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Abstract

In this paper, we propose three classes of systematic agipredor constructing zero correlation
zone (ZCZ) sequence families. In most cases, these apm®aule capable of generating sequence
families that achieve the upper bounds on the family siz§ &nd the ZCZ width ") for a given
sequence period\).

Our approaches can produce various binary and polyphasefai@ifies with desired parameters
(N,K,T) and alphabet size. They also provide additional tradeafisrayst the above four system
parameters and are less constrained by the alphabet sigbefmore, the constructed families have
nested-like property that can be either decomposed or cwdhio constitute smaller or larger ZCZ
sequence sets. We make detailed comparisons with relatéd @wod present some extended properties.

For each approach, we provide examples to numericallytifites the proposed construction procedure.
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I. INTRODUCTION

Families of sequences with some desired periodic or aperadocorrelation (AC) and cross-
correlation (CC) properties are useful in communicatiod eadar systems for applications in
identification, synchronization, ranging, or/and integfece mitigation. For example, to minimize
the multiple access interference (MAI) and self-intenfe@ (e.g., inter-symbol interference)
in a multi-user, multi-path environment or to avoid intetenna interference in a multiple-
input, multiple-output system, one would like to haveideal sequence sethose periodic AC
functions are nonzero only at the zeroth correlation tag=(0) and whose pairwise periodic
CC values are identically zero at amyfor all pairs of sequences. Similar aperiodic properties
are called for in designing pulse compressed radar signed@dimensional array waveforms
to have an impulse-like ambiguity function satisfying tesalution requirements.

Unfortunately, the ideal sequence set does not exist,tiis.jmpossible to have impulse-like
AC functions and zero CC functions simultaneously in a segeeset. In fact, bounds on the
magnitude of CC and AC values derived in [1] and [2] suggest the design of sequence sets
involves the tradeoff between AC and CC values. An altercat@promise is to require that
the ideal AC and CC properties be maintained only at corgldags within a window called
zero-correlation zone (ZCZ) [3]. Sequences with such ptegseare known as ZCZ sequences.
Little or no system performance degradation results if theetation values outsides the ZCZ
are immaterial to the application of concern. For exampldhd maximum channel delay spread
T,, and the maximum distance between a base station and coathasarsD,,, are known, a
direct sequence spread spectrum based multiple accesssysing a family of ZCZ sequences
with ZCZ width |7| < T, + 2D,,/c, wherec is the speed of light, will be able to suppress MAI
and multipath self interference.

Other than the restrictions on the magnitude of correlatialues, practical implementation
concerns prefer that the choice of the sequence period bibl#eand the family size be as
large as possible while keeping the desired AC and CC priegdrttact. One also hope that the
elements of the sequences be drawn from an alphabet set dsasrpassible.

Various ZCZ sequence generation methods have been prop8is¢20]. The methods pre-
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sented in [4]-[6] are based on complementary sequencelsideaving techniques are shown
to be effective in constructing ZCZ sequences [7]-[9]. Tlveyn be generalized to construct
two-dimensional -D) ZCZ arrays [10], [11] as well. Sets of ZCZ sequences a@efrifrom
manipulating perfect sequences were suggested in [12] aBd Parket al. [14] construct
sequences that has nonzero AC only at subperiodic cooel&tgs and zero CC across all lags.
By requiring the transform domain sequences to satisfy sspaeial properties, [15], [16] present
methods that generate ZCZ sequences having zero CC acktegsalSome ZCZ sequence sets
can be partitioned into smaller subsets so that the zero-@@ bf any two sequences drawn
from different subsets are wider than that among intra-subsquences. Ternary or polyphase
sequences with such a property have been constructed grtesting techniques [17], [18] and
in [19], [20] quadrature amplitude-modulated (QAM) seqeeshare shown to be derivable from
binary or ternary sequences.

In this paper, we present three systematic approaches faraging families of sequences
whose periodic AC and CC functions satisfy a variety of ZCquieements. While some known
ZCZ sequence construction methods employing Hadamardaestin time domain (e.g., [9],
[13]), our first approach uses such matrices to meet theatksiansform domain properties of
a ZCZ sequence set instead. Sequence sets generated feoappinoach are, by construction,
optimal in the sense that the upper bounds for family sizes ZDZ widths are achieved. We
further employ a filtering operation to convert sequenceaasfconstant modulus symbols into
polyphase ones without changing the correlation propertie

Based upon a basic binary sequence (to be defined in SectjowhHdse AC function satis-
fies the ZCZ requirement, the second approach generates qiisce families by a special
nonuniform upsampling on unitary matrices. The constamctf basic sequences seems trivial
and straightforward, but from these simple sequences waldego synthesize desired polyphase
ZCZ sequences through some refining steps that include formnupsampling and filtering.

Our third approach invokes the notion of complementary §sequences [21], [22]. It bears
the flavor of the second approach and makes use of a basig/ lsaquence which meets the

ZCZ constraint as well as a collection of mutually orthogot@mplementary sets. While this
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method is capable of generating binary sequences with sequearameters identical to those
given in [4] and [6], it can also produce polyphase sequemete that are unobtainable by the
conventional complementary set-based approaches.

The rest of this paper is organized as follows. We introduegiddefinitions and properties
related to our investigation in the next section. SectidnbBgins with a brief summary of
important transform domain properties, followed by thelgsia and synthesis of the proposed
transform domain approach. We then show some ZCZ sequetscgeseerated by the transform
domain method in subsection 1lI-D. The direct synthesishoetis presented in section IV and
construction examples are given in subsection IV-E. InigecV, a complementary sequence
set based extension of the second approach is proposeolwéallby numerical construction
examples given in subsection V-D. For each proposed appyose tabulate the parametric
constraint comparisons with related methods. More detaslemparisons and discussions are

given in the form of remarks. Finally, some concluding nades provided in Section VI.

[I. DEFINITIONS AND FUNDAMENTAL PROPERTIES

Definition 1: An (N, K') sequence seX is a set of K sequences of periody.
Definition 2: The periodic CC function of two periodt sequences: = {u(n)} andv =

{u(n)} is defined as

Oun(T) = u(n)v*(n — 1) = u(r) ® v*(—71), (1)

where® denotes the circular convolution.

Thus, the periodic AC function of sequencés simply#d,, (7). Since these CC and AC functions
are also of periodV, to simplify the discussion we shall, throughout this papenit the
representations and examples of sequences or sequente aetmgle period) < 7 < N —1)
unless necessary.

Definition 3: A sequencdu(n)} that has an impulse-like (or ideal) AC function, i.&,,(7) =
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0..(0)d(7), is called aperfect sequencavhere

5(r) { bl ®)
0, 7#0.

is the Dirac delta function.
Definition 4: A sequence{u,(n)} is said to be obtained frorfiltering the sequence: =

{u(n)} by the sequence = {v(n)} of the same period if

uy(n) = u(n)owv(n) = u(n) ® v*(—n) = O, (n) 3)

Definition 5: An (NN, K') sequence se€C = {C,,C1,--- ,Ck_,} is called an(N, K,T) ZCZ
sequence family (or set) ¥ C;,C; € C, i # j, Oc,c,(7) = 0 and c,c,(7) = 0c,c,(0)0(7),
|7|nv <T < N whereT is the ZCZ width andk|y “/ & mod N.

In [23], it was proved that
Lemma 1:The sequence period, cardinality X' and ZCZ widthT of an (N, K,T) ZCZ

family must satisfy the inequality
K(T+1)<N. (4)

For +1-valued binary sequence set, the bound becomes more tight [7

N

KT <5, K>1. (5)

This lemma describes the fundamental tradeoff among theeseg period, family size, and
ZCZ width. For a fixedN, increasing the family size must be achieved at the cost ciiaed
ZCZ width and vice versa. Note that for a set with a singlegréequence, (4) is automatically
satisfied becaus& =1 and7 = N — 1.

Definition 6: An N x N matrix U is called aHadamard matrixof order NV if and only if it

satisfies two conditions:

() Unimodularity: the components dff are of the same magnitudgépP;
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(i) Orthogonality: UU# = NPIy wherely is the N x N identity matrix and(-)" denotes
the conjugate transpose of the enclosed matrix.

Definition 7: The Matrix

1 1 1 S 1
1 WJ;[I W]\Z[2 . WA}(M_I)

Fy=|1 W} Wit wy MY (6)
1 WA}(M—l) WA—42(M—1) o WA}(M_I)Q

is called theM-discrete Fourier transformM-DFT) matrix, whereWy, = e/2™/M and its
HermitianFi, = F,/ is called the inversé/-DFT (M-IDFT) matrix. The set of compleX/th
roots of unity,{W% : k=0,1,---,M — 1}, is called theM-ary phase-shift keying){-PSK)
set and a sequence with elements from AliéPSK constellation is called al/-PSK sequence
or a polyphase sequence in general.

Note that DFT matrices form a subcalss of the so-called Bukd@adamard matrices [24].

Definition 8: The kth Kronecker powemnf matrix U, denoted byx*U, is defined as

PU-UgUs.-aU, @

~
U appearsk times

where® denotes the Kronecker product.

Definition 9: The matrices

1 1
H, = (8)
1 -1
and
H2n71 H2n71
H2n:®nH2: 7n:2737”'7 (9)
H2n71 —H2n71

are calledSylvester Hadamard matrices

The following lemma is essential to derive our constructioethods in the next section.
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Lemma 2:[24] The Kronecker (tensor) product of any two Hadamard ioesris a Hadamard

matrix.

IIl. TRANSFORMDOMAIN CONSTRUCTIONMETHODS

We first review some transform domain properties of sequseand their correlation functions.
A class of ZCZ sequence construction approaches basedrmsidran domain properties is then
presented. Detailed comparisons with two related proposas made and a few construction

examples are provided.

A. Useful Transform Domain Properties

Denote by DFTu(n)}, the DFT of a periodic sequende:(n)} and by IDFRU(k)}, the
inverse DFT (IDFT) of a periodic transform domain sequefiték)}. We then immediately
have

Lemma 3:The DFT of the CC functiord,,(7) of two period/V sequences{u(n)} and
{v(n)}, is equal toU (k)V*(k), where{U(k)} = DFT{u(n)} and{V (k)} = DFT{v(n)}.

Since the AC function ofu(n)} can be expressed &s,(n) = u(n) ® u*(—n), its DFT is
given by©,,(k) = |U(k)|?. Therefore, it is straightforward to show

Corollary 1: Sequencqu(n)} is a perfect sequence if and only|if (k)|* is constant for all
k.

Based on the above properties, we can easily prove that

Lemma 4:The AC and CC functions of a set of sequences are invariantqugp scaling
factor) to filtering if the filtering sequenceis a perfect sequence.

As will become clear in subsequent sections that this lemmlesithe filtering operator very
useful in transforming a sequence set into one with entfiéiseosequences taken from a desired

constellation while maintaining the correlation propesti

B. Basic Constructions

Definition 10: A sequence{u(n)} in an (N, K) sequence set is said to havesabperiodof

J, whereJ|N, if it is also periodic with period/ < N, i.e.,u(n) = u(¢J+n),for0 < ¢ < N/J
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and0 < n < J.

Now note thatLemma 3implies
(10)

where©,, (k) =DFT{0,.,(7)}. When{U(k)} and{V(k)}, regarded asV-dimensional vectors,
are orthogonal, we have

N— -1

0uu(0) = Y Ouy(k) = > UK)V*(k) = 0. (11)

k=0 0

=

B
Il

If the sequencg©,,(k)} has a subperiod of = £, then

J-1 . 2J-1 . N-1 v
Gun() = D Oulk)e™ ¥+ 3" O ()e T 4t DT Ok N
k=0 k=J k=(m—1)J
J-1

j2nT j2nT(m—1)

= Ouw(k)e ™~ (1+em +~-~+eT)

The identity
l+a+a?+-+a™ =0, Va=W], |7|n#0 (12)

then gives

Lemma 5: The CC functiord,, () of two periodsV sequence$u(n)} and{v(n)} is identical
zeroV|r|y < T if the associated DFT vectord/(k)} and {V (k)} are orthogonal and their
Hadamard product{U(k)V*(k)}, has a subperiod of = N/(T'+ 1), whereT is a positive
integer.

The recursive Kronecker construction of the Sylvester lHeatd matrices (9) gives at least two
sets of row vectors (i.e., upper- and lower-half partdif.) that satisfy both the orthogonality
and subperiodicity requirements. This property still lsolchen we replace Sylvester Hadamard
matrices by other classes of Hadamard matrices produceddwsuesive Kronecker construction
similar to (9). Furthermore, as elements of a Hadamard mhaave constant modulus, the AC

of all sequences derived by taking IDFT on rows of a Hadamaatkimis 0 for all honzero

September 15, 2021 DRAFT



correlation lags by orollary 1. These two observations suggest that ZCZ families can lzerwdut
by using proper subsets of row vectors from a Hadamard malaxhave a precise definition
of “proper subsets,” we need

Definition 11: A regular pth-order M-partition on anN x N matrix H, where N = M", is
the set ofm = N/K = M? K x N submatrices, each is formed by non-overlappitg- V"7
consecutive rows oH.
Proper subsets of row vectors that generate ZCZ familieobi@ned by performingth-order
M-partition on thenth Kronecker power of a Hadamard matrix, i.e.,

Lemma 6:Let U be a Hadamard matrix of ordéd andH be the Hadamard matrix of order

N generated by theth Kronecker power o, i.e.,
H= [hg7 hfu o 7h%—1]T = ®7LU7 (13)

whereN = M", n > 2, andhy is the/th row* of H. We perform a regulasth-order )/ -partition

on H to obtain them = MP? submatrices
H; = [hl,--- ,hEH)K_l]T, i=0,1,---,m—1. (14)

Then, for each, the set ofK length-V sequences\; =) {Ai0,Ai1,--+ ,Aik_1}, whereA; ; =
IDFT{h;x;}, is an (N, K,m — 1) ZCZ sequence family that achieves the upper bound (4).
Furthermore, all member sequences in the family are pestgqiences.

Proof: The matrixH can be expressed in the stacked foith~= [ﬁg,ﬁ{, - ,ﬁﬁ_l]T,

where the submatrif{i is of the form
[ai,0B7 ai,1B7 T 7a'i,m—1B]

whereaq; ;'s have unit magnitudes an = ®"?U. It follows immediately that the Hadamard

products of two distinct rows oH; has a period of\/"~? = K. [ |

1For convenience, all the column, row, and vector elemendices start with 0 instead of 1.
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The above construction gives ZCZ sequences of leddth n > 2. That the upper bound (4)
is achieved is a result of our partition method describedbfinition 11 The sequence length
constraint can be relaxed by using Kronecker constructioRlalamard matrices of different
orders. Using.emma 2and an argument similar to that in deriving the above lemneapttain

Theorem 1:Let H be theN x N Hadamard matrix
H = [hg, th7 . 7h%_l]T déf U, 1® - -®U, (15)

whereUy, k=0,1,--- ,n— 1, are My x M, (not necessarily distinct) Hadamard matrices and

N = HZ;é My, n > 2. PartitionH into m = % submatrices of sizéd x NN,

H =%, bl )7 i=0,1,--,m—1, (16)

each formed by non-overlappin = [[/—%~" M, consecutive rows oH with p > 0. Then,

for eachi, the set of K period?NV sequencesA; = {Aio, Air, -+, Aik-1}, where 4, =
IDFT{h,x,}, is an(N, K,m — 1) ZCZ sequence family that achieves the upper bountl (4)
Note that the recursive generation of Hadamard matriceseatey (9) and (13) are special

cases of (15), i.e., the above theorem generdlizeorems land2 of [25].

C. Polyphase ZCZ Sequences

The ZCZ sequences generated by the methods described aleonetanecessary of constant
modulus but can be converted into polyphase sequencesuwittiering the desired AC and
CC properties by a proper filtering process; Sadinition 4andLemma 4 To find the filtering
perfect sequences we need the following two properties.

Lemma 7:[26] Let U be a lengthy polyphase perfect sequence with entries drawn from the
N-PSK constellation. Then both IDEU} and DFRU} are polyphase perfect sequences.

Lemma 8:[27] Let L be a natural number andd = L2. Define the lengthy polyphase

Technically, the theorem is also valid fpr= 0, as the resulting set has a ZCZ width 0. We will implicitly ae this trivial
case and assume> 0 in the subsequent discussion.
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sequencdgu(k)} by
w(ky L+ ky) = WPkl g < ) by < I, (17)

where {5(ks) : ko = 0,1,---,L — 1} is a permutation of0,1,---,L — 1}, andr(k,) is a

rational number depending dn. Then the sequence§u(k)},
{2k L4 ky) 0 < O, < 27, 0 < ky, ko < L} (18)
and

{Wiklu(le + ko) : 0 < ky, ky < L}, for any integert,

(19)

are all polyphase perfect sequences.
Based on the above results, we propose a transform domastraotion of polyphase ZCZ
sequences as follows.

Corollary 2: Let u be a lengthy perfect sequence of the form (17, = Hz;é M, = L?
for someL, andH; be theith submatrix defined by (15) and (16) using.-DFT or M,-IDFT
matricesU;’s. ThenC; = {IDFT{h;x.,}oIDFT{u} : 0 < n < K — 1} is an (N, K, % — 1)
bound-achieving polyphase ZCZ sequence set.

Proof: Since the entries in theth row of I~L- render the general expression
de ; n n
H]itcaniatohs = higcen(k1L + k) = =008

for 0 < ky, ko < L, wherel(n) € Z (integers) and < 6,(n) < 27, the products; k., (k)u* (k)

are of the forms (17)—(19) and are integer powerd/af. Lemmas And8 imply that the sequence

C; (k) = IDFT{higcn(k)} o IDFT{u(k)}

= IDFT{ higc n(k)u (k)}
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has polyphase entries. Invokifidneorem landLemma 4 we conclude thafC;,, : 0 < n < K}
is an (N, K, & — 1) polyphase ZCZ family. [ |
Remark 1:(Polyphase constraint and sequence length seleclibeprem 1provides a gen-
eral transform domain approach using Hadamard matricesnstiuct bound-achieving sets of
arbitrary nonprime length ZCZ sequences. In cont@stpllary 2 focuses on the generation of
polyphase sequences and can be regarded as an extensiopetfia sase of the former. The
polyphase requirement is satisfied by invoking an additidittaring operation and the use of
special Hadamard matrices; segample 1lin the ensuing subsection. As a result, the choice of
the sequence length is limited to perfect squarés=(L?).
Remark 2:(Nested structure) Ever x N submatrixH; can be further partitioned into
K/K' = [[}Z-}, M, submatrices of sizé’ x N, wherep < p/ < n, K = [[}_"' M,, and

k=n—p
K' = Hg;g’—l M, so that each submatrix can be used to constructlénx’, &2 — 1) ZCZ
sequence se€’ with larger ZCZ width anchiO_1 CJ = C,. This partition can be done in
a nested manner, i.e., each subset can be further decomymoseder even smaller sequence
subsets oil; can be merged with proper neighboring submatrices to aactsér larger set.

Remark 3:(Tradeoff between AC and CC) The identity (12) actually giae stronger CC
property than what is specified by the ZCZ width; it implieattthe CC values are identically
zero except at = s(T'+ 1), s € Z. This is still weaker than the constructions of [15] and [16]
which yield perfect (zero) CC at all lags. Perfect CC is aekicby requiring that each transform
domain sequence has sparse nonzero elements and suppaof (ee nonzero coordinates)
disjoint from the supports of all other transform domain s&tces. Nevertheless, their AC
functions are not as good as ours as all the sequences adadtiy our approach are perfect
sequences.

Remark 4:(Tradeoff between sequence length and alphabet sizesTggroach [15] is more
flexible in the choice of sequence length but requires a \angel constellation for elements of
the sequences. Our approach, on the other hand, requiresntidest constellation and is more
flexible than [16] in selecting the sequence length

We summarize various parameter constraints for our apprdas], and [16] in Table I.
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TABLE |
TRANSFORM DOMAIN-BASED POLYPHASEZCZ SEQUENCE SETS

Tsai [15] Brodzik [16] Corollary 2
Sequence lengttV nins L? [1i=) My, = L2
Set sizeK na L [0 My
ZCZ width T ny —1 L? —1, L prime |L — 1, L nonprime X-1
Upper-bound (4) Yes Yes No Yes
achieved?

Perfect sequence Lengths,

No explicit use of perfect sequences
used np-phase p p q 5 LengthaV

Alphabet size lcm(N, np) N N

D. ZCZ Sequence Sets Generated by Transform Domain Approach

In this subsection, we present some construction exampeg) the proposed transform
domain method. All ZCZ sequences obtained are perfect segge To minimize the number
of notations, we us€’; and A; to denote sequences generated by the metho@ouaillary 2
and Theorem 1 respectively. The same notation may refer to differentusages in different
examples when there is no danger of ambiguity.

Example 1:(Use of three DFT matrices of unequal dimensions) Pariitgithe Hadamard
matrix H = Fs ® F; ® F, into submatriced,, Hy, - - - , H;; and performing IDFT on the rows

of Hy,, we obtain two sequences

Ag = (000WW200000W,,00000W,00000W/,2000001},00000//500),

Ay = (000W,500000W,00000W 20000013 000001,,000001/5,00).

To convert them into ones with constant moduli we filter thgnmhe perfect polyphase sequence

[15]

Uss = (W We W W W W W W W WWe W W W W W W Wi

We WeWe WeWe WeWe W W We W W We W WeWewgvg) (20)
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which satisfies (17). The resulting6, 2, 17) bound-achieving ZCZ sequence set consists of

Co = AgoUss = (VV1121VV182VV192VVlozVV132VV122VV152VV142VV172VV102VV152VVlﬁzVV1121VV1122VV152VV102VV172VV1120
Wi Wi Wi Wi Wi Wi Wiy Wis Wi Wi Wi Wi Wi WS Wiy Wi Wi, W),

Cr= A oUs = (WE2W§2W§2W102W192W122W1121 Wf2W112W102W1121 VV162‘/‘/152‘/‘/1122 VV1121 WP2W112W1120
VV1121VV182VV192VV102VV132VV122VV152VV142VV172VV102VV152VV162VV1121 W1122W152W102W172W1120)~

If instead we take IDFT on the rows of the first submatdy of G = [GI,GT,--- ,G]|T =

F, ® F¢ @ F3 and filter the resulting sequencéd,, A, A} through (20), we obtain the bound-
achieving(36, 3,11) set:
Co = Ag 0 Uss = (Wg W WW W W W W W W W W W WWg W wgwi
WOW AW WO W AW W OW W AW W W WOWOWOW W IW),
Ch = Ay 0 Usg = (WOWSWEWRWEW L WIWOWIWOWIWIWOW W2 WIW AW
W W W W W W W WWg W W WWg W WeWg W W),
Cy = Ay 0 Uss = (W WS W WEWIWEWeWEWEWEWEWE W W W WeWwgwg
W W W W We We W W W W W W W W W W Wews).
Example 2:(Construction based on Kronecker power of a DFT matrix) Het F3 @ F3 ®
F; @ F5 and denote byH,, H;, - - - , Hys the submatrices obtained by performing reguled-

order 3-partition on H. Choosingﬁz and performing IDFT on its rows, we obtain sequences

{Ao, Ay, Ay} Filtering them by polyphase perfect sequence
Usy = (WoWo W W Wy We W WoWg W W W W Wy Wy Wi W
Wy Wo W3 W Wo W Wy W W W W W Wy Wy Wi Wy Wy
Wy Wy Wy WgWg Wy WiWg Wo W W We WeWgWg Wi Wy Wy

WOWEWSWIWEWEWIWEWIWIW W AW EWEW L WEW W]
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WoWa Wi WiWa W Wg Wy W),
we obtain

Co = Ay o Usy = (WOWIWEWEWIWEWEWIWEWEWEW AW IWEWIWIW2Z W
WOWEWSWEWEWOWESWOWSWIW AW EWEW L W WIWI W
WOW W WOWEW L WOW S W W W EWEWEWOWSWEW W
WOWIWEWEW AW W W WA WO WEWIWOWSWI WO W W
W Wy WeWIWSWWWi W),
Cr = Ay o Usi = (W Wy WaWgWWiWgWe WeWgWs Wi W Wgwiwiwgw
WOW oW O W W W SWEW WS W WL WEWEWIWEWSWEWE
WOW2W AW IW W AW OW W W IWEWEWEWIWIWEWIWS
WOW AW WS W WS WEWI W2 WO WS WA WOWEW LW WS W
W Wy Wy We Wy Wy WgWgwy),
Cy = Ay o Ugy = (WOWIWEWEWIWEWEWIWEWEWSWIWIWESWIWIWS W
WOWSW AW W IOWSWEWEWIWIWIWEWEW W W WL WS
WOW W WOW W WOWEW I WOWOWOWEWEWIWEWEWE
WOW L W2 WS W I WSWEW AW WOW W AW OW 2 W AW W 2w
WOWEWEWSWEWIWSWIWS)
which form an(81, 3,26) ZCZ sequence set that satisfies (4).
Example 3:(Quadriphase sequences derived from a Sylvester Hadamatrix)m Partition

the Sylvester Hadamard matrH ;4 into four submatricesﬁo,ﬁl,ﬁz,ﬁg, and select the first

submatrix,H, = [hI, h” hZ hI]”. Filtering the IDFT ofh, by

Ure = (WyWIWIWIWWEWEW W WEWWEW W WEW), (21)
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for eachs:, we have

Co = (WyWWEWIWIWEWIWEWWIW W WIWIWIWY),
Cy = (WWiWEW WIWIW W WIW WEWPWIWEW W),
Cy = (WW WWWIWEW W IW W W W W WIW W),

Cs = (WyWIWIWIWIWIWEW W W W W W WEWEWY),

a quadriphas¢l6, 4, 3) ZCZ sequence family that satisfies (4).

Note that if a3rd-order2-partition is used instead, we have a set of only two sequehae
with a larger ZCZ width, i.e., we obtain a quadriphdsé,2,7) ZCZ sequence set consisting
of {Ag o Uss, Ay 0 Usg} Or {Ay 0 Usg, Az 0 Upg }-

IV. DIRECT SYNTHESIS METHOD
A. Preliminaries

We now present an alternate approach which is capable ofraewge ZCZ sequences of
arbitrary nonprime periods.

Definition 12: A binary (0- and 1-valued) sequence of peri¥dvhich satisfies the ZCZ width
constraint?” on its AC function is called a basi@V,T") sequence.
A basic sequence can be obtained by the simple rule given in

Lemma 9: A binary sequencé = (by, b1, --- ,bn-1), b; € {0,1}, is a basiqV,T") sequence
if the minimum run length of)’s is T" (in the circular sense), where a run refers to a string of

identical symbols and’ is also called theninimum spacingf B.

B. Synthesis Process

Two new operations are needed.
Definition 13: A basic (/V,T") sequence3 with Hamming weightwy (B) can be expressed
as the sum (via component-wise addition) &f length-\V binary sequencesB;} !, with
M—-1

disjoint nonempty supports so that,” ;~ wu(B;) = wy(B) andwg(B;) > 1. The sequence set

{B;}M-" is said to be arorthogonal tone decompositicsf B.
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It is trivial to see that{ B}, is a binary(N, M, T) ZCZ sequence family and eadh, is a
basic (N, T;) sequence with’; > T.

Definition 14: Let V' = (v(0),v(1),---,v(IN — 1)) be a lengthh' binary sequence with
Hamming weightwy (V) = k£ and U = [u;;] be any matrix having: columns and arbitrary

number of rowsk’. The V-upsampled matrix olU is thek’ x N matrix P = [p;;] defined by

Uim, jzsv(m),m:(),l,---,k‘—l;
Pij = . (22)
0, otherwise

where sy (m) = the coordinate of sequendé&s mth nonzero entry. We denote the above row-
wise nonuniform upsampling operation @hby P =U A V.

Obviously, the nonzero entries in all rows of the matfix= U A V are in the same positions.
Hence ifVV is an (N, T') basic sequence constructed by the procedure describednima 9
then each row has the same minimum spadignd all CC (including AC) values are zero at
0 <7 <T. Values of all CC functions at = 0 are zero wherU is unitary in which case rows
of P all have ZCZ width7". Invoking Lemma 4 we have

Lemma 10:Let B be a basic(N,T) sequence withuy(B) = K, B «f {B;}M:! be an
orthogonal tone decomposition @&, wy(B;) = k;, andU,;,0 < i < M be k; x k; unitary
matrices (not necessarily distinct). Then for eacthe rows of nonuniform upsampled matrix
P, = U, A B; constitute an(N, K;,T;) ZCZ sequence family, wherg&, > T is the minimum

spacing of B;. Moreover, the rows of alP;’s constitute an NV, K, T') ZCZ sequence set.

C. Polyphase ZCZ Sequences

The above process does not guarantee a constant modulusliatios for the entries of the
generated sequences. We need a special class of basic segjaed a suitable perfect sequence
to generates polyphase sequence families.

Theorem 2:Let A’ = {a,} be a length’ perfectN,-PSK sequence, whege< N, < 2N’
and A be the perfect sequence of length= N,.N’ derived from N,-fold upsampling onA’.

An (N,N,,N"—1) or (N, N,, N' —2) ZCZ (-PSK sequence family, where= Icm(N4/, N,.),
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can be obtained by filtering the rows Bf= Fy_ A B by A, where B = (by, by, -+ ,by_1) IS
the weight#V, basic sequence defined by
1, i=kN', k=0,1,---,N, — 1;

0, otherwise

if N, and N’ are relatively prime, or by

4

1, i=kN', k=0,1,---,2 —1, or

> N/
i={0Ly+ <Lﬁ0—£> + EN', where
b’i: 62172’...’%_17 (24)
k=01, % —1;

0, otherwise

if gcd(N,., N') # 1, where Ly, = lcm(N,.,, N').
Proof: See Appendix A. [ |

D. Properties, Constraints, and Comparisons

The following three properties about the approach desdrdi®ve are easily verifiable.

Remark 5: (Parameter relations) For a fixédand K = N,, ZCZ sequence families generated
by (23) achieve the upper bound (4) and those generated #4ysétisfy the relatiod (7'+1) =
N — N,.

Remark 6:(Nested-like and inter-set properties) The constructiescdbed inLemma 10
results in a nested-like structure similar to thaRefmark 2 Instead of decomposing a Hadamard
matrix, we decompose a basic sequence of minimum spé&timgo several basic sequences of
minimum spacingS’ > S and use the latter basic sequences to construct sequescetsete
union constitutes a larger ZCZ set with a ZCZ width smallenthhat of individual subset; see
the second part odExample 7

The construction ofTheorem 2needs a special choice of the Hadamard matrix and basic
sequence used because of the polyphase requirement. Bgpasial case dfemma 10it still

preserve the nested-like structure. In fact, the basicesemps defined by (23) and (24) can be
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cyclically shifted to generate distinct polyphase ZCZ same families with the samev, K, 7).
The zero CC zone width between a sequence from the set baged@od one from the set based
on a circularly-shifted version aB is determined by the CC function of the two basic sequences
used. If, for instanceCy = {Co,Co1, -+ ,Cox-1} and Cy = {C10,C11,---,CrLx_1} are
derived from basic sequendg(n) and B5'(n) = B(|n—n'|y), respectively, thedc, ¢, ,(7) = 0,
Vi, ¢ and|T|y <T", whereT’ < T is the zero-CC zone width dfz 5 (7). As a result, the set
Co U C; has the ZCZ widthHl” < T'; seeExample 4in the next subsection.

Remark 7:(Binary sequences) To generate binary ZCZ sequences onéohase binary
Hadamard matrices, which exist fo¥, = 2¢, 12 x 2¢, or 20 x 2¢ [24], to replace theV,-DFT
matrix, F,_, in constructingP and reduce the required alphabet size to just(feém, 2) = 2;
seeExamples %nd 10.

The parameter selection constraints and related propddreour and some related existing
methods are given in Table Il. We provide more comparisorthiénfollowing remarks.

Remark 8: Theorem Boes not explicitly mention any restriction on the alphadiee. As
these constructions need to use a lenythperfect sequence andl, x N, Hadamard matrices,
which do not always exist for all length&V(), matrix dimension &,) and all constellation sizes
(V4), the ZCZ width, sequence length, and family size are thydiaily constrained by the
alphabet size.

Remark 9:Tanget al. [8] classifies the ZCZ sequences construction methods waonajor
categories, i.e., i) those based on complementary set$)dhdse derived from perfect sequences.
Our approach belongs to the latter category and generatgesees with lengthV = nqna,
where n; is the length of a perfect sequences. The constructionsopeapin [7]-[13] have
similar constraints on the sequence lengthand those mentioned in the next three remarks.

Remark 10:In [7], an (N, k, (n; — 2)k*"!) set is constructed by using a length-perfect
sequence, where, = kt, k < n;, butn, must be of the fornk’, ¢/ > 1. The interleaving scheme
[8] requires that either i) gdeh;, ny) = 1 or ii) ny|ne Or ny|n, to generate afiN, ny, ny — 1) or
(N, ng,ny — 2) ZCZ family. The length constraints in i) is similar to thatr fthe construction

(23) while ii) leads to ZCZ families of the same parametershase by the construction (24)

September 15, 2021 DRAFT



except that the latter is only constrained by @edn,) # 1.

Remark 11:A length-V (IV = nyny) Frank-Chu perfect sequence is used in [13] to generate
an (N,ny,n; — 1) family. This method also calls for the use of an x n, DFT or binary
Hadamard matrix. However, for the case whenis a perfect square and a DFT (or binary
Hadamard) matrix is used, our approach needs an alphabigiedteyn,, \/n1) or lcm(2, \/n;)
instead of Icnfns, ny), lcm(ns, 2ny) or lem(2, ny) required by [13]. Moreover, as [13] is primarily
interested in polyphase (nonbinary) sequences, theiroappris not applicable for binary set
since it requires; = 2. Our constructions, on the other hand, can be applied torgenboth
binary and nonbinary families.

Remark 12:The construction based on (23) generates sequences tlsspabie same cor-
relation properties as those of the so-called PS sequeiidg¢s These sequences are bound-
achieving; they have nonzero AC values only on subperiodicetation lags atr = m(7 + 1),

m € Z, and zero CC for all lags. While the PS sequences requiregttditi;, n,) = 1, where

ny is a perfect square, to construct @N, ny, n; — 1) family, our method does not impose any
constraint om;. Moreover, whem, is a perfect square, our approach can generate sequences,
which, for the convenience of reference, are caP&ilike sequencethat require a constellation

of size lecm(ny, \/n1) = N//n; as opposed to Ictm;, ny) = N required by the PS approach
[14]. Similarly, we refer to those families derived from §2@sing non-perfect square; as
generalized PS sequencis these sequences cannot be generated by the PS method. Som

PS-like and generalized PS sequence sets are given in tbheifaj subsection.

E. Examples of Direct Synthesized Sequence Sets

Example 4:(PS-like sequences) Following the procedure describ&theorem 2with NV, =
2, N' =9, B = (100000000100000000) and U being the Sylvester Hadamard matiik,, we
obtainP = U A B = [P], PI']", where

'P(]: (170707070707070707 17070707070707070)7

P =(1,0,0,0,0,0,0,0,0,—-1,0,0,0,0,0,0,0,0).
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TABLE I
POLYPHASEZCZ SEQUENCE SETS WITH SEQUENCE LENGTH = nins USING np-PSKPERFECT SEQUENCE

Torii [7] Tang [8] Popovic [13] | Park [14] Theorem 2
Perfect e — et
sequence L= n1 N ny = k? n1
k S 1
length
Set sizeK k ng ng na ng
ZCZ widthT | (n1 —2)k*~! ny—1 ny —2 ny—1 ni—1 ni—1 ny — 2
Constraints on ne = k0> 1 ged(ni, n2) ni|ng or None ged(ni,n2) | ged(ni, ne) | ged(ni, n2)
N2 =1 na|ni =1 =1 £1
Upper-bound
(4) achieved? No Yes No Yes Yes Yes No
. lcm(ni, n2) or
lcm ’ lcm
Alphabet size | lem(k,np) (n2,np) lem(2ny. 12) N (n2,np)

Filtering them by the upsampled perfect sequesce (WL0W0WL0W0WZ0WL0WI0W,L0WZ0),
we have

Coo = Pyo A= (WIWEWEWIWEWWIWEWEWIWEWEWIWEWEWIWIW,

Co1 = Py o A= (WIWEWEWEWIWEWIWEWEWEWEWEWIWWIWSWIWE).  (25)

It can be shown that

600,000,1 (T) = 07 |600,000,0 (T)‘ = |900,1CO,1 (T)‘ = 185(‘T|9)

and Cy = {Cy,Co.1}, is an(18, 2, 8) bound-achieving ZCZ sequence family.
Using cyclically-shifted basic sequencB&(n) = B(|n—3|15) and B”(n) = B(|n —6|5), we
obtain two new(18,2,8) ZCZ sequence set€; = {C},,C,1} and Cy = {Cs, C21} Whose

members are

Cro = (WgWg W W W WWg W W W W W W W W W W we),
Cry = (WEWgWe WWeWEWg W W W W W W W Wwg W W we),

Cop = (W W W W W W W W W W W W W Wy W Wy W W),
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Coy = (WeWg Wy WWg W W W W WeWg WeWg W Wg WeWwgvg).

It can be shown thafizp/ (7) = Opp/(7) = O (7) =0,V |7| < T' = 2 and thus the inter-set
zero-CC zone width is 2. Moreover, the @t~ U2, C: is a bound-achieving18, 6,2) ZCZ
sequence set.

Example 5:(Length42 PS-like sequences) The set of three PS-like sequences

Py = (W000W5000W2000),
Py = (W3000W;000W2000),
Py = (WJ000W2000W/,000)
is generated by usingV, = 3, N’ = 4, B = (100010001000), and IDFT matrixU = FZ.
Filtering them byA = (1,0,0,1,0,0,1,0,0, —1,0,0), we obtain the ZCZ sequences
Co = Py o A = (WeWWWEWgWWg Wi W W wgwi),
Cy = Pro A= (WIWIWEWIWEWWIWIWEWEWE W),

Cy = Pyo A= (WIWIWEWEWIWEWIWSWEWIWWE). (26)
It is verifiable thatv i, 7, i # j,
902‘0]' (T) - 07 |90LCZ(7_)| - 125(|T|4)7 (27)

i.e.,C={Cy Cy,Cs}is a(12,3,3) bound-achieving ZCZ sequence set. This set also possesses
the same PS sequence correlation properties [14]. Morebwotr (25) and (26) require only/3
and1/2 of the alphabet size required by the original PS constroatioder the same sequence
period constraint.

Example 6:(Generalized PS sequences) Using the methothebrem 2with N, =5, N/ =
3, the IDFT matrixU = F¥, B = (100100100100100), and A = (W20000W2000020000),
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we obtain

Co = (Wi Wi Wi W Wi WEWEWEWE WEWE W W W W),
Cr = (WisWis Wi Wi Wig Wis W WE W WEWE Wi Wi Wi W),
Cy = (W Wi Wi WEWE Wi Wi Wi Wi WEWE WS WE W W),
Cy = (Wi WEWEWEWEWEWEW S Wi WS WEWEWEW W),
Cy = (WisWis Wi Wi Wi Wi Wi Wi Wi Wi Wi W Wi Wi W)
which constitute a set dfl5, 5, 2) bound-achieving generalized PS sequences that has the same

correlation properties as the original PS sequencesyYig, i # j,
Oc,c;,(1) =0, |0c,c,(7)|=156(|7[3). (28)

As mentioned before, the PS method [14] can not produce ZQdesees of lengthlv = 15.

Previous examples are constructed by using coprivheand N’, we show a set using the
construction (24).

Example 7:(Sets based non-coprime parameters and nested-like sets arthogonal tone
decomposition) By choosing/, = 4, N’ = 6 and upsampling the Sylvester Hadamaid
by B = (100000100000010000010000), we obtain a(24, 4, 4) ZCZ sequence family by filtering
each row ofP = H; A B through A = (W%000W/.L,000W,000W2,000WL,0001/1,000):

Co=FoA :(W102W132W1121W182W1121W§2W102W132W182W1121W1121W§2
WW WS W, W W W WL W, WEWE W),
Ci=PoA :(WP2W§2W52W122W1121Wf2W162W1€)2Wf2W1121W52W122
Wi Wi Wi WL WEW Wi Wi Wi WEWELIWD),
Cy=P0A :(W102W192W1121W122W1121W122W102W192W182W152W1121W122
Wi WL W WL WL WEWHWHLW, WHWELW),
C3=P30A :(W&W&WngQWSW122W162W52Wf32Wf’2Wf’2Wf2
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3 (§ 2 11yx/8 5 9 0 11y1/2 2 11
Wi WiWEW L WEW R Wi Wi Wi WEWEWL).

Alternatively, we can perform orthogonal tone decompositon B to obtain two weight

basic sequences of same minimum spadifig

By = (100000000000010000000000),

By = (000000100000000000010000).

With U, =H, and
Ul = )
7 1

we filter rows ofUy, A By andU; A B; by [27]
A = (W2OWEOWZOWZOWLOWEZOWE0WEOWEOWZ0W0WE0)

to obtain two smaller polyphase sets of larger ZCZ wid@, = {Cy,Co.} and C, =
{C10,C1.1}, where
Coo = (We W W W W W W Wy Wy Wi wgwy
WEWs W W WeWe W W WeWg W),
Coa = (W W W W W W W W Wy W W
WEWE W W WEWg W W WeW W),
Cro = (Wi Wi Wi Wi Wi Wi Wi Wi Wi Wiy Wi W,
Wi Wiy Wiy Wi Wi Wi Wi Wi Wi Wiy Wi Wi,),
0171 = (W1121 W182 W192 W102 W132 W102 W132 W162 W1121 W182 W112 W142
Wiy Wi Wi Wi Wi Wiy Wiy Wiy Wiy Wi W, WA,

Both sets ard24,2,10) ZCZ sequence sets and together they form anatheri, 4) set.
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Example 8:(Generalized PS sequence set) We can also derive a smgalheralized PS
sequenceet having the same period but a larger ZCZ width. For exanifplee chooseN’ = 8§,
N, = 3, (23), and use the QPSK perfect sequence [28]

Al = (WiW WEW W WIWEWY),
then the three sequences

Co = (Wi Wi WhL W W Wi Wi Wiy Wi Wi Wi Wi
Wi W Wi Wi W W Wi Wi Wi Wi W W),
Cy = (WL WLWEWEW LWL WEW LW WEW WL
W W LW AW WL W WEW LW, WL WIW),
CZ = ( W192 W1121 W1120 W132 W152 W112 W162 W152 W112 W132 W122 W172
W192 W152 W1120 W192 W152 W172 W162 VV1121 W112 W192 W122 W112 )
constitute an(V, N,, N' —1) = (24, 3, 7) bound-achieving ZCZ family. A family with such ZCZ
parameter values can not be generated by the method sutjgesiet].
Example 9:(Length-16 ternary and binary sequences) Using the basic sequBned 10000

00100100100), the Sylvester Hadamard mati%, asU, and the perfect sequenee= (4 000+
000 + 000 — 000), we obtain

Py = (4000000 + 00 4 00 + 00),
Py = (4000000 — 00 + 00 — 00),
Py = (4 000000 + 00 — 00 — 00),

Py = (4 000000 — 00 — 00 + 00),

where+ and — denote+1 and —1, respectively. Time domain sequences with zero entries are

often undesirable as they require on-off switching. Fiftgr{ ;} by A, we obtain the binary
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(16,4, 2) ZCZ sequence family consisting of

Co=PoA=(+—++—++++++—++—+),

Ci=PoA=(+++—-———+—+—+++-———),
Cy=PoA=(++—+———++———+—++),
Cy=PoA=(+-————+——++—++++-)

Example 10:(Length32 binary sequence set) LéY, = 8 and N/ = 4. With B = (1000
1000000100010010001001000100), A = (4 0000000 + 0000000 + 0000000 — 0000000) and
U = Hg, we obtain the binary32,8,2) ZCZ sequence set

Co=(+—+++—-—++—-+++—-—++++++—+++—++—-+++—-+),

Ci=(+—-++-—+-———++++-———+++—-————+++—+——+—),
Co=(+++-+++-———F+—-———F—F—F+++—F+++———+———),
Cy=(+++-————F+——F+—F+—F+—F++—F+——+————+++),
Ch=++—+++—-+-———"+-———F++———+———F+—+++—++),
C=++-—+-——+-————++++-—+-————++++-—++—-—+——),
Co=(+—-———F——""—"F+—-———F——F+—F+++—F+++-—+++-),
Cr=(+-————+++—-+——+F+—-—F++++ -+ -——+—-+++-———+).

The ZCZ families shown in the above two examples achievetli®)bound for binary §/ , =
2) sequences, but their ZCZ widths are limited by the fact$ thare exists only one binary
perfect sequence (whose length = 4) and binary Hadamard matrices only exists for certain
N,; seeRemark 7 To increase the ZCZ width and have greater flexibility in @$iog the ZCZ

parameters, we can use higher-order constellatidhs>(2). For example, quadriphase perfect
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sequences of length’ = 2, 4, 8 or 16 do exist [27], [28]. We introduce in the next section an

alternate method which offers more choices for the ZCZ width

V. SEQUENCESDERIVED FROM COMPLEMENTARY SETS OF SEQUENCES

In this section, we generalize the above basic sequence bggeoach by replacing rows of

an unitary matrix with concatenated sequences. The fatigwdefinitions can be found in [22].

A. Basic Definitions

Definition 15: The aperiodic CC function of two length-sequences = {u(n)} andv =

{v(n)} is defined as

Yun(T) = Y u(n)v*(n — 7). (29)

The aperiodic AC function of sequeneeis obviously,, (7).
Definition 16: A set of  equal-length sequenceR, = {Ey, Ey,--- , Eg_,}, forms acom-

plementary sebf sequences (CSS) if and only\fr £ 0,

Q-1
> Umm(r)=0. (30)
=0

Definition 17: A CSS,F = {Fy, Fy, --- ,Fp_1}, is said to be amate of the CSS.E =

{Eo, Er, -+ ,Eg_4}if

(@) The lengths of all members i andF are the same;

(b) For all ,
Q-1
Z wELFL(T) = 0. (31)
=0
Definition 18: A collection of complementary sets of sequen¢g&s, E;,--- ,Ex_;}, where

each set contains the same number of sequences, is saidhatbally orthogonalf every two
sets in the collection are mates of each other.

It has been proved in [21] that
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Corollary 3: The number of mutually orthogonal CSS’s (MOCSSIs) cannot exceed the
cardinality of member CSS), i.e., K < Q.

B. Synthesis Procedure

We now extend the nonuniform upsampling operation definedafinition 14

Definition 19: Let V' be a length®" binary sequence witlv, (V') = Q and€ = {Eq, Eq,--- | Ex_1}
be a collection ofK MOCSS'’s in which each CSE; consists of@) length4. sequences, i.e.,
E,={Eio, Ei1, - ,Eig_1}, whereE; ; = (e; j(0),e;;(1),--- , e ;(L—1)).

TheV-upsampled concatenated sequence bas&),aw;, = E; A, V = (g;(0), g:(1),- -+ , g:(N+
Q(L —1)—1)) is defined by

gi(n) = eij(m), n=j(L—1)+sv(j)+m, (32)
0, otherwise

wheresy (7) is given in Definition 14
The operatora, is similar to A: the latter operates on rows of a matrix while the former
operates on the sequence formed by concatenating membéhe setE; and replaces each
nonzero element of a basic sequence by a finite-length sequen

Lemma 11:Let £ = {Eq, Eq,---, Ex_1} be a collection ofK MOCSS’s in which each
set E; has @ length-L. sequences and be a basic(N,T) sequence of weighf). The set

G ={E; A, B} et {Go, Gy, ,Gg—1} forms an(N +Q(L —1), K,T) ZCZ sequence family.

Proof: Based onLemma 9and Definition 19we can express:; as

—_—— & ~— A el
sv(0) L sv(1)—sv (0)-1
le(o) 62’1([/—1)1 0---0
1 sy (2)—sy (1)—1
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wheresy (j) —sy(j—1)—1>T,j=0,1,---,Q — 1, andsy(0) — sy (Q — 1)+ N —1 > T.

Invoking Definitions 17and 18, we obtain, for alli # k,
Q-1
eGin(T) = ZwEUEkJ (7-) =0, |T|N <T (33)
j=0

By analogy, Definition 16 gives, for alli, 0¢,¢, (1) = Z?:‘Ol Vg, ,e,(1) =0,0 <|r|y < T.

Therefore,G forms an(N + Q(L — 1), K,T') ZCZ sequence set. [

C. Polyphase ZCZ Sequences

Following the idea described in Section IV-C, we can derimether class of polyphase ZCZ
sequence families by using suitable perfect and basic segaeThe proof of the next corollary
is similar to that ofTheorem 2and is given in the last two paragraphs of Appendix A.
Corollary 4: Let A be the lengthE N perfect sequence obtained By, -fold upsampling on
a lengthA’ perfect No-PSK sequenced’, where N = N,.N' and2 < Ny < N’. Denote
by £ = {E¢,E4, -+ ,Ex_1} a collection of K MOCSS’s, wherek” < N, and each CSE,; =
{Eio,FEi1,---, E;n,—1} containshN, lengthL N.-PSK sequences. AflLN, K,T') ZCZ M-PSK
sequence sefy/ = lcm(Na/, N,.), with 7" = L(N' — 2) if gcd(N,, N') # 1 or T'= L(N' — 1) if
gcd NV, N') = 1 can be obtained by the following steps:
1) Generatey length{N + N, (L —1)) sequences:, = E; A, B,i=0,1,--- , K — 1, where
B is the weight, basic sequence of length defined by (24) if gcdV,, N') # 1 or by
(23) if gcd N,., N') = 1.

2) Replace each zero i by a length{ all-zero sequence to obtain the augmented sequence
Gi.

3) Filter eachG; by A.

We have the following four remarks on the MOCSS-based ajgproa

Remark 13:Similar to Remark 6 the basic sequencg can be cyclically shifted to generate
different polyphase ZCZ families with the same ZCZ paramset@d alphabet size. These families

can be combined to form a larger family with smaller ZCZ widtlikewise, the zero-CC zone
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width betweenB and its shifted versiom®’ determine the inter-set zero-CC zone width between
the associated families or the ZCZ width of the combined \8&t.can also decompoge into
several basic sequencésB;} to generate multiple sets with different ZCZ widths.

Remark 14:As mentioned in Section IV, binary sequence sets constiuntd heorem zhave
less choices in ZCZ width. The construction describe@amollary 4 takes advantage of the fact
that the member sequence of an MOCSS exists for many valuésaofd thus allow the ZCZ
width to be chosen from the séf" = 2L} with the same basic sequenBe set cardinalityN,,
and perfect sequencé’.

Remark 15:[4] and [5] present MOCSS-based methods for generatingyit@Z sequences.
The approach given in [5] was later generalized by [6]. Th&Z £@rameters realizable by these
methods can be obtained by using our approach described abor example, a method given
in [4] needs to use a class of recursively generated fanulidsnary CSS{A, }. Expressing a

family of Q MOCSS'’s in matrix form [22]

Eop Eig -+ Eg_ip
A, def Efm E.1,1 EE EQ.—LI (34)
Eog-1 Eig-1 -+ Eg-10-41

where E; ; are lengthZ binary sequences and each row is a CSS. Then for2,

An—l <& An—l _An—l ¢ An—l
A, = , (35)
_An—l o An—l An—l ¢ An—l

where[A<B|;;, the(7, j)th entry of the submatrikA ¢B], is obtained by concatenating the two se-
quences}A];; and[B];;. The concatenation of rows &,, forms a(4"'LQ,2"~'Q, 2" 2L) ZCZ
sequence set. On the other hand, by usihe- (1,1, 1, —1), the basic sequence defined by (24)
and the family of MOCSQ\,, with N, = 2"~'Q and elements oA\, being lengthl /4 sequences,
we obtain binary ZCZ sequence sets with the paramétérs4(L/4)Q, 2" 1Q, 2" (L /4)-2) =
(4"~1LQ,2"tQ,2"2L) via Corollary 4.
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TABLE 11l

ZCZ SEQUENCE SETYEACH USES A COLLECTION OFM MOCSS’s OF(Q LENGTH-L SEQUENCES

Deng [4] and Tang [6]n > 0 Corollary 4
Sequence lengttv 4"LQ 221LQ 2LQ 4LQ
Set sizeK 2" M 2" M M M
ZCZ width T 2 2m=2], L 2L
Upper-bound (5)
achieved with Yes Yes Yes Yes
M = Q?
Alphabet Size Binary Binary and
polyphase

Remark 16:0Our approach offers more choices in parameter values arsl ghaduce sets

which are not derivable from the methods of [4], [6]. More ongantly, we can generate not

only binary but also nonbinary sequences and the ZCZ paeasfetr the nonbinary class can be

flexibly controlled via/N’, which can be any integer and is not affected by the MOCSSerhos

In Table Il we list key parameters for our and some other MS@&fased binary ZCZ sequence

set constructions.

D. Examples of CSS-Based Polyphase ZCZ Sequence Sets

Two ZCZ sequence construction examples based on CSS are igivkis subsection.

Example 11:(gcd(N,, N') #1) Let N =16, N'=N, =K =L =4, A = (++ +—), and

B = (1000000100100100) and choose a collection of mutually orthogonal complenrgnsats

& = {Ey, E{,Ey, E3} from [22], where

EO:{(++++)7(__++)v(_+_+)v(+__+)}7
El:{(++__)7(____)7(_++_)7(+_+_>}7
E2:{(_+_+)7(+__+>7(++++)7<__++>}7

By = {(—++-),(+ =+ ), (+ + - =), (- — =)}

(36)

Following the procedure o€orollary 4, we obtain the bound-achieving binaf§4,4,8) ZCZ
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sequence set:

Co=(++++—++-——-+—F—-——Ft+—-————F -+ —F—F+——++
B i i e e M ol N i A A NS S S B
Ci=(++-———+—-+—++-——————— +++ -ttt ————=
i e i i i i i i e i i e i i Al B
Cy=(—+—-—+++-——+++++-——++—F+———+++++++-—+
i i i el S i i i i i H e i i A S 1
CG=(-++-—t++++++——F—F—F——F————F+——+—+—
—++-—=—= e i e e +++-+-)

With the sameB, A’, and N, as those used ikExample 10 this set extends the ZCZ width
without changing the set cardinality.

Example 12:(gcd(N,, N') = 1) Using the construction (23) with (36}’ = (WW2WY),
N’ =3, N, =4, and L = 4, we can obtain a ZCZ sequence $etof the same (or larger]’

with a shorter sequence periddV and slightly larger constellation:

Co = (WeWeWWIWIWIWIWWEWEWSWEWEWEWI W W W W W WEW W W
WeWe W W WEW W W WEWEWEW W WEWIWEWEWIWEWeWEWEWEWE),
Cy = (WeWeWEWEWIWIWEWEWEWEW WS W W W W W W WEWEWEWEWE W
WEWSWE W WEWIWIWEWEWEWE WS W WEWIWEWEWWEWEWeWEWIWE),
Cy = (WeWeWEWSWEWIWEWIWEWEWEW W WEWIWE W W WE W W W WS W
WOWOW oW IW W EWEWOW W EWEWEWEWEWOW W IWIWOWOWEW W W),
Cy = (WWSWWEWEWIWIWEWEWEWE W W W W W W W W W W WEW W

WeWeWeWe Wy W W WeWe W W WeWeWg W W W Wy W W We W W),
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It is worth mentioning that the above set cannot be obtairyedsing the methods of [4] and [6]
and, moreover, althougBorollary 4 promises af{LN, N,, L(N' —1)) = (48,4, 8) family, C is
actually a(48,4,9) one. The larger ZCZ is due to the inherit correlation prdperof MOCSS
(36)

Np—1

Z ¢Ei,kEj,\ki1\N7‘ (T) =0 (37)
k=0
fort=+(L—-1),0<i<N,, and0 <j < N,.

VI. CONCLUSION

Three new systematic approaches—a transform domain matiebdwo direct (time domain)
synthesis methods—for generating ZCZ sequence families Ibeen presented in this paper. The
transform domain approach exploits the cross-correldtioction’s transform domain represen-
tation and the recursive Kronecker structure of a class afareard matrices. The two other
approaches begin with simple binary basic ZCZ sequence®u@h progressively fine-tuning
steps that include novel basic sequence-based nonunifpgampling of unitary matrices or
a collections of MOCSS'’s, we are able to obtain polyphaseliesgces that meet various ZCZ
requirements.

The basic sequences are used to ensure that the required i iw satisfied during
the upsampling process while the transform domain appreses the subperiodicity of the
Hadamard product of two transform domain sequences. Thegwhality among rows of unitary
matrices or MOCSS guarantees that the CC value of any two mesdguences at zero lag is
zero as well. We take advantage of the correlation-invapaoperty of the filtering-by-perfect-
sequence operation to convert a nonconstant modulus ssgjueto a polyphase sequence.
Judicious choices of the basic and perfect sequences usetharassociated upsampling rate
are crucial in this operation.

Our approaches are conceptually simple and require no stogdted algebra but, in some
cases, offer more flexibilities in either the choices of teguence length, the ZCZ width and/or
the alphabet size needed. We are therefore able to prodgcersee families with the same

parameters as those by earlier proposals as well as somarthatot achievable by related
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known methods. Finally, for each approach, numerical exesnpave been provided to further

validate the proposed construction methods.

APPENDIX A

PROOFS OFTHEOREM 2 AND COROLLARY 4

Let P = (po,p1, - ,pn—1) be arow of P andC = Po A = (cg,¢1,-+ ,cn-1), Where
Cn = Y0 piaf;_,,- |f we can show that, for any. € [0, N — 1], one and only one of the
N products{pjarj_nm :j=20,---,N —1} is nonzero, then, as both and P consist0’s and
polyphase elements) is a polyphase sequence as well. Because of the circulaokdion
nature of the filtering operatiorDgfinition 4 and the periodic run property @, we have only
to check if this single nonzero product assertion is validofe< n < N,..

For the first construction (23), ge¥,, N') = 1 and bothN, and N’ are positive, hencél
uniguea,b € Z such thata N’ + bN, = 1, where one of the integer coefficienisor b must
be negative [29]. Without loss of generality, we assume 0 and multiply both sides of the
above Bézout’s identity by, 0 < s < N,, to obtainsaN’ = s + st/N,, ¥ = —b > 0. If
st/ < N'—1thensaN' < N'N, = N andsa < N,; otherwise, subtract both sides byN,
wheren, = LSbTNJ to obtain(sa —noN, )N’ = s+ (sb' —ngN')N,.. For both cases, we have, for
each positives < N,., 3 unique pair of positive integefsn,n), 0 <m < N,—1,0<n < N'—1
such thatn N’ = s + n/N, mod N. That this property holds fo = 0 is obvious.

As for the second construction (24), we notice that the bsstuence admits the orthogonal

tone decomposition3 = ZZI;& By, where

_ bi, (Lo <1i<({+1)Ly;
By(i) = (A.1)
0, otherwise.

Whend = gcd N,., N’), there exists positive integetis b’ such thatu N’ = d+ ' N,.. Multiplying

both sides bys, 0 < s < &, we obtain(sa — ng2 )N’ = sd + (sb' — ng™)N,, wheren, =

{%J For all s € {0, 1, LN7-/N/JNC’l+(N—N7-) } 3 a unique integer paifm,n), 0 < m < ¢,

0 < n < N’ such thatm N’ = sd + nN, mod N, i.e., the sequenc&, o A is identically zero
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except at indices that are multiplesdfind the nonzero terms are the products of two polyphase
signals whence are themselves polyphase signals.

Similarly, we can show that, fat=1,2,--- ,d—1, the sequenc8,o A, has nonzero polyphase
terms atnd — ¢ only, wheren € Z. Hence the sequendg o A = Z?;é By o A is a polyphase
sequence.

To proveCorollary 4, we first note that the sequences generated differs fronetheserated
by Theorem 2n that the perfect sequence useddarollary 4 is the L-fold upsampled version
of that used inTheorem 2while the unfiltered ZCZ sequences for the former is[aaxpanded
version of those for the latter, replacing each zero entry dify a lengthf. string of zeros and
each nonzero entry by a complementary sequeng¢ef length L.

For the first construction oB3 (23), we immediately have, fdr < s < N,, 3 unique pair of
positive integergm,n), 0 <m < N, — 1,0 <n < N’ — 1 such thatn LN’ = sL + nLN, =
k+nLN,. Thatis, in computing the filtered sequente= Go A = {¢;}, whereG = {g;} = G,
ande, = 3 gjar,_,, , there is only one nonzero term in the summands that add up to
for k=sL,s=0,1,---, N, — 1. That this single nonzero convolution term property holois f
sL < k < (s+ 1)L is obvious because of the special structurepf The proof for the case

when the second construction (24) is employed follows alamtine of argument.
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