arXiv:1111.0711v1 [cs.IT] 3 Nov 2011

Hierarchical and High-Girth QC LDPC Codes

Yige Wang,Member, IEEE Stark C. DraperMember, IEEE Jonathan S. Yedidiggenior Member, IEEE

Abstract—We present a general approach to design- to do that for irregular random constructions is to use “itgns
ing capacity-approaching high-girth low-density parity-check evolution” or “EXIT chart” techniques to obtain the degree
(LDPC) codes that are friendly to hardware implementation.Our distribution that optimizes the code threshold in the asyrip

methodology starts by defining a new class dfierarchical quasi- . . .
cyclic (HQC) LDPC codes that generalizes the structure of gasi- limit of long block lengths [7]. These techniques can also be

cyclic (QC) LDPC codes. Whereas the parity check matrices of adapted to QC LDPC codes [11].
QC LDPC codes are composed of circulant sub-matrices, those However, for some applications, optimizing water-fall per

of HQC LDPC codes are composed of a hierarchy of circulant formance is not sufficient, and one must also avoid the “error
sub-matrices that are in turn constructed from circulant sub- floors” that plague many LDPC codes in the higher SNR

matrices, and so on, through some number of levels. We show . An floor” in th f that
how to map any class of codes defined using a protograph into a regime. An “error toor*in the periormance curve means tha

family of HQC LDPC codes. Next, we present a girth-maximizig the decoding failure rate does not continue to decreasdlyapi
algorithm that optimizes the degrees of freedom within theamily as the SNR increases. Eliminating or lowering error floors

of codes to yield a high-girth HQC LDPC code. Finally, we s particularly important for applications that have eriee

discuss how certain characteristics of a code protograph Wi il ; ; ; ; ;
lead to inevitable short cycles, and show that these short cles reh?blhty demf':md_s, including magnetic recording and rfibe
optic communication systems.

can be eliminated using a “squashing” procedure that resul in
a high-girth QC LDPC code, although not a hierarchical one. V& In the past, QC LDPC codes have been constructed based

illustrate our approach with designed examples of girth-10QC on a wide variety of mathematical ideas, including finite
LDPC codes obtained from protographs of one-sided spatiat geometries, finite fields, and combinatorial designs [22]41
coupled codes. [18]. Recently, there has also been great interest in thes cify
“convolutional” [19], [20] or “spatially-coupled” [21] LIPC
codes. These codes have much more structured than tradition
. INTRODUCTION random constructions. They have also been shown, using

Two broad classes of methods have emerged for the célgnsity evolution techniques, to approach Shannon capacit
struction of low-density parity-check (LDPC) codes [1]].[2 closely, or even provably to achieve it .on_t_he binary erasure
One set of methods is based on highly random graph cdannel (BE_C) [21]. These c_odes are S|gn.|f|cant here., becaus
structions, while the other is based on structured algebr&i€y can be implemented using quasi-cyclic constructiand,
constructions. It is now well-known that random construiesi ey should thus be able to achieve very good performance
(see, e.g., [3]-[7]) can produce LDPC codes that close\I‘{h"e retainin_g the practicality of other structured QC LOP
approach the Shannon capacity. However, highly randdiides. In this paper, we will focus on the design of QC
constructions are not easy to implement in hardware as tHePC codes based on structures that let them perform near
irregular connections between check and variable nodezein the Shannon limit in the waterfall regime (such as spatially
code graph imply high wiring complexity. In actual imp|e_coupled codes) but we also aim for excellent error floor
mentations, more structured constructions have beengigronP€rformance. _ _ _
preferred because they result in much more practical WiringError floor issues for LDPC codes are investigated in [22],
and more straightforward parallelism in the decoders. [23], which shows that error floors in belief propagation YBP

Quasi-cyclic LDPC (QC LDPC) codes are a particularlyDPC decoders are generally caused by “trapping sets.” A
practical and widely-used class of structured LDPC codd52PPing set is a set of a small number of bits that reinforce
These codes have a parity check matrix which is broken infgCch other in their incorrect beliefs. Trapping sets of aits
sub-matrices that have a circulant structure. QC LDPC cod@¥ariably arranged in clustered short cycles in a codersiéa
are featured in a variety of communications system starsgiar@@Ph [24]. Therefore, one way to try to remove trapping sets
such as IEEE 802.16e [8], DVB-S2 [9] and 802.11 [10]. If$ t0 design the code’s Tanner graph carefully so that the
view of their practicality, we focus in this paper on the gesi dangerous clusters of short cycles do not exist.
of QC LDPC codes that have good decoding performance. AN alternative, and at least conceptually simpler approach

For nearly any application, it is important to optimizés to design codes with larger girths—the “girth” of a code is

decoding performance in the “water-fall’ regime where th@e length of the shortest cycle in the code graph. By rentpvin
signal-to-noise ratio (SNR) is relatively low. The startiamay shor.t cyclt_as, we remove large swaths of potentially dangero
configurations of cycles and, at one fell swoop, hopefully

Y. Wang is with the Mitsubishi Electric Research LaborasyiCambridge, lower the em_)r flc_)or. MOt'V_ated by this idea, in this papee w
MA 02139 (yigewang@ieee.org). focus on optimizing the girth of QC LDPC codes that have

S C. Draper 1s with the Dept. of E'ec”ic"’E' and Cé)mpUterdE)BQH”Q' also been optimized for waterfall performance. In this way w
University of Wisconsin, Madison, WI 53706 (sdraper@edscvedu). . . .
J. S. Yedidia is with the Mitsubishi Electric Research Labories, Cam- NOPe to design a practical code that simultaneously has good

bridge, MA 02139 (yedidia@merl.com). waterfall and error floor performance.

http://arxiv.org/abs/1111.0711v1

There has been considerable work on optimizing girthevitable cycles we introduce a “squashing” proceduree Th
in LDPC codes. In [25] a progressive-edge growth (PEGQuashing step destroys the hierarchical structure ofdbe,c
algorithm is proposed for random LDPC codes. The PERut the squashed code nevertheless remains a QC LDPC code
technique is generalized to QC LDPC codes in [26]. Anothénat corresponds to the desired protograph. The squashing
approach to optimizing the girth of QC LDPC codes iprocedure is computationally trivial. This makes the tweps
studied in [27], where high-girth QC LDPC codes are obtaingocedure — first HQC LDPC then squash into a QC LDPC
using a random “guess-and-test” algorithm. Shortenedyarreode — much more computationally efficient than directly
codes with large girth are proposed in [30]. However, aftapplying our hill-climbing procedure to maximize the gigh
shortening, the resulting codes no longer have a quasiecydiigher-weight QC LDPC codes with the desired protograph
structure. In [31], another class of large girth QC LDPC &dstructure. Thus hierarchical QC LDPC codes are a necessary
is designed, where the methodology is mainly for regulamtermediate stage in the design of practical QC LDPC codes
LDPC codes. that will simultaneously have good waterfall and error floor

In this paper, we propose a hill-climbing search algorithmperformance.
for optimizing girth that is more efficient than previoustiec The rest of the paper will explain in much more detail the
nigues. The hill-climbing algorithm greedily adjusts aitiali ideas outlined above. We begin in Section Il by reviewing the
QC LDPC code (hopefully) to find a code of short lengtlstandard construction of QC LDPC codes in terms of their
that meets the specified code and girth parameters. Since ghéty check matrices. Then in Section Ill, we review the
algorithm is greedy, it can get stuck in local minima. Howevestandard Tanner graph representation of LDPC codes and the
given a set of parameters, the algorithm finds QC LDPC codgsotograph” representation of structured codes. In $ediV/
of shorter length and in less time than guess-and-test or. PE® show how short cycles can be identified from the parity

Codes with good water-fall performance inevitably haveheck matrix of a QC LDPC code. We discuss why the most
some irregularity in the degree-distribution of the factor direct transformation of the protographs of interestingRld
variable nodes of the code graph. For the case of QC LDRGdes, such as spatially coupled codes, into QC LDPC codes
codes, these irregular distributions are most easily destr will lead to inevitable short cycles in the Tanner graph of
in terms of “protographs” [28]. Protographs are variants dhe resulting codes. This leads us to the heart of our paper,
Tanner graphs where bits and checks of the same type wffgere we introduce hierarchical QC LDPC codes that can
represented by a single “proto-bit” or “proto-check.” Ineth be used to solve the problem of inevitable short cycles. In
case of QC LDPC codes, proto-bits can, for example, reptes&ection V we introduce the most general form of HQC LDPC
sets of bits belonging to the same circulant sub-matrices. codes and show that they can be described both in terms

The protographs that arise in codes that have been optimizdda multi-variate polynomial parity check matrix in muliép
for waterfall performance typically have some pairs of prot variables and in terms of a tree structure. In Section VI, we
bits and proto-checks that are connected by multiple edgesexplain how to find cycles in the Tanner graphs of HQC
straightforward way to handle this would be to use QC LDPCDPC codes. In Section VII we describe our hill-climbing
codes where the circulant matrices had rows and columnsadgorithm for finding high girth QC LDPC codes and HQC
weight greater than one. However, as we shall see, thistdire®PC codes. In Section VIII, we discuss restricted two-leve
approach inevitably introduces short cycles into the graph HQC LDPC codes, the direct transformation of protographs

The tricky problem of creating QC LDPC codes withinto such codes, and the “squashing” procedure that effigien
good girth and that correspond to protographs optimized feliminates inevitable cycles. Finally, in Section IX, weheit
waterfall performance is solved in this paper by a soméigh-girth QC LDPC codes that simultaneously have good
what complicated procedure. First, we need to introducewaterfall behavior (because they are spatially-coupletkesp
new family of generalized QC LDPC codes, which we calind have good error-floor behavior resulting from their high
“hierarchical” QC LDPC (HQC LDPC) codes. The paritygirth (which in turn is a result of the fact that they are sdueaks
check matrices of these hierarchical codes consist of leintu versions of HQC LDPC codes). Many details and lemmas are
sub-matrices, which in turn consist of of circulant sub-suldleferred to the appendices.
matrices, and so on for multiple “levels.” We show that we can
directly transform any protograph with multiple edges besw Il. QuAsi-cycLiC LDPCCODES
proto-checks and proto-bits intotao-levelHQC LDPC code We begin by reviewing the construction of standard quasi-
with circulant matrices with higher weight at second level. cyclic low-density parity-check (QC LDPC) codes as previ-

It turns out that many different hierarchical QC LDPC codesusly described in the literature [2]. In section V we will
correspond to a particular protograph, and thus many degrgeneralize these codes and introduce a nduetarchical
of freedom exist following the “direct” transformation. Wefamily of QC LDPC codes.
use our hill-climbing algorithm to choose from this family t Before considering the general case of standard QC LDPC
get rid of as many short cycles as possible. However, HQ@des, it is helpful to start with an important special case,
LDPC codes with weights greater than one at higher levedtsat we will call “weight-1 (J, L) regular” QC LDPC codes.
will also automatically have some short cycles, just as nofhe parity check matrix of these codes consists/ ofl, sub-
hierarchical QC LDPCs do. Our hill-climbing algorithm cam d matrices, each of which iszax p circulant permutation matrix.
nothing about these “inevitable” cycles but it can, hoplgful Let |, , denote the circulant permutation matrix, or “cyclic
eliminate all short non-inevitable cycles. To get ride oé thshift matrix,” obtained by cyclically right-shifting @ x p

identity matrix by: positions, wher® < i < p—1; l¢, isthus For this code/ = 2, L = 3, andp = 3, andH can equivalently
the p x p identity matrix. We often suppress the dependende written as

on p, writing |; instead ofl; ,. As an example, ip = 4, then o1 |
H= [o0 0 } : @)
01 0 0 0 lg I1+1s
=0 010 The polynomial version of the parity check matrix is
! 00 0 1 0 o o L)
1 0 0 O N z _
H(z) [0 20 2! 4 g2 0 1 zl4+22 | 8

We can write the parity check matrix of a weight:I, L)
regular QC LDPC code using rows andL columns ofp x p
cyclic shift sub-matrices:

]

In [29], Smarandache and Vontobel classified QC LDPC
codes according to the maximum weight among the circulant
sub-matrices in their parity check matrix, or equivalently
according to the maximum weight of the polynomials in their

41,1 41,2 i1,L

12,1 12,2 i2,L

H=1. L : (1) polynomial parity check matrix. (The weight of a polynomial
' o as simply the number of non-zero terms in that polynomial.)
Visa lise biss They defined a “typeWd” QC LDPC code as one for which
The blocklength of such a code 1§ = pL. the maximum weight among all polynomial entries;(z) in
Using 1 = (11)*, we can re-write (1) as H(x) is M. We will change their terminology slightly and call
. , , such a code aveight-\/ QC-LDPC code
()i ()2 () Sincewt(he,3(x)) = 2 in the code of Example 1—that is,
L) () e (1) (2) h2a(®) = z' + 22 is a binomial—and becauset(hy 3(z)) >
| ST ' wt(h;(z)) forall 1 < j < J, 1 <1 < L, the code in
(1)1 (12 oo (Iy)i0r Example 1 is a weight-Il QC LDPC code.

)) For any QC LDPC code, we define the vector of weight
We can now abstractly represétias a matrix whose entriesgyms -/ L wt(hj(z)) for 1 < 1 < L, to be the “column
7:) —_ — 1)

are powers of a dummy variable weight sum,"wtcoi (H(z)), of H(z). We define the row weight
pitn giiz L. gpinr sum wt,o Of H(z) similarly. Thus, the code of Example 1
zi21 gpizz ... gl has column and row weight sums
Hx)=| Lo

wteol(H(z)) = [123]; wtrow(H(2z)) = [3 3].

It should now be clear why we previously referred to codes

The point of all these trivial re-writings will now becomeof the form of equation (1) or (3) as “weight-I” codes, as h#t
clear: we can generalize such a matfixz) to a parity check entries in the polynomial parity check matrix are monomials
matrix whose entries ar@olynomialsin z, giving us the The class of weight-I codes is more general than that shown
polynomialparity check matrix of a standard QC LDPC coden equation (1) though: some of the cyclic shift sub-masice
could be replaced with all-zeros matrices.

xthr o gtz L. gL

Zl’l(x) Zlﬂ(x) o ZLL(CC) As we often work with weight-l QC LDPC codes, and these
H(z) = 21(2) h2a(2) - hor(w) 4) codes are particularly important in practice, we introdsee
: : ’ additional useful notation for them. We define thesse matrix
hyi(z) hya(x) --- hyp(z) of a weight-I QC LDPC code to be thex L matrix of powers

(circulant shifts) that defines the code, ileg,(H(x)) where
p—1 logarithms are taken entry-by-entry, and where we define
hji(z) = ch [j, 1] (5) log,(0) to be—1, used to_lndlcate an al]—zero sub—mat_nx. For
—0 example, the base matrix corresponding to the parity check
matrix (3) is simply

where

fori1<j<J,1<I<L.

For binary QC LDPC codes, which will be our focus for i1 ti2 v t1,L
the rest of this paper, the polynomial coefficient§j,] must Q2,1 d22 -+ oL
all be 0 or 1. B= : . ; ' ©)
Example 1:Let C be a lengtt® QC LDPC code described o o
by 1Jg1 ty2 UL
10 0l1 0 0l1 0 0] [1l. GRAPHICAL REPRESENTATIONS OFQC LDPC (DES
01 0/{0 1 0{0 1 O As is very well known, an LDPC code can either be
Ho 0 0 110 0 1]0 0 1 ©6) represented by its parity check matik or equivalently by
0 0 0|1 0 o0j0 1 1 its Tanner graph [24]. A Tanner graph for an LDPC code is
0 0 0j]0O 1 0|1 0 1 a bi-partite graph consisting of “variable” nodes reprdisen
L0 0O 0j0 0 1}]1 1 0 the codeword bits, and “check” nodes representing theyparit

structure. The Tanner graph shown in Fig. 2 (a) is not quasi-
| 2 3 cyclic. But it is always easy to construct a quasi-cyclicsien
of any protograph.
In fact, protographs can equivalently be described by a
“connectivity matrices.” A connectivity matrix has a nunmloé
rows equal to the number of types of checks in the protograph
and a number of columns equal to the number of types of
variables. Each entry in the connectivity matrix tells yawh
many edges there are connecting a type of check node to
a type of variable node in the protograph. For example, the

A B connectivity matrixC' for the protograph in Fig. 1 would be
C— { L1l] . (10)
Fig. 1. A simple protograph with three types of variables amd types of 0 1 2

checks. To derive a quasi-cyclic parity-check mattik(x) from the

template specified by a particular protograph, one can gimpl
replace each entry in the equivalent connectivity matrighwi
a polynomial of weight equal to the entry. We will call this
procedure a “direct transformation” of a protograph into@ Q
LDPC code.

For example, the protograph in Fig. 1 which has the con-
nectivity matrix C' given in (10), can be directly transformed
into a QC LDPC code with parity check matrix

I 2 3
Q Q. QL L)

x® b x¢

H(l‘) = 0 .%'d € —l—.%‘f) (11)

wherea, b, ¢, d, e and f are integer exponents betweemand
p—1, with e # f.

There are many possible direct transformations of a proto-
graph into a QC LDPC code, depending on what exponents
one chooses for the polynomials; one particular directstran
formation would convert this protograph into the QC LDPC
Fig. 2. Two Tanner graphs corresponding to the protograptvstin Fig. 1. code with parity check matrix

The Tanner graph in (a) does not have a quasi-cyclic streictbe one in (b) 0 0 0
does, and in fact has the parity check matrix of the QC LDPQagiden in H(z) = Tz T (12)
Example 1. 0 20 z'+4+22 |-

which would correspond to the Tanner graph shown in

checks, where a variable node is connected to a check néd@ 2 (P) and the code given in Example 1.
by an edge if and only if the corresponding entry Hhis
nonzero. The degree of a node is defined as the number of IV. CycLEs INQC LDPCCODES
edges incident to that node. In this section we discuss how to identify cycles in QC
A “protograph,” as introduced by Thorpe in [28], is aLDPC codes from their parity check matrices. Each check
template that can be used to derive a class of Tanner grapitde in the Tanner graph of a code corresponds to a row in
Each node in a protograph represents a “type” of node inita parity check matrix, and each variable node corresponds
Tanner graph. The nodes will all be duplicagetimes in the to a column. A cycle is a path through nodes in the Tanner
Tanner graph derived from the protograph. graph, alternating between check and variable nodes, that
As an example, consider Fig. 1, which shows a simplgarts and ends at the same node. In terms of the code’s
example of a protograph that has three types of variablenogerity check matrix, a cycle can be visualized as a sequence
and two types of check nodes. This protograph tells us thaft alternating vertical horizontal moves through the matri
each check of type A should be connected to one variablestérting and ending on the same row of the matrix. A vertical
each of the three types, and each check of type B shouldheve (along a column) corresponds to choosing a second edge
connected to one variable of type 2 and two variables of tygennected to the same variable node that will form the next
3. Similarly, each variable of type 1 should be connected step in the cycle. A horizontal move (along a row) corresgond
one check of type A, and so on. to choosing two edges connected to the same check node that
Fig. 2 shows two Tanner graphs derived from the protografdrm part of the path.
of Fig. 1, withp = 3. Note that there are many possible Tanner For QC LDPC codes there are efficient ways to describe
graphs that one can construct that correspond to a particidats of cycles in terms of the code's polynomial parity
protograph, and they need not necessarily have a quasccycheck matrix. In Section IV-A we introduce the basic ideas

behind identifying cycles in weight-l QC LDPC codes. Irand terminating at the entry labeledThe corresponding path
Section 1V-B, we show how to identify cycles in QC LDPCthrough the parity check matrix, with parameter settiags 0,
codes of arbitrary weight. Then, in Section IV-C, we show = 1, ¢ = 2, d = 1, is depicted in the left-hand example of
that higher-weight QC LDPC codes with certain charactesst Fig. 3 and results in a cycle of length four. However, with the
inevitably have short cycles, and point out that this poses alightly different choice of circulant shifts of the rightnd
obstacle to constructing QC LDPC codes with good girtbxample, a return to the same column of the cyclic shift matri
and good waterfall performance—an obstacle that we wilccurs only after two more passes around the base matrix and
overcome by introducing hierarchical QC LDPC codes. an overall cycle of length2.

We now specify the conditions on théa,b,c,d} that
- . . result in a cycle (in fact in a set gf cycles). Calculate an
A. Finding cycles in weight-1 QC LDPC codes alternating sum of the shift indices associated with nedgimy

To make the IOgiC of the section introduction more Concretgermutation matrices a|0ng a given path, where every odd shi
consider Fig. 3 which depicts the parity check matrix of mdex is subtracted rather than added. For example, canside
weight-1 QC LDPC code with parametefs= 4, L =9, and the left-hand path of Fig. 3. The sum isa + b — ¢ + d.
p = 3. We focus in on the fouB x 3 cyclic shift matrices Each difference between neighboring shift indices in tha su
(represented by the black squarés) I, I, and 4. TWo corresponds to the shift in what column (i.e., what variable
choices for the parameters of these four matrices are shoWgte) of the cyclic permutation matrices the path passes
in the sub-figuresa = 0, b =1, c =2, andd = 1 on the left, through. Only if the differences sum to zero (mpypat the end
anda =0, b=c=d =1 on the right. of the path will the path return to the same variable node in
the starting permutation matrix, thereby forming a cycler F
the example of Fig. 3, the condition for a length-four cyde t
exist is:

(—a+b—c+d) modp=0, (13)

which is satisfied fom = 0, b =1, ¢ = 2, d = 1, but is not
satisfied bya =0, b=c=d = 1.

é?g gé (1) 2 B. Finding cycles in higher-weight QC LDPC codes
b 0 1 1 D 0 10 We now take a step up in complexity from weight-1 QC
*‘v B Lo * LDPC codes, and consider the more involved example of the
- - o - SRR weight-1l code of Example 1 from Section Il. Recall that this
Cj) 10 |0 0 1 0 10~ ﬁl 10 code is defined by th2 x 3 polynomial parity-check matrix
001 100 0 01001 o 0 0

\ . X X X
100> 010 1-00»100 H(z) = 0 20 aliya? | (14)

Fig. 3. A parity-check matrix and fou x 3 circulant permutation matrices |n terms of the coefficients, [7,1] defined byh;,(z) =

(la, Iy, 1 andly) selected from it. One set of parameters (lower left: 0, p—1 . s -
b=1c¢=2 d=1) results in a cycle of length four. An alternate setl_s—o CslJ: lJz° (see (5)), we have that all the coefficients

(lower right,a = 0, b = c = d = 1) results in a cycle of length twelve. ¢5[J,!] are equal to zero except fes[j,/] = 1 whens = 0
and (4,1) equals(1,1), (1,2), (1,3) or (2,2), and fors =1

Consider any path through the base matrix of the code. Daes = 2, when (j,1) = (2, 3).
to the way we generate the code’s parity check matrix by Now, consider the following ordered series:
replacement of each base matrix entry by & p circulant
matrix, a path through the base matrix corresponds paths 0={1,2),(2,2),(2,3),(2,3),(2,3),(1,3)} (15)
through the Tanner graph of the code. For any of these patiisere each paifj,l) in O satisfiesl1 < j < J = 2 and
through the Tanner graph to be a cycle, the path must end | < L = 3. This ordered series specifies a sequence of
at the same variable node from which it started. For this tectilinear moves throughl(z). These moves are analogous
happen in a weight-l QC LDPC code, it is necessary for the those in Fig. 3 with the important distinction that if the
path through the base matrix to form a cycle, without passipglynomial in position(j,!) has more than one term (that is,
through any all-zeros matrices. But this is not sufficieimice c¢;[j, I] is non-zero for more than one value 9f then the next
each cyclic shift matrix corresponds paparity andp variable pair in the sequencean be the same. For example, in (15)
nodes. The path could end up at a different variable nodethe third, fourth, and fifth pairs are identical.
the same cyclic shift matrix and not complete a cycle. To specify a candidate cycle through the Tanner graph, we

The necessary and sufficient condition for cycles to exiassociate a coefficient indexwith each pair(j,1) in O, such
is that when the path through the base matrix returns to ttt c,[j,!] # 0. We denote this series of coefficient indices
starting entry, it returns to the same column of the cycliftshby S. To ensure that each step in the series corresponds to
matrix from which it started. In the example of Fig. 3, comsid traversing a distinct edge in the Tanner graph we require the
the path through the base matrix starting at the entry lahgle following of neighboring pairg;~, /™) and(j*,!") in O and
then progressing through the entries labéled andd in turn, the corresponding neighboring coefficient indicesand s™

in S:if (j=,17) = (5%,1%), then the corresponding indicesat (j, 1) is x¢ + xz¢. We can find an eight-cycle that has the
sT # st ordered series

The candidate cycle will actually be a cycle if the alterngti . . , , . . .)
sum of coefficient indices i modulop equals zero. O ={(4,1), (G, 1), (4, 12), (. L2), (4, ln), (G,), (5, 02), (4, L) }

In our example, consider the two following choices for thgnd the ordered set of indices (20)
respective (ordered) sets of coefficient indices: indi
Su = {0,0,2,1,2,0} (16) S ={a,b,c,d,b,a,d,c} (21)
Sy, =40,0,1,2,1,0}. (17) so that we find

Each of these choices corresponds to a cycle of lefigth- (—a+b—c+d—b+a—d+c) modp=0, (22

through the_Tanner graph of the code,.i_llustrated in Fig. flegardless of the value of

The alternating sums modulbean be verified to be equal 10 Thege inevitable six-cycles and eight-cycles at first sight

zero. Respectively these sums are: appear to put serious limitations on what protographs can be
(~04+0—2+1-2+0)mod3 = (—3)mod3 =0 converted into quasi-cyclic codes with high girth. We naited

Section Il that a protograph could be equivalently desxib

(-0+0-1+2-1+0)mod3 = (0)mod3 =0. using a connectivity matrix, and that a parity check matfix o
a quasi-cyclic code could be derived from the connectivity
100 7’1 00 1001100 matrix by the “direct transformation” which replaces the
010 010 010 010 entries of the connectivity matrix by polynomials with witg
00 1 0 01 0 0 1 00 1 equal to the entry. We now see that if, for example, the
= = = B o = = E protograph has a type of variable that is connected to a ti/pe o
v - j B . check by three edges, a direct transformation will inewtab
10 0»0 11 10001 1 lead to six-cycles in the obtained QC LDPC code.
010 101 010 101
001 (110 001 |[t-10

Fig. 4. The two lengtlé cycles through the Tanner graph of the weight-II
QC LDPC code of Example 1.

(a)

C. Inevitable cycles in higher-weight QC LDPC codes

Unfortunately, the logic described in the previous section
implies that higher-weight QC LDPC codes will inevitably
contain short cycles. Let us begin with a straightforward
and important theorem, already proven by Smarandache an
Vontobel [29], that states that any weight-11l QC LDPC code
will inevitably contain cycles of length six. To prove thisg (b)
note that we can choose a cycle with an ordered series

0= {(jvl)v (]vl)v (jvl)v (]vl)v (jvl)v (]al)} (18)

of six identical entries such that each pgijrl) gives the row
j and column of the same weight-IIl polynomial in the parity

; ; ; ig. 5. Protographs for “one-sided” spatially-coupled e®és described in
check matrixH(z). Suppose, without loss of generality, tha 21]. The QC LDPC code constructed by a direct transformafiom the

H i b
the weight-Ill polynomial has the form® +z° +z¢. Then W€ protograph in (a) will inevitably have eight-cycles beaauie check type at
can choose for the cycle an ordered set of coefficient indics right end is connected by two edges to the bit types abmidelow it. The

_ il fi QC LDPC code constructed by a direct transformation fromptatograph
S ={a,,¢,a,b,c} and we will find that in (b) will inevitably have six-cycles because there exit bypes at the right

(19) end that are connected by three edges to a check type.

(—a+b—c+a—b+c¢) mod p=0,

automatically for anyp. Furthermore, protographs with higher edge weights are
Smarandache and Vontobel also proved (see their Theoreat particularly exotic. Consider for example the protqdrs

17) that if the parity check matrixi(z) of a weight-Il QC shown in Fig. 5, which are the protographs for “one-sided”

LDPC code contains two weight-two polynomials in the samapatially coupled codes as described by Kudekar et al. [21].

row or the same column, that code will inevitably have eighiNotice that if we used a direct transformation to convert

cycles. Again, this is easy to verify using our approaclhese protographs into QC LDPC codes, the QC LDPC codes

Suppose for example that the two weight-2 polynomials acerresponding to the protographs in Fig. 5 (a) would ind®hta

in the same rowj and two different columng, and!ls, and have eight-cycles, while those in Fig. 5 (b) would inevitabl

that the polynomial atj, I;) is z% + z°, while the polynomial have six-cycles.

It turns out that there do exist techniques to construct QCEach of the three contractions of the parity check matrix of
LDPC codes corresponding to these protographs that hdkis code into the polynomial parity check matrices repmésg
girth of 10 or greater, but to understand these techniques, by (23), (24), and (25), corresponds to a “level” in the
need to make an apparent detour, and introchieearchical hierarchy of this 3-level HQC LDPC code. []

QC LDPC codes. In this example, we started with a polynomial parity check

matrix H(z), and contracted it first t¢d(z,y) and then to
V. HIERARCHICAL QC LDPCcoODES H(z,y, z). When constructing an HQC LDPC code, it is often

We now introducehierarchical QC LDPC codes (HQC More natural to go in the other directiqn—expa}nding a matrix
LDPC codes), motivated by the fact that these codes wil€ H(z,y,2) into H(z) and then ultimately into the full
ultimately enable us to solve the problem of constructing QBrity check matrix whose entries are ones and zeroes. To
LDPC codes corresponding to protographs with multiple edggxPand a polynomial matrix, we obviously need to know the
between check and variable types, without creating inbieta SiZ€ Of the circulant matrices at every level.
short cycles in the Tanner graph of the code. However, becausWe now present a formal definition of the family af-level
these codes may eventually have other applications, wempredierarchical QC LDPC codes which generalizes our example.

their construction in a form that is actually more generalth pafinition 1: A hierarchical QC LDPC code with levels
we will need for the purpose of eliminating inevitable short yafined by aJix) x Lix multi-variate polynomial parity

cycles. _ _) _check matrixH(-) in K variables. The entry in thth row and
A hierarchical QC LDPC code is formed from “levels”;i, column OfH(-), 1 < j < Jig, 1 <1 < Ly is aK -variate
that each have a quasi-cyclic structure. The structure Cﬁ‘t’i’lynomialhjl(~ ..._~) over theK_vari_abIeSQ:[l]]

be specified in two equivalent, complementary forms: one #ha maximum exponent of any of these polynomials:jp,
terms of the polynomial parity check matrices of these cpdelsS k < K, is pjy — 1. The coefficient associated with the
and another in terms of the “tree structure” of these codesgrm il -y, where0 < sp < pp — 1 for all k is

Csy....5x 1J» 1] With these definitions we defined the code by
A. Parity check matrices of hierarchical QC LDPC codes the Jixj - Lix] polynomials

Before fully defining HQC LDPC codes formally, it is easier

to have a concrete example in mind. hji(xpy, .. oK) =
Example 2:Consider the polynomial parity check matrix pii—t Pl K
specified in equation (23) with = 8. Because the highest oD cansklin] <H xf;ﬁ) - (26)
weight of any of the polynomial entries &% (e.g.,h1 3(z) = sK=0 51=0 k=1
2! +27), and because there are columns in the matrix, this
is a length-96 weight-1l QC LDPC code. The parity check matrix of such a code is obtained by reptacin
But note that this parity check matrix has additional stru@ach of theJix; - Lk entries ofH(z(y, ..., 7)) with the

ture which makes it &ierarchical QC LDPC code. In partic- sub-matrix
ular, in this example, each x 3 sub-matrix of polynomials

in (23) has a circulant structure, as do both the left-hardl an pixj-1 ppy—1
right-hand sets of x 2 sub-matrices o8 x 3 sub-matrices. Z . Z Cornsrcld 1] (Iif;[m ®...Q Ifjpm) , (27
Just as we use polynomials in the dummy variabléo sk=0 s1=0

represent the underlying circulant sub-matrices in a stahd

QC LDPC code, we can use a bi-variate polynomial in thghere ® denotes a Kronecker product. Defining the recursive
two dummy variables: andy to represent both the C|rculantre|ati0nsj[k_1] = Ji - ppy and Lyg_q) = Ly - ppy), Where

matrices represented by the variablein (23) as well as (< < K, the parity check matrix thus constructed has
the cwcu_lant.arrangements vy|th|n eaBhx 3 sub-matrix of Jo = Jik] - Hf:w[k] rows and Ly = Lig] - H?:M?[k]
polynomials inz. The latter circulant structure we represerdglumns. u
using the dummy variablg. We can further represent the
2 x 2 circulant structure o8 x 3 circulant sub-matrices using
the additional dummy variable.

Thus, in equation (24) we contract tisex 12 polynomial
parity check matrixH (z) of equation (23) into th& x 4 bi-
variate polynomial parity check matrbt(x, y). As we use this
example to illustrate many aspects of the ensuing discussio Example 2 (continued)fhe code of this example is a three-
please make sure you think about and understand why, elgvel HQC LDPC code. To cast this example into the language
the upper righB x 3 sub-matrix inH(z) is represented by the of Definition 1 we first identifyz with z(y), y with 2[5, and
bi-variate polynomiak? + x°y + y? in H(z,). z with z3).

We can repeat the process to conttd¢t, i) into thel x 2 In this examplep;;; = 8, pjg) = 3, p3) = 2. Therefore,
tri-variate polynomial parity check matrid (x, y, z) given in = Jig) = 1, Lig) = 2; Jig) = 2, Lyg) = 4; Jpp = 6, Ly = 125
equation (25). and Jjo) = 48, Ly = 96.

While the definition of HQC LDPC codes holds more
generally for codes defined in fields other than GF(2), in this
paper we exclusively considbimary QC LDPC codes wherein
all cs, ... s, [4,1] are binary. We return to our previous example
to illustrate our definitions.

[x? 0 b 4+ 27 0 x7 14 28 0 0 O 22 25 1
ol 4 27 x2 0 1+ 2 0 z’ 0 0 0 1 z?2 2P
0 ol + 27 x2 z’ 14 26 0 0 0 0 2 1 2?2
H(z) = 0 x’ 14 28 x2 0 x! + 7 22 x° 1 0 0 0 (23)
1+ 0 x7 ! + 27 x2 0 1 22 2P 0 0 0
L z’ 1425 0 0 !t + 27 x2 2 1 22 0 0 O
[2?2+ (@ +a2")y? | 2Ty + (14252 | 0 | 2% + 2%y + 42
H = 24
(:v,y) i x7y+(1+:1:6)y2 | x2+(a:—|—:c7)y2 | :c2—|—x5y—|—y2 | 0 ()
H(wg,2) = [+ @+ 272 + Ty + L+ 2%99) | (02 + %y +42)2] (25)
We can rewrite, e.g., the terin, 1 (x,y,) of (25) as LDPC codes. Each row and each column of the matrix
15 @ - @17, has exactly one non-zero element. If the
b1 (2, 2], 3) Pl 2

coefflmentcs1 s2,.. SK[,[] is non-zero, the permutation matrix

= af) + (x[l] + x[71]) oty + (a:fl]a:[g] + (1 + :z:[ﬁl]) :z:fz]) ZETI Ei (equivalent to the term})) is added at the location of
1 2 7 each of these non-zero elements [|
Z Z Z Cor,s2,50 1 Lz et s, Finally, we note that the polynomial parity check ma-
3=052=051=0 trix of a K-level HQC LDPC code can more generally be
where all coeff|C|ent3csl,52,s3[1 1) are zero except for €xpanded into a parity check polynomibli(zyy), . ..,z z))
c2.00[1,1] = ci120[1,1] = cr20[1,1] = cr11[1,1] = in K variables whereK < K. We call this the “level-
co2.1[1,1] = cg21[1,1] = 1. m K’ polynomial parity check matrix of the code. We derive

Rather than expanding (z(yj, ..., z(x) into a full parity this matrix by expanding out gll but the Iasﬁ_’ Ievels_.
check matrix as in (27), one often wants to generate the fofagPlace eacth;;(zpy, ..., z(x]) with the polynomial matrix
given in equation (4) of the polynomial parity check matriX? Z[1]; - - -+ L&)
H(z[1)) of a QC LDPC codén one variable To do this we use Pix] i
the constructlon of (27) for all but the first level. We repﬂac Z Z Cor o lis1] (® @ |fR

ok,
eachh;i(zpy, ..., vx]) with the polynomial matrix inz(; = =T L, P[xm) g (%]

px1—1 pp—1
Z - l](l;l;m@@ e ® |§?p[2]) z7. (28)
srg=0 s1=0
The matrixH (zy)) is of sizeJp;; x L;). We return once more B. Tree structure of HQC LDPC codes
to our example to illustrate this idea. We now show that we can alternately describe an HQC
Example 2 (continued):Consider the final term of LDPC code by specifying the codetgee structure The tree
hi1(zpy, 2, 23)), namely(1+x?1])x[22]x[3], corresponding to structure of any HQC LDPC code is defined by a matrix of
the non-zero coefficients 2 1[1, 1] andcg 2 1[1, 1]. According labeled treesdefined in Definition 2. These labeled trees quite
to equation (28), The contribution of this term k(xz(;;) is naturally reveal the hierarchical structure of the code.Wwile
9 0 9 6 show that there is a complete equivalence between Defirition
cozall 1] (12 ® 17 5) @y + co2all 1] (2 @ 15 5) 2y, of the last section and the definitions of this section. We can
Where:c%] =1,c121[1,1] = c621[1,1] =1 and start with Definition 1 and easily find the unique set of labele
trees that specify the code or, starting from a tree stractur

The matrixH(zpiy, . .., zz) has dimension z) x L.

000001 find the unique HQC LDPC code that has that structure.
000100 The reasons to consider this alternate description are two-
1, ®12, = 000010 (29) fold. First, the representations of this section help revea
b2 s 001000 i i ithi i inti
the hierarchical structure within the algebraic desaoviptof
(1) (1) 8 8 8 8 Definition 1. Second, we will usanlabeledtrees to define a

family of HQC LDPC codes, and then will want to search for

Referring back to the left-hand six-by-six sub-matrix o labeling within that family to optimize girth.

H(z,y,z) in (23) we can confirm the correctness of this The basic observation that motivates the following defini-

pattern, as al + 2® term appears in each of the non-zertions is that the non-zero terms of the polynomials that éefin

entries in the matrix of equation (29). any HQC LDPC code have faerarchical clusteringthat can
Having worked this example, we can now see how tHee represented by a labeled tree. We formally define such a

form of equation (28) nicely reveals the structure of HQ@beled treeas follows.

nodes at leveK' — 1 indicates the number of distinct powers
O of z(x_1) associated with that term, and so on down the tree.
The number of leaves in the tree equals the number of terms
in the polynomialh; i (zpyy, . . ., (x]). The maximum number
of leaves below any of the lowest level nodes (acros$;all)
01 2 pairs) tells us the weight of the code (weight-1, weighteli;.).
The edge labels indicate the exponents that define the nmon-ze
Q polynomials.
2 5 0 We can also define a more fine-grained “weight at level
k" of a hierarchical code by the maximum number of edges
below any of the nodes at levkel A hierarchical code can have
Fig. 6. Example of the tree structure of a family of threeelehierarchical different weights at different levels; for example, the edibm
QC LDPC codes. The left-hand tree’ls, s, the right-hand tree iy 2. Example 2 with tree structure shown in Figure 6 is weight-II
at level 1 (the lowest level), weight-1ll at level 2, and weig|

-) . __at level 3.
Definition 2: A Iapeleq treet, corre§pond|_ng to an entry N The following lemma shows that the two ways of concep-
the Jix] x Lix) multi-variate polynomial parity check matrix

tualizing HQC LDPC codes (Definition 1 or Definition 3) are
H(-) in K variables defining & -level HQC LDPC code, is euquli\z/lalgntQ (Definiti th)

a depth¥ tree. The root node of the tree is the single node | .\~ 1. There is a one-to-one mapping between any

at the top (cth) level. Each npde_at levei, 1 S k< K, has C LDPC codes as defined in Definition 1 and a tree
a number of edges connecting it to nodes in the next Ievsq Lcture. as defined in Definition 3 -

down. The number of edges must be an integer in the set Proof: We first show that any HOC LDPC code has

{1 oppg — 1} . a tree structure that can be read off from the form of the
: Each edge below a node at levels labeled by“a_n _mtegle_r polynomials that make up its polynomial parity-check matri

in the set{0, 1,.... ' Plk) —~ 1. EQges are termed "siblings” if To see this, start with Definition 1. Thgx, L] polynomials
they share the_ same parent (i.e., are connecteq to the SEEh define one labeled tree. Using the distributive law, we
node at the_ higher IeveI_). _The edge labels of sibling nOdgﬁJster the terms of each polynomial as much as possible (i.e
are constrained to be distinct. We _refer to the edges belﬂWo the least-factored form of the polynomial). The resgit

the lowest nodes as *leaves.” We will have need to index trEﬁierarchical) clustering of terms specifies a labeled.tree
edges at each Ieye | of the tree,_so Y&5x]| to denote the Conversely, we now show that any set of labeled trees can
number of edges if'T at level k, i.e., the set of edges thatIoe uniquely mapped to an HQC LDPC code. Starting with the
have a parent node at level set of labeled trees, we first solve for the non-zero coeffisie

Th_e c;)de d||s;u|ssded In Exr?mple_ 2 IS CharaCti”Zf(: zy concatenating edge labels on all paths from distinctdeav
matrix of two labeled trees shown in Figure 6. The left-hangl yne root. Using the resulting set of non-zero coefficiénts

tree characterizes the polynomiaj ; (z,y, z) and the right- Definition 1 specifies the code -
hand tree characterizes;»(z,y, 2), both specified in (25). Example 3:To understand the structure on the code im-

Before understanding how these labeled _trees relate to H@sed by the tree topology, consider again the two treesrshow
structure of the code we note that for this coglg - 8 in Fig. 6. By “tree topology,” we simply mean the unlabeled
pj2) = 3 andpyy = 2, and node and edge labels are within thgg i g of these trees. Each unlabeled tree has three vl
ranges speC|f|e.d.Lj)y Definition 2. there are two of them. From this we infer that these unlabeled
The next definition relates these trees to the structureeof i, specify a family of three-level HQC LDPC codes where
code._ . Jiz) = 1 and L3 = 2. Since the maximum number of leaves
Definition 3: The tree structureof a K-level HQC LDPC oy a node at the first level is two, these trees specifies a
code is specified by a matrix of labeled treBs= {T;.}, tamily of weight-Il QC LDPC codes.
1 <j < Jig, 1 <1 < L. To each leaf ofT;; we now focus on the left-hand tree. To simplify notation, let
associate a single non-zero coefficient . s, [j,/] in a one- o again use for ayy, y for zpy, andz for z(5. Since the

to-one manner. If the edge labels on the unique path frafymper of leaves is six, we deduce that, (z,y, 2) has six

i

the leaf to the root node are,...,ex then the non-zero terms, i.e.,
coefficient associated with the leafds, [j,!] = 1. 6

In certain cases (corresponding to all-zero polynomiaks) w hi1(z,y,2) = Zxaiy‘”zci,
want to define a “null” tree. This is a non-existent tree (and i=1

therefore no edges exist so all coefficients are zero). We Ysgare usingppy = 8, proy = 3 andpyy = 2,0 < a; < 7
the special symbot to denote the null tree. E.gT>; = * 0<b <2 and0 < ¢; < 1. Since the root nc?de hgs two

for the code specified in (8). ~ B adges, we deduce that these six terms are clustered into two
The number of ed_ge_s below levé{ of tree T, |nd|-_ sets of polynomials defined by = ¢» = 3 andes = c5 = c,
cates the number oflistinct powers ofz () that appear in s

hji(zpy, - .-, 7k)). Each node at levek” — 1 corresponds to
one of these terms. The number of edges below each of thé!y +x92y2 4 x93yPs) 21 4 (24 ybs 4295 ybs 4296 yb6) 204,

10

wherec; # c4. (Sincec; andcy are both binary, without loss The second sef is a set of lengthK vectors of coefficient
of generality we could set; = 0 andc¢, = 1 at this point.) indices

Now from the second level in the tree we deduce that the terms , ,)

in z¢1 group into two sets, one with two terms &g = bs. S = {slj1, L], slja, l2], - .., s[jan, L2a]} (33)
The same happens with the terms,zﬁﬂ.whergbg) :.bﬁ. This where, as implied by the notatiotijz, ;) € © for all #,1 <
tells us that the polynomials compatible with this tree have_ 2, and|S| = |O|. Furthermore,

the form
(vi) the kth coordinate si[j,!] of s[j,l] satisfies0 <

(™" + (2% 4+ 3)yP?) 2 4 (2™ + (2% + 2%0)y"®) 2, sklg 1] < ppp — 1 for all (4,1) € O,

(30) (vil) csj4, 1] € Cl4. 1] for all (4,1) € O, wherecg; 1[4, 1] is
wherec; # c4, by # ba, by # bs, a2 # a3 andas # ag (but, a compact notation fot,, ., [j,1].
e.g.,b1 = by is allowed). W (vii) if consecutive elements aP are identical, i.e.(j;, ;) =

One can now see that the topology of the unlabeled version (g1, lpr) for somet, 1 < ¢ < 2A, thens[j,, l,] #
of the trees of Fig. 6 specifies a family of HQC LDPC codes, of g, ., 1,,4].

which the code considered in Example 2, and specified in (25)The above definition generalizes those definitions made and

is one member. A.S th_e I_ast examplt_a_illustrat_es, many Qegr%es%d in Sections IV-A and IV-C for finding cycles in higher-
of freedom remain within the specm_ed family. I_n partlcuIa(Neight QC LDPC codes. In those sections the ordered set
these are the choice of the, b; andc; in (30), subject to the O and coefficient indicesS were first introduced and their

constraintsc; 7 ca,by # b, ..., a5 # ag. In the algorithms oo o teristics were described. For example®osee (15),

of Se(r:]tion ViIl, where wg maximiz]?fthe(jg;irth cl><f our codhes, w%gg, and (20), and for those & see (16), (17), and (21).
search among these degrees of freedom, keeping the co se examples illustrate the reasoning behind criteyia(§)

unlabeled tree structure fixed. d-n the definition above.

Finally, we note that in a non-hierarchical weight-I Q We now state the conditions for a length- path P —
LDPC code, the trees ifi are quite simple. Each is either 0,8} actually to correspond to lengths cycles in the
the null tree or a tree that consists of a single root node wi r’mer graph. Consider the following alternating sums, one
a single leaf below it. No leaf has a sibling so no constrain}gr eachk. 1 < k< K ’
are placed on the choice of edge labels. oo

2A
VI. CYCLES IN HIERARCHICAL QC LDPCCODES Xk] = Z(—l)tsk[jt, l]. (34)
We now state the necessary and sufficient conditions on the t=1

polynomial parity check matrix of an HQC LDPC code for thaps reflected in the following theorem, these sums are the
code to have a cycle of a particular length. These conditiogeneralization of the sum in (13) to HQC LDPC codes.
generalize those specified by Fossprielr in [27] for wengGI ~ Theorem 1:A path length2A path? = {0, S} through the
LDPC codes. They are also formalizations and genera|IZatIOK-VariateJ[K] x Ly polynomial parity check matrix matrix

of the examples we gave for higher-weight QC LDPC codes #(.) correspond to lengtBA cycles in the Tanner graph if
Section IV-B; the main important new requirement compareghd only if for everyk, 1 < k < K,

to those examples is that our cycles now need to be cycles at
all levels of the hierarchy simultaneously. ¥[k] mod ppy = 0. (35)

A. Finding cycles in HQC LDPC codes , i) u
i, u . y Proof: First consider the case whef¢ = 1, i.e., anon-
Wwe st.art by def|n|r_1g a pgth (or cand|qate cycle”) throuQHierarchical QC LDPC code for which (35) corresponds to
aK'Vf”‘r.'ate polynomial parity check matrix. . Fossorier's condition. Recall the logic of Section IV. Iristh
Definition 4: A Ien_gth-2A_ path 7 throu_gh aK—varlate setting if condition (35) isnot satisfied, then the column of
Jix) x L) polynomial parity check matrix matrii() of o polynomial parity check matrix from which the path orig-
an HQC LDPC code is specified by two se3,and, i.e., inates is distinct from the one on which the path terminates.
P _?hg?i’r‘sgt}éeto is an ordered series Since distinct columns of the polynomial parity check matri
correspond to distinct sets of variable nodes in the Tanner
O ={(,h),J2,12),(s,13), - ,(jer,l2a)} ~ (31) graph, this means that if (35) is not satisfied the path does no
correspond to a set of cycles.

such that e . . .
. _ In general, what condition (35) is helping us to understand i
(Eg ; < Je]_S Ji andl < iy < Ly forallt, 1 < < 24, whether, in the expanded parity check matrix atrlest lower
2A — J1

level the path through the polynomial parity check matrix
; B . corresponds to a set of path through the parity check matrix
(iv) It = lgy1 for t € Zoqa (0dd integers), that all correspond to cycles in the Tanner graph. In the case

V) |C[J:’] > 0 for all (5,1) € O’. _Nhere_ the seC[y, /] IS of a non-hierarchical QC LDPC code there is only one level
defined to be the set of coefficients in the polynomial 'Of expansion, from the polynomial parity check matrix to the
the jth row andith column ofH(-) that are non-zero: ’

parity check matrix. However, in an HQC LDPC code there
Cl3, 1] = {csy,...nlFs 1] t Csq,sc 19, 1] £ 0} (32) are multiple levels of expansion.

(iii) j: = jry1 for t € Zeven (EVEN integers),

11

Now consider HQC LDPC codes whefé > 1. Given any Selecting oute3[0, 0], ¢1[1,0], ¢7[1,5] and¢y[0, 5] means we
path consider whether condition (35) holds fo= K. If the choose
condition does not hold then, similar to Fossorier’s logie S=1{2,1,7,0}.
path through the parity-check matrix at the next lower lgvel
i.e., through the leve(# — 1) polynomial parity check matrix, We calculate the sum in (34) to be
will not start and end in the same column. In the hierarchical
setting each column at levél — 1 corresponds to a set of E1Jmod8=(-2+1-7+0)mod8=0, (36)
variable nodes. However, due to the way we expand out the)) _ _
parity-check matrix using Kronecker products in Definitiopn Wherepp) = 8 for this code. This example confirms, in the
the sets of variable nodes corresponding to distinct coum@eneral notation, the test for cycles in non-hierarchicél Q
of the levelk polynomial parity check matrix for any given -DPC codes already discussed in Sec. IV-A. _
are non-intersecting. A path that originates and termiate ~ NOW, consider the same cycle from the hierarchical per-
distinct subsets of the variable nodes cannot corresporad t§Pective. With respect to the two-level representatigm, y)
set of cycles. Thus, if (35) does not hold for= K, the path of (24) the same qycle through the Tanner graph corresponds
cannot correspond to a set of cycles. to the ordered series
On the other hand, if (35) is satisfied for= K then cycles _
may exist, depending on what happens at the lower levels. 0 =1{(0.0),(0,0), (0, 1), (0, 1)}-
Using the same argument we recurse doyvn the Igvels fra@w we have polynomials?+(z+27)y? andz7y+(1+2°)y?
k = K to k = 1. If there is anyk for which (35) is not hjch, respectively, are
satisfied then the path originates from and terminate andtst
variable nodes and therefore does not correspond to a set of ¢;[0,0] 2% + ¢1 2[0, 0] Y2 + ¢7.2[0,0] 27y?,
cycles. However, if (35) is satisfied for dll 1 < k& < K, then
the path originates and terminates on the same variable néé#éd
and cycles exists. [])) -
We immediately have the following theorem. c71[0, 1] 2% + co,2[0, 1 2y* + c6,2[0, 1] 2y
Theorem 2:A necessary and sufficient condition forf& 1he same cycles correspond to the coefficient indices
level hierarchical QC LDPC code to have girth at lexgt+1)
is the following. For all paths through the polynomial pgrit - 2 1 7 0
check matrix of length at mostA (path length at least four S = {{ 0 } ’ [2] ’ [1 } ’ { 2]} '

and at mosRA), condition (35) does not hold for at least one]] -
E1<k<K. m Note that the first sub-index of each coefficient corresponds

to the sub-index of the coefficients selected at the ond-leve
view. The alternating sums along the path are
B. Examples
Y[1Jmod8=(-2+1-74+0) mod8=10

We now give examples of two paths through the polynomial (2 mod 3 = (—0+2—1+2) mod3 =0

parity check matrix of the code of Example 2. In the first
we describe a path that corresponds to cycles through thgare

Tanner graph. We first consider the code as a QC LDR{ot \york out the example for the three-level representation

code (ignoring its hierarchical structure) and use Fosseri H(z,y, 2) of (25), we note that the ordered traversed by this

condition to verify the existence of cycles. We then 100k g cie would beo = {(0,0), (0, 0), (0,0), (0, 0)}. u

the same code from a hierarchical perspective to iIIustrateEXample 5: (Non-cycle in an HQC LDPC codéje now

Theorem 2. In the second example we consider a path thro Bvide an example of a path through(z,y) for which

the same code that does not correspond to a cycle through ﬂ — 0 modpy, but (2] # 0 modpyy. Let ’the ordered set

Tanner graph. L be0 ={(0,0),(1,0),(1,1),(0,1)}. of (24) be(0.0), (1,0),
Example 4: (Cycle in an HQC LDPC cod€pnsider again (1,1), (0,1). This corresponds to polynomia8+ (z+27)y?,

the polynomial parity check matricebl(z) and H(x,y), 2Ty + (1+2%)y2, 22+ (x+27)y?, andaTy + (1 +25)y2. We

respectively specified in (23) and (24). First consider the-n gqjact the set of set coefficient indices to be

hierarchical description of the code specifiedHby). A cycle

of length-four exists traversing the path= {O, S} where S H 2 } [6] [2 } { 6]}

0 2 0 2
O:{(050)7(150)7(155)7(035)} . .
from which we can verify thak[1] = 0 mod 8 but X[2] #
This corresponds to, in order, the four polynomials 0 mod 3. Hence while condition (35) holds at level one, it does
not hold at level two. Referring to the expandédz) in (23)

pp = 8 andppp = 3 for this code. While we do

2

x , = [0,0]z, ; one can confirm this conclusion using the logic of Sec. IV-A.
T = c1[1,0] z cr[1,0] 2", In particular, z% is located in the sixth column of the first
o= cr[1, 5] T . row of H(z), while the polynomialk:® traversed by the path
1+a2% = co[0,5]2° 4 ¢[0, 5] 2°. is located in the fifth column of the fifth row dfi(z). m

12

according to our discussion, the code must contain six sycle
Without loss of generality, let such a tree be located in row
j and columnl of the parity check matrixH(z,y). The
polynomial has the form

xa1yA1 +xa2yA2 _,’_xasyAs_
As discussed above, choose the ordered s&€i¢s be

0= {(jvl)v (jal)a (jvl)v (jal)a (jvl)v (]al)} (37)

and the ordered set of coefficient vectors to be

(R R R -

Fig. 7. The labeled trees in a restricted two-level HQC LDR@ecwill all Cycles inevitably exist because
have two levels, with each node at the bottom level havingtex@ne leaf

below it. (—a1 +a2 —az+a; —az +az) mod py; =0,
(—A1+ Ay — As+ A1 — Ay + A3) mod P =0,
C. Inevitable cycles in HQC LDPC codes regardless of the values of the coefficients opgf or p;. B

i o Example 7: (Inevitable length-eight cycle in HQC LDPC
Since HQC LDPC codes are a generalization of QC LDPGygesiNow suppose that the parity check matrix of a restricted
codes, they also have inevitable cycles. In this section Wgq. jevel HQC LDPC code contains two labeled trees in the
describe how the logic and results of Sec. IV-C regarding,me row or column where both trees are similar to the one
inevitable cycles extend to HQC LDPC codes. We '”UStraﬁ‘epicted in Fig. 7, but with only two leaves each.
the logic for specific examples of HQC LDPC codes that we Suppose that the two weight-two polynomials are in

will use in our design pipeline presented in Sec. VIII. the same rowj but in two different columnsl, and ls.
Recall that in Sec. IV-C we discussed two classes @bt the polynomial at(j,l;) be z%y4 + z®y4 and

inevitable cycles. We first saw that there will inevitably bt the polynomial at(j,l;) be z'1yB2 + zb2yP2. Con-

cycles of length six in any weight-lll QC LDPC code. Wesider the same ordered series as in (20), i®., =
also saw that the code will have eight-cycles if the polyruimi{(j W), (G, 1), G, 12), G, 1), G, 1), (G, 1), (G, 1), (G, 1)}, and
parity check matrixH(-) of a weight-Il QC LDPC code chgpse the ordered set of coefficient indices to be

contains two weight-two polynomials in any row or in any ” as by by as a by by
column. S = {[AJ’ [AJ’ [Bl]’ {BJ’ [Az}’ [AJ’ [32]7 [Bl](jg'

We analogously find that there will inevitably be cycles of
length six for an HQC LDPC code if any labeled tr#&,; Eight cycles are inevitable because
in the tree matrix defining the code h#wee leavesThere
will inevitably be eight-cycles if, in any row or in any colum (mar+az—bi+b2—az+ar—by+b1) modpp; =0,
of the matrix of labeled trees defining the HQC LDPC code, (—=A1+As—Bi+Bo—As+ A1 —By+B1) modppy = 0,
there is gpair of labeled treewoth having two leaves regardless of the values of the coefficients opgf or pjy. B
The logic behind these statements is almost identical to the
earlier case. We describe it completely for the first sitrati VIl. M AXIMIZING THE GIRTH OF QC LDPCcCODES
We pick a length-six ordered serig3 equal to (18), i.e., In this section we present the ideas behind our girth-
O = {0, 0, .0, G0, (,10), (4,1}, where (4,1) is maximizing algorithms for QC LDPC and for HQC LDPC
the index of the labeled tred';; that has three leaves.codes. The latter is a generalization of the former. These
Let the three lengths coefficient vectors correspond to thealgorithms can rid the codes of all non-inevitable cycles.
three leaves ba,, sy, s. and select the coefficient s& = In Sec. VIII we will describe a secondary procedure for
{Sa,Sb,5¢, 84,8, 8. }. Then, because each element is both aidding the codes of their inevitable cycles. As the details
even and an odd element of the set, (35) is satisfied for éyeryof the algorithms are somewhat involved, we choose only to
just as it was in the QC LDPC example of (19). The logic foflescribe the basic ideas in the main text, and defer to the
automatic eight-cycles follows from the analogous extmsi appendices the details. The overall algorithms are destiib
of the choices made in (20) and (21). Appendix X-A while in Appendices X-B—X-D we describe the
We now illustrate these points about inevitable cycles f@ubroutines that contain much of the computational conifylex
a subclass of two-level HQC LDPC codes that are describgghd descriptive intricacies).
solely by labeled trees with weight-one at the bottom level. In Section VII-A we describe the general idea of the
That is, none of the leaves of the trees have siblings. éhgorithms, which applies both to QC and to HQC LDPC
Sec. VIII-A we name such codesgstricted two-level HQC codes. Then, in Section VII-B we give more detail for the
LDPC codesAn example of such a tree is given in Fig. 7 case of weight-l QC LDPC codes. The discussion of the
Example 6: (Inevitable length-six cycle in HQC LDPQ@eneralization to HQC LDPC codes (which includes higher-
codes)First consider any code containing a tree of the typgeight QC LDPC codes as a special case) is deferred to the
illustrated in Fig. 7. This code has three leaves and sappendices.

13

A. Girth maximization using hill climbing of each length that results from each possible choicezfor

The general idea of our algorithm (for both QC and HQGNe weight vectow = [wy, ws, - - -, wy/>—1] defines the cost
LDPC codes) is as follows. We start by specify the desireal trinction, wherew, is the cost assigned to each length-
topology of the code by specifying a set|f| unlabeledrees. cycles. o _
We initialize our algorithm with a code chosen randomly from It is useful to visualize the set of cost vectors as a matrix
the ensemble of codes that have the desired tree topology. T8f vectors. For example, a regulg, 6) LDPC code can be
means that we randomly assign labels to the tfEesubject 'ePresented as

to the constraints that sibling edges must have distinal$ab I'ii Tie This Ty Ths Thig
Our algorithm iteratively updates a sequence of edge labels Iy1 Tao Tag Tay Tas Tag |- (41)
At each iteration it changes the single edge label to theevalu 31 Ts32 Ts3 T34 T35 Tse

that effects the greatest reduction in a cost function. Tost ¢
function we use depends on the number of cycles n the U CRttors are calculated via the following argument. We atersi
code that have length less than the desired girth. Shor}%r : -

. e set of all possible and distinct lengtiA- paths per Def. 4,
cycles are weighted to be more costly than longer cycles.
The algorithm terminates when either (a) the current values™
of all coefficients give zero cost (and thus the code has thePy = {P} = {0, S} s.t.|0| = |S| = 2A for all P € Py,
desired girth), or (b) when we can no longer change any single , .
coefficient to a value that further reduces the cost (andtﬂmusgilor A=1,. ,9/2. For each pa”?’ € Pa a_n(_j eqcr(jt, h) €

. we consider the corresponding coefficied;, ;] € S.
number of undesired cycles). When the tree topology of the . I - _ ,
. . - L . ssuming all othedistinct coefficientss[j,,l/] for ¢/ # ¢
code implies the existence of inevitable cycles (b) will ays , -)
. L g re kept fixed we note the “guilty” value(s) efj:,!:] to be
be the stopping criterion. Updates are performed subjectioe aluez 0 < » < 1 such that ifsl, 1,] were chanaed
the sibling constraint on edge labels. This preserves the ghe valuez, 0 < z < p—1, su "?[J‘f’ i W 9
to z, then condition (35) would be satisfied. In other words, a
topology of the code and thus, e.g., the protograph strectur

of the code is an invariant under the updates. We note tha?yqile would result. L
X . o . or example, for a potential six-cycle, we know that a cycle
change in a single edge label will, in general, have a trickle

will exist if and only if —s[j1,l1] + s[j2,l2] — s[Js,ls] +

down effect on a number of code coefficients (equal to th@. Ls]— s[js, Is]+5[je. Is] modp — 0. Suppose, for example
number of leaves in the tree that are a descendent of tfgf ‘4~ °LJ5,'5177 516, %6 p=1. SUppose, for pie.
at the current summed value ofs[j,l1] + s[jo,l2] —

edge). in i - i o 18173, ls] + slja, lu] — s[5, Is] + s[je, ls] mod p is equal to
The main challenge in implementing the algorithm lies in*’*’ e Y oo , .
. ; one. Then, the guilty values fafj1,11], s[js, 3], ands[js, I5]
book-keeping: tracking how many cycles of each length the : k
current code contains, and what the resulting number ogsyc O.UId be one Iess'than th?‘” respectlvg current values, #nd t
will be if each edge label is changed to each of its othQilty values fors[jz, lo], s[ja, L], ands[je, ls] would be one
possible value. The calculation becomes particularly lire@ greater than their respective current values.

when one searches for codes of gitth (which is the largest Computing “guilty” values is relatively uncomplicated for

:) :) aths consisting oRA distinct elements. It becomes more
girth for which we have so far implemented our algorlthmg . .
omplicated if some elements of the path appear more than

because of the many possible ways that eight-cycles can fOr()nﬂce. This can occur in potential eight-cycles and occugs, e
in the second example of Fig. 3. In such cases, we must
B. Girth maximizing algorithm for QC LDPC codes keep in mind that when such coefficients are changed, the
In this section we present the main algorithmic ideas @ontribution to alternating sum can double, triple (e.g.the
the simplified setting of weight-l QC LDPC codes. Thidength-12 cycle of Fig. 3 because the path passes through
simplification also reduces notation. For the duration af theach sub-matrix three times), or contribute even more times
section, we sep;;) = p, Lyy) = L, Ju) = J. Further, path Alternately, repeated elements can also cancel (if thegrent
elements are scalars sfg, /] = s[j,1]. In a weight-l QC LDPC modulated by both+1 and —1), not contributing at all to
each treeT;; has a single edge and|[j,!] # 0 for at most the sum. We deal with this complexity in Appendix X-B
one value ofs (if T,; = = thencs[j,1] = 0 for all s). The set by defining the “multiplicity” » of a path element; used
of other possible edge labels are the setzpf) < » < p—1, in the cost calculating algorithms subsequently specified i
such thatz # s (there are no sibling edges so there are ndppendices X-C and X-D.
further constraints on the choice of.
We now define a set of cost vectors, each of which tracks the VIII. D ESIGN PIPELINE FOR HIGHGIRTH QC LDPC
cost (in terms of the weighted sum of the number of cycles) of CODES
changing any edge label to each of its other possible valuesin this section we describe our design procedure for high-
In particular, for each edge in eady; # = we define girth QC LDPC codes. We want to be able to map any in-
(40) teresting protograph into a high-girth QC code. As mentibne
earlier, the protographs that motivate us have multipleeedg
whereT'; ;(z) is the cost we pay for assigning[j,{] = 1 for between variable types and check nodes (such as those shown
each value ot for 0 < z < p—1. If the desired code girthig in Fig. 5) and thus QC LDPC codes created from them using
then the cost’;; is a linear function of the number of cyclesa direct transformation would suffer from inevitable cycle

given a parity check matrikl and desired girtly, the cost

L= [0, 5 Yp—1),

14

In this section we show how to map such a protograph intoatrix H(z) whose polynomial entries had weight equal to
an “inflated” HQC LDPC code structure, on which we can usghe entries in the connectivity matrix. A completely analo-
the girth maximizing algorithm of Sec. VIl to remove all nongous direct transformation exists for converting protpisa
inevitable cycles. We then show how the resulting HQC LDPidto restricted two-level HQC LDPC codes. One replaces
codes can be “squashed” down to yield a non-hierarchical Q& connectivity matrix with a bi-variate polynomial parit
LDPC code which no longer contains the inevitable cycles actieck matrixH (z, y) whose polynomial entries each have the
which is a member of the family of codes described by ouestricted form of (42) and have weight equal to the entries i
protograph. The subclass of HQC LDPC codes with with wie connectivity matrix.
work are therestricted two-level HQC LDPC codealready For example, the connectivity matrix corresponding to the

mentioned briefly in the examples of Sec. VI-C. protograph depicted in Fig. 1 is
The outline of the section is as follows. In Sec. VIII-A
we fully define the class of restricted two-level HQC LDPC 1 11
codes. In Sec. VIII-B we show how to directly transform any ¢= { 0 1 2] ' (43)

protograph into such a code. In Sec. VIII-C, we describe the

squashing procedure, and finally in Sec. VIII-D, we explaiithis matrix is directly transformed into a two-level rested
the full design pipeline, including “inflating” the connasty HQC LDPC code with polynomial parity check matrix
matrix corresponding to the protograph, directly transfioig

the inflated connectivity matrix into a family of restrictesio- (2,y) = ziyt 2byP zcy©
level HQC LDPC codes, maximizing the girth over that family, Y 0 zlyl zeyf 4+ 2fyF
and squashing the resulting HQC LDPC code.

| @

wherea, b, ¢, d, e, and f are integer exponents betweén

A. Restricted two-level HQC LDPC codes andp) —1, and4, B, C, D, E, andF' are integer exponents

. T . . ., between0 and — 1 that satisfyF # F.
As “restricted two-level” implies, the hierarchy in rested P2 VE #

two-level HQC LDPC codes has only two levels. The addi-
tional “restriction” is that the weight of the first (lowedével
must be one. In terms of the tree structure description afethe

codes, the labeled trees will all have a form like that shawn i gacause restricted two-level HQC LDPC codes are weight-|
Fig. 7, with the nodes at the bottom level each having exacly the Jowest level, they can also be considered weight-l QC
one leaf, i.e., leafs have no siblings. In comparison, tia@ee | ppc codes, and can therefore be described in terms of their
leaves in left-hand tree of Fig. 6 that_do have siblings. Modg45e matrix.? In this section we develop a technique that
at the second level can have an arbitrary number of edgesge|ectively removes rows or columns from the base matrix
The fact that these codes have two levels means that they §&8cribing a restricted two-level HQC LDPC code in a way
described by a polynomial parity check matrix in two dummyat eliminates all inevitable six- and eight-cycles frofe t

variablesH(z, y). The restriction to the lowest level haVingcorresponding Tanner graphs of the code. There are two
weight one means that any weightpolynomial in the matrix ngerlying assumptions in this section. First, that via rthgi
H(z,y) must have the form maximization procedure the base matrix entries involveaha
gy 4 g0y g gy Ae (42) already been optimized to eliminate all non-inevitableleyc
Second, we concentrate on restricted two-level HQC LDPC
where all theA; exponents must be distinct. As usual, thgpdes wherey;) = 4, which implies that the base matrix is
exponents are integers which range betweamdpp;; —1 for - composed of circulant sub-matrices of size four by four.

the z exponents and andpjy — 1 for the y exponents. There are two situations we will want to consider. Respec-

Because the weight at the lowest level is restricted {01y they will correspond to Ex. 6 and 7 of Sec. VI-C. The
be one, these codes, when described as standard QC LOFEconnection to these examples will only become clear in

codes, look like weight-1 QC LDPC codes, whose base matfige next section, when we explain our “inflation” procedure,
is composed of circulant sub-matrices of sigg by pj2). \hich has the effect of placing pairs of similarly structiire

In [29] Smarandache and Vontobel briefly introduce a further | by four sub-matrices on top of each other (or besides
restricted class of such QC LDPC codes (they also requirgd.p, other).

that the codes be weight-Il at the second level and that
pr2) = 2) which they term “type-I QC codes based on doubl
covers of type-ll QC codes.”

. Squashing sets of trees to eliminate inevitable cycles

The first situation involves a polynomial of weight 3 in the
eﬁolynomial parity check matri(x,y), which after inflation
will be converted into two polynomials of weight 3, e.g.,
) . . hi1(z,y) and ho 1(z,y), with identicaly exponents, in the
B. Transforming protographs into Restricted Two-Level HQGgme column of the polynomial parity check matrix. Assuming
LDPC Codes a restricted two-level code withiy) = 4, the corresponding
Recall that in Sec. Ill, we introduce a “direct transformasub-matrices in the base matrix would respectively lookesom
tion” to convert a protograph into an ordinary QC LDPC code.
The direct transformation replaces the connectivity matri 1geca) from Sec. If that the base matrix is the matrix of pawef the
equivalent to the protograph with a polynomial parity checkolynomial parity check matrix expressed in a single dumrasiable.

thing like

where we recall that-1 represents they;; x py;; all-zeros

matrix.

a b
-1 a
c -1
b c
d e
-1 d
f -1
e f

SO

S|

QU O

-1

QO

—_

3

(45)

15

(i) Any inevitable eight-cycles between a pair of polynaisi
of the form z®y41 + z%2y42 and 2b1yBr 4 zb2yB2
located in the same row (column) of the polynomial parity
check matrix traverses three distinct rows (columns) of
the corresponding base matrix. []

Now, consider the squashing of the matrices in (45) into the
matrix in (47). Note that the latter matrix has ortlyo rows
from each of the matrices in (45). However, by Lemma 2-(i)
all inevitable cycles pass through three rows. Therefdre, t
matrix in (47) does not contain any inevitable six-cycles.

Next, consider the squashing of the matrices in (46) into
the matrices in (48). First we a show that the squashing

The second situation involves four polynomials of weightrocedure eliminate the automatic cycles between pairs of
2 arranged rectilinearly, e.gb; 1(z,y), he1(x,y), h12(z,y)
and ha »(, y),. Furthermore, after inflation, theg exponents same row of the polynomial parity check matrix. This follows
of the polynomials in the same column will have the sam@om Lemma 2-(ii) which tells us that these eight-cycles
exponents, so that the corresponding sub-matrices woald laraverse three distinct rows, because only two rows of ech o

something like

a b
-1 a
-1 -1
| b -1
" s
-1 e
-1 -1
L 5o

-1 -1
b -1
a b
-1 a |
-1 -1
f -1
e f
-1 e |

-1
-1
d

c

-1

-1
h
g

c

-1

-1
d

)
-1
-1

h

d
c
-1
-1

h

g
-1
-1

-1

d
c
-1

—1 7

h

g
-1

(46)

matrices arising from pairs of weight-2 polynomials on the

the matrices is retained. Next consider the inevitable esycl
between pairs of matrices arising from pairs of weight-2
polynomials in the same column of the polynomial parity
check matrix. Since we squash vertically, parts of all colam
of the base matrix are retained. However, if one examinep (48
one sees that the second and fourth columns of the left-
hand matrix only includes contributions from the upper-left
hand and bottom-left-hand matrices of (46), respectivEte
remaining inevitable cycles from (46) therefore cannotlide
these columns. But, that leaves only two columns in the left-
hand matrix and by Lemma 2-(ii) we know that these in-

By the results of Sec. VI-C the first situation contains sixevitable cycles require three columns. Therefore the tabig
cycles within each sub-matrix and the second situation cogycles have been eliminated. The same logic holds for the
tains inevitable eight-cycles between the pair of sub-ivedr right-hand side of (48).
in each row and in each column. We argue that if we “squash”Note that for the above logic regarding eight-cycles to hold
the two matrices in the first example—by stacking the first twio is important that the;-exponents of the two matrices to be

rows of the upper matrix on the last two rows of the lowesquashed together (those in the same column) are the same.
matrix—then the matrix produced

a b
-1 a
f -1
e f

c
b
d

-1

-1

e

d

(47)

Thus, e.g..Ty,; T2 correspond to any two polynomials of
the form 2%y? + 2by® and z¢y* + 27yB. Note also that

the same squashing procedure would work in the horizontal
direction as long as the matrices on the same row have the

samey-exponents. The logic is the same with the argument
for rows and columns reversed.

contains no six-cycles. Similar if we squash the matrices in
the second example then the resulting pair of matrices

d

a b
-1 a
-1 -1
f -1

-1
b

-1

~1
~1
f

e

contains no eight-cycles.

Since by assumption there were no non-inevitable sigrotograph and code parametgy; (our procedure assumes
or eight-cycles between the original matrices, to show opf,; = 4). We first map the protograph into a connectivity
assertion we need solely to demonstrate that the squashimatrix, cf. (43). Depending on the weight and relative loca-
procedure removes all inevitable cycles. We argue thisthasins of the entries in the connectivity matrix, we “inflate”
on the following lemma, proved in Appendix X-E.

Lemma 2:

-1
-1
h
g

c

-1

-1
h

c
-1
-1

-1
d

-1

D. Design procedure for high-girth codes
We now turn to demonstrating how to construct a weight-|

(48) QC LDPC code that does not have any six-cycles or eight-

cycles. We first sketch the procedure, depicted in Fig. 8 and

then illustrate the details with a worked design example.

Roughly speaking the procedure will start with a desired

the connectivity matrix. We then use the direct mapping of
Sec. VIII-B to produce a polynomial parity check matrix for

(i) Any inevitable six-cycle within a polynomial of the form a restricted two-level HQC LDPC code. Next, using our max
ryA 4 go2yAz 4 sy 43 traverses three distinct rowsgirth algorithm we eliminate all non-inevitable six- andjlkei-
and three distinct columns of the corresponding basgcles. Finally, we use the squashing procedure of Sec-(Ill

matrix.

to eliminate inevitable cycles. Of course, the way in whiah w

16

%3 £ - C” into the polynomial parity check matrik” (z,y) for a

= 9 = two-level restricted HQC LDPC code withp = 4. We

IS Q = o @ | code perform this transformation under one additional restrict

(G g N

- ‘E - = - S - = - = . The restnc_tlon is thqt thg exponents in pairs of dluphcated
= = S 5 n rows or pairs of duplicated columns must be identical to each
%’ Q — -’D= s = other. The value opy;; is left as a design parameter.
= S < = Example 8 (continued)he inflated connectivity matrig”’
= © is directly transformed into a polynomial parity check matr

, . o _ H” (x,y), yielding the form
Fig. 8. The design procedure to produce high-girth codes. ifputs are a

protograph and the dimension of the first-level circulantrives. The output y z‘fyA+zf’yB+szC zlyP+zy? zfyP4a9y? Myt
is a weight-l QC LDPC code. H" (z,y) = | 2y* +27yB+2yC 2lyP+2my® a"yP +2°y" zPy¥
0 quQJrITyR IsyQJrItyR Iqu

_)) Notice that they exponents in the first and second row and

inflate the code must be compatible with the way we squaﬁp the second and third columns of this matrix have been

the code to produce a valid parity check matrix that meets e icted to be identical to each other. Otherwise, all the

parameters of interest. It should be emphasized that thGO-Dgxponents are free parameters that satisfy a; < pp; — 1

code resulting from this procedure will be a QC LDPC ang, any z exponenta; and0 < A; < pp — 1 = 3 for any y

not ahierarchical QC LDPC code, although the final StrucmreexponentAi. - - -

will be quite similar to that of an HQC LDPC code. o L.
1) Inflate connectivity matrix: As indicated, the procedure) Maximize the code’s girth: In the next step we apply

first produces the connectivity matrik' of the protograph, the g]:rth-maX|m|zat|on dalgorlthm ofsiec. \ﬂl ;0 prodt:}ce a
which we assume has no entries greater than 3. (We makeSfb © x-e_xponentmi an y-expongnt i Suc that no S! ort
cles exist except those that are inevitable. Of coursehilh

effort here to deal with inevitable cycles caused by weightg™~"~") L)
greater than 3). The “inflation” procedure works as follows imbing algorithm of Sec. VIl is just one possible approach
Other algorithms could be used in its place. The polynomial

We fist mark for duplication each row of the matrix with two~ " heck Y btained in thi b
or more elements of value 2 or greater or a single elementRfTIYY-check matrix{”(z, y) obtained in this manner can be
nverted into an equivalent base mai% for a weight-1 QC

value 3. We also mark for duplication each column that h&§
%)PC code.

two or more elements of value 2 or greater. Then we infla . o , .
C to produce a new connectivity matrix’ in which each Example 8 (continued)Jsing our girth-maximizing algo-

of the rows inC marked for duplication are duplicated. weithm, we find that W'thl_’[ll o 200 th? following ch(_)lces for
then inflate again to produc®”’ from ¢’ by duplicating each 1€ ¢ @ndy exponents iH"(z, y) will create no six-cycles
of the marked columns. As will be evident when we get t8" €ight-cycles except for inevitable short cycles:
squashing, we must track in the matria@s and C”" which mlijlﬂfiyzﬂ“sya w11816y22+111281%y% Tyt yf

rows and columns are duplicated versions of each other. Thel * v X

xT
03yt 4a150y> +a®8y3 p180y2 4188y 5224403 o
following example illustrates the inflating procedure.

100,,0 , 1041 118‘7y0+150:y1
Example 8:Suppose we start with a protograph that has thide code with the above polynomial parity check matrix is
connectivity matrix equivalent to a standard weight-l QC LDPC code with base

matrix B” given by

3 2 1

C = . (49) -1128 69 118 -1 —1 11 121 —1 —1 170 109 —1 —1 —1 38 7

0 2 1 118 —1 128 69 121 —1 —1 11 109 —1 —1 170 38 —1 —1 —1

. . . o . . 69 118 —1 128 11 121 —1 —1 170109 —1 —1 —1 38 —1 —1

The first row in this connectivity matrix contains an element| 128 69 118 —1 —1 11 121 —1 —1 170109 —1 —1 —1 38 —1
. —1 63 156 38 —1 —1 186183 —1 —1 52 146 —1 —1 —1 43
with value 3 (and also two elements of value 2 or greater), Sp 38 —1 63 156 183 —1 —1 186 146 —1 —1 52 43 —1 —1 —1
. . —1 1 1 -1 —1 52 146 —1 —1 —1 43 —1 —1
we mark it, and we also mark the second column because |itey 1o5 35 05 o0 156 185 —1 21 55 146 —1 -1 3 13 -1
H H { 7 -1 -1 -1 -1 100104 —1 —1 187 50 —1 —1 —1 59 —1 —1

has two elements with value 2 or greater. Duplicating the firs| =7 =7 =7 =7 ™V 1600 104 21 =1 187 50 —1 —1 -1 50 —1
row, we obtain -1 -1 -1 -1 -1 —1 100104 —1 —1 187 50 —1 —1 —1 59

3 1170U2+I109 38, 3
43

T YOtz y 59

3 9 1 L—-1 -1 -1 —-1104 -1 —1 100 50 —1 —1 187 59 —1 —1 —1d
(52)
C'=13 21/, (50) Notice that the base matr&” is composed of by 4 circulant
0 2 1 sub-matrices. [
Now duplicating the second column, we obtain the inflated 4) Squash the base matrix to remove inevitable cycles:
connectivity matrix We now have a base matr&’ corresponding to the inflated

connectivity matrixC”'. The next steps in our procedure will
(51) remove columns and rows fro” to obtain a base matrix

corresponding to our original connectivity matkix

First, we note that each column of the connectivity matrix
In C”, the first and second rows, and also the second and third corresponds to four columns in the base maBi% In
columns, are tracked as duplicated versions of each otler.ihe next step of our procedure, we focus on the columns that
2) Directly transformation C” into H”(z,y): Next we have been marked as duplicates(ifi. We retain the left two

make a direct transformation of the inflated connectivitynma columns and remove the right two columnsBf from the

17

four that correspond to the left column of a duplicated pair where then; parameters are arbitrary, would also be a member

C”, and also remove the left two columns but retain the riglof the class defined by our protograph.

two columns inB” from the four that correspond to the right So the question might be raised, why not simply try to

column of a duplicated pair i©”’. We call the thinned-out
base matrix that is obtained from this procedBfe

find suitable parameters for a weight-l QC LDPC defined
by a base matrix like that in equation (53) directly, instead

Example 8 (continued)Recall that the second and thirdof using the squashing procedure? This question will be
columns of C” given in equation (51) have been marked asnswered in more detail in Section 1X, but the short answer

duplicates of each other. So to obt@hfrom the base matrix

is that the squashing procedure is more practical because it

B” given in equation (52), we retain the left two columns fronenforces useful additional structure in the base matriet tans
the second four iB’, and the right two columns from the thirdnormally involves far fewer parameters for the hill-climpi

four in B’, so thatB’ is given by

r—1128 69 118 —1 —1 170 109 —1 —1 —1 38 7
118 —1 128 69 121 —1 —1 170 38 —1 —1 —1

69 118 —1 128 11 121 —1 —1 —1 38 —1 —1

128 69 118 —1 —1 11 109 —1 —1 —1 38 -1

—1 63 156 38 —1 —1 52 146 —1 —1 —1 43

B/ _ 38 —1 63 156 183 —1 —1 52 43 —1 -1 —1
— | 156 38 —1 63 186 183 —1 —1 —1 43 -1 —1
63 156 38 —1 —1 186 146 —1 —1 —1 43 —1

-1 -1 -1 -1 100104 -1 -1 =1 59 -1 —1

-1 -1 -1 -1 -1100 50 -1 -1 —1 59 —1

-1 -1 -1 -1 -1 —-1187 50 —1 -1 —1 59
L-1 -1 -1 -1 104 -1 —1 187 59 —1 —1 —14

algorithm to optimize. When one tries to optimize over more
parameters, there is a greater chance that the hill-clighbin
algorithms will get stuck in an unfortunate local optimum.

IX. NUMERICAL RESULTS

In this section we present a set of numerical results illus-
trating our design methodology and associated performance
results. In Sec. IX-A we present performance results for a
pair of girth-10 one-sided spatially-coupled codes andman®

them to those of girth-6 codes. In Sec. IX-B we give a sense
of the effectiveness of the hill-climbing approach to girth
maximization. We do this by comparing the time required to
ihd a code of a certain girth by hill-climbing and by the guess
d-test algorithm [27]. Finally, in Sec. IX-C we demonsdra

from the four that correspond to the top row in a duplicate . .)
L . the effectiveness of the squashing procedure by compawing t
pair in C’, and we retain the bottom two rows Bf from the .
%ther candidate approaches.

four that correspond to the bottom row of a duplicated pair i
C’. We call the base matrix obtained by this further thinning-
out procedureB; this is the base matrix that will correspondy. performance of girth-10 QC LDPC codes

to our original connectivity matrixC. . . .
Example 8 (continued)The first and second rows f’ In this section we present word-error-rate (WER) and bit-
or-rate (BER) results for a pair of girth-10 one-sided

given in equation (50) have been marked as duplicates. TRE"
means that we should retain the top two rows of the first grogpatially-coupled codes. We plot analogous results fahdir

of four rows fromB’, and the bottom two rows from the secon§®des for comparison. The first code is a raté length-
group of four rows. Thus, we obtain 8000 QC LDPC code. The protograph structure of the code

198 60 118 —1 —1 170 109 —1 —1 @s a lengthened version of t_he one depicted in Fig. 5(a). As
118 —1 128 69 121 —1 —1 170 in that protograph, each variable has degree three and check

P T T, nodes have degree six, four or two. The protograph of the
—1100 104 —1 —1 code we present has 20 variable nodes and 11 check nodes

(in contrast the protograph in Fig. 5(a) has 14 variable and 8

-1 —1 100 50 -1
-1 -1 —1 187 50
) -] . . check nodes). In other wordSp;; = 20 and Jjz; = 11. The
Notice that the code defined by the final base malirils connectivity matrix of the code is

—1 104 —1 —1 187
not a hierarchical QC LDPC code, because that base matrix

Now note that each row in the connectivity matr¥’
corresponds to four rows in the base mat@ In the final
step of our procedure, we focus on the rows that have b
marked as duplicates i6’. We retain the top two rows iB’

-1
-1
-1
43

38
-1
-1
-1
-1 -1
59 —1
—1 59
-1 -1

—1
-1
—1

-1
-1
-1
-1

-1
-1
-1

-1 59

is constructed from 4 by 4 sub-matrices that are not cir¢ulan 11990000000000000000
Still, the code is a member of the class defined by the original G61111996606000000000
protograph. In our example, each group of four rows and four C, = 00000011112900000000
columns in the base matrix defines a type of check or bit. So 000000008611113%808080
in our example, from the structure &, each check of the 00000000000000111197

000000000000O0O00O00O00O01122

first type will be connected to three bits of the first type, and
two bits of the second type, and so on, just as required by tBettingpz; = 4 and using our design approach (girth maxi-

protograph.

mization and squashing) we found a girth 10 QC LDPC code

In fact, any code defined by a base matrix of a form similavith p;;; = 100. The code length g5 x ppa) X ppj = 8000

to our B, for example of the form

—1 a1 az asg
ar —1 ag ag
a1z a14 —1 ais
aig a2 @21 —1

B =

-1 —1 a4 as —1

aio -1 -1 ail
aie ai7 -1 -1
-1 az2 a23 -1

aiz
-1
-1

-1
-1
aig
-1

—1 ae

-1
-1
a24

-1
-1
-1

(53)

and its base matrixB;, is specified in App. X-F.

The second code is a rat¢3 length24000 QC LDPC code.
The protograph structure of the second code is a shortened
version of the structure depicted in Fig. 5(b). As in that

-1 -1 -1 -1 -1 -1 -1 -1 -1 |> - .
T e e T 1Y e 1 protograph the variables are all of degree four. There are si
-1 -1 -1 -1 =1 —1 a31 az2 —1 —1 —1 as: H i _ _
T101 0 Doy 1o 11 variable nodes and four check node, ifgy = 6 and.Jjy) = 4

18

(in contrast the protograph in Fig. 5(b) has 14 variable and 8In all cases, we plot the WER and BER as a function of
check nodes). The connectivity matrix of the code

Cy =

e

1
1
1
1

0 0 0O
1 0 0
1

X (54)
3 3

1
11
2 2

the signal-to-noise ratio (SNR), using the Gallager-B ditg
algorithm [1] running for a maximum oR00 iterations to
guarantee the convergence of decoding. While there is a
significant difference between the error rates of a standard
sum-product decoder and Gallager-B, the performance drend
of Gallager-B and sum-product are mostly quite similar.tTha

Again we usepjy; = 4 and find a girth 10 QC LDPC code with said, computational complexity is our main reason to plot
p1; = 1000. This code’s length ii[Q] X pp21 X ppiy = 24000.
The base matrixBs, of this code is also specified in App. X-F.of Gallager-B occurs at a higher WER and thus is easier to
In F|gs 9 and 10 we p|ot the respective error rate perf(ﬁ.ttain. In addition, the Gallager-B algorithm runs Veryt.fas
mance for the two codes on the binary symmetric channEhis further helps to collect useful statistics about theorer
(BSC). For purposes of comparison we plot analogous restflor regime.
for three randomly generated girth-6 QC LDPC codes. Theseln the plots the SNRs are calculated assuming that the
codes have the same length, same rate, and same non-B&G results from hard-decision demodulation of a binary
positions in the base matrix as the girth-10 codes to whigthase-shift keying (BPSKX1 sequence transmitted over an

they are compared.

WER/BER

—8— WER @6 codel
—#— WER g6 code2
—p— WER g6 code3

_g || "©—WER g10 code
10 " - =-BER g6 codel
- # - BER g6 code2
- - BER g6 code3
-© -BER g10 code

4.5 5 55

6 6.5 7
Eb/No (dB)

Fig. 9. Word- and bit-error rate plots for the rdtet5, length8000 girth-6

and girth-10 QC LDPC codes.

=
(=)
T

WER/BER

!
o

=
o

—8— WER g6 coded] :
—#— WER g6 code5
—p— WER g6 code6
_g || —©—WER g10 code
10 f-m-BER g6 code4
- # - BER g6 code5
- p- BER g6 code6
-©-BER g10 code

-10

8.4 8.5 8.6 8.7

88 89 9
Eb/No (dB)

Fig. 10. Word- and bit-error rate plots for the raté3, length24000 girth-6

and girth-10 QC LDPC codes.

results for Gallager-B rather than sum-product. The eromrfl

additive white Gaussian noise (AWGN) channel. The re-
sulting relation between the crossover probabijityof the
equivalent BSGy and the SNR of the AWGN channel is
p=0Q (\/2R- 105NR/10) , where R is the rate of the code
and Q) is the Q-function.

Figure 9 plots the results of the ratet5 length8000 codes
and illustrates the general improvement to error floor betav
provided by larger girth. At the highest SNR (around 7.8
dB) the WERs and BERs of the girth-10 code is about two
orders of magnitude larger than those of the girth-6 codes.
Furthermore, the three girth-6 codes plotted do show some
variability in their error rates. This illustrates that teeror
floor is not only a function of girth, though higher girth
certainly helps.

Figure 10 plots the results of the rat¢3 length24000
codes and illustrates some of the same points as were made
for the shorter code, as well as some new ones. First, we
note that at these lengths the error floor effect is very abrup
initiating just below9 dB. Again, higher girth yields a marked
improvement, most clearly seen in the WER plots. And again,
as also noted in Fig. 9, we see some variability in the girth-6
codes.

A new observation comes from observing that the SNRs at
which the error floor of the girth-6 codes becomes noticeable
is different for the WER and BER plots. It occurs at a higher
SNR for BER. First consider the highest SNR at which we
have results for the girth-6 codes, roughh25 dB. Here
the difference between WER and BER is about four orders
of magnitude. Recalling that the codes are of lenth00
this means that the post-decoding error patterns in thisneg
consist of only a few erroneous bits, consistent with faitur
caused by small trapping sets. In contrast, if we consider th
last data point prior to the error floor, at aroutd5 dB, the
ratio between word- and bit-error rate is only about one orde
of magnitude. This implies that the BER is still dominated
by much heavier weight error patterns, consistent with the
decoder being in the waterfall regime. Now, consider thd fina
data point for the girth-10 code that we were able to obtain
at just over9 dB. While by considering the WER plots of the
girth-6 codes we confirm that those codes are already in their
error floor regime, the same is not true of the girth-10 code,

19

for which the difference between its WER and BER is lesS. Effectiveness of the squashing procedure
than an order of magnitude.

We conclude our discussion of numerical examples by
discussing the computational motivations for the squaghin
.] procedure. Recall that in Sec. VIII-D we raised the follogvin

In this section we develop a sense of how much the h'ﬁ][uestion. Why do we not simply try directly to find suitable
climbing type of girth maximization algorithm presented ifharameters for a weight-I QC LDPC code, rather than con-
Sec. VII helps in finding high girth codes. We compare oWirycting an HQC code and using the squashing procedure?

algorithm to the baseline guess-and-test algorithm [28]. Tve now show that it is much harder to find a suitable code
understand guess-and-test, consider a regular weight-l Q&ng the direct method.

LDPC code specified by & x L base matrix and a desired To show this we present results on the following experiment
girth. Guess-and-test fixes all entries in the first row arel ti']__. of we construct F;e eral protoaranhs with str %t rgs".lanim :
first column of the base matrix to be zero. The rest it chooseg w u v P grapns wi uctu

independently and uniformly betwe8randp—1. This process :ﬁ F'gi 5(".’1) Ww the nuTt;er ﬁf ﬁheCk no?r:ast ;ﬁnglng lt‘)rom
is continued until a set is found such that the condition er t "1 cc 0 Nine. Wve Sefliz) = 4 which means that the number

existence of a cycle, e.g., (13), is verified not to hold fdr arf fows in the corresponding base matrices ranges from 12

; : . 0 36. For each protograph, we construct girth-10 QC LDPC
cycles shorter than the desired girth. The problem with gue Zodes withpy = 100 using the girth maximization algorithm

and-test is that it is time-consuming and doesn't explod th dth hi d We also trv t truct 4bth
structure of the cycles in its search, in contrast to our hilf"¢ htel ngaLSDIFr)lg prc()jce ur_'([el'; be aiso try ° chons_ ruc;htj; i
climbing algorithm. weight-1 Q codes with base matrices having the same

. . . : size and same non-zero positions as those obtained from the
To make an informative comparison with guess-and-test, we
uashing procedure using the direct method. The same hill

define “success rate” to be the fraction of times that a run Qf o . : . ; :)

) ; a0 . climbing algorithm is applied to this design problem as isdus

either algorithm (guess-and-test or hill-climbing) résuh a . : X :

. in conjunction with the HQC LDPC approach. We record the

base matrix that has the desired girth and circulant matrice - . ; .

) . : time of designing ten codes for each configuration. Figure 12
sizepyy). Figure 11 depicts the success rate of the guess-and.

test and hill climbing in generating girth-weight-I regular Lg%gsc?feaxsei;agzggef ?hﬂ;idtﬁocggﬁterﬁgsone girnTo
QC LDPC codes with base matrices of size 9. We observe 9 ’

that for the guess-and-test to find a parity check matrix with
girth-8 at a circulant sizep;; = 50 we need, on average, to

test 106 random matrices. In contrast, hill climbing has nea 35
certain success.

B. Effectiveness of the girth maximization algorithm

—O— By squashing procedure
—#— Direct construction

10 . . —— . . : : :
— —©— Guess—and-test
/ —#— Our algorithm

107 /

Time (s)

10k

g
s _
2 10°F |
3
§ 49/"6/‘0
10 15 20 25 30 35 40
107 | Number of rows in the base matrix
Ef

Fig. 12. Average time of constructing one girth-10 QC LDP@eavith the

10_55 | direct method and the squashing procedure.

. For both schemes, the time required to find a girth-10 code

% 3 40 45 50 5 60 65 70 75 80 increases with the number of rows in the base matrix. When
size of ireulant marx the squashing procedure is used, we can find a suitable base

matrix in reasonable time even for large base matricesglarg

Fig. 11. Comparison of the success rate of guess-and-tdshitirclimbing number of rOWS)‘ In contrast, when u_smg the dl_reCt method,
in finding a weight-l girth-8 regular QC LDPC code when basetrima W€ have to spend an extremely long time searching even for a
dimensions are x 9. small base matrices. From this comparison, we conclude that

the squashing method is quite a bit more efficient.

20

X. CONCLUSION (i) Calculate cost vector of current code:Use Subrou-

In this paper we present a methodology for designing higHDe 1, described in Appendix X-C, to calculate the costeect

girth QC LDPC codes that match a given protograph structur(g. ;he curr?ntl CtOd; "er]]: N {lfj,z}aTthbf(?rtﬁéiCh eI?mednt
In developing our methodology, we introduce a new class F we caiculate the change in edge label that most reduces

hierarchical QC LDPC codes and explain how to determin&§2St and the resulting cost, respectively:

the girth of such codes. The hierarchical QC LDPC codes Zj1= argmin T;(2),
can be represented using parity check matrices over multi- 2:0<z<p—1
variate polynomials, or in terms of a tree structure. We show T;y= min Tj(z).

that higher-weight versions of hierarchical codes sufferf z0szsp—l

inevitable cycles in analogous ways to non-hierarchical QRecalling thats[j,!] is the value of the of the coefficient of
LDPC codes, but that a straightforwasduashingprocedure the current code;|j, (], let

can remove these cycles. We introduce a hill-climbing pro- _ .

cedure to eliminate the non-inevitable cycles from the ¢code L= Lja(sl: 1)

and subsequently remove the inevitable cycles by squashipg the cost of the coefficient if it remains unchanged.
Thus the main use of the hierarchical codes in this paper is tqii) Identify best coefficient to change: Identify the

reduce the number of free parameters in the codes in an efigdkfficient to change that would most greatly reduces the cos
to make the girth maximization procedure computationallyg

tractable and fast, while knowing that the inevitable cgcle .

can be removed by squashing. In our numerical results we (Jmax, lmax) = _ argmax i =T

illustrate the computational advantage of the hill-climpi @D 125 <] 1<ISE, T te

and squashing procedures in comparison with other standa#adere we break ties randomly. There are two possible out-

approaches. comes.
We demonstrate our concepts and design procedure f@) If L

the case of one-sided spatially-coupled QC LDPC codes. We setting

present designs for two such codes, of different rates asakbl

lengths, both of girth-10. We compare their performance to

girth-6 codes and observe a significant decrease in the error)

floor. We note that the second code, whose variable nodes are Cs [Jmax; bmax] = 0.

of weight four, does not demonstrate any error floor tendnci e jterate by now returning to Step ().

down to a WER of about0~7, i.e., the slope of the WER () ¥T; , T = 0, the algorithm terminates.

as a function of SNR is still steepening. Computationalréffo Jmascs e

limited us from S|ml_JIat|ng lower WERs. But we note that (iif) Terminate algorithm: There are two possible termi-

the Gallager-B algorithm we chose to simulate displays muﬁgtion conditions

higher error floors than the standard sum-product or min-sum o ,

algorithms. (In fact, this is why we choose to simulate thiéa) I T, (s(j, 1]) = Oforall (j’l)_SL!Ch thal’; 7& * then we

algorithm.) Given that the class of one-sided spatiallypted have found a pode.that satisfies the de§|red parameters,

codes has already been theoretically shown to have ext:ellén) Else ,'f there is a(j,{) such thatrjvl(‘?[j.’l]) # 0 the

waterfall performance, we believe the evidence presented algorithm has converged to a local minimum.

strongly indicates that the techniques introduced hereim ¢ Ve now present the generalized algorithm for heavier-

produce practical codes with very good performance in boteight QC LDPC and HQC LDPC codes. In contrast to the
the waterfall and error floor regimes. first algorithm, the treed’; ; € 7 that define these codes have

more than one edge. Therefore, for each edge of each tree we

) o) define a cost vector. We index the cost vectors both by their

A. Girth maximizing algorithms level in the tree and by their position within each level, as
In this appendix we present our girth maximizing algowell as by;j and/, thus

rithms. As discussed in the text the objective of these algo- T
rithms is to remove alhon-inevitablecycles from the quasi- phik = 110715 Yoy 1]
cyclic codes. We first present our algorithm for weight-1 Qor 1 < i < |T;,[k]| and1 < k < K where we recall that
LDPC codes, and then for general heavier-weight or HQQ; (k]| is the number of edges at levelin T ;.

LDPC codes. We do this for simplicity of explanation as the)]]]
latter algorithm is a generalization of the former. Algorithm 2: Hierarchical QC LDPC code construction

(i) Set-up and code initialization: Specify the desired girth

-T > 0, we update the code by

Jmax;lmax

Zimax lmas []maxa lmax] = 11

and

Jmaxslmax

Algorithm 1: Weight-1 QC LDPC code construction g, matrix dimensiorp, and 7.
(i) Set-up and code initialization: Specify the desired girth For each pair(j,7) such thatT;; # *, randomly initialize
g, matrix dimensiorp, and7. the values for each edge label (while obeying the requirémen

For each pair(j,!) such thatT;; # *, pick a valuez that sibling edges must have distinct labels). Probablyrtbst
independently and uniformly from0,...,p — 1}. Initialize straightforward way to do this is to work down the tree from
the code withe,[4,1] = 1 (andc..[4,1] = 0 for all 2’ # z). level K to the first level, picking the edge labels for each

21

set of sibling edges at levél uniformly without replacement ... = (j;.,1;,) and for whichs[j;,,l;,] = ... = s[ji,, 1,].

from {0,...,pp — 1}. Given the initial edge labels, computeThe multiplicity » of the element is computed as

all non-zero code coefficients, i.e., those associated edtth ,

leaf. K — Z(_l)it' (55)
(ii) Calculate cost vector of current code:Use Subrou- P

tine 2, described in Appendix X-D, to calculate the cost oext o '

of the current code, i.el; = {I';;; x}. Then for each element For path elements whergs| > 1, i, is termed thefirst

of I" we calculate the change in edge label that most redud? urrenge(.)f.the element. o o -
cost, and the resulting cost, respectively: The multiplicity can be a positive integer, a negative ieteg

or zero. When a path element has multiplicity zero the value

Zinik = argmin Ty (2), of the coefficient has no effect on whether (that particular)
2:0<2<ppy —1 path corresponds to a cycle.
Fj,l,i,k = min Fj_,lyi_,k(z).

2:0<z<px—1
C. Cost calculation subroutine for weight-l QC LDPC codes
Recalling thats,[j,] is the value of the of théth coordi-

nate of the current code coefficient, [], let In this appendix we present the subroutine for the calcula-

tion of the cost vectors of a weight-1 QC LDPC code. In other
Uik = Dinik(skli 1) words, given a set of labeled trees we calculate the matrix
specified in (41).
be the cost if the coefficient value at tie¢h level remains Sybproutine 1:
ung.rllanged.. _ The subroutine takes as inputs the current tree struture
(iii) Identify best edge label to change:ldentify the edge (i.e., the set of labeled trees or, equivalently, the curpenity
label to change that would most greatly reduces the cost, igheck matrixH), the desired girthy, and a vector of costw.

(i) Define helper variables:Definex§/}) to be the number

. . _ — _~ Lo 30,2
(maxs bmax fmaxs km“@f)l;k) 0 fj.%?ix <1 EJLl;k Litik: of cycles of lengtreA that would result if edge label[j, I
B A o SLaIh were set to equal value. In other words, the code was
1<k<K modified to be one in whick,[j,/]] = 1 andc,/[j,]] = 0
A)

/ itiali W _
where we break ties randomly. There are two possible o&?—r _f"‘" 2 # 2. Initialize all 3, , = 0.
(ii) Iterate through path lengths, paths, and path el-

comes. . !
- ements: Consider in turn: (a) each path length where

@) WL b b~ Dol i s > 00 WE UD- 9 A < 019 1 andy is the desired girth; (b) each path of

date the code by gé’jcting the value of ihg.th edge at the length A, P € P, whereP = {0, S} and|O| = |S| = 2A:;
kma’fth level of T; .equal 10 s L imax ki and (c) the first occurrence of each path element (indexed by
We iterate by now returning to Step (ii). t,1 <t < 2A) in P that has non-zero multiplicity.
() L A T S (iii) Calculate guilty values and adjust helper variables:
algorithm terminates. Let s[j-,l;] be the first occurrence of a path element of
multiplicity x # 0. We want to compute the set of possible
(iv) Terminate algorithm: There are two possible termina-yalues fors[j.,[.] that would satisfy the condition for the
tion conditions. existence of a cycle. Recall from (35) that a cycle exists for
(@) If for all (j,1,i,k) we havel';,; .(z) = 0 whenz is set the current path values if
to equal the current label of théh edge at levek in tree

max;lmax

= 0, the

Jmax;lmax;imax;Emax

. . - 2A
’;‘;,rla,lr:]h:tgr\éve have found a code that satisfies the desired Z(_l)ts[jt’ I,] modp = 0. (56)
. t=1
(b) Else thereis &j,1,14,k) such thafl’;; ; (=) # 0 and the . .]
algorithm has converged to a local minimum. To check if a values € {0, ..., p—1} to whichs[j-,] could

be changed would satisfy (56), we subtract the contribution
the current value o%[j.,[;], add in the contribution of the
B. The multiplicity of a path element candidate valugs, and see if the result is equal to zero. That

Recall from the discussion of Section VII-B that the detefS: W& check whether or not the relation
mination of guilty values becomes complicated when thege ar 2A
repeated elements in a path. To aid in dealing with these re- {Z(—l)ts[jt,lt] — ks[jr, I-] + nﬁ} modp =0
peated elements, in this appendix, we define the “multiglici t=1

of each path element. This definition is needed for for thé cqs,gs. Equivalently, we ask is
vector calculation subroutines of both QC and HQC LDPC
codes, described in Appendices X-C and X-D, respectively.) 20 o
Definition 5: Given a pathP = {0, S}, any coefficient in w8 = wsljr lr] = D (=1 slje.], (57)
t=1

S is said to berepeatedr times if there arer elements of
P, indexed byiq,...,i., for which (ji;,,l;,) = (ji,,li,) = where the congruence is moduyle-

22

For each value of3, 0 < 5 < p — 1 satisfying (57) we Remark: Recall from the algorithms described in Sec-
incrementrﬁ_’)lhﬂ as tion VII that our approach to code optimization is to identif
)) the change in the single edge label that most reduces a
v s =%y gt weighted sum of cycle counts. In the special case of weight-

RemarksBy only computing the3 for the first occurrence | QC LDPC codes there was a one-to-one mapping between
of each path element, we avoid double-counting the contribgPde coefficients and tree edges (since each tree has only a
tion to cycles of elements with:| > 1. Allowing , defined Single edge). In the generalized setting we are now corisgler
in (55), to take on either positive or negative values lets tive seek to identify the change in a single edge of one of the
multiplicity of the element indicate its “aggregate potgtj trees that will most reduce the cost. By setting certainsctust
i.e., whether it enters the sum (56) as a positive or a negatiffinity, certain changes in code structure will never be enad
contribution. Since the calculations 6fin (57) are over a ring, The changes thus barred are those that would change the tree
multiple values of3 can satisfy the conditioh.However, at topology. By setting those costs to infinity we ensure thet th
most there aréx| such values of3. This is because the setunlabeled trees that describe our code remains an invariant
of satisfying values of3 forms a coset ofZ, with respect under our algorithm.
to the subgroud 3 s.t. k3 = 0}, the cardinality of which is (i) Iterate through path lengths, paths, and path
upper bounded by:. Finally, we note that ifjx| = 1, a elements: Consider in turn: (a) each path length where
satisfying (57) exists and it is the unique su¢h 2 < A < g/2-1; (b) each path of lengthh, P € P, where

(iv) Compute cost vectors: After considering all paths P = {O,S} and|O| = [S| = 24A; (c) the first occurrence of
lengthsA, 2 < A < g/2—1, all P € Py, and all elements of €ach path element (indexed byl < ¢ < 2A) in P that has

each pathP, calculate the cost vectors element-by-element 89n-zero multiplicity.
6/2—1 (iv) Determine whether a particular path element can

T(2) = Z ST have “guilty” vales: Let s[j,,l,;] be the first occurrence of
it e gz T A a path element of multiplicitys # 0. Recall thatsy[j,,]
corresponds to the label of an edge of tiBg ;, at levelk.
D. Cost calculation subroutine for HQC LDPC codes Now, for the coefficiens[j,,!,] under consideration, iterate

We now present the subroutine used to calculate the cH¥PUgh each level of the code. For each lebgl < & < K

vectors of a general HQC LDPC code. compute
2A
Subroutine 2: P
; : = -1 l] modpyy.
The subroutine takes as inputs the current tree strugture O ;()" skljes e] DPix]

(i.e., set of labeled trees or, equivalently, the currenitpa

check matrixH), the desired girthy, and a vector of costw.
(i) Define helper variables: Define I(’I;)iz[k] to be the

number of cycles of lengtBA that would result if theth edge

at levelk in T, were set to equal valug, 0 < z < py — 1. 1© St€P (V). L
Remark:Modification of a single edge has in a hierarchical Rémark:The reason for the all-but-one condition is that we

code will, in general, change a number of code coefficienfdlange at most one edge label per iteration. Thereforessinle

In particular, all coefficients associated with leaves tams @+ = 0 for all but one value ot there is no single change in

descendents of that edge will change in tHeh coordinate. " edge label thatlwould result in a _Cycle in this itgration.
These coefficients will change from ones in which (v) Calculate guilty values and adjust helper variables:
Now consider coordinate of the path elemerd{;,, -] whose

sk 1yskesken,sx 1) =1 and multiplicity x # 0. The same logic as led to (57) can again
sxkld] =0 be used to identify the guilty values, now at levelThat is,
compute the set of values ¢f 0 < 8 < p;) — 1 such that

Unlessa;, = 0 for all but onevalue ofk, there are no guilty
values. If there are no guilty values, proceed to the next pat
element. If there is a single level such thatv, # 0 proceed

Csy
CSI-,---ysk—l-,Z-,SIH»l yee

to ones in which

. 2A
Corrmosinonox [yl = 1 and w8 = rsilin] = Y (~D'silinl]. (58)
Cs1 iy Sk—1,5k,Sk41,--SK []a l] =0. t=1
Initialize all z») [k] = 0. For each value of3, 0 < 3 < p;,) — 1 satisfying (58) we

(i) Set infiﬁ’ilfé’zcosts: For eachT,; # x, each pair(j, 1), incrementx§.
1 <j<Jgp 1 <1< Ligy, each levelk, 1 < k < K, and))
each levelt edge indexi, 1 < i < |T;,[k]|, let £ be the set x50, pkl =250, . 5lk] + 1.
of labels of sibling edges. For eaehe £ set

A)

.,lt,i.ﬂ[k] as

wherei, 1 < ¢ < |T}, ;,[k]|, is the index of the level- edge
2\, k] = oo. in T}, ;, whose label issy[j,, .
RemarksOne of the added complications of the generalized
2|f, however, you restrictp to be prime, which we do not, then the algorithm is that there is not a one-to-one mapping between t
calculations would be over a field and there would be a unigligien 5. We code parameters that we are adjusting (the tree edge values)

do not choose to do this due to the greater limitation on trssipte resulting A : - ’ !
block lengths of the code. and the code coefficients (each of which is associated with

23

_31 g,l,,,a2 as ;1 a1——a2—=—1—————————b2 b1 —1 —1
‘ —1 —1 ayp ao —1 bg bl—l

i ag»&?) —1 a | Qo —1— ,,,a,r:}:,1,,,_,1,,,132,,[)‘17

3;1052(13 —1 Carap=l=1l b =1=1 by

as —1 a; as

Fig. 14. lllustrative inevitable eight-cycle that travessthree rows.
Fig. 13. lllustrative inevitable six-cycle that travershsee rows and three
columns.

long aspjy > 2 these latter two coefficients (the second and

one leaf of the tree). When an edge value is adjusted th %th) ?USt b? in distinct][ovr\]/s of tge bar?e ma}trix. This“‘“ﬁ” ¢
is a ripple effect, changing the coefficients associated wi rom the cyclic nature of the code. The only way a pair 0
all descendent leaves. However, each change in a edge Ieﬁ?flﬁ'c'en_ts could appear in two d'St'n?t rows and two dtin
effects only one of théx sums (34), all of which Theorem 2 ©© umnsdlnhswapped order would beif = 2, but we have
requires to be equal to zero for a cycle to exist. Thus, at;houassume t Ay = 4. . _—

there is a ripple effect on the code coefficient when adjgstin '_I'heflogllc of tr_'el second c::;\se 'f |Ilus(';rated n Fc|g. 13 f?())r the
edge labels, the values of the[k] at other levels is not palr 0 p;]o_ﬁnomlazhl,;ll =T +dx y andhy, = ¢+ %"
effected. Thus, considering the tree structure of the camidyn The path illustrated corresponds to

decouples the question of girth and the search for highgirto = {(j,1,), (j, 1), (j, l2), (j, 2), (G 1), (3, 1) (s), (G 12) }

from the algebraic structure of the code. q
an

E. Proof of Lemma 2 s— o faz| |bi| |b2| jaz| Jai| |b2| |b1
) . O|" {17 {O["[3|"|1|7]10]|7|3]|’]0]|["
To prove part (i) of the lemma consider the ordered set of

coefficients (38) that describes the inevitable cycle. Nba#
the first and last coefficient must be in the same row of the Base matrices

base matrix since the path defines a cycle. The second angh this appendix, the base matrices of the two girth 10 QC
third and the fourth and fifth coefficients must also each hgypc codes discussed in Sec. IX are specified below. The
in the same row. Since, when viewed at the first level of thgyse matrix of the first code3; is written in the transposed
code, successive rows in a path must be distinct, threendiistiformat due to space.
rows are traversed. In Fig. 13 we illustrate this logic for a
matrix corresponding to the polynomial ;(z,y) = 2*1y° +
xa2y1+xa3y2102{(jvl)v(jal)’(jvl)v(jal)’(jvl)v(jal)}'and . : ;
[1] R. G. Gallager, Low-Density Parity-Check Code<Cambridge, MA:

S ={la1 0], [az 1]7 a5 2] [a1 O], [a2 1], [as 2]} M.LT. Press, 1963.

The logic of part (ii) is the same for rows and columns,2] w. E. Ryan and S. Lin,Channel Codes: Classical and Modern

hence we provide the proof only for part the former. Con-_ Cambridge University Press, 2009.

. . . D. J. C. MacKay, “Good error-correcting codes based ory \sparse
sider the ordered set of coefficients of (39). We assert théﬁJ matrices”IEEE Trans. Inform. Theorwol. 45, pp. 399-431, Mar. 1999.

again the path must traverse at least three rows of the bage T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke,ef)gn of
matrix. As before the first and last coefficients must be in the capacity-approaching irregular low-density parity cheddes,”IEEE

. hi h defi . itabl | Trans. Inform. Theoryvol. 47, pp. 619-637, Feb. 2001.
same row since this pat efines an inevitable cycle. angll M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Ap&Iman,

REFERENCES

other sequential pair of elements (fax As]7,[b1 Bi]T), “Improved low-density parity check codes using irreguleahs,’|EEE
([b2 BQ]T, [a2 AQ]T), and([a1 Al]T, [bg BQ]T) — must also lie Trans. Inform. Theoryvol. 47, pp. 585-598, Feb. 2001.

in the same rows. Consider the G{VF B]T [A]T) The [6] S. Y. Chung, G. D. Forney, T. J. Richardson, and R. L. UKearfOn
In ; - e - palz Ha|, laz A2)"). | the design of low-density parity check codes within 0.00&af the
row this pair lies in can either be distinct from the startiog/ Shannon limit,”IEEE Commun. Lettvol. 5, pp. 58-60, Feb. 2001.

or it can be the same. If this row is distinct from the starting?! T. Richardson and R. Urbankéflodern Coding Theory Cambridge
th . . distinct. th in Whi University Press, 2008.
row then, since successive rows are disunct, the row INWNIiCig) |ege Std 802.16e, “Air interface for fixed and mobile

([az A2)T,[by B1]T) lies must be distinct both from this row = broadband ~ wireless access systems [Online]. Available:

and from the Startlng row and the lemma is proved for this http://standards.ieee.org/getieee802/download/8@22D05.pdf.

T ™ 1 . [9] Draft DVB-S2 Standard, [Online]. Available: http://wwdvb.org.
case. On the other hand, s@y, B:]", [az A2]") lies in the [10] B. Bangerteret al, “High-throughput wireless LAN air interfaceJ.

starting row. We assert that in this cage, A.]7, b1 B1]T) Intel Technol. vol. 7, pp. 47-57, Aug. 2003.

and (fay A1), [b2 Bo]") must lie in distinct rows and so (1] G Lia S Song, L Lan, ¥ Zhang, . Lin, and W.E. RyaBiesign
.. . of LDP odes: A Survey and New Results,” Comm. Software an
the total number of rows again is at least three. To see this gygiemssept. 2006.

last assertion note first that the firlst; A;]” and the fifth [12] Y. Kou, S. Lin, and M. Fossorier, “Low-density parityreck codes based

coefﬁcient[a2 AQ]T are, by assumption, in the same row. Next ©n finite geometries: a rediscovery and new resulEE Trans. Inform.
. o T Theory vol. 47, pp. 2711-2736, Nov. 2001.

observe that the ?econd anq S|x.th.c0eff|<:|ents{(agre42] .and [13] J. L. Fan, “Array codes as low-density parity-check estiProc. 2nd

[a1 A1]T, respectively, both in distinct rows from the first. As Int. Symp. Turbo Code®rest, France, Sept. 2000, pp. 545-546.

24

1
— — =~ A A A — — — — — — ~
[I [N I R A [= I <=
- — pn—— RV - [—— — - [
[| o N I B A P | i~ EERN
— — =~ A A A A — — — — — —
[I [N I B P I I [
- — pn—— AU - [—— — —
[| o I A P | |
— — o~ A A A A — — — — o
[I [N I B A (RN I n
- — Jpn—— RV - [—— —
[| o N I B A P |
- — pn—— U - [, —
[| o N I B A P e |
— — N A~ oy o
[I [N I R A [T n
- — Jpn—— AU - [-
I I o N I A (-
— — N A~ o — <
[I [N I R [k]
- — [pp—— RV - — -
I I o N I A | @
— — =~ A A A o —
[I [N I R A el I
- — Jpn—— - o
[| o e P
- - pn—— —_——— —
[| o N |
— — o~ — o= = —
[I [NN I
- — [pp—— - ~
[I [N 0
— — — P =
[I [wo
- — [pp—— e
[l | o [
— — = ~
[I [0
— — =~
[I [
- — [p——
[l | 190
— — —
[l I [l
= Al Al
I | |
— = —
[I
- —
I |
- —
I |
— —
[I
- —
[|
— = —
[I
- —
[|
— —
[I
- —
I |
M~ —
| |
— —
[™
- —
I |
— e~ —
[I
— <
| 10

-1-1-1-127-1—-17

-1-134 -1-1-11
-1-1-1-127-1

-1% -1-121-1

-1-17-1-1-15%54-1-121-1
-1% -1-1-1-1-1-121 -1

-1-1-1-1-1-1-1"%-1-189 -1-19-1

-1 -1-1-1-1

7
-1 7

-1 -1 7
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-138-1-1-1-1-199-1~-1-1-121~-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-138-1-1-1-1-1%9021 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-173-1-1-1-19% -1-1-166 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-173 96 -1-1-166 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-173-1-1-1-19%-1-1-166 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

-1-1-171-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-185 -1-1-166 —1-1-1-1 2
-18 —-1-1-166 —1-1-1-1 2

-185 —-1-1-166 2
-18 —-1-1-166 —1—-1-1-1 2

-19 —-1-1-1-1-1
-112-183 -1-1-173 -1 -1-1-1-1-1-1-1-1-1-1

-112-183 -1-1-173 -1-1-1-1-1-1-1-1-1-1

-112-1-1-1-1-18 -1 -1-173 -1 -1-1-1-1-1-1-1-1
-112-1-1-1-1-183 -1-1-173 -1 -1-1-1-1-1-1-1

-191 -1 17 —1 —1
-191-1-1-1-1-117 -1 -150 -1-1-1-1-1-1-1-1-1-1

-191 -1 -1-1-1-117 -1 —1

-191 -117 -1 -1 -1 -1 -1 -1
-157-134-1-1-1-1-1-155-1-1-1-1

-1

-1
-157-1-1-1-1-134-1-155-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1-1-1-1-171-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-125 -1-1-192 -1-178 —1-1-1-1-1
-125~-1-1-192 -1-1-1-1-1-178 —-1-1-1-1
-1-1-1-17-125-1-1-192-1-178 -1-1-1-1-1-1-1
-125 -1-1-192 -1-178 -1-1-1-1-1-1
-1-1-1-17-187-1-1-1-1-162 —-1-1-1 23
-187-162 —-1-1-119 —1 -1 —1
-187-162 —-1-1-119 —1 -1
-1~-1-1-187 -1-1-1-1-162 —-1-1-123 —1
-133 —1

-1~-1-1-1-1-133 —-150 —-1-129 -1 —-1-1
-133-1-1-1-1-150—-1-129 —-1-1

-1-1-1-1-1-1-1-1-1-1-1-1-1-171-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-133 -1-1-1-1-1
-131 —-166 82 —1

-1-1-1-1-1-1-1-1-1-1-1-125-1-1-1-18-1-1-1-160-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-138-19-1-1-1~-121 -1-1~-1~-1~-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-171-1-1-1-1-138-19-1-1-1-121 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-173 -1-1-1-19% -1-1-166 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-171-131 -1-1-1-1-135 82
-1-1-1-1-1-1-1-1-1-1-1-1-1-171-131 —-1-125 —1—-1 35
-131-166 25 -1 —1
-119 —1 95
-119 -1 -1 -1 -1 -1 17 47
-1-1-1-171-119 -1 -1 3
-1-1-1-1-1-1-1-1-1-1-1-1-171-17-119 —1 95

-1-1-1-1-1-1-1-1-1-1-1-1-1-163 -1 -1-191 -1 -1-1 0
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-163 -1 -1-1091 -1 -1-1 0

-1-1-1-1-1-1-1-1-1-1-1-163 -1-1-191 -1-1-10

-1-1-171-1-1-1-1-1-1-1-1-1-1-1-1281-1-1-1-160-1
-1-1-171-1-1-1-1-1-1-1-1-1-163 -1 -1-191 -1 -1-1 0

-1-1-1-1-1-17"%-1-189 -1-179-1
-1-1-171-1-1-142-1-1-179~-1-179%-1
-1-1-171-1-1-1-142-1-1-179~-1~-1%79%-1~-1-1-1-1-1-1-1-1-1
-1-1-1-142-1-1-1"9-1-1-1-1-1-17%-1
-1-1-171-1-142-1-1-179~-1-179%-1~-1~-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1-17-138-193 -1-1-1-1-192 -1
-1-1-1-1-1-1-1-1-1-17-138 -193 -1-1-1-1-192 -1
-1-1-171-1-1-1-1-138-1-1-1-1-193~-192-1
-1-1-1-1-1-1-1-171-138-1-1-1-1-193 -192-1
-1-1-1-1-1-1-1-1-140-1-1-1-17"%-115-1
-1-1-1-1-1-1-1-1-1-140-1-1-1-176-115~-1~-1~-1
-1-1-1-1-1-1-1-1-1-1-1407%6-1-1-1-1-115-1
-1-1-1-1-1-1-1-140-1-1-1-176-1-1-1-1-115~-1~-1-1~-1~-1
-1-1-1-1-1-1-1-1-1-1-1-1-12-1-1-1-18-1-1-1-160-1~-1~-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-125 -1-1-1-1860 -1

-1-1-1-17%-1-1-1-1-17-1889 -1-179-1
-1-1-1-17~-178-1-189 -1-1-1-1-1-179~-1

-190 —-157 -1 —-1-1-1 2

-1090 -1
-19 —-1-1-1-1-1

—-134 -1-1-11
-1 -1-134 —-1-1-11
-1 -1-17

34 -1 -1-11

—1 7

1
HA A AAA A A~ D
0 Q=
Frrrrrtglllslas
o O
[T A B S o
© 0010 ©
A A A A A A A =D = F O H
[I I A B R - R =S e
© 0010 ©
A AAA A A AN A O N M
FrIrIr1r 18113318
© 00 [a\}
o o~ O~ D00
[Y B B IS B B 3
N 0010 I~
A A A A A A AN A D
[T T Y B B B I Y I
[} 00 © I~
HreA A A A A~ N~ D <
[T T T B A T R -
N Noja\] ©
o QD <00
L T T B R A B I [2
AN NepTa)
= 00—~ O~ O~ Y
[T O O O I B A I B I
0 3e) © =3}
A A A A = QA O~ N~
[N - N B - B =
0 [3e] © <]
= 00 Q= O~ Y
[T - A IS B B - O
0 o) (=} ©
—HrA A A 0 A A O~~~ N~
PTG IR 11818
0 2] (=2} ©
o D~ 00—~ 0D~
[B B - N A N B Xy
0 N D~ <t
o 1D 00—~ 00 O —
[I I R B A S B I NN B
0 [a\] ~o
A A A A AA R A A A D~ T
[I T = I B AN B B R\ B
0 o} e} 0
A A A A A A D A~ A 0~ —~ D
[O I B B S B A R R -
0 o)} o0 <
e A A AT A A A A O
[A B B = S B B Y I B
(=} [}
— A AT A A A A~ A A~
3e) < 0 5\
I = T I e B B I
3111“111115111%1
[T = A A B B R O
e A A A = O
[2e] < 0 <
FTI®rrrg e ig
=00 A A D A A A N
< N 0 [=2]
ST 12
QO = D A O
N [} Q0 [=2)
SIS 1218
HeA A O A A AN A~y
N 0
[N B B O O R O R A
HeAQ A A A AN =
N a0
[N O A e S A B I B
L 1
N

Ambleside, England, Jul. 2001.

[14] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of gratpictured

[15] B. Vasic, “Combinatorial constructions of low-denysjiarity check codes

Int. Symp. on Commun. Theory Applications

LDPC codes,” Proc.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

for iterative decoding,”Proc. |IEEE Int. Symp. Information Theory
Lausanne, Switzerland, July 2002, p. 312.

I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A aks of low-den-
sity parity-check codes constructed based on Reed-Solamdes with
two information symbols,”IEEE Commun. Lett.vol. 7, pp. 317319,
July 2003.

D. Sridhara, T. Fuja, and R. M. Tanner, “Low density parcheck
codes from permutation matrice$?toc. Conf. on Inform. Sciences and
SystemsBaltimore, MD, Mar. 2001.

T. Okamura, “Designing LDPC codes using cyclic shift8roc. IEEE
Int. Symp. Information TheoryYokohama, Japan, June/July 2003, p.
151.

R. M. Tanner, D. Sridhara, T. Fuja, and D. J. Costellq ItDPC
block and convolutional codes based on circulant matfidB€E Trans.
Inform. Theory vol. 50, pp. 2966-2984, Dec. 2004.

M. Lentaier, A. Sridharan, K. S. Zingangirov, and D. Jsgllo, Jr.,
“Iterative decoding threshold analysis for LDPC convalogl codes,”
IEEE Trans. Inform. Theorywol. 56, pp. 5274-5289, Oct. 2010.

S. Kudekar, T. Richardson, and R. Urbanke, “Thresheaitirstion via
spatial coupling: why convolutional LDPC ensembles penfaro well
over the BEC,"IEEE Trans. Inform. Theorjo appear.

T. J. Richardson, “Error Floors of LDPC Code$foc. 41st Annual
Allerton Conf. on Communications, Control and Computigg03.

S. K. Chilappagari, S. Sankaranarayanan and B. Vakioot floors of
LDPC codes on the binary symmetric channel,” Proc. IEEE Qunf.
on Commun., Jun. 2006, pp. 1089-1094.

R. M. Tanner, “A recursive approach to low-complexitgdes,” |IEEE
Trans. Inform. Theoryvol. IT-27, no. 5, pp. 533-547, Sept. 1981.
X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Irregulaprogressive-
edge growth (PEG) Tanner graph®foc. IEEE Int. Symp. Information
Theory Lausanne, Switzerland, July 2002, p. 480.

Z. Li and B.V.K.V. Kumar, “A class of good quasi-cyclicow-density
parity check codes based on progressive edge growth gré&ghith
Asilomar Conference on Signals, Systems, and Compu2ée4, pp.
1990-1994.

M. P. C. Fossorier, “Quasi-cyclic low-density paritjteck codes from
circulant permutation matrices|[EEE Trans. Inform. Theoryvol. 50,
no. 8, pp. 1788-1793, Aug. 2004.

J. Thorpe, “Low-density parity-check (LDPC) codes stacted from
protographs,”JPL IPN Progress Report 42-154ug. 2003.

R. Smarandache and P. O. Vontobel, “Quasi-Cyclic LDPGd&S:
Ifluence of Proto- and Tanner-Graph Structure on Minimum Ham
ming Distance Upper BoundslEEE Trans. Inform. Theorysubmitted
[arXiv:0901.4129v1].

O. Milenkovic, D. Leyba, and N. Kashyap, “Shortened &rrCodes of
Large Girth,”IEEE Trans. Inform. Theorwol. 5, no. 8, pp. 3707-3722,
Aug. 2006.

I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryaskzmd
R. V. Satyukov “Searching for Voltage Graph-Based LDPC bigil
ing Codes with Large Girth,IEEE Trans. Inform. Theorysubmitted
[arXiv:1108.0840v1].

25

