −1 −1 a11 a12 −1 −1 −1
a13 a14 −1 a15 a16 a17 −1 −1 −1 a18 −1 −1
a19 a20 a21 −1 −1 a22 a23 −1 −1 −1 a24 −1
−1 −1 −1 −1 a25 a26 −1 −1 −1 a27 −1 −1
−1 −1 −1 −1 −1 a28 a29 −1 −1 −1 a30 −1
−1 −1 −1 −1 −1 −1 a31 a32 −1 −1 −1 a33
−1 −1 −1 −1 a34 −1 −1 a35 a36 −1 −1 −1











, (53)

where theai parameters are arbitrary, would also be a member
of the class defined by our protograph.

So the question might be raised, why not simply try to
find suitable parameters for a weight-I QC LDPC defined
by a base matrix like that in equation (53) directly, instead
of using the squashing procedure? This question will be
answered in more detail in Section IX, but the short answer
is that the squashing procedure is more practical because it
enforces useful additional structure in the base matrix, and thus
normally involves far fewer parameters for the hill-climbing
algorithm to optimize. When one tries to optimize over more
parameters, there is a greater chance that the hill-climbing
algorithms will get stuck in an unfortunate local optimum.

IX. N UMERICAL RESULTS

In this section we present a set of numerical results illus-
trating our design methodology and associated performance
results. In Sec. IX-A we present performance results for a
pair of girth-10 one-sided spatially-coupled codes and compare
them to those of girth-6 codes. In Sec. IX-B we give a sense
of the effectiveness of the hill-climbing approach to girth
maximization. We do this by comparing the time required to
find a code of a certain girth by hill-climbing and by the guess-
and-test algorithm [27]. Finally, in Sec. IX-C we demonstrate
the effectiveness of the squashing procedure by comparing to
other candidate approaches.

A. Performance of girth-10 QC LDPC codes

In this section we present word-error-rate (WER) and bit-
error-rate (BER) results for a pair of girth-10 one-sided
spatially-coupled codes. We plot analogous results for girth-6
codes for comparison. The first code is a rate-0.45 length-
8000 QC LDPC code. The protograph structure of the code
is a lengthened version of the one depicted in Fig. 5(a). As
in that protograph, each variable has degree three and check
nodes have degree six, four or two. The protograph of the
code we present has 20 variable nodes and 11 check nodes
(in contrast the protograph in Fig. 5(a) has 14 variable and 8
check nodes). In other wordsL[2] = 20 and J[2] = 11. The
connectivity matrix of the code is

C1 =













1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2













.

Settingp[2] = 4 and using our design approach (girth maxi-
mization and squashing) we found a girth 10 QC LDPC code
with p[1] = 100. The code length isL[2] × p[2] × p[1] = 8000
and its base matrix,B1, is specified in App. X-F.

The second code is a rate-1/3 length-24000 QC LDPC code.
The protograph structure of the second code is a shortened
version of the structure depicted in Fig. 5(b). As in that
protograph the variables are all of degree four. There are six
variable nodes and four check node, i.e.,L[2] = 6 andJ[2] = 4



18

(in contrast the protograph in Fig. 5(b) has 14 variable and 8
check nodes). The connectivity matrix of the code

C2 =









1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
1 1 2 2 3 3









. (54)

Again we usep[2] = 4 and find a girth 10 QC LDPC code with
p[1] = 1000. This code’s length isL[2] × p[2] × p[1] = 24000.
The base matrix,B2, of this code is also specified in App. X-F.

In Figs. 9 and 10 we plot the respective error rate perfor-
mance for the two codes on the binary symmetric channel
(BSC). For purposes of comparison we plot analogous results
for three randomly generated girth-6 QC LDPC codes. These
codes have the same length, same rate, and same non-zero
positions in the base matrix as the girth-10 codes to which
they are compared.
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Fig. 9. Word- and bit-error rate plots for the rate-0.45, length-8000 girth-6
and girth-10 QC LDPC codes.
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Fig. 10. Word- and bit-error rate plots for the rate-1/3, length-24000 girth-6
and girth-10 QC LDPC codes.

In all cases, we plot the WER and BER as a function of
the signal-to-noise ratio (SNR), using the Gallager-B decoding
algorithm [1] running for a maximum of200 iterations to
guarantee the convergence of decoding. While there is a
significant difference between the error rates of a standard
sum-product decoder and Gallager-B, the performance trends
of Gallager-B and sum-product are mostly quite similar. That
said, computational complexity is our main reason to plot
results for Gallager-B rather than sum-product. The error floor
of Gallager-B occurs at a higher WER and thus is easier to
attain. In addition, the Gallager-B algorithm runs very fast.
This further helps to collect useful statistics about the error
floor regime.

In the plots the SNRs are calculated assuming that the
BSC results from hard-decision demodulation of a binary
phase-shift keying (BPSK)±1 sequence transmitted over an
additive white Gaussian noise (AWGN) channel. The re-
sulting relation between the crossover probabilityp of the
equivalent BSC-p and the SNR of the AWGN channel is
p = Q

(√
2R · 10SNR/10

)

, whereR is the rate of the code

and Q(·) is the Q-function.

Figure 9 plots the results of the rate-0.45 length-8000 codes
and illustrates the general improvement to error floor behavior
provided by larger girth. At the highest SNR (around 7.8
dB) the WERs and BERs of the girth-10 code is about two
orders of magnitude larger than those of the girth-6 codes.
Furthermore, the three girth-6 codes plotted do show some
variability in their error rates. This illustrates that theerror
floor is not only a function of girth, though higher girth
certainly helps.

Figure 10 plots the results of the rate-1/3 length-24000
codes and illustrates some of the same points as were made
for the shorter code, as well as some new ones. First, we
note that at these lengths the error floor effect is very abrupt,
initiating just below9 dB. Again, higher girth yields a marked
improvement, most clearly seen in the WER plots. And again,
as also noted in Fig. 9, we see some variability in the girth-6
codes.

A new observation comes from observing that the SNRs at
which the error floor of the girth-6 codes becomes noticeable
is different for the WER and BER plots. It occurs at a higher
SNR for BER. First consider the highest SNR at which we
have results for the girth-6 codes, roughly9.25 dB. Here
the difference between WER and BER is about four orders
of magnitude. Recalling that the codes are of length24000
this means that the post-decoding error patterns in this regime
consist of only a few erroneous bits, consistent with failures
caused by small trapping sets. In contrast, if we consider the
last data point prior to the error floor, at around8.95 dB, the
ratio between word- and bit-error rate is only about one order
of magnitude. This implies that the BER is still dominated
by much heavier weight error patterns, consistent with the
decoder being in the waterfall regime. Now, consider the final
data point for the girth-10 code that we were able to obtain
at just over9 dB. While by considering the WER plots of the
girth-6 codes we confirm that those codes are already in their
error floor regime, the same is not true of the girth-10 code,



19

for which the difference between its WER and BER is less
than an order of magnitude.

B. Effectiveness of the girth maximization algorithm

In this section we develop a sense of how much the hill-
climbing type of girth maximization algorithm presented in
Sec. VII helps in finding high girth codes. We compare our
algorithm to the baseline guess-and-test algorithm [27]. To
understand guess-and-test, consider a regular weight-I QC
LDPC code specified by aJ × L base matrix and a desired
girth. Guess-and-test fixes all entries in the first row and the
first column of the base matrix to be zero. The rest it chooses
independently and uniformly between0 andp−1. This process
is continued until a set is found such that the condition for the
existence of a cycle, e.g., (13), is verified not to hold for all
cycles shorter than the desired girth. The problem with guess-
and-test is that it is time-consuming and doesn’t exploit the
structure of the cycles in its search, in contrast to our hill-
climbing algorithm.

To make an informative comparison with guess-and-test, we
define “success rate” to be the fraction of times that a run of
either algorithm (guess-and-test or hill-climbing) results in a
base matrix that has the desired girth and circulant matrices
sizep[1]. Figure 11 depicts the success rate of the guess-and-
test and hill climbing in generating girth-8 weight-I regular
QC LDPC codes with base matrices of size3×9. We observe
that for the guess-and-test to find a parity check matrix with
girth-8 at a circulant sizep[1] = 50 we need, on average, to
test 106 random matrices. In contrast, hill climbing has near
certain success.
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Fig. 11. Comparison of the success rate of guess-and-test and hill climbing
in finding a weight-I girth-8 regular QC LDPC code when base matrix
dimensions are3× 9.

C. Effectiveness of the squashing procedure

We conclude our discussion of numerical examples by
discussing the computational motivations for the squashing
procedure. Recall that in Sec. VIII-D we raised the following
question. Why do we not simply try directly to find suitable
parameters for a weight-I QC LDPC code, rather than con-
structing an HQC code and using the squashing procedure?
We now show that it is much harder to find a suitable code
using the direct method.

To show this we present results on the following experiment.
First we construct several protographs with structures similar
to Fig. 5(a) with the number of check nodes ranging from
three to nine. We setp[2] = 4 which means that the number
of rows in the corresponding base matrices ranges from 12
to 36. For each protograph, we construct girth-10 QC LDPC
codes withp[1] = 100 using the girth maximization algorithm
and the squashing procedure. We also try to construct girth-10
weight-I QC LDPC codes with base matrices having the same
size and same non-zero positions as those obtained from the
squashing procedure using the direct method. The same hill
climbing algorithm is applied to this design problem as is used
in conjunction with the HQC LDPC approach. We record the
time of designing ten codes for each configuration. Figure 12
depicts the average time required to construct one girth-10QC
LDPC code using each of these two schemes.
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Fig. 12. Average time of constructing one girth-10 QC LDPC code with the
direct method and the squashing procedure.

For both schemes, the time required to find a girth-10 code
increases with the number of rows in the base matrix. When
the squashing procedure is used, we can find a suitable base
matrix in reasonable time even for large base matrices (large
number of rows). In contrast, when using the direct method,
we have to spend an extremely long time searching even for a
small base matrices. From this comparison, we conclude that
the squashing method is quite a bit more efficient.
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X. CONCLUSION

In this paper we present a methodology for designing high-
girth QC LDPC codes that match a given protograph structure.
In developing our methodology, we introduce a new class of
hierarchical QC LDPC codes and explain how to determine
the girth of such codes. The hierarchical QC LDPC codes
can be represented using parity check matrices over multi-
variate polynomials, or in terms of a tree structure. We show
that higher-weight versions of hierarchical codes suffer from
inevitable cycles in analogous ways to non-hierarchical QC
LDPC codes, but that a straightforwardsquashingprocedure
can remove these cycles. We introduce a hill-climbing pro-
cedure to eliminate the non-inevitable cycles from the code,
and subsequently remove the inevitable cycles by squashing.
Thus the main use of the hierarchical codes in this paper is to
reduce the number of free parameters in the codes in an effort
to make the girth maximization procedure computationally
tractable and fast, while knowing that the inevitable cycles
can be removed by squashing. In our numerical results we
illustrate the computational advantage of the hill-climbing
and squashing procedures in comparison with other standard
approaches.

We demonstrate our concepts and design procedure for
the case of one-sided spatially-coupled QC LDPC codes. We
present designs for two such codes, of different rates and block
lengths, both of girth-10. We compare their performance to
girth-6 codes and observe a significant decrease in the error
floor. We note that the second code, whose variable nodes are
of weight four, does not demonstrate any error floor tendencies
down to a WER of about10−7, i.e., the slope of the WER
as a function of SNR is still steepening. Computational effort
limited us from simulating lower WERs. But we note that
the Gallager-B algorithm we chose to simulate displays much
higher error floors than the standard sum-product or min-sum
algorithms. (In fact, this is why we choose to simulate this
algorithm.) Given that the class of one-sided spatially coupled
codes has already been theoretically shown to have excellent
waterfall performance, we believe the evidence presented
strongly indicates that the techniques introduced herein can
produce practical codes with very good performance in both
the waterfall and error floor regimes.

A. Girth maximizing algorithms

In this appendix we present our girth maximizing algo-
rithms. As discussed in the text the objective of these algo-
rithms is to remove allnon-inevitablecycles from the quasi-
cyclic codes. We first present our algorithm for weight-1 QC
LDPC codes, and then for general heavier-weight or HQC
LDPC codes. We do this for simplicity of explanation as the
latter algorithm is a generalization of the former.

Algorithm 1: Weight-I QC LDPC code construction
(i) Set-up and code initialization: Specify the desired girth

g, matrix dimensionp, andT .
For each pair(j, l) such thatTj,l 6= ∗, pick a valuez

independently and uniformly from{0, . . . , p − 1}. Initialize
the code withcz[j, l] = 1 (andcz′ [j, l] = 0 for all z′ 6= z).

(ii) Calculate cost vector of current code:Use Subrou-
tine 1, described in Appendix X-C, to calculate the cost vectors
of the current code, i.e.,Γ = {Γj,l}. Then for each element
of Γ we calculate the change in edge label that most reduces
cost, and the resulting cost, respectively:

z̃j,l = argmin
z: 0≤z≤p−1

Γj,l(z),

Γ̃j,l = min
z: 0≤z≤p−1

Γj,l(z).

Recalling thats[j, l] is the value of the of the coefficient of
the current codecs[j, l], let

Γ−
j,l = Γj,l(s[j, l])

be the cost of the coefficient if it remains unchanged.
(iii) Identify best coefficient to change: Identify the

coefficient to change that would most greatly reduces the cost,
i.e.,

(jmax, lmax) = argmax
(j,l): 1≤j≤J, 1≤l≤L,Tj,l 6=∗

Γ−
j,l − Γ̃j,l,

where we break ties randomly. There are two possible out-
comes.

(a) If Γ−
jmax,lmax

− Γ̃jmax,lmax > 0, we update the code by
setting

cz̃jmax,lmax
[jmax, lmax] = 1,

and
cs[jmax, lmax] = 0.

We iterate by now returning to Step (ii).
(b) If Γ−

jmax,lmax
− Γ̃jmax,lmax = 0, the algorithm terminates.

(iii) Terminate algorithm: There are two possible termi-
nation conditions.

(a) If Γj,l(s[j, l]) = 0 for all (j, l) such thatTj,l 6= ∗, then we
have found a code that satisfies the desired parameters.

(b) Else if there is a(j, l) such thatΓj,l(s[j, l]) 6= 0 the
algorithm has converged to a local minimum.

We now present the generalized algorithm for heavier-
weight QC LDPC and HQC LDPC codes. In contrast to the
first algorithm, the treesTj,l ∈ T that define these codes have
more than one edge. Therefore, for each edge of each tree we
define a cost vector. We index the cost vectors both by their
level in the tree and by their position within each level, as
well as byj and l, thus

Γj,l,i,k = [γ0, γ1, · · · , γp[k]−1]

for 1 ≤ i ≤ |Tj,l[k]| and 1 ≤ k ≤ K where we recall that
|Tj,l[k]| is the number of edges at levelk in Tj,l.

Algorithm 2: Hierarchical QC LDPC code construction
(i) Set-up and code initialization:Specify the desired girth

g, matrix dimensionp, andT .
For each pair(j, l) such thatTj,l 6= ∗, randomly initialize

the values for each edge label (while obeying the requirement
that sibling edges must have distinct labels). Probably themost
straightforward way to do this is to work down the tree from
level K to the first level, picking the edge labels for each
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set of sibling edges at levelk uniformly without replacement
from {0, . . . , p[k] − 1}. Given the initial edge labels, compute
all non-zero code coefficients, i.e., those associated witheach
leaf.

(ii) Calculate cost vector of current code:Use Subrou-
tine 2, described in Appendix X-D, to calculate the cost vectors
of the current code, i.e.,Γ = {Γj,l,i,k}. Then for each element
of Γ we calculate the change in edge label that most reduces
cost, and the resulting cost, respectively:

z̃j,l,i,k = argmin
z:0≤z≤p[k]−1

Γj,l,i,k(z),

Γ̃j,l,i,k = min
z:0≤z≤p[k]−1

Γj,l,i,k(z).

Recalling thatsk[j, l] is the value of the of thekth coordi-
nate of the current code coefficientcs[j, l], let

Γ−
j,l,i,k = Γj,l,i,k(sk[j, l])

be the cost if the coefficient value at thekth level remains
unchanged.

(iii) Identify best edge label to change:Identify the edge
label to change that would most greatly reduces the cost, i.e.,

(jmax, lmax, imax, kmax) = argmax
(j, l, i, k) : 1 ≤ j ≤ J[K], 1 ≤ l ≤ L[K]

Tj,l 6= ∗, 1 ≤ i ≤ |Tj,l[k]|
1 ≤ k ≤ K

Γ−
j,l,i,k−Γ̃j,l,i,k,

where we break ties randomly. There are two possible out-
comes.

(a) If Γ−
jmax,lmax,imax,kmax

− Γ̃jmax,lmax,imax,kmax > 0, we up-
date the code by setting the value of theimaxth edge at the
kmaxth level ofTjmax,lmax equal toz̃jmax,lmax,imax,kmax .
We iterate by now returning to Step (ii).

(b) If Γ−
jmax,lmax,imax,kmax

− Γ̃jmax,lmax,imax,kmax = 0, the
algorithm terminates.

(iv) Terminate algorithm: There are two possible termina-
tion conditions.

(a) If for all (j, l, i, k) we haveΓj,l,i,k(z) = 0 whenz is set
to equal the current label of theith edge at levelk in tree
Tj,l, then we have found a code that satisfies the desired
parameters.

(b) Else there is a(j, l, i, k) such thatΓj,l,i,k(z) 6= 0 and the
algorithm has converged to a local minimum.

B. The multiplicity of a path element

Recall from the discussion of Section VII-B that the deter-
mination of guilty values becomes complicated when there are
repeated elements in a path. To aid in dealing with these re-
peated elements, in this appendix, we define the “multiplicity”
of each path element. This definition is needed for for the cost
vector calculation subroutines of both QC and HQC LDPC
codes, described in Appendices X-C and X-D, respectively.

Definition 5: Given a pathP = {O,S}, any coefficient in
S is said to berepeatedr times if there arer elements of
P , indexed byi1, . . . , ir, for which (ji1 , li1) = (ji2 , li2) =

. . . = (jir , lir) and for whichs[ji1 , li1 ] = . . . = s[jir , lir ].
The multiplicity κ of the element is computed as

κ =

r
∑

t=1

(−1)it . (55)

For path elements where|κ| > 1, i1 is termed thefirst
occurrenceof the element.
The multiplicity can be a positive integer, a negative integer,
or zero. When a path element has multiplicity zero the value
of the coefficient has no effect on whether (that particular)
path corresponds to a cycle.

C. Cost calculation subroutine for weight-I QC LDPC codes

In this appendix we present the subroutine for the calcula-
tion of the cost vectors of a weight-I QC LDPC code. In other
words, given a set of labeled trees we calculate the matrix
specified in (41).
Subroutine 1:

The subroutine takes as inputs the current tree structureT
(i.e., the set of labeled trees or, equivalently, the current parity
check matrixH), the desired girthg, and a vector of costsw.

(i) Define helper variables:Definex(Λ)
j,l,z to be the number

of cycles of length-2Λ that would result if edge labels[j, l]
were set to equal valuez. In other words, the code was
modified to be one in whichcz[j, l] = 1 and cz′ [j, l] = 0

for all z′ 6= z. Initialize all x(Λ)
j,l,z = 0.

(ii) Iterate through path lengths, paths, and path el-
ements: Consider in turn: (a) each path lengthΛ where
2 ≤ Λ ≤ g/2− 1 andg is the desired girth; (b) each path of
lengthΛ, P ∈ PΛ whereP = {O,S} and |O| = |S| = 2Λ;
and (c) the first occurrence of each path element (indexed by
t, 1 ≤ t ≤ 2Λ) in P that has non-zero multiplicity.

(iii) Calculate guilty values and adjust helper variables:
Let s[jτ , lτ ] be the first occurrence of a path element of
multiplicity κ 6= 0. We want to compute the set of possible
values fors[jτ , lτ ] that would satisfy the condition for the
existence of a cycle. Recall from (35) that a cycle exists for
the current path values if

2Λ
∑

t=1

(−1)ts[jt, lt] modp = 0. (56)

To check if a valueβ ∈ {0, . . . , p−1} to whichs[jτ , lτ ] could
be changed would satisfy (56), we subtract the contributionof
the current value ofs[jτ , lτ ], add in the contribution of the
candidate valueβ, and see if the result is equal to zero. That
is, we check whether or not the relation

{

2Λ
∑

t=1

(−1)ts[jt, lt]− κs[jτ , lτ ] + κβ

}

modp = 0

holds. Equivalently, we ask is

κβ ≡ κs[jτ , lτ ]−
2Λ
∑

t=1

(−1)ts[jt, lt], (57)

where the congruence is modulo-p?
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For each value ofβ, 0 ≤ β ≤ p − 1 satisfying (57) we
incrementx(Λ)

jτ ,lτ ,β
as

x
(Λ)
jτ ,lτ ,β

= x
(Λ)
jτ ,lτ ,β

+ 1.

Remarks:By only computing theβ for the first occurrence
of each path element, we avoid double-counting the contribu-
tion to cycles of elements with|κ| > 1. Allowing κ, defined
in (55), to take on either positive or negative values lets the
multiplicity of the element indicate its “aggregate polarity”,
i.e., whether it enters the sum (56) as a positive or a negative
contribution. Since the calculations ofβ in (57) are over a ring,
multiple values ofβ can satisfy the condition.2 However, at
most there are|κ| such values ofβ. This is because the set
of satisfying values ofβ forms a coset ofZp with respect
to the subgroup{β s.t. κβ ≡ 0}, the cardinality of which is
upper bounded byκ. Finally, we note that if|κ| = 1, a β
satisfying (57) exists and it is the unique suchβ.

(iv) Compute cost vectors: After considering all paths
lengthsΛ, 2 ≤ Λ ≤ g/2− 1, all P ∈ PΛ, and all elements of
each pathP , calculate the cost vectors element-by-element as

Γj,l(z) =

g/2−1
∑

Λ=2

x
(Λ)
j,l,z · wΛ.

D. Cost calculation subroutine for HQC LDPC codes

We now present the subroutine used to calculate the cost
vectors of a general HQC LDPC code.

Subroutine 2:
The subroutine takes as inputs the current tree structureT

(i.e., set of labeled trees or, equivalently, the current parity
check matrixH), the desired girthg, and a vector of costsw.

(i) Define helper variables: Define x
(Λ)
j,l,i,z [k] to be the

number of cycles of length-2Λ that would result if theith edge
at levelk in Tj,l were set to equal valuez, 0 ≤ z ≤ p[k] − 1.

Remark:Modification of a single edge has in a hierarchical
code will, in general, change a number of code coefficients.
In particular, all coefficients associated with leaves thatare
descendents of that edge will change in theirkth coordinate.
These coefficients will change from ones in which

cs1,...,sk−1,sk,sk+1,...sK [j, l] = 1 and

cs1,...,sk−1,z,sk+1,...sK [j, l] = 0

to ones in which

cs1,...,sk−1,z,sk+1,...sK [j, l] = 1 and

cs1,...,sk−1,sk,sk+1,...sK [j, l] = 0.

Initialize all x(Λ)
j,l,i,z [k] = 0.

(ii) Set infinite costs: For eachTj,l 6= ∗, each pair(j, l),
1 ≤ j ≤ J[K], 1 ≤ l ≤ L[K], each levelk, 1 ≤ k ≤ K, and
each level-k edge indexi, 1 ≤ i ≤ |Tj,l[k]|, let E be the set
of labels of sibling edges. For eachz ∈ E set

x
(Λ)
j,l,i,z [k] = ∞.

2If, however, you restrictp to be prime, which we do not, then the
calculations would be over a field and there would be a unique solution β. We
do not choose to do this due to the greater limitation on the possible resulting
block lengths of the code.

Remark: Recall from the algorithms described in Sec-
tion VII that our approach to code optimization is to identify
the change in the single edge label that most reduces a
weighted sum of cycle counts. In the special case of weight-
I QC LDPC codes there was a one-to-one mapping between
code coefficients and tree edges (since each tree has only a
single edge). In the generalized setting we are now considering
we seek to identify the change in a single edge of one of the
trees that will most reduce the cost. By setting certain costs to
infinity, certain changes in code structure will never be made.
The changes thus barred are those that would change the tree
topology. By setting those costs to infinity we ensure that the
unlabeled trees that describe our code remains an invariant
under our algorithm.

(iii) Iterate through path lengths, paths, and path
elements: Consider in turn: (a) each path lengthΛ where
2 ≤ Λ ≤ g/2− 1; (b) each path of lengthΛ, P ∈ PΛ where
P = {O,S} and |O| = |S| = 2Λ; (c) the first occurrence of
each path element (indexed byt, 1 ≤ t ≤ 2Λ) in P that has
non-zero multiplicity.

(iv) Determine whether a particular path element can
have “guilty” vales: Let s[jτ , lτ ] be the first occurrence of
a path element of multiplicityκ 6= 0. Recall thatsk[jτ , lτ ]
corresponds to the label of an edge of treeTjτ ,lτ at levelk.
Now, for the coefficients[jτ , lτ ] under consideration, iterate
through each level of the code. For each levelk, 1 ≤ k ≤ K
compute

αk =

2Λ
∑

t=1

(−1)tsk[jt, lt] modp[k].

Unlessαk = 0 for all but onevalue ofk, there are no guilty
values. If there are no guilty values, proceed to the next path
element. If there is a single levelk′ such thatαk′ 6= 0 proceed
to step (v).

Remark:The reason for the all-but-one condition is that we
change at most one edge label per iteration. Therefore, unless
αk = 0 for all but one value ofk there is no single change in
an edge label that would result in a cycle in this iteration.

(v) Calculate guilty values and adjust helper variables:
Now consider coordinatek′ of the path elements[jτ , lτ ] whose
multiplicity κ 6= 0. The same logic as led to (57) can again
be used to identify the guilty values, now at levelk. That is,
compute the set of values ofβ, 0 ≤ β ≤ p[k] − 1 such that

κβ ≡ κsk[jτ , lτ ]−
2Λ
∑

t=1

(−1)tsk[jt, lt]. (58)

For each value ofβ, 0 ≤ β ≤ p[k] − 1 satisfying (58) we

incrementx(Λ)
jt,lt,i,β

[k] as

x
(Λ)
jt,lt,i,β

[k] = x
(Λ)
jt,lt,i,β

[k] + 1.

wherei, 1 ≤ i ≤ |Tjt,lt [k]|, is the index of the level-k edge
in Tjt,lt whose label issk[jτ , lτ ].

Remarks:One of the added complications of the generalized
algorithm is that there is not a one-to-one mapping between the
code parameters that we are adjusting (the tree edge values)
and the code coefficients (each of which is associated with
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Fig. 13. Illustrative inevitable six-cycle that traversesthree rows and three
columns.

one leaf of the tree). When an edge value is adjusted there
is a ripple effect, changing the coefficients associated with
all descendent leaves. However, each change in a edge label
effects only one of theK sums (34), all of which Theorem 2
requires to be equal to zero for a cycle to exist. Thus, although
there is a ripple effect on the code coefficient when adjusting
edge labels, the values of theΣ[k] at other levels is not
effected. Thus, considering the tree structure of the code nicely
decouples the question of girth and the search for high-girths
from the algebraic structure of the code.

E. Proof of Lemma 2

To prove part (i) of the lemma consider the ordered set of
coefficients (38) that describes the inevitable cycle. Notethat
the first and last coefficient must be in the same row of the
base matrix since the path defines a cycle. The second and
third and the fourth and fifth coefficients must also each be
in the same row. Since, when viewed at the first level of the
code, successive rows in a path must be distinct, three distinct
rows are traversed. In Fig. 13 we illustrate this logic for a
matrix corresponding to the polynomialhj,l(x, y) = xa1y0 +
xa2y1+xa3y2, O = {(j, l), (j, l), (j, l), (j, l), (j, l), (j, l)},and
S = {[a1 0]T , [a2 1]T , [a3 2]T , [a1 0]T , [a2 1]T , [a3 2]T }

The logic of part (ii) is the same for rows and columns,
hence we provide the proof only for part the former. Con-
sider the ordered set of coefficients of (39). We assert that
again the path must traverse at least three rows of the base
matrix. As before the first and last coefficients must be in the
same row since this path defines an inevitable cycle. Each
other sequential pair of elements –([a2 A2]

T , [b1 B1]
T ),

([b2 B2]
T , [a2 A2]

T ), and([a1 A1]
T , [b2 B2]

T ) – must also lie
in the same rows. Consider the pair([b2 B2]

T , [a2 A2]
T ). The

row this pair lies in can either be distinct from the startingrow
or it can be the same. If this row is distinct from the starting
row then, since successive rows are distinct, the row in which
([a2 A2]

T , [b1 B1]
T ) lies must be distinct both from this row

and from the starting row and the lemma is proved for this
case. On the other hand, say([b2 B2]

T , [a2 A2]
T ) lies in the

starting row. We assert that in this case([a2 A2]
T , [b1 B1]

T )
and ([a1 A1]

T , [b2 B2]
T ) must lie in distinct rows and so

the total number of rows again is at least three. To see this
last assertion note first that the first[a1 A1]

T and the fifth
coefficient[a2 A2]

T are, by assumption, in the same row. Next
observe that the second and sixth coefficients are[a2 A2]

T and
[a1 A1]

T , respectively, both in distinct rows from the first. As
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Fig. 14. Illustrative inevitable eight-cycle that traverses three rows.

long asp[2] > 2 these latter two coefficients (the second and
sixth) must be in distinct rows of the base matrix. This follows
from the cyclic nature of the code. The only way a pair of
coefficients could appear in two distinct rows and two distinct
columns in swapped order would be ifp[2] = 2, but we have
assumed thatp[2] = 4.

The logic of the second case is illustrated in Fig. 14 for the
pair of polynomialshj,l1 = xa + xby andhj,l2 = xc + xdy3.
The path illustrated corresponds to

O = {(j, l1), (j, l1), (j, l2), (j, l2), (j, l1), (j, l1), (j, l2), (j, l2)}
and

S =

{[

a1
0

]

,

[

a2
1

]

,

[

b1
0

]

,

[

b2
3

]

,

[

a2
1

]

,

[

a1
0

]

,

[

b2
3

]

,

[

b1
0

]}

.

F. Base matrices

In this appendix, the base matrices of the two girth 10 QC
LDPC codes discussed in Sec. IX are specified below. The
base matrix of the first code,B1 is written in the transposed
format due to space.
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