
ar
X

iv
:1

20
8.

53
74

v2
  [

cs
.IT

]  
2 

F
eb

 2
01

3

New Constructions of Zero-Correlation Zone

Sequences

Yen-Cheng Liu, Ching-Wei Chen, and Yu T. Su

Abstract

In this paper, we propose three classes of systematic approaches for constructing zero correlation

zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence

families that achieve the upper bounds on the family size (K) and the ZCZ width (T ) for a given

sequence period (N ).

Our approaches can produce various binary and polyphase ZCZfamilies with desired parameters

(N,K, T ) and alphabet size. They also provide additional tradeoffs amongst the above four system

parameters and are less constrained by the alphabet size. Furthermore, the constructed families have

nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ

sequence sets. We make detailed comparisons with related works and present some extended properties.

For each approach, we provide examples to numerically illustrate the proposed construction procedure.
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I. INTRODUCTION

Families of sequences with some desired periodic or aperiodic autocorrelation (AC) and cross-

correlation (CC) properties are useful in communication and radar systems for applications in

identification, synchronization, ranging, or/and interference mitigation. For example, to minimize

the multiple access interference (MAI) and self-interference (e.g., inter-symbol interference)

in a multi-user, multi-path environment or to avoid inter-antenna interference in a multiple-

input, multiple-output system, one would like to have anideal sequence setwhose periodic AC

functions are nonzero only at the zeroth correlation lag (τ = 0) and whose pairwise periodic

CC values are identically zero at anyτ for all pairs of sequences. Similar aperiodic properties

are called for in designing pulse compressed radar signal ortwo-dimensional array waveforms

to have an impulse-like ambiguity function satisfying the resolution requirements.

Unfortunately, the ideal sequence set does not exist, i.e.,it is impossible to have impulse-like

AC functions and zero CC functions simultaneously in a sequence set. In fact, bounds on the

magnitude of CC and AC values derived in [1] and [2] suggest that the design of sequence sets

involves the tradeoff between AC and CC values. An alternatecompromise is to require that

the ideal AC and CC properties be maintained only at correlation lags within a window called

zero-correlation zone (ZCZ) [3]. Sequences with such properties are known as ZCZ sequences.

Little or no system performance degradation results if the correlation values outsides the ZCZ

are immaterial to the application of concern. For example, if the maximum channel delay spread

Tm and the maximum distance between a base station and co-channel usersDm are known, a

direct sequence spread spectrum based multiple access system using a family of ZCZ sequences

with ZCZ width |τ | ≤ Tm+2Dm/c, wherec is the speed of light, will be able to suppress MAI

and multipath self interference.

Other than the restrictions on the magnitude of correlationvalues, practical implementation

concerns prefer that the choice of the sequence period be flexible and the family size be as

large as possible while keeping the desired AC and CC properties intact. One also hope that the

elements of the sequences be drawn from an alphabet set as small as possible.

Various ZCZ sequence generation methods have been proposed[4]–[20]. The methods pre-
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sented in [4]–[6] are based on complementary sequence sets.Interleaving techniques are shown

to be effective in constructing ZCZ sequences [7]–[9]. Theycan be generalized to construct

two-dimensional (2-D) ZCZ arrays [10], [11] as well. Sets of ZCZ sequences derived from

manipulating perfect sequences were suggested in [12] and [13]. Park et al. [14] construct

sequences that has nonzero AC only at subperiodic correlation lags and zero CC across all lags.

By requiring the transform domain sequences to satisfy somespecial properties, [15], [16] present

methods that generate ZCZ sequences having zero CC across all lags. Some ZCZ sequence sets

can be partitioned into smaller subsets so that the zero-CC zone of any two sequences drawn

from different subsets are wider than that among intra-subset sequences. Ternary or polyphase

sequences with such a property have been constructed via interleaving techniques [17], [18] and

in [19], [20] quadrature amplitude-modulated (QAM) sequences are shown to be derivable from

binary or ternary sequences.

In this paper, we present three systematic approaches for generating families of sequences

whose periodic AC and CC functions satisfy a variety of ZCZ requirements. While some known

ZCZ sequence construction methods employing Hadamard matrices in time domain (e.g., [9],

[13]), our first approach uses such matrices to meet the desired transform domain properties of

a ZCZ sequence set instead. Sequence sets generated from this approach are, by construction,

optimal in the sense that the upper bounds for family sizes and ZCZ widths are achieved. We

further employ a filtering operation to convert sequences ofnonconstant modulus symbols into

polyphase ones without changing the correlation properties.

Based upon a basic binary sequence (to be defined in Section IV) whose AC function satis-

fies the ZCZ requirement, the second approach generates ZCZ sequence families by a special

nonuniform upsampling on unitary matrices. The construction of basic sequences seems trivial

and straightforward, but from these simple sequences we areable to synthesize desired polyphase

ZCZ sequences through some refining steps that include nonuniform upsampling and filtering.

Our third approach invokes the notion of complementary set of sequences [21], [22]. It bears

the flavor of the second approach and makes use of a basic binary sequence which meets the

ZCZ constraint as well as a collection of mutually orthogonal complementary sets. While this
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method is capable of generating binary sequences with sequence parameters identical to those

given in [4] and [6], it can also produce polyphase sequence sets that are unobtainable by the

conventional complementary set-based approaches.

The rest of this paper is organized as follows. We introduce basic definitions and properties

related to our investigation in the next section. Section III begins with a brief summary of

important transform domain properties, followed by the analysis and synthesis of the proposed

transform domain approach. We then show some ZCZ sequence sets generated by the transform

domain method in subsection III-D. The direct synthesis method is presented in section IV and

construction examples are given in subsection IV-E. In section V, a complementary sequence

set based extension of the second approach is proposed, followed by numerical construction

examples given in subsection V-D. For each proposed approach, we tabulate the parametric

constraint comparisons with related methods. More detailed comparisons and discussions are

given in the form of remarks. Finally, some concluding notesare provided in Section VI.

II. DEFINITIONS AND FUNDAMENTAL PROPERTIES

Definition 1: An (N,K) sequence setX is a set ofK sequences of periodN .

Definition 2: The periodic CC function of two period-N sequencesu ≡ {u(n)} and v ≡

{u(n)} is defined as

θuv(τ) =

N−1∑

n=0

u(n)v∗(n− τ) = u(τ) � v∗(−τ), (1)

where� denotes the circular convolution.

Thus, the periodic AC function of sequenceu is simplyθuu(τ). Since these CC and AC functions

are also of periodN , to simplify the discussion we shall, throughout this paper, limit the

representations and examples of sequences or sequence setsto a single period(0 ≤ τ ≤ N − 1)

unless necessary.

Definition 3: A sequence{u(n)} that has an impulse-like (or ideal) AC function, i.e.,θuu(τ) =
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θuu(0)δ(τ), is called aperfect sequence, where

δ(τ)
def
=





1, τ = 0;

0, τ 6= 0.
(2)

is the Dirac delta function.

Definition 4: A sequence{uv(n)} is said to be obtained fromfiltering the sequenceu =

{u(n)} by the sequencev = {v(n)} of the same period if

uv(n)
def
= u(n) ◦ v(n) def

= u(n) � v∗(−n) ≡ θuv(n) (3)

Definition 5: An (N,K) sequence set,C = {C0, C1, · · · , CK−1} is called an(N,K, T ) ZCZ

sequence family (or set) if∀ Ci, Cj ∈ C, i 6= j, θCiCj
(τ) = 0 and θCiCi

(τ) = θCiCi
(0)δ(τ),

|τ |N ≤ T < N whereT is the ZCZ width and|k|N
def
= k modN .

In [23], it was proved that

Lemma 1:The sequence periodN , cardinalityK and ZCZ widthT of an (N,K, T ) ZCZ

family must satisfy the inequality

K(T + 1) ≤ N. (4)

For ±1-valued binary sequence set, the bound becomes more tight [7]

KT ≤ N

2
, K > 1. (5)

This lemma describes the fundamental tradeoff among the sequence period, family size, and

ZCZ width. For a fixedN , increasing the family size must be achieved at the cost of reduced

ZCZ width and vice versa. Note that for a set with a single perfect sequence, (4) is automatically

satisfied becauseK = 1 andT = N − 1.

Definition 6: An N ×N matrix U is called aHadamard matrixof orderN if and only if it

satisfies two conditions:

(i) Unimodularity: the components ofU are of the same magnitude
√
P ;
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(ii) Orthogonality:UU
H = NP IN whereIN is theN × N identity matrix and(·)H denotes

the conjugate transpose of the enclosed matrix.

Definition 7: The Matrix

FM =




1 1 1 · · · 1

1 W−1
M W−2

M · · · W
−(M−1)
M

1 W−2
M W−4

M · · · W
−2(M−1)
M

...
...

...
.. .

...

1 W
−(M−1)
M W

−2(M−1)
M · · · W

−(M−1)2

M




(6)

is called theM-discrete Fourier transform (M-DFT) matrix, whereW k
M = ej2πk/M , and its

HermitianFH
M = F

−1
M is called the inverseM-DFT (M-IDFT) matrix. The set of complexM th

roots of unity,{W k
M : k = 0, 1, · · · ,M − 1}, is called theM-ary phase-shift keying (M-PSK)

set and a sequence with elements from theM-PSK constellation is called anM-PSK sequence

or a polyphase sequence in general.

Note that DFT matrices form a subcalss of the so-called Butson Hadamard matrices [24].

Definition 8: The kth Kronecker powerof matrix U, denoted by⊗k
U, is defined as

⊗k
U = U⊗U⊗ · · · ⊗U︸ ︷︷ ︸

U appearsk times

, (7)

where⊗ denotes the Kronecker product.

Definition 9: The matrices

H2 =


 1 1

1 −1


 (8)

and

H2n = ⊗n
H2 =


 H2n−1 H2n−1

H2n−1 −H2n−1


 , n = 2, 3, · · · , (9)

are calledSylvester Hadamard matrices.

The following lemma is essential to derive our constructionmethods in the next section.
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Lemma 2: [24] The Kronecker (tensor) product of any two Hadamard matrices is a Hadamard

matrix.

III. T RANSFORM DOMAIN CONSTRUCTION METHODS

We first review some transform domain properties of sequences and their correlation functions.

A class of ZCZ sequence construction approaches based on transform domain properties is then

presented. Detailed comparisons with two related proposals are made and a few construction

examples are provided.

A. Useful Transform Domain Properties

Denote by DFT{u(n)}, the DFT of a periodic sequence{u(n)} and by IDFT{U(k)}, the

inverse DFT (IDFT) of a periodic transform domain sequence{U(k)}. We then immediately

have

Lemma 3:The DFT of the CC functionθuv(τ) of two period-N sequences,{u(n)} and

{v(n)}, is equal toU(k)V ∗(k), where{U(k)} = DFT{u(n)} and{V (k)} = DFT{v(n)}.

Since the AC function of{u(n)} can be expressed asθuu(n) = u(n) � u∗(−n), its DFT is

given byΘuu(k) = |U(k)|2. Therefore, it is straightforward to show

Corollary 1: Sequence{u(n)} is a perfect sequence if and only if|U(k)|2 is constant for all

k.

Based on the above properties, we can easily prove that

Lemma 4:The AC and CC functions of a set of sequences are invariant (upto a scaling

factor) to filtering if the filtering sequencev is a perfect sequence.

As will become clear in subsequent sections that this lemma makes the filtering operator very

useful in transforming a sequence set into one with entries of the sequences taken from a desired

constellation while maintaining the correlation properties.

B. Basic Constructions

Definition 10: A sequence{u(n)} in an (N,K) sequence set is said to have asubperiodof

J , whereJ |N , if it is also periodic with periodJ < N , i.e.,u(n) = u(ℓJ+n), for 0 ≤ ℓ < N/J
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and0 ≤ n < J .

Now note thatLemma 3implies

θuv(τ) =

N−1∑

k=0

Θuv(k)e
j2πτk

N =

N−1∑

k=0

U(k)V ∗(k)e
j2πτk

N (10)

whereΘuv(k) =DFT{θuv(τ)}. When{U(k)} and{V (k)}, regarded asN-dimensional vectors,

are orthogonal, we have

θuv(0) =
N−1∑

k=0

Θuv(k) =
N−1∑

k=0

U(k)V ∗(k) = 0. (11)

If the sequence{Θuv(k)} has a subperiod ofJ = N
m

, then

θuv(τ) =

J−1∑

k=0

Θuv(k)e
j2πτk

N +

2J−1∑

k=J

Θuv(k)e
j2πτk

N + · · ·+
N−1∑

k=(m−1)J

Θuv(k)e
j2πτk

N

=

J−1∑

k=0

Θuv(k)e
j2πτk

N

(
1 + e

j2πτ

m + · · ·+ e
j2πτ(m−1)

m

)

The identity

1 + α + α2 + · · ·+ αm−1 = 0, ∀ α = W τ
m, |τ |m 6= 0 (12)

then gives

Lemma 5:The CC functionθuv(τ) of two period-N sequences{u(n)} and{v(n)} is identical

zero ∀|τ |N ≤ T if the associated DFT vectors{U(k)} and {V (k)} are orthogonal and their

Hadamard product,{U(k)V ∗(k)}, has a subperiod ofJ = N/(T + 1), whereT is a positive

integer.

The recursive Kronecker construction of the Sylvester Hadamard matrices (9) gives at least two

sets of row vectors (i.e., upper- and lower-half parts ofH2n) that satisfy both the orthogonality

and subperiodicity requirements. This property still holds when we replace Sylvester Hadamard

matrices by other classes of Hadamard matrices produced by arecursive Kronecker construction

similar to (9). Furthermore, as elements of a Hadamard matrix have constant modulus, the AC

of all sequences derived by taking IDFT on rows of a Hadamard matrix is 0 for all nonzero
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correlation lags byCorollary 1. These two observations suggest that ZCZ families can be obtained

by using proper subsets of row vectors from a Hadamard matrix. To have a precise definition

of “proper subsets,” we need

Definition 11: A regularpth-orderM-partition on anN × N matrix H, whereN = Mn, is

the set ofm = N/K =Mp K×N submatrices, each is formed by non-overlappingK =Mn−p

consecutive rows ofH.

Proper subsets of row vectors that generate ZCZ families areobtained by performingpth-order

M-partition on thenth Kronecker power of a Hadamard matrix, i.e.,

Lemma 6:Let U be a Hadamard matrix of orderM andH be the Hadamard matrix of order

N generated by thenth Kronecker power ofU, i.e.,

H = [hT
0 ,h

T
1 , · · · ,hT

N−1]
T = ⊗n

U, (13)

whereN =Mn, n ≥ 2, andhℓ is theℓth row1 of H. We perform a regularpth-orderM-partition

on H to obtain them =Mp submatrices

H̃i = [hT
iK , · · · ,hT

(i+1)K−1]
T , i = 0, 1, · · · , m− 1. (14)

Then, for eachi, the set ofK length-N sequencesAi
def
= {Ai,0, Ai,1, · · · , Ai,K−1}, whereAi,j =

IDFT{hiK+j}, is an (N,K,m − 1) ZCZ sequence family that achieves the upper bound (4).

Furthermore, all member sequences in the family are perfectsequences.

Proof: The matrixH can be expressed in the stacked form,H =
[
H̃

T
0 , H̃

T
1 , · · · , H̃T

m−1

]T
,

where the submatrix̃Hi is of the form

[ai,0B, ai,1B, · · · , ai,m−1B]

whereai,j ’s have unit magnitudes andB = ⊗n−p
U. It follows immediately that the Hadamard

products of two distinct rows of̃Hi has a period ofMn−p = K.

1For convenience, all the column, row, and vector elements’ indices start with 0 instead of 1.

September 15, 2021 DRAFT



The above construction gives ZCZ sequences of lengthMn, n ≥ 2. That the upper bound (4)

is achieved is a result of our partition method described byDefinition 11. The sequence length

constraint can be relaxed by using Kronecker construction of Hadamard matrices of different

orders. UsingLemma 2and an argument similar to that in deriving the above lemma, we obtain

Theorem 1:Let H be theN ×N Hadamard matrix

H = [hT
0 ,h

T
1 , · · · ,hT

N−1]
T def

= Un−1 ⊗ · · · ⊗U0 (15)

whereUk, k = 0, 1, · · · , n− 1, areMk ×Mk (not necessarily distinct) Hadamard matrices and

N =
∏n−1

k=0 Mk, n ≥ 2. PartitionH into m = N
K

submatrices of sizeK ×N ,

H̃i = [hT
iK , · · · ,hT

(i+1)K−1]
T , i = 0, 1, · · · , m− 1, (16)

each formed by non-overlappingK =
∏n−p−1

k=0 Mk consecutive rows ofH with p > 0. Then,

for each i, the set ofK period-N sequencesAi
def
= {Ai,0, Ai,1, · · · , Ai,K−1}, whereAi,j =

IDFT{hiK+j}, is an(N,K,m− 1) ZCZ sequence family that achieves the upper bound (4)2.

Note that the recursive generation of Hadamard matrices defined by (9) and (13) are special

cases of (15), i.e., the above theorem generalizeTheorems 1and2 of [25].

C. Polyphase ZCZ Sequences

The ZCZ sequences generated by the methods described above are not necessary of constant

modulus but can be converted into polyphase sequences without altering the desired AC and

CC properties by a proper filtering process; seeDefinition 4andLemma 4. To find the filtering

perfect sequences we need the following two properties.

Lemma 7: [26] Let U be a length-N polyphase perfect sequence with entries drawn from the

N-PSK constellation. Then both IDFT{U} and DFT{U} are polyphase perfect sequences.

Lemma 8: [27] Let L be a natural number andN = L2. Define the length-N polyphase

2Technically, the theorem is also valid forp = 0, as the resulting set has a ZCZ width 0. We will implicitly ignore this trivial
case and assumep > 0 in the subsequent discussion.
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sequence{u(k)} by

u(k1L+ k2) = W
β(k2)k1+r(k2)
L , 0 ≤ k1, k2 < L, (17)

where {β(k2) : k2 = 0, 1, · · · , L − 1} is a permutation of{0, 1, · · · , L − 1}, and r(k2) is a

rational number depending onk2. Then the sequences,{u(k)},

{ejθk2u(k1L+ k2) : 0 ≤ θk2 < 2π, 0 ≤ k1, k2 < L} (18)

and

{W ℓk1
L u(k1L+ k2) : 0 ≤ k1, k2 < L}, for any integerℓ,

(19)

are all polyphase perfect sequences.

Based on the above results, we propose a transform domain construction of polyphase ZCZ

sequences as follows.

Corollary 2: Let u be a length-N perfect sequence of the form (17),N =
∏n−1

k=0 Mk = L2

for someL, andH̃i be theith submatrix defined by (15) and (16) usingMk-DFT or Mk-IDFT

matricesUk’s. ThenCi =
{

IDFT{hiK+n}◦IDFT{u} : 0 ≤ n ≤ K − 1
}

is an
(
N,K, N

K
− 1

)

bound-achieving polyphase ZCZ sequence set.

Proof: Since the entries in thenth row of H̃i render the general expression

[H]iK+n,k1L+k2

def
= hiK+n(k1L+ k2) = ejθk2(n)W

ℓ(n)k1
L

for 0 ≤ k1, k2 < L, whereℓ(n) ∈ Z (integers) and0 ≤ θk2(n) < 2π, the productshiK+n(k)u
∗(k)

are of the forms (17)–(19) and are integer powers ofWN . Lemmas 7and8 imply that the sequence

Ci,n(k) = IDFT{hiK+n(k)} ◦ IDFT{u(k)}

= IDFT{hiK+n(k)u
∗(k)}
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has polyphase entries. InvokingTheorem 1andLemma 4, we conclude that{Ci,n : 0 ≤ n < K}

is an (N,K, N
K
− 1) polyphase ZCZ family.

Remark 1: (Polyphase constraint and sequence length selection)Theorem 1provides a gen-

eral transform domain approach using Hadamard matrices to construct bound-achieving sets of

arbitrary nonprime length ZCZ sequences. In contrast,Corollary 2 focuses on the generation of

polyphase sequences and can be regarded as an extension of a special case of the former. The

polyphase requirement is satisfied by invoking an additional filtering operation and the use of

special Hadamard matrices; seeExample 1in the ensuing subsection. As a result, the choice of

the sequence length is limited to perfect squares (N = L2).

Remark 2: (Nested structure) EveryK × N submatrixH̃i can be further partitioned into

K/K ′ =
∏n−p−1

k=n−p′ Mk submatrices of sizeK ′ × N , wherep < p′ < n, K =
∏n−p−1

k=0 Mk, and

K ′ =
∏n−p′−1

k=0 Mk so that each submatrix can be used to construct an(N,K ′, N
K ′ − 1) ZCZ

sequence setCj
i with larger ZCZ width and

⋃ K

K′ −1

j=0 C
j
i = Ci. This partition can be done in

a nested manner, i.e., each subset can be further decomposedto render even smaller sequence

subsets or̃Hi can be merged with proper neighboring submatrices to construct a larger set.

Remark 3: (Tradeoff between AC and CC) The identity (12) actually gives a stronger CC

property than what is specified by the ZCZ width; it implies that the CC values are identically

zero except atτ = s(T + 1), s ∈ Z. This is still weaker than the constructions of [15] and [16]

which yield perfect (zero) CC at all lags. Perfect CC is achieved by requiring that each transform

domain sequence has sparse nonzero elements and support (set of the nonzero coordinates)

disjoint from the supports of all other transform domain sequences. Nevertheless, their AC

functions are not as good as ours as all the sequences constructed by our approach are perfect

sequences.

Remark 4: (Tradeoff between sequence length and alphabet size) Tsai’s approach [15] is more

flexible in the choice of sequence length but requires a very large constellation for elements of

the sequences. Our approach, on the other hand, requires thesmallest constellation and is more

flexible than [16] in selecting the sequence lengthN .

We summarize various parameter constraints for our approach, [15], and [16] in Table I.
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TABLE I
TRANSFORM DOMAIN-BASED POLYPHASEZCZ SEQUENCE SETS

Tsai [15] Brodzik [16] Corollary 2

Sequence lengthN n1n2 L3 ∏n−1
k=0 Mk = L2

Set sizeK n2 L
∏n−p−1

k=0 Mk

ZCZ width T n1 − 1 L2 − 1, L prime L− 1, L nonprime N
K

− 1

Upper-bound (4)
achieved?

Yes Yes No Yes

Perfect sequence
used

Length-n1,
nP -phase

No explicit use of perfect sequences Length-N

Alphabet size lcm(N, nP ) N N

D. ZCZ Sequence Sets Generated by Transform Domain Approach

In this subsection, we present some construction examples using the proposed transform

domain method. All ZCZ sequences obtained are perfect sequences. To minimize the number

of notations, we useCi andAi to denote sequences generated by the methods ofCorollary 2

and Theorem 1, respectively. The same notation may refer to different sequences in different

examples when there is no danger of ambiguity.

Example 1: (Use of three DFT matrices of unequal dimensions) Partitioning the Hadamard

matrix H = F6⊗F3 ⊗F2 into submatrices̃H0, H̃1, · · · , H̃17 and performing IDFT on the rows

of H̃10, we obtain two sequences

A0 = (000W 21
12 00000W

7
1200000W

5
1200000W

15
12 00000W

1
1200000W

23
12 00),

A1 = (000W 15
12 00000W

1
1200000W

23
12 00000W

21
12 00000W

7
1200000W

5
1200).

To convert them into ones with constant moduli we filter them by the perfect polyphase sequence

[15]

U36 = (W 0
6W

0
6W

0
6W

0
6W

0
6W

0
6W

0
6W

5
6W

4
6W

3
6W

2
6W

1
6W

0
6W

4
6W

2
6W

0
6W

4
6W

2
6

W 0
6W

3
6W

0
6W

3
6W

0
6W

3
6W

0
6W

2
6W

4
6W

0
6W

2
6W

4
6W

0
6W

1
6W

2
6W

3
6W

4
6W

5
6 ) (20)
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which satisfies (17). The resulting(36, 2, 17) bound-achieving ZCZ sequence set consists of

C0 = A0 ◦ U36 = (W 11
12W

8
12W

9
12W

0
12W

3
12W

2
12W

5
12W

4
12W

7
12W

0
12W

5
12W

6
12W

11
12W

12
12W

5
12W

0
12W

7
12W

10
12

W 5
12W

8
12W

3
12W

0
12W

9
12W

2
12W

11
12W

4
12W

1
12W

0
12W

11
12W

6
12W

5
12W

12
12W

11
12W

0
12W

1
12W

10
12 ),

C1 = A1 ◦ U36 = (W 5
12W

8
12W

3
12W

0
12W

9
12W

2
12W

11
12W

4
12W

1
12W

0
12W

11
12W

6
12W

5
12W

12
12W

11
12W

0
12W

1
12W

10
12

W 11
12W

8
12W

9
12W

0
12W

3
12W

2
12W

5
12W

4
12W

7
12W

0
12W

5
12W

6
12W

11
12W

12
12W

5
12W

0
12W

7
12W

10
12 ).

If instead we take IDFT on the rows of the first submatrixG̃0 of G = [G̃T
0 , G̃

T
1 , · · · , G̃T

11]
T =

F2⊗F6⊗F3 and filter the resulting sequences{A0, A1, A2} through (20), we obtain the bound-

achieving(36, 3, 11) set:

C0 = A0 ◦ U36 = (W 0
6W

1
6W

2
6W

3
6W

4
6W

5
6W

0
6W

2
6W

4
6W

0
6W

2
6W

4
6W

0
6W

3
6W

0
6W

3
6W

0
6W

3
6

W 0
6W

4
6W

2
6W

0
6W

4
6W

2
6W

0
6W

5
6W

4
6W

3
6W

2
6W

1
6W

0
6W

0
6W

0
6W

0
6W

0
6W

0
6 ),

C1 = A1 ◦ U36 = (W 0
6W

5
6W

4
6W

3
6W

2
6W

1
6W

0
6W

0
6W

0
6W

0
6W

0
6W

0
6W

0
6W

1
6W

2
6W

3
6W

4
6W

5
6

W 0
6W

2
6W

4
6W

0
6W

2
6W

4
6W

0
6W

3
6W

0
6W

3
6W

0
6W

3
6W

0
6W

4
6W

2
6W

0
6W

4
6W

2
6 ),

C2 = A2 ◦ U36 = (W 0
6W

3
6W

0
6W

3
6W

0
6W

3
6W

0
6W

4
6W

2
6W

0
6W

4
6W

2
6W

0
6W

5
6W

4
6W

3
6W

2
6W

1
6

W 0
6W

0
6W

0
6W

0
6W

0
6W

0
6W

0
6W

1
6W

2
6W

3
6W

4
6W

5
6W

0
6W

2
6W

4
6W

0
6W

2
6W

4
6 ).

Example 2: (Construction based on Kronecker power of a DFT matrix) LetH = F3 ⊗F3 ⊗

F3 ⊗ F3 and denote bỹH0, H̃1, · · · , H̃26 the submatrices obtained by performing regular3rd-

order 3-partition onH. ChoosingH̃2 and performing IDFT on its rows, we obtain sequences

{A0, A1, A2}. Filtering them by polyphase perfect sequence

U81 = (W 0
9W

0
9W

0
9W

0
9W

0
9W

0
9W

0
9W

0
9W

0
9W

0
9W

8
9W

7
9W

6
9W

5
9W

4
9W

3
9W

2
9W

1
9

W 0
9W

7
9W

5
9W

3
9W

1
9W

8
9W

6
9W

4
9W

2
9W

0
9W

6
9W

3
9W

0
9W

6
9W

3
9W

0
9W

6
9W

3
9

W 0
9W

5
9W

1
9W

6
9W

2
9W

7
9W

3
9W

8
9W

4
9W

0
9W

4
9W

8
9W

3
9W

7
9W

2
9W

6
9W

1
9W

5
9

W 0
9W

3
9W

6
9W

0
9W

3
9W

6
9W

0
9W

3
9W

6
9W

0
9W

2
9W

4
9W

6
9W

8
9W

1
9W

3
9W

5
9W

7
9
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W 0
9W

1
9W

2
9W

3
9W

4
9W

5
9W

6
9W

7
9W

8
9 ),

we obtain

C0 = A0 ◦ U81 = (W 0
9W

1
9W

2
9W

6
9W

7
9W

8
9W

3
9W

4
9W

5
9W

0
9W

2
9W

4
9W

0
9W

2
9W

4
9W

0
9W

2
9W

4
9

W 0
9W

3
9W

6
9W

3
9W

6
9W

0
9W

6
9W

0
9W

3
9W

0
9W

4
9W

8
9W

6
9W

1
9W

5
9W

3
9W

7
9W

2
9

W 0
9W

5
9W

1
9W

0
9W

5
9W

1
9W

0
9W

5
9W

1
9W

0
9W

6
9W

3
9W

3
9W

0
9W

6
9W

6
9W

3
9W

0
9

W 0
9W

7
9W

5
9W

6
9W

4
9W

2
9W

3
9W

1
9W

8
9W

0
9W

8
9W

7
9W

0
9W

8
9W

7
9W

0
9W

8
9W

7
9

W 0
9W

0
9W

0
9W

3
9W

3
9W

3
9W

6
9W

6
9W

6
9 ),

C1 = A1 ◦ U81 = (W 0
9W

7
9W

5
9W

6
9W

4
9W

2
9W

3
9W

1
9W

8
9W

0
9W

8
9W

7
9W

0
9W

8
9W

7
9W

0
9W

8
9W

7
9

W 0
9W

0
9W

0
9W

3
9W

3
9W

3
9W

6
9W

6
9W

6
9W

0
9W

1
9W

2
9W

6
9W

7
9W

8
9W

3
9W

4
9W

5
9

W 0
9W

2
9W

4
9W

0
9W

2
9W

4
9W

0
9W

2
9W

4
9W

0
9W

3
9W

6
9W

3
9W

6
9W

0
9W

6
9W

0
9W

3
9

W 0
9W

4
9W

8
9W

6
9W

1
9W

5
9W

3
9W

7
9W

2
9W

0
9W

5
9W

1
9W

0
9W

5
9W

1
9W

0
9W

5
9W

1
9

W 0
9W

6
9W

3
9W

3
9W

0
9W

6
9W

6
9W

3
9W

0
9 ),

C2 = A2 ◦ U81 = (W 0
9W

4
9W

8
9W

6
9W

1
9W

5
9W

3
9W

7
9W

2
9W

0
9W

5
9W

1
9W

0
9W

5
9W

1
9W

0
9W

5
9W

1
9

W 0
9W

6
9W

3
9W

3
9W

0
9W

6
9W

6
9W

3
9W

0
9W

0
9W

7
9W

5
9W

6
9W

4
9W

2
9W

3
9W

1
9W

8
9

W 0
9W

8
9W

7
9W

0
9W

8
9W

7
9W

0
9W

8
9W

7
9W

0
9W

0
9W

0
9W

3
9W

3
9W

3
9W

6
9W

6
9W

6
9

W 0
9W

1
9W

2
9W

6
9W

7
9W

8
9W

3
9W

4
9W

5
9W

0
9W

2
9W

4
9W

0
9W

2
9W

4
9W

0
9W

2
9W

4
9

W 0
9W

3
9W

6
9W

3
9W

6
9W

0
9W

6
9W

0
9W

3
9 )

which form an(81, 3, 26) ZCZ sequence set that satisfies (4).

Example 3: (Quadriphase sequences derived from a Sylvester Hadamard matrix) Partition

the Sylvester Hadamard matrixH16 into four submatrices,̃H0, H̃1, H̃2, H̃3, and select the first

submatrix,H̃0 = [hT
0 ,h

T
1 ,h

T
2 ,h

T
3 ]

T . Filtering the IDFT ofhi by

U16 = (W 0
4W

0
4W

0
4W

0
4W

0
4W

3
4W

2
4W

1
4W

0
4W

2
4W

0
4W

2
4W

0
4W

1
4W

2
4W

3
4 ), (21)
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for eachi, we have

C0 = (W 0
4W

1
4W

2
4W

3
4W

0
4W

2
4W

0
4W

2
4W

0
4W

3
4W

2
4W

1
4W

0
4W

0
4W

0
4W

0
4 ),

C1 = (W 0
4W

3
4W

2
4W

1
4W

0
4W

0
4W

0
4W

0
4W

0
4W

1
4W

2
4W

3
4W

0
4W

2
4W

0
4W

2
4 ),

C2 = (W 0
4W

1
4W

0
4W

1
4W

0
4W

2
4W

2
4W

0
4W

0
4W

3
4W

0
4W

3
4W

0
4W

0
4W

2
4W

2
4 ),

C3 = (W 0
4W

3
4W

0
4W

3
4W

0
4W

0
4W

2
4W

2
4W

0
4W

1
4W

0
4W

1
4W

0
4W

2
4W

2
4W

0
4 ),

a quadriphase(16, 4, 3) ZCZ sequence family that satisfies (4).

Note that if a3rd-order2-partition is used instead, we have a set of only two sequences but

with a larger ZCZ width, i.e., we obtain a quadriphase(16, 2, 7) ZCZ sequence set consisting

of {A0 ◦ U16, A1 ◦ U16} or {A2 ◦ U16, A3 ◦ U16}.

IV. D IRECT SYNTHESIS METHOD

A. Preliminaries

We now present an alternate approach which is capable of generating ZCZ sequences of

arbitrary nonprime periods.

Definition 12: A binary (0- and 1-valued) sequence of periodN which satisfies the ZCZ width

constraintT on its AC function is called a basic(N, T ) sequence.

A basic sequence can be obtained by the simple rule given in

Lemma 9:A binary sequenceB = (b0, b1, · · · , bN−1), bi ∈ {0, 1}, is a basic(N, T ) sequence

if the minimum run length of0’s is T (in the circular sense), where a run refers to a string of

identical symbols andT is also called theminimum spacingof B.

B. Synthesis Process

Two new operations are needed.

Definition 13: A basic (N, T ) sequenceB with Hamming weightwH(B) can be expressed

as the sum (via component-wise addition) ofM length-N binary sequences,{Bi}M−1
i=0 , with

disjoint nonempty supports so that
∑M−1

i=0 wH(Bi) = wH(B) andwH(Bi) ≥ 1. The sequence set

{Bi}M−1
i=0 is said to be anorthogonal tone decompositionof B.
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It is trivial to see that{Bi}M−1
i=0 is a binary(N,M, T ) ZCZ sequence family and eachBi is a

basic(N, Ti) sequence withTi ≥ T .

Definition 14: Let V = (v(0), v(1), · · · , v(N − 1)) be a length-N binary sequence with

Hamming weightwH(V ) = k and U = [uij] be any matrix havingk columns and arbitrary

number of rowsk′. TheV -upsampled matrix ofU is thek′ ×N matrix P = [pij ] defined by

pij =





uim, j = sV (m), m = 0, 1, · · · , k − 1;

0, otherwise,
(22)

wheresV (m) = the coordinate of sequenceV ’s mth nonzero entry. We denote the above row-

wise nonuniform upsampling operation onU by P = U △ V .

Obviously, the nonzero entries in all rows of the matrixP = U △ V are in the same positions.

Hence if V is an (N, T ) basic sequence constructed by the procedure described inLemma 9,

then each row has the same minimum spacingT and all CC (including AC) values are zero at

0 < τ ≤ T . Values of all CC functions atτ = 0 are zero whenU is unitary in which case rows

of P all have ZCZ widthT . Invoking Lemma 4, we have

Lemma 10:Let B be a basic(N, T ) sequence withwH(B) = K, B
def
= {Bi}M−1

i=0 be an

orthogonal tone decomposition ofB, wH(Bi) = ki, andUi, 0 ≤ i < M be ki × ki unitary

matrices (not necessarily distinct). Then for eachi, the rows of nonuniform upsampled matrix

Pi = Ui △ Bi constitute an(N,Ki, Ti) ZCZ sequence family, whereTi ≥ T is the minimum

spacing ofBi. Moreover, the rows of allPi’s constitute an(N,K, T ) ZCZ sequence set.

C. Polyphase ZCZ Sequences

The above process does not guarantee a constant modulus constellation for the entries of the

generated sequences. We need a special class of basic sequences and a suitable perfect sequence

to generates polyphase sequence families.

Theorem 2:Let A′ = {a′n} be a length-N ′ perfectNA′-PSK sequence, where2 ≤ NA′ ≤ 2N ′

andA be the perfect sequence of lengthN = NrN
′ derived fromNr-fold upsampling onA′.

An (N,Nr, N
′ − 1) or (N,Nr, N

′ − 2) ZCZ ℓ-PSK sequence family, whereℓ = lcm(NA′, Nr),
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can be obtained by filtering the rows ofP = FNr
△ B by A, whereB = (b0, b1, · · · , bN−1) is

the weight-Nr basic sequence defined by

bi =





1, i = kN ′, k = 0, 1, · · · , Nr − 1;

0, otherwise,
(23)

if Nr andN ′ are relatively prime, or by

bi =





1, i = kN ′, k = 0, 1, · · · , L0

N ′ − 1, or

i = ℓL0 +
(

N
L0

− ℓ
)
+ kN ′, where

ℓ = 1, 2, · · · , N
L0

− 1,

k = 0, 1, · · · , L0

N ′ − 1;

0, otherwise,

(24)

if gcd(Nr, N
′) 6= 1, whereL0 = lcm(Nr, N

′).

Proof: See Appendix A.

D. Properties, Constraints, and Comparisons

The following three properties about the approach described above are easily verifiable.

Remark 5: (Parameter relations) For a fixedN andK = Nr, ZCZ sequence families generated

by (23) achieve the upper bound (4) and those generated from (24) satisfy the relationK(T+1) =

N −Nr.

Remark 6: (Nested-like and inter-set properties) The construction described inLemma 10

results in a nested-like structure similar to that ofRemark 2. Instead of decomposing a Hadamard

matrix, we decompose a basic sequence of minimum spacingS into several basic sequences of

minimum spacingS ′ ≥ S and use the latter basic sequences to construct sequence sets whose

union constitutes a larger ZCZ set with a ZCZ width smaller than that of individual subset; see

the second part ofExample 7.

The construction ofTheorem 2needs a special choice of the Hadamard matrix and basic

sequence used because of the polyphase requirement. But as aspecial case ofLemma 10, it still

preserve the nested-like structure. In fact, the basic sequences defined by (23) and (24) can be

September 15, 2021 DRAFT



cyclically shifted to generate distinct polyphase ZCZ sequence families with the same(N,K, T ).

The zero CC zone width between a sequence from the set based onB and one from the set based

on a circularly-shifted version ofB is determined by the CC function of the two basic sequences

used. If, for instance,C0 = {C0,0, C0,1, · · · , C0,K−1} and C1 = {C1,0, C1,1, · · · , C1,K−1} are

derived from basic sequenceB(n) andB′(n) = B(|n−n′|N), respectively, thenθC0,iC1,ℓ
(τ) = 0,

∀ i, ℓ and |τ |N ≤ T ′, whereT ′ < T is the zero-CC zone width ofθB,B′(τ). As a result, the set

C0 ∪C1 has the ZCZ widthT ′ < T ; seeExample 4in the next subsection.

Remark 7: (Binary sequences) To generate binary ZCZ sequences one hasto use binary

Hadamard matrices, which exist forNr = 2ℓ, 12 × 2ℓ, or 20 × 2ℓ [24], to replace theNr-DFT

matrix, FNr
, in constructingP and reduce the required alphabet size to just lcm(NA′ , 2) = 2;

seeExamples 9and10.

The parameter selection constraints and related properties for our and some related existing

methods are given in Table II. We provide more comparisons inthe following remarks.

Remark 8: Theorem 2does not explicitly mention any restriction on the alphabetsize. As

these constructions need to use a length-N ′ perfect sequence andNr ×Nr Hadamard matrices,

which do not always exist for all lengths (N ′), matrix dimension (Nr) and all constellation sizes

(NA′), the ZCZ width, sequence length, and family size are thus implicitly constrained by the

alphabet size.

Remark 9:Tanget al. [8] classifies the ZCZ sequences construction methods into two major

categories, i.e., i) those based on complementary sets and ii) those derived from perfect sequences.

Our approach belongs to the latter category and generates sequences with lengthN = n1n2,

where n1 is the length of a perfect sequences. The constructions proposed in [7]–[13] have

similar constraints on the sequence lengthN and those mentioned in the next three remarks.

Remark 10:In [7], an (N, k, (n1 − 2)kℓ−1) set is constructed by using a length-n1 perfect

sequence, wheren1 = kt, k ≤ n1, butn2 must be of the formkℓ, ℓ > 1. The interleaving scheme

[8] requires that either i) gcd(n1, n2) = 1 or ii) n1|n2 or n2|n1 to generate an(N, n2, n1 − 1) or

(N, n2, n1 − 2) ZCZ family. The length constraints in i) is similar to that for the construction

(23) while ii) leads to ZCZ families of the same parameters asthose by the construction (24)
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except that the latter is only constrained by gcd(n1, n2) 6= 1.

Remark 11:A length-N (N = n1n2) Frank-Chu perfect sequence is used in [13] to generate

an (N, n2, n1 − 1) family. This method also calls for the use of ann2 × n2 DFT or binary

Hadamard matrix. However, for the case whenn1 is a perfect square and a DFT (or binary

Hadamard) matrix is used, our approach needs an alphabet of size lcm(n2,
√
n1) or lcm(2,

√
n1)

instead of lcm(n2, n1), lcm(n2, 2n1) or lcm(2, n1) required by [13]. Moreover, as [13] is primarily

interested in polyphase (nonbinary) sequences, their approach is not applicable for binary set

since it requiresn1 = 2. Our constructions, on the other hand, can be applied to generate both

binary and nonbinary families.

Remark 12:The construction based on (23) generates sequences that possess the same cor-

relation properties as those of the so-called PS sequences [14]. These sequences are bound-

achieving; they have nonzero AC values only on subperiodic correlation lags atτ = m(T + 1),

m ∈ Z, and zero CC for all lags. While the PS sequences require thatgcd(n1, n2) = 1, where

n1 is a perfect square, to construct an(N, n2, n1 − 1) family, our method does not impose any

constraint onn1. Moreover, whenn1 is a perfect square, our approach can generate sequences,

which, for the convenience of reference, are calledPS-like sequences, that require a constellation

of size lcm(n2,
√
n1) = N/

√
n1 as opposed to lcm(n1, n2) = N required by the PS approach

[14]. Similarly, we refer to those families derived from (23) using non-perfect squaren1 as

generalized PS sequencesfor these sequences cannot be generated by the PS method. Some

PS-like and generalized PS sequence sets are given in the following subsection.

E. Examples of Direct Synthesized Sequence Sets

Example 4: (PS-like sequences) Following the procedure described inTheorem 2with Nr =

2, N ′ = 9, B = (100000000100000000) andU being the Sylvester Hadamard matrixH2, we

obtainP = U △ B = [P T
0 , P

T
1 ]

T , where

P0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),

P1 = (1, 0, 0, 0, 0, 0, 0, 0, 0,− 1, 0, 0, 0, 0, 0, 0, 0, 0).
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TABLE II
POLYPHASE ZCZ SEQUENCE SETS WITH SEQUENCE LENGTHN = n1n2 USINGnP -PSKPERFECT SEQUENCE

Torii [7] Tang [8] Popovic [13] Park [14] Theorem 2

Perfect
sequence

length

n1 = kt,
k ≤ n1

n1 N n1 = k2 n1

Set sizeK k n2 n2 n2 n2

ZCZ width T (n1 − 2)kℓ−1 n1 − 1 n1 − 2 n1 − 1 n1 − 1 n1 − 1 n1 − 2

Constraints on
n2

n2 = kℓ, ℓ > 1
gcd(n1, n2)

= 1
n1|n2 or
n2|n1

None
gcd(n1, n2)

= 1
gcd(n1, n2)

= 1
gcd(n1, n2)

6= 1

Upper-bound
(4) achieved?

No Yes No Yes Yes Yes No

Alphabet size lcm(k, nP ) lcm(n2, nP )
lcm(n1, n2) or
lcm(2n1, n2)

N lcm(n2, nP )

Filtering them by the upsampled perfect sequenceA = (W 0
3 0W

0
3 0W

0
3 0W

0
3 0W

2
3 0W

1
3 0W

0
3 0W

1
3 0W

2
3 0),

we have

C0,0 = P0 ◦ A = (W 0
6W

2
6W

2
6W

0
6W

4
6W

0
6W

0
6W

0
6W

4
6W

0
6W

2
6W

2
6W

0
6W

4
6W

0
6W

0
6W

0
6W

4
6 ),

C0,1 = P1 ◦ A = (W 0
6W

5
6W

2
6W

3
6W

4
6W

3
6W

0
6W

3
6W

4
6W

3
6W

2
6W

5
6W

0
6W

1
6W

0
6W

3
6W

0
6W

1
6 ). (25)

It can be shown that

θC0,0C0,1(τ) = 0, |θC0,0C0,0(τ)| = |θC0,1C0,1(τ)| = 18δ(|τ |9).

andC0 = {C0,0, C0,1}, is an(18, 2, 8) bound-achieving ZCZ sequence family.

Using cyclically-shifted basic sequencesB′(n) = B(|n− 3|18) andB′′(n) = B(|n− 6|18), we

obtain two new(18, 2, 8) ZCZ sequence setsC1 = {C1,0, C1,1} andC2 = {C2,0, C2,1} whose

members are

C1,0 = (W 0
6W

0
6W

4
6W

0
6W

2
6W

2
6W

0
6W

4
6W

0
6W

0
6W

0
6W

4
6W

0
6W

2
6W

2
6W

0
6W

4
6W

0
6 ),

C1,1 = (W 3
6W

0
6W

1
6W

0
6W

5
6W

2
6W

3
6W

4
6W

3
6W

0
6W

3
6W

4
6W

3
6W

2
6W

5
6W

0
6W

1
6W

0
6 ),

C2,0 = (W 0
6W

4
6W

0
6W

0
6W

0
6W

4
6W

0
6W

2
6W

2
6W

0
6W

4
6W

0
6W

0
6W

0
6W

4
6W

0
6W

2
6W

2
6 ),
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C2,1 = (W 0
6W

1
6W

0
6W

3
6W

0
6W

1
6W

0
6W

5
6W

2
6W

3
6W

4
6W

3
6W

0
6W

3
6W

4
6W

3
6W

2
6W

5
6 ).

It can be shown thatθBB′(τ) = θBB′′(τ) = θB′B′′(τ) = 0, ∀ |τ | ≤ T ′ = 2 and thus the inter-set

zero-CC zone width is 2. Moreover, the setC
def
=

⋃2
i=0Ci is a bound-achieving(18, 6, 2) ZCZ

sequence set.

Example 5: (Length-12 PS-like sequences) The set of three PS-like sequences

P0 = (W 0
3 000W

0
3 000W

0
3 000),

P1 = (W 0
3 000W

1
3 000W

2
3 000),

P2 = (W 0
3 000W

2
3 000W

1
3 000)

is generated by usingNr = 3, N ′ = 4, B = (100010001000), and IDFT matrixU = F
H
3 .

Filtering them byA = (1, 0, 0, 1, 0, 0, 1, 0, 0, −1, 0, 0), we obtain the ZCZ sequences

C0 = P0 ◦ A = (W 0
6W

0
6W

0
6W

3
6W

0
6W

0
6W

0
6W

3
6W

0
6W

0
6W

0
6W

3
6 ),

C1 = P1 ◦ A = (W 0
6W

2
6W

4
6W

3
6W

2
6W

4
6W

0
6W

5
6W

4
6W

0
6W

2
6W

1
6 ),

C2 = P2 ◦ A = (W 0
6W

4
6W

2
6W

3
6W

4
6W

2
6W

0
6W

1
6W

2
6W

0
6W

4
6W

5
6 ). (26)

It is verifiable that∀ i, j, i 6= j,

θCiCj
(τ) = 0, |θCiCi

(τ)| = 12δ(|τ |4), (27)

i.e.,C = {C0, C1, C2} is a (12, 3, 3) bound-achieving ZCZ sequence set. This set also possesses

the same PS sequence correlation properties [14]. Moreover, both (25) and (26) require only1/3

and1/2 of the alphabet size required by the original PS construction under the same sequence

period constraint.

Example 6: (Generalized PS sequences) Using the method ofTheorem 2with Nr = 5, N ′ =

3, the IDFT matrixU = F
H
5 , B = (100100100100100), andA = (W 0

3 0000W
2
3 0000W

0
3 0000),
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we obtain

C0 = (W 0
15W

5
15W

0
15W

0
15W

5
15W

0
15W

0
15W

5
15W

0
15W

0
15W

5
15W

0
15W

0
15W

5
15W

0
15),

C1 = (W 0
15W

11
15W

12
15W

3
15W

14
15W

0
15W

6
15W

2
15W

3
15W

9
15W

5
15W

6
15W

12
15W

8
15W

9
15),

C2 = (W 0
15W

2
15W

9
15W

6
15W

8
15W

0
15W

12
15W

14
15W

6
15W

3
15W

5
15W

12
15W

9
15W

11
15W

3
15),

C3 = (W 0
15W

8
15W

6
15W

9
15W

2
15W

0
15W

3
15W

11
15W

9
15W

12
15W

5
15W

3
15W

6
15W

14
15W

12
15 ),

C4 = (W 0
15W

14
15W

3
15W

12
15W

11
15W

0
15W

9
15W

8
15W

12
15W

6
15W

5
15W

9
15W

3
15W

2
15W

6
15)

which constitute a set of(15, 5, 2) bound-achieving generalized PS sequences that has the same

correlation properties as the original PS sequences, i.e.,∀ i, j, i 6= j,

θCiCj
(τ) = 0, |θCiCi

(τ)|= 15δ(|τ |3). (28)

As mentioned before, the PS method [14] can not produce ZCZ sequences of lengthN = 15.

Previous examples are constructed by using coprimeNr andN ′, we show a set using the

construction (24).

Example 7: (Sets based non-coprime parameters and nested-like sets using orthogonal tone

decomposition) By choosingNr = 4, N ′ = 6 and upsampling the Sylvester HadamardH4

by B = (100000100000010000010000), we obtain a(24, 4, 4) ZCZ sequence family by filtering

each row ofP = H4 △ B throughA = (W 0
12000W

1
12000W

4
12000W

9
12000W

4
12000W

1
12000):

C0 = P0 ◦ A =(W 0
12W

3
12W

11
12W

8
12W

11
12W

8
12W

0
12W

3
12W

8
12W

11
12W

11
12W

8
12

W 3
12W

0
12W

8
12W

11
12W

8
12W

11
12W

3
12W

0
12W

11
12W

8
12W

8
12W

11
12 ),

C1 = P1 ◦ A =(W 0
12W

3
12W

5
12W

2
12W

11
12W

8
12W

6
12W

9
12W

8
12W

11
12W

5
12W

2
12

W 3
12W

0
12W

2
12W

5
12W

8
12W

11
12W

9
12W

6
12W

11
12W

8
12W

2
12W

5
12),

C2 = P2 ◦ A =(W 0
12W

9
12W

11
12W

2
12W

11
12W

2
12W

0
12W

9
12W

8
12W

5
12W

11
12W

2
12

W 3
12W

6
12W

8
12W

5
12W

8
12W

5
12W

3
12W

6
12W

11
12W

2
12W

8
12W

5
12),

C3 = P3 ◦ A =(W 0
12W

9
12W

5
12W

8
12W

11
12W

2
12W

6
12W

3
12W

8
12W

5
12W

5
12W

8
12
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W 3
12W

6
12W

2
12W

11
12W

8
12W

5
12W

9
12W

0
12W

11
12W

2
12W

2
12W

11
12 ).

Alternatively, we can perform orthogonal tone decomposition onB to obtain two weight-2

basic sequences of same minimum spacing10:

B0 = (100000000000010000000000),

B1 = (000000100000000000010000).

With U0 = H2 and

U1 =



 1 j

j 1



 ,

we filter rows ofU0 △ B0 andU1 △ B1 by [27]

A = (W 0
6 0W

0
6 0W

3
6 0W

2
6 0W

4
6 0W

2
6 0W

3
6 0W

6
6 0W

6
6 0W

2
6 0W

1
6 0W

2
6 0)

to obtain two smaller polyphase sets of larger ZCZ width,C0 = {C0,0, C0,1} and C1 =

{C1,0, C1,1}, where

C0,0 = (W 0
6W

3
6W

4
6W

4
6W

5
6W

2
6W

4
6W

4
6W

0
6W

3
6W

0
6W

0
6

W 3
6W

0
6W

4
6W

4
6W

2
6W

5
6W

4
6W

4
6W

3
6W

0
6W

0
6W

0
6 ),

C0,1 = (W 0
6W

0
6W

4
6W

1
6W

5
6W

5
6W

4
6W

1
6W

0
6W

0
6W

0
6W

3
6

W 3
6W

3
6W

4
6W

1
6W

2
6W

2
6W

4
6W

1
6W

3
6W

3
6W

0
6W

3
6 ),

C1,0 = (W 8
12W

11
12W

6
12W

3
12W

0
12W

3
12W

0
12W

9
12W

8
12W

11
12W

10
12W

7
12

W 8
12W

11
12W

0
12W

9
12W

0
12W

3
12W

6
12W

3
12W

8
12W

11
12W

4
12W

1
12),

C1,1 = (W 11
12W

8
12W

9
12W

0
12W

3
12W

0
12W

3
12W

6
12W

11
12W

8
12W

1
12W

4
12

W 11
12W

8
12W

3
12W

6
12W

3
12W

0
12W

9
12W

0
12W

11
12W

8
12W

7
12W

10
12 ).

Both sets are(24, 2, 10) ZCZ sequence sets and together they form another(24, 4, 4) set.
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Example 8: (Generalized PS sequence set) We can also derive a smallergeneralized PS

sequenceset having the same period but a larger ZCZ width. For example, if we chooseN ′ = 8,

Nr = 3, (23), and use the QPSK perfect sequence [28]

A′ = (W 1
4W

1
4W

2
4W

1
4W

1
4W

3
4W

2
4W

3
4 ),

then the three sequences

C0 = (W 9
12W

3
12W

6
12W

3
12W

9
12W

9
12W

6
12W

9
12W

9
12W

3
12W

6
12W

3
12

W 9
12W

9
12W

6
12W

9
12W

9
12W

3
12W

6
12W

3
12W

9
12W

9
12W

6
12W

9
12),

C1 = (W 9
12W

7
12W

2
12W

3
12W

1
12W

5
12W

6
12W

1
12W

5
12W

3
12W

10
12W

11
12

W 9
12W

1
12W

2
12W

9
12W

1
12W

11
12W

6
12W

7
12W

5
12W

9
12W

10
12W

5
12),

C2 = (W 9
12W

11
12W

10
12W

3
12W

5
12W

1
12W

6
12W

5
12W

1
12W

3
12W

2
12W

7
12

W 9
12W

5
12W

10
12W

9
12W

5
12W

7
12W

6
12W

11
12W

1
12W

9
12W

2
12W

1
12)

constitute an(N,Nr, N
′−1) = (24, 3, 7) bound-achieving ZCZ family. A family with such ZCZ

parameter values can not be generated by the method suggested in [14].

Example 9: (Length-16 ternary and binary sequences) Using the basic sequenceB = (10000

00100100100), the Sylvester Hadamard matrixH4 asU, and the perfect sequenceA = (+000+

000 + 000− 000), we obtain

P0 = (+ 000000 + 00 + 00 + 00),

P1 = (+ 000000− 00 + 00− 00),

P2 = (+ 000000 + 00− 00− 00),

P3 = (+ 000000− 00− 00 + 00),

where+ and− denote+1 and−1, respectively. Time domain sequences with zero entries are

often undesirable as they require on-off switching. Filtering {Pi} by A, we obtain the binary
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(16, 4, 2) ZCZ sequence family consisting of

C0 = P0 ◦ A = (+−++−++++++−++−+),

C1 = P1 ◦ A = (+ + +−−−+−+−+++−−−),

C2 = P2 ◦ A = (+ +−+−−−++−−−+−++),

C3 = P3 ◦ A = (+−−−−+−−++−++++−).

Example 10:(Length-32 binary sequence set) LetNr = 8 andN ′ = 4. With B = (1000

1000000100010010001001000100), A = (+ 0000000 + 0000000 + 0000000 − 0000000) and

U = H8, we obtain the binary(32, 8, 2) ZCZ sequence set

C0 = (+−+++−++−+++−++++++−+++−++−+++−+),

C1 = (+−++−+−−−++++−−−+++−−−−+++−+−−+−),

C2 = (+ + +−+++−−−+−−−+−+−+++−+++−−−+−−−),

C3 = (+ + +−−−−+−−+−++−++−++−+−−+−−−−+++),

C4 = (+ +−+++−+−−−+−−−++−−−+−−−+−+++−++),

C5 = (+ +−+−−+−−−−++++−+−−−−++++−++−+−−),

C6 = (+−−−+−−−−+−−−+−−++−+++−++++−+++−),

C7 = (+−−−−+++−+−−+−++++−+−−+−+++−−−−+).

The ZCZ families shown in the above two examples achieve (5),the bound for binary (NA′ =

2) sequences, but their ZCZ widths are limited by the facts that there exists only one binary

perfect sequence (whose lengthN ′ = 4) and binary Hadamard matrices only exists for certain

Nr; seeRemark 7. To increase the ZCZ width and have greater flexibility in choosing the ZCZ

parameters, we can use higher-order constellations (Nr > 2). For example, quadriphase perfect
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sequences of lengthN ′ = 2, 4, 8 or 16 do exist [27], [28]. We introduce in the next section an

alternate method which offers more choices for the ZCZ width.

V. SEQUENCESDERIVED FROM COMPLEMENTARY SETS OFSEQUENCES

In this section, we generalize the above basic sequence based approach by replacing rows of

an unitary matrix with concatenated sequences. The following definitions can be found in [22].

A. Basic Definitions

Definition 15: The aperiodic CC function of two length-L sequencesu ≡ {u(n)} and v ≡

{v(n)} is defined as

ψuv(τ) =

L−1∑

n=τ

u(n)v∗(n− τ). (29)

The aperiodic AC function of sequenceu is obviouslyψuu(τ).

Definition 16: A set of Q equal-length sequences,E = {E0, E1, · · · , EQ−1}, forms acom-

plementary setof sequences (CSS) if and only if∀τ 6= 0,

Q−1∑

i=0

ψEiEi
(τ) = 0. (30)

Definition 17: A CSS, F = {F0, F1, · · · , FQ−1}, is said to be amate of the CSS,E =

{E0, E1, · · · , EQ−1} if

(a) The lengths of all members inE andF are the same;

(b) For all τ ,
Q−1∑

i=0

ψEiFi
(τ) = 0. (31)

Definition 18: A collection of complementary sets of sequences{E0,E1, · · · ,EK−1}, where

each set contains the same number of sequences, is said to bemutually orthogonalif every two

sets in the collection are mates of each other.

It has been proved in [21] that
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Corollary 3: The number of mutually orthogonal CSS’s (MOCSS’s)K cannot exceed the

cardinality of member CSS,Q, i.e.,K ≤ Q.

B. Synthesis Procedure

We now extend the nonuniform upsampling operation defined inDefinition 14.

Definition 19: LetV be a length-N binary sequence withwH(V ) = Q andE = {E0,E1, · · · ,EK−1}

be a collection ofK MOCSS’s in which each CSSEi consists ofQ length-L sequences, i.e.,

Ei = {Ei,0, Ei,1, · · · , Ei,Q−1}, whereEi,j = (ei,j(0), ei,j(1), · · · , ei,j(L− 1)).

TheV -upsampled concatenated sequence based onEi,Gi = Ei △c V = (gi(0), gi(1), · · · , gi(N+

Q(L− 1)− 1)) is defined by

gi(n) =





ei,j(m), n = j(L− 1) + sV (j) +m,

0, otherwise,
(32)

wheresV (j) is given inDefinition 14.

The operator△c is similar to △: the latter operates on rows of a matrix while the former

operates on the sequence formed by concatenating members ofthe setEi and replaces each

nonzero element of a basic sequence by a finite-length sequence.

Lemma 11:Let E = {E0,E1, · · · , EK−1} be a collection ofK MOCSS’s in which each

set Ei hasQ length-L sequences andB be a basic(N, T ) sequence of weightQ. The set

G = {Ei △c B} def
= {G0, G1, · · · , GK−1} forms an(N +Q(L−1), K, T ) ZCZ sequence family.

Proof: Based onLemma 9andDefinition 19we can expressGi as

Gi = (0 · · · 0︸ ︷︷ ︸
sV (0)

ei,0(0) · · · ei,0(L− 1)︸ ︷︷ ︸
L

0 · · ·0︸ ︷︷ ︸
sV (1)−sV (0)−1

ei,1(0) · · · ei,1(L− 1)︸ ︷︷ ︸
L

0 · · ·0︸ ︷︷ ︸
sV (2)−sV (1)−1

...

ei,Q−1(0) · · · ei,Q−1(L− 1)︸ ︷︷ ︸
L

N−sV (Q−1)−1︷ ︸︸ ︷
0 · · ·0 ),
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wheresV (j)− sV (j − 1)− 1 ≥ T , j = 0, 1, · · · , Q− 1, andsV (0)− sV (Q− 1) +N − 1 ≥ T .

Invoking Definitions 17and18, we obtain, for alli 6= k,

θGiGk
(τ) =

Q−1∑

j=0

ψEi,jEk,j
(τ) = 0, |τ |N ≤ T. (33)

By analogy,Definition 16gives, for all i, θGiGi
(τ) =

∑Q−1
j=0 ψEi,jEi,j

(τ) = 0, 0 < |τ |N ≤ T .

Therefore,G forms an(N +Q(L− 1), K, T ) ZCZ sequence set.

C. Polyphase ZCZ Sequences

Following the idea described in Section IV-C, we can derive another class of polyphase ZCZ

sequence families by using suitable perfect and basic sequences. The proof of the next corollary

is similar to that ofTheorem 2and is given in the last two paragraphs of Appendix A.

Corollary 4: Let A be the length-LN perfect sequence obtained byLNr-fold upsampling on

a length-N ′ perfectNA′-PSK sequence,A′, whereN = NrN
′ and 2 ≤ NA′ ≤ N ′. Denote

by E = {E0,E1, · · · ,EK−1} a collection ofK MOCSS’s, whereK ≤ Nr and each CSSEi =

{Ei,0, Ei,1, · · · , Ei,Nr−1} containsNr length-L Nc-PSK sequences. An(LN,K, T ) ZCZM-PSK

sequence set,M = lcm(NA′ , Nc), with T = L(N ′ − 2) if gcd(Nr, N
′) 6= 1 or T = L(N ′ − 1) if

gcd(Nr, N
′) = 1 can be obtained by the following steps:

1) GenerateK length-(N +Nr(L− 1)) sequencesG′
i = Ei △c B, i = 0, 1, · · · , K − 1, where

B is the weight-Nr basic sequence of lengthN defined by (24) if gcd(Nr, N
′) 6= 1 or by

(23) if gcd(Nr, N
′) = 1.

2) Replace each zero inG′
i by a length-L all-zero sequence to obtain the augmented sequence

Gi.

3) Filter eachGi by A.

We have the following four remarks on the MOCSS-based approach.

Remark 13:Similar to Remark 6, the basic sequenceB can be cyclically shifted to generate

different polyphase ZCZ families with the same ZCZ parameters and alphabet size. These families

can be combined to form a larger family with smaller ZCZ width. Likewise, the zero-CC zone
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width betweenB and its shifted versionB′ determine the inter-set zero-CC zone width between

the associated families or the ZCZ width of the combined set.We can also decomposeB into

several basic sequences{Bi} to generate multiple sets with different ZCZ widths.

Remark 14:As mentioned in Section IV, binary sequence sets constructed by Theorem 2have

less choices in ZCZ width. The construction described inCorollary 4 takes advantage of the fact

that the member sequence of an MOCSS exists for many values ofL and thus allow the ZCZ

width to be chosen from the set{T = 2L} with the same basic sequenceB, set cardinalityNr,

and perfect sequenceA′.

Remark 15:[4] and [5] present MOCSS-based methods for generating binary ZCZ sequences.

The approach given in [5] was later generalized by [6]. The ZCZ parameters realizable by these

methods can be obtained by using our approach described above. For example, a method given

in [4] needs to use a class of recursively generated familiesof binary CSS{∆n}. Expressing a

family of Q MOCSS’s in matrix form [22]

∆1
def
=




E0,0 E1,0 · · · EQ−1,0

E0,1 E1,1 · · · EQ−1,1

...
...

. . .
...

E0,Q−1 E1,Q−1 · · · EQ−1,Q−1




(34)

whereEi,j are length-L binary sequences and each row is a CSS. Then, forn ≥ 2,

∆n =


 ∆n−1 ⋄∆n−1 −∆n−1 ⋄∆n−1

−∆n−1 ⋄∆n−1 ∆n−1 ⋄∆n−1


 , (35)

where[A⋄B]ij, the(i, j)th entry of the submatrix[A⋄B], is obtained by concatenating the two se-

quences,[A]ij and[B]ij . The concatenation of rows of∆n forms a(4n−1LQ, 2n−1Q, 2n−2L) ZCZ

sequence set. On the other hand, by usingA′ = (1, 1, 1,−1), the basic sequence defined by (24)

and the family of MOCSS∆n withNr = 2n−1Q and elements of∆1 being lengthL/4 sequences,

we obtain binary ZCZ sequence sets with the parameters(4n−14(L/4)Q, 2n−1Q, 2n−1(L/4)·2) =

(4n−1LQ, 2n−1Q, 2n−2L) via Corollary 4.

September 15, 2021 DRAFT



TABLE III
ZCZ SEQUENCE SETS(EACH USES A COLLECTION OFM MOCSS’S OFQ LENGTH-L SEQUENCES

Deng [4] and Tang [6],n ≥ 0 Corollary 4

Sequence lengthN 4nLQ 22n−1LQ 2LQ 4LQ

Set sizeK 2nM 2nM M M

ZCZ width T 2n−1L 2n−2L L 2L

Upper-bound (5)
achieved with
M = Q?

Yes Yes Yes Yes

Alphabet Size Binary Binary and
polyphase

Remark 16:Our approach offers more choices in parameter values and thus produce sets

which are not derivable from the methods of [4], [6]. More importantly, we can generate not

only binary but also nonbinary sequences and the ZCZ parameters for the nonbinary class can be

flexibly controlled viaN ′, which can be any integer and is not affected by the MOCSS chosen.

In Table III we list key parameters for our and some other MOCSS-based binary ZCZ sequence

set constructions.

D. Examples of CSS-Based Polyphase ZCZ Sequence Sets

Two ZCZ sequence construction examples based on CSS are given in this subsection.

Example 11:(gcd(Nr, N
′) 6= 1) Let N = 16, N ′ = Nr = K = L = 4, A′ = (++ +−), and

B = (1000000100100100) and choose a collection of mutually orthogonal complementary sets

E = {E0,E1,E2,E3} from [22], where

E0 = {(+ + + +), (−−++), (−+−+), (+−−+)},

E1 = {(+ +−−), (−−−−), (−++−), (+−+−)},

E2 = {(−+−+), (+−−+), (+ + + +), (−−++)},

E3 = {(−++−), (+−+−), (+ +−−), (−−−−)}. (36)

Following the procedure ofCorollary 4, we obtain the bound-achieving binary(64, 4, 8) ZCZ
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sequence set:

C0 = (+ + ++−++−−+−+−−++−−−−+−−+−+−+−−+ +

+++++−−+−+−+++−−+++++−−++−+−−−+ +),

C1 = (+ +−−−+−+−++−−−−−−−+++−+−−++−−−−−

++−−+−+−−++−++++++−−+−+−+−−+−−−− ),

C2 = (−+−+++−−+++++−−+ +−+−−−+++++++−−+

−+−+−−++++++−++−−+−+−−++−−−−+−−+),

C3 = (−++−++++++−−+−+−+−−+−−−−++−−+−+−

−++−−−−−++−−−+−+−++−−−−−−−+++−+− ).

With the sameB, A′, andNr as those used inExample 10, this set extends the ZCZ width

without changing the set cardinality.

Example 12:(gcd(Nr, N
′) = 1) Using the construction (23) with (36),A′ = (W 0

3W
2
3W

0
3 ),

N ′ = 3, Nr = 4, andL = 4, we can obtain a ZCZ sequence setC of the same (or larger)T

with a shorter sequence periodLN and slightly larger constellation:

C0 = (W 0
6W

0
6W

0
6W

0
6W

0
6W

3
6W

3
6W

0
6W

5
6W

2
6W

5
6W

2
6W

3
6W

3
6W

0
6W

0
6W

0
6W

0
6W

0
6W

0
6W

2
6W

5
6W

5
6W

2
6

W 3
6W

0
6W

3
6W

0
6W

3
6W

3
6W

0
6W

0
6W

2
6W

2
6W

2
6W

2
6W

0
6W

3
6W

3
6W

0
6W

3
6W

0
6W

3
6W

0
6W

5
6W

5
6W

2
6W

2
6 ),

C1 = (W 0
6W

0
6W

3
6W

3
6W

0
6W

3
6W

0
6W

3
6W

5
6W

2
6W

2
6W

5
6W

3
6W

3
6W

3
6W

3
6W

0
6W

0
6W

3
6W

3
6W

2
6W

5
6W

2
6W

5
6

W 3
6W

0
6W

0
6W

3
6W

3
6W

3
6W

3
6W

3
6W

2
6W

2
6W

5
6W

5
6W

0
6W

3
6W

0
6W

3
6W

3
6W

0
6W

0
6W

3
6W

5
6W

5
6W

5
6W

5
6 ),

C2 = (W 3
6W

0
6W

3
6W

0
6W

3
6W

3
6W

0
6W

0
6W

2
6W

2
6W

2
6W

2
6W

0
6W

3
6W

3
6W

0
6W

3
6W

0
6W

3
6W

0
6W

5
6W

5
6W

2
6W

2
6

W 0
6W

0
6W

0
6W

0
6W

0
6W

3
6W

3
6W

0
6W

5
6W

2
6W

5
6W

2
6W

3
6W

3
6W

0
6W

0
6W

0
6W

0
6W

0
6W

0
6W

2
6W

5
6W

5
6W

2
6 ),

C3 = (W 3
6W

0
6W

0
6W

3
6W

3
6W

3
6W

3
6W

3
6W

2
6W

2
6W

5
6W

5
6W

0
6W

3
6W

0
6W

3
6W

3
6W

0
6W

0
6W

3
6W

5
6W

5
6W

5
6W

5
6

W 0
6W

0
6W

3
6W

3
6W

0
6W

3
6W

0
6W

3
6W

5
6W

2
6W

2
6W

5
6W

3
6W

3
6W

3
6W

3
6W

0
6W

0
6W

3
6W

3
6W

2
6W

5
6W

2
6W

5
6 ).
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It is worth mentioning that the above set cannot be obtained by using the methods of [4] and [6]

and, moreover, althoughCorollary 4 promises an(LN,Nr, L(N
′ − 1)) = (48, 4, 8) family, C is

actually a(48, 4, 9) one. The larger ZCZ is due to the inherit correlation properties of MOCSS

(36)
Nr−1∑

k=0

ψEi,kEj,|k±1|Nr
(τ) = 0 (37)

for τ = ±(L− 1), 0 ≤ i < Nr, and0 ≤ j < Nr.

VI. CONCLUSION

Three new systematic approaches–a transform domain methodand two direct (time domain)

synthesis methods–for generating ZCZ sequence families have been presented in this paper. The

transform domain approach exploits the cross-correlationfunction’s transform domain represen-

tation and the recursive Kronecker structure of a class of Hadamard matrices. The two other

approaches begin with simple binary basic ZCZ sequences. Through progressively fine-tuning

steps that include novel basic sequence-based nonuniform upsampling of unitary matrices or

a collections of MOCSS’s, we are able to obtain polyphase sequences that meet various ZCZ

requirements.

The basic sequences are used to ensure that the required ZCZ width is satisfied during

the upsampling process while the transform domain approachuses the subperiodicity of the

Hadamard product of two transform domain sequences. The orthogonality among rows of unitary

matrices or MOCSS guarantees that the CC value of any two member sequences at zero lag is

zero as well. We take advantage of the correlation-invariant property of the filtering-by-perfect-

sequence operation to convert a nonconstant modulus sequence into a polyphase sequence.

Judicious choices of the basic and perfect sequences used and the associated upsampling rate

are crucial in this operation.

Our approaches are conceptually simple and require no sophisticated algebra but, in some

cases, offer more flexibilities in either the choices of the sequence length, the ZCZ width and/or

the alphabet size needed. We are therefore able to produce sequence families with the same

parameters as those by earlier proposals as well as some thatare not achievable by related
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known methods. Finally, for each approach, numerical examples have been provided to further

validate the proposed construction methods.

APPENDIX A

PROOFS OFTHEOREM 2 AND COROLLARY 4

Let P = (p0, p1, · · · , pN−1) be a row ofP and C = P ◦ A = (c0, c1, · · · , cN−1), where

cn =
∑N−1

j=0 pja
∗
|j−n|N

. If we can show that, for anyn ∈ [0, N − 1], one and only one of the

N products{pja∗|j−n|N
: j = 0, · · · , N − 1} is nonzero, then, as bothA andP consist0’s and

polyphase elements,C is a polyphase sequence as well. Because of the circular convolution

nature of the filtering operation (Definition 4) and the periodic run property ofP , we have only

to check if this single nonzero product assertion is valid for 0 < n < Nr.

For the first construction (23), gcd(Nr, N
′) = 1 and bothNr andN ′ are positive, hence∃

uniquea, b ∈ Z such thataN ′ + bNr = 1, where one of the integer coefficientsa or b must

be negative [29]. Without loss of generality, we assumeb < 0 and multiply both sides of the

above Bézout’s identity bys, 0 < s < Nr, to obtain saN ′ = s + sb′Nr, b′ = −b > 0. If

sb′ ≤ N ′ − 1 then saN ′ < N ′Nr = N and sa < Nr; otherwise, subtract both sides byn0N ,

wheren0 =
⌊
sb′Nr

N

⌋
to obtain(sa−n0Nr)N

′ = s+(sb′−n0N
′)Nr. For both cases, we have, for

each positives < Nr, ∃ unique pair of positive integers(m,n), 0 < m ≤ Nr−1, 0 ≤ n ≤ N ′−1

such thatmN ′ = s+ nNr modN . That this property holds fors = 0 is obvious.

As for the second construction (24), we notice that the basicsequence admits the orthogonal

tone decomposition,B =
∑d−1

ℓ=0 Bℓ, where

Bℓ(i) =





bi, ℓL0 ≤ i < (ℓ+ 1)L0;

0, otherwise.
(A.1)

Whend = gcd(Nr, N
′), there exists positive integersa, b′ such thataN ′ = d+b′Nr. Multiplying

both sides bys, 0 ≤ s < N
d

, we obtain(sa − n0
Nr

d
)N ′ = sd + (sb′ − n0

N ′

d
)Nr, wheren0 =

⌊
saN ′

L0

⌋
. For all s ∈

{
0, 1, · · · , ⌊Nr/N ′⌋N ′+(N−Nr)

d

}
, ∃ a unique integer pair(m,n), 0 ≤ m < Nr

d
,

0 ≤ n < N ′ such thatmN ′ = sd + nNr modN , i.e., the sequenceB0 ◦ A is identically zero
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except at indices that are multiples ofd and the nonzero terms are the products of two polyphase

signals whence are themselves polyphase signals.

Similarly, we can show that, forℓ = 1, 2, · · · , d−1, the sequenceBℓ◦A, has nonzero polyphase

terms atnd − ℓ only, wheren ∈ Z. Hence the sequenceB ◦ A =
∑d−1

ℓ=0 Bℓ ◦ A is a polyphase

sequence.

To proveCorollary 4, we first note that the sequences generated differs from those generated

by Theorem 2in that the perfect sequence used inCorollary 4 is theL-fold upsampled version

of that used inTheorem 2while the unfiltered ZCZ sequences for the former is anL-expanded

version of those for the latter, replacing each zero entry ofP by a length-L string of zeros and

each nonzero entry by a complementary sequenceEij of lengthL.

For the first construction ofB (23), we immediately have, for0 ≤ s < Nr, ∃ unique pair of

positive integers(m,n), 0 < m ≤ Nr − 1, 0 ≤ n ≤ N ′ − 1 such thatmLN ′ = sL + nLNr =

k+nLNr. That is, in computing the filtered sequenceC = G◦A = {ck}, whereG = {gk}
def
= Gi

andck =
∑LN−1

j=0 gja
∗
|j−k|LN

, there is only one nonzero term in the summands that add up tock,

for k = sL, s = 0, 1, · · · , Nr − 1. That this single nonzero convolution term property holds for

sL < k < (s + 1)L is obvious because of the special structure ofGi. The proof for the case

when the second construction (24) is employed follows a similar line of argument.

REFERENCES

[1] L. R. Welch, “Lower bounds on the maximum cross correlation of signals,”IEEE Trans. Inf. Theory, vol. 20, no. 3, pp.

397–399, May 1976.

[2] D. V. Sarwate, “Bounds on cross correlation and autocorrelation of sequences,”IEEE Trans. Inf. Theory, vol. 25, no. 6,

pp. 720–724, Nov. 1979.

[3] P. Fan, N. Suehiro, N. Kuroyanagi, and X. Deng, “Class of binary sequences with zero correlation zone,”Electron. Lett.,

vol. 35, no. 10, pp. 777–779, May 1999.

[4] X. Deng and P. Fan, “Spreading sequence sets with zero correlation zone,”Electron. Lett., vol. 36, no. 11, pp. 993–994,

May 2000.

[5] R. Appuswamy and A. K. Chaturvedi, “A new framework for constructing mutually orthogonal complementary sets and

ZCZ sequences,”IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3817–3826, Aug. 2006.

[6] X. Tang, P. Fan, and J. Lindner, “Multiple binary ZCZ sequence sets with good cross-correlation property based on

complementary sequence sets,”IEEE Trans. Inf. Theory, vol. 56, no. 8, pp. 4038–4045, Aug. 2010.

September 15, 2021 DRAFT



[7] H. Torii, M. Nakamura, and N. Suehiro, “A new class of zero-correlation zone sequences,”IEEE Trans. Inf. Theory, vol.

50, no. 3, pp. 559–565, Mar. 2004.

[8] X. Tang and W. H. Mow, “A new systematic construction of zero correlation zone sequences based on interleaved perfect

sequence,”IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5729–5734, Dec. 2008.

[9] H. Hu and G. Gong, “New sets of zero or low correlation zonesequences via interleaving techniques,”IEEE Trans. Inf.

Theory, vol. 56, no. 4, pp. 1702–1713, Apr. 2010.

[10] T. Hayashi, “A novel class of 2-D binary sequences with zero correlation zone,”IEEE Signal Process. Lett., vol. 17, no.

3, 301–304, Mar. 2010.

[11] Y. Tu, P. Fan, L. Hao, and X. Li, “Construction of binary array set with zero correlation zone based on interleaving

technique,”IEICE Trans. Fundamentals, vol. E94-A, no. 2, pp. 766–772, Feb. 2011.

[12] T. Hayashi, “A class of zero-correlation zone sequenceset using a perfect sequence,”IEEE Signal Process. Lett., vol. 16,

no. 4, 331–334, Apr. 2009.

[13] B. M. Popovic and O. Mauritz, “Generalized chirp-like sequences with zero correlation zone,”IEEE Trans. Inf. Theory,

vol. 56, no. 6, pp. 2957–2960, Jun. 2010.

[14] S. I. Park, S. R. Park, I. Song, and N. Suehiro, “Multiple-access interference reduction for QS-CDMA systems with a

novel class of polyphase sequences,”IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1448–1458, Jul. 2000.

[15] L.-S. Tsai and Y. T. Su, “Transform domain approach for sequence design and its applications,”IEEE J. Sel. Areas

Commun., vol. 24, no. 1, pp. 75–83, Jan. 2006.

[16] A. K. Brodzik, “New polyphase sequence sets with all-zero cross-correlation,” inProc. IEEE Int. Symp. Inf. Theory, pp.

1421–1424, Boston, MA, USA, Jul. 2012.

[17] H. Torii, T. Matsumoto, and M. Nakamura, “A new method for constructing asymmetric ZCZ sequence sets,”IEICE Trans.

Fundamentals, vol. E95-A, no. 9, pp. 1577–1586, Sep. 2012.

[18] T. Hayashi, T. Maeda, and S. Matsufuji, “A general construction scheme of a zero-correlation zone sequence set witha

wide inter-subset zero-correlation zone,”IEICE Trans. Fundamentals, vol. E95-A, no. 11, pp. 1931–1936, Nov. 2012.

[19] F. Zeng, X. Zeng, Z. Zhang, and G. Xuan, “16-QAM sequences with zero correlation zone from known binaryZCZ

sequences and Gray mapping,”IEICE Trans. Fundamentals, vol. E94-A, no. 11, pp. 2466–2471, Nov. 2011.

[20] Y. Li and C. Xu, “Zero correlation zone sequence set overthe8-QAM+ constellation,”IEEE Commun. Lett., vol. 16, no.

11, 1844–1847, Nov. 2012.

[21] B. P. Schweitzer, “Generalized complementary codes,”Ph.D. dissertation, Univ. Calif., Los Angeles, 1971.

[22] C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Trans. Inf. Theory, vol. 18, no. 5, pp. 644–652,

Sep. 1972.

[23] X. H. Tang, P. Fan, and S. Matsufuji, “Lower bounds on correlation of spreading sequence set with low or zero correlation

zone,” Electron. Lett., vol. 36, no. 6, pp. 551–552, Mar. 2000.

[24] K. J. Horadam,Hadamard Matrices and Their Applications, Princeton, NJ: Princeton University Press, 2007.

[25] C.-W. Chen, Y.-C. Liu, and Y. T. Su, “Systematic constructions of zero-correlation zone sequences,” inProc. IEEE Int.

Symp. Inf. Theory, pp. 119–123, Seoul, Korea, Jun. 2009.

September 15, 2021 DRAFT



[26] P. Fan and M. Darnell, “The synthesis of perfect sequences,” in Proc. IMA Conference on Cryptography and Coding, pp.

63–73, Cirencester, UK, Dec. 1995.

[27] W. H. Mow, “A new unified construction of perfect root-of-unity sequences,” inProc. IEEE Int. Symp. Spread Spectrum

Techniques and Applications, pp. 955–959, Mainz, Germany, Sep. 1996.

[28] W. H. Mow, “A study of correlation of sequences,” Ph.D. thesis, the Chinese Univ. of Hong Kong, Hong Kong, China,

1993.

[29] J.-P. Tignol,Galois’ Theory of Algebraic Equations, Singapore: World Scientific, 2001.

[30] C.-W. Chen, “On zero-correlation zone sequences,” M.S. thesis, Nat’l Chiao Tung Univ., Hsinchu, Taiwan, 2006.

September 15, 2021 DRAFT


