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Abstract

In this paper, we characterize the capacity of a new classingflessource multicast discrete
memoryless relay networks having a tree topology in whighrthot node is the source and each parent
node in the graph has at most one noisy child node and any nuofib®iseless child nodes. This
class of multicast tree networks includes the class of dramuetworks studied by Kang and Ulukus
as a special case, where they showed that the capacity cdridly fower than the cut-set bound. For
achievablity, a novel coding scheme is constructed whect eaisy relay employs a combination of
decode-and-forward (DF) and compress-and-forward (CH)eath noiseless relay performs a random
binning such that codebook constructions and relay omgratire independent for each node and do not
depend on the network topology. For converse, a new techrofiteratively manipulating inequalities

exploiting the tree topology is used.

Index Terms

Relay network, compress-and-forward, decode-and-fatw@diamond network, multicast tree net-

work

. INTRODUCTION

In this paper, we consider a single-source multicast disenemoryless relay network in which
the source wants to send the same message reliably to reul@ptinations with the help of one or

more relays. A model of relay networks was introduced by venMeulen in [1], [2]. However,

The material in this paper was presented in part at the Irdtiam Theory and Applications Workshop, UCSD, San Diego,
CA, USA, January/February 2010, at the IEEE Internationahi$osium on Information Theory, Austin, TX, USA, June 2010,
and at the Allerton Conference on Communication, Contnotf @omputing, Monticello, IL, USA, Sep. 2010.
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the single-letter capacity characterization has been egen for three-node relay networks, i.e.,
relay networks having a source, a relay, and a destinatiothéir seminal paper_[3], Cover
and El Gamal developed two fundamental coding strategiethfee-node relay networks. One
of them is decode-and-forward (DF), where the relay dectkdesnessage and forwards it to
the destination, which was shown to be optimal for physjcdiégraded channels/[3]. DF was
generalized for multiple relays inl[4].][5]. In another $égy, compress-and-forward (CF), the
relay compresses its received block and sends the comgregsemation to the destination.
CF was shown to achieve the capacity for some classes of nelayorks [[6], [7]. Recently,
CF was generalized to noisy network coding [in [8] for muktipklays, which includes many
previous results on relay networks [3]) [9]=[11] as specades. A potentially better strategy is
to decode as much as possible and compress the residuahation, i.e., a combination of DF
and CF [3]. Indeed such a strategy was shown to be optimal Imgkad Ulukus for a certain
class of diamond networks in_[12], which consists of a souacaoisy relay, a noiseless relay
that receives exactly what the source sends, and a destirthit has orthogonal finite-capacity
links from relays. For this class of diamond networks, it vgaewn that a combination of DF
and CF at the noisy relay is optimal and the cut-set bound geimeral loose [12].

In this paper, we show the optimality of a combination of DFl &F for a new class of
single-source multicast relay networks with an arbitraoynber of nodes, which includes the
class of diamond networks in_[12] as a special case. In thiss¢iwhich we call multicast tree
networks, a network has a tree topology in which the root nedde source and each parent
node in the graph has at most one noisy child node and any nuofhlm®iseless child nodes.
We note that the achievability and converse for diamond aetsvin [12] cannot be directly
generalized to those for our multicast tree networks. Fing codebook constructions and relay
operations of the coding scheme In[[12] for diamond networksich has a single destination,
vary according to the link capacities from relays to the idesion. This cannot be used for
multicast tree networks since they have arbitrarily mangtidations. Next, it would not be
easy to generalize the converse proof techniqué_ih [12] i'mndnd networks, which have only
four nodes in three levels, for our multicast tree networkisich have arbitrarily many nodes
in arbitrarily high levels. Therefore, for these two reasowe need new techniques. The key
technical contributions in the achievability and converséhis paper are as follows:

« Achievability: For the generalization to multicast treéwerks, we construct eobustcoding
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scheme where codebook constructions and relay operatrensdependent for each node
and do not depend on the network topology. Such a robustr¢lse ooding scheme makes
the generalization from a single destination to multiplstations possible.

. Converse: To get a very simple min-cut expression, we useval mechnique of iteratively
manipulating inequalities, i.e., we recursively reducaimhber of inequalities into one using
the tree topology.

The organization of this paper is as follows. The model ofas€lof multicast tree networks
is presented in Sectidnl Il. In Sectidnllll, we present lowed apper bounds on the capacity of
the class of multicast tree networks and show a conditiorifese two bounds to coincide. In
Section 1V, we derive the lower bound by presenting a codttfieme where each noisy relay
employs a combination of DF and CF and each noiseless reld@rpes a random binning. In
Sectiorl Y, the upper bound is shown using a recursion expdptihe tree topology. In Sectign MI,
we present an equivalent capacity expression for diamotwionlkes that shows that without loss
of optimality we can construct the coding scheme such thattwhcompressed after decoding
at a noisy relay is a noisy observation of almost uncodedrimédion. The conclusion of this
paper is given in Section_VII.

The following notations will be used in the paper. For twoetrs: and j, [: : j] denotes
the set{i,i + 1,...,5}, =} denotes a row vectofz;, z;1, ..., z;), andz’ denotesr]. zg for
a setS denotes a row vectofr; : i € S). According to the context; sometimes denotes the
single-element sefk} for notational convenience.

In this paper, we follow the notion of-robustly typical sequence introduced [n [13]. Let
N.»(x) denote the number of occurrenceszo& X in the sequence™. Then,z" is said to be

e-robustly typical (or just typical) foe > 0 if for every x € X,
Nn ()
n
The set of alk-robustly typicalz™ is denoted a§.(X), which is shortly denoted &&. Similarly,

—p(x)| < ep(a).

let N, (x,y) denote the number of occurrences(ofy) € X x ) in the sequencéz™, y").
The sequencéz”, y") is said to bee-robustly typical (or just typical) if
Nyn yn (2, Y)

n
for every (z,y) € X x ). The set of alle-robustly typical(z", y™) is denoted byl (X,Y") or

—p(z,y)| < ep(z,y)

T, in short.
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II. MODEL

A single-source multicast discrete memoryless relay neétvad N nodes

(Xl X ... X XN?Z)(yl?"'7yN‘x17"'7xN)7yl X ... X yN)

consists of alphabet&, ), for £ € [1 : N] and a collection of conditional probability mass
functionsp (v, ..., yn|z1, ..., x5 ) Wherez, € X, andy, € ). for k € [1: N|. Let K denote the
number of destinations. Latand D,; denote the source and the set of nodes that formgd-the
destination, respectively, and &% = Xp, = () for d € [1 : K|. We note thatD, for d € [1 : K|
are not necessarily disjoint. Léd = Uden. i) Da-

A (2”3, n) code for a single-source multicast discrete memorylessy nreétwork of N nodes
consists of a message 94t = [1 : 2"%], a source encoder that assigns a codewdid,) to
each message; € W, a set of relay encoders, where encokler [2 : N|\ D assigns a symbol
7.4(yi ') to every received sequengé ! for i € [1: n], and a set of decoders, where decoder
k € [1: K] assigns an estimate, ; to each received sequengg, . The messagé/’; is chosen

uniformly from the se®V,. The average probability of error for(@"%, n) code is given as

e

pMm AP {led 4 W, for somed € [1 : K]} .

A rate R is said to beachievableif there exists a sequence @, n) codes such thab™ — 0
asn — oo. The capacity is the supremum of all achievable rates.
A single-source multicast discrete memoryless relay netugcalled a multicast tree network

if the probability distribution has the form of
P ynlen, oen) = [ p(slen,)
ke€[1:N]

wherep, is called theparent nodeof nodek andk is called achild nodeof nodep,. A child
node is considered to be one level lower than its parent nddeode without a parent node
is called theroot nodeand a node that has no child node is callettaf node Let L, for
k € [1 : N|] denote the set of leaf nodes that branches out from rod®r treeT’, let T}, for
k € [1: N] denote thesubtreeof 7" that consists of nodé and all of its descendants if.

In this paper, our goal is to present lower and upper boundthercapacity of a class of
multicast tree networks and to find some tightness conditafrthose two bounds. In this class

of multicast tree networks, the source node is the root noge; L, for d € [1 : K|, and each
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Fig. 1. An example of our multicast tree networks. The sofid dashed lines represent noiseless and noisy links, résgec

In this example, the parent node of node 3 is node 1 and the ohiles of node 3 are nodes 7 and 8. Node 1 is the root node
and nodes 5, 9, 10, 11, 12, 13, and 14 are the leaf nodes. Aalsii is a subset of leaf nodes. For instance, destinatisn 1
the set of nodes 5, 11, 12, and 13, destination 2 is the setdd#sn®, 12, and 14, and destination 3 is node I19is the set

of nodes 5, 9, 10, and 113 is the subtree that consists of nodes 3, 7, 8, 12, 13, and 14.

parent node has at most one noisy child node and any numbevisél@ss child nodes, i.e.,
yr = xp, If kis a noiseless child node of noge. Without loss of generality, we assume that
D = L,. Let Gy = {k|L, N Dy # 0} for d € [1 : K]. Let n;, and M, for k € [1 : N] denote
the noisy child node and the set of noiseless child nodes dé &o respectively. LetZ, for

k € [1: N] denote the set of child nodes of nokgi.e., Z, = n; U M. From now on, we only
consider this class of multicast tree networks. See[Fig. 1.

A practical example of our multicast tree networks is degacin Fig.[2, which represents
a sensor network where a sensor node wants to send a messtge gateway nodes at the
boundary connected with infinite-capacity wired links. histexample, each relay node has
outgoing links to its neighbor relays such that one of thkdiis arbitrarily noisy and the others
are noiseless. Motivation for assuming noiseless linksefrom a practical scenario where a
transmitter is using a fixed modulation scheme tuned for thisttink and thus the transmission

from the transmitter to the other receivers with better clehmualities looks almost noiseless.

. M AIN RESULTS FORMULTICAST TREE NETWORKS

Let us present lower and upper bounds on the capacity of casttiree networks.
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Fig. 2. A sensor network in which a sensor node wants to senéssage to gateway nodes at the boundary connected with
infinite-capacity wired links. The solid and dashed lingsresent noiseless and noisy links, respectively, and tiviels at the

boundary represent infinite-capacity wired links.

Theorem 1:The capacityC' of multicast tree networks is lower- and upper-bounded as

C> max min min I(Ug; Yn,) + H(Xi|Uy)

; oy [Ugsyn, ) dE[1:K] S,
ke Pr,2r)p(Gng, [tk yny, ) dE[1:K] Sa keds,

+ > Uk Yoa) + IXe Yo [U) — > IV Yo U X)) (D)

kEBde kGCsdyd

C< max min max min I(Uy; Yy,) + H(Xy|Uy)

[kep:ny P(ur,zr) dE[:K] [Tie i Ny P(Ing |uksyny, ) Sa k€As,.q

+ Y Uk Yo) + I X Yo [U) — > (Y, Yo, Ui, Xi) 2)

k€Bs,.a keCs,.a
over all cutsS, C G, such thatl € S;, D, C S5, M, NGy C Sy if n € Sy, andpy, € Sy if
k € Sy with cardinalities of alphabets such that

Uy| < | X +4 (3a)
Vel < U V] + 2 < ]| V| + 4V | + 2 (3b)

for k € [1 : NJ|. Here, Ag, 4, Bs, 4, and Cg, 4 for d € [1 : K] denote the following disjoint
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TABLE |

CLASSIFICATION OFk € S INTO As, .4, Bs,,d, AND Cs,.q

nr N Gg nkﬂGd;é@
neNGqg=0
M NGy ny NGq C Sy nkﬂGngj
M NGg C Sq keCs,a k € Bs,.q keCs,a
MkﬂGdsﬁ(D
M NGq CS§ — keASd,d k‘EAsd,d
Mp,NGg=10 ke Csd,d k€ BSd,d -

“~" indicates that corresponding cases do not happen fort égwf interest.

subsets of9,.

Asmd = {k‘k € Sd7 Zk - 55, Mk N Gd 7£ (Z)}
Bs,a = {klk € Sa,ni € S§, My N Gy C Sa,ni, N Ga # 0}
Cded = {]{3|]{3 €Sy, 2. NGy C Sd}

See Tabléll.

Remark 1:1n TheorenilL, a cuf, of interest for destinatiod € [1 : K| satisfies thap, € S,
if ke SgandM, NG, C Sy if n, € Sy in addition to thatl € S; and D,; C SS. This additional
condition signifies that nodg, can decode whatever nodecan and a node i/, can decode
whatever node:;, can.

We can see that the lower and upper bounds in Theddem 1 meet thieemaximizing
distribution of [, ;. P(9n, [uk, ys,) 1S independent of destinations. The following corollary
presents a class of such multicast tree networks.akdbr d € [1 : K] denote the node at the
lowest level in the sefk|D, C L;}. The proof is in AppendiX’A.

Corollary 1: If L,,nD; =( foralli,j € [1 : K] such that # j, the lower and upper bounds

in Theoren(]L coincide.
Corollary[1 says that the lower and upper bounds meet wheh set of nodes forming a
destination is included in a disjoint subtree. For examfiie, lower and upper bounds for the
multicast tree network represented in Higj. 1 meet when msdn 1 is the set of nodes 5, 9,
10, and 11, destination 2 is the set of nodes 12 and 13, dastirais node 14.

For the single destination case, the lower and upper boundeoreniIl coincide trivially.

In this case, the following corollary gives a simpler capaexpression.
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Corollary 2: For tree networks with a single destination, the capacityiven as

Us) — I(Ys; Ys|Us, X) 4)

maxmin I (Us; Yse \ Xs) + 1(Xs; Ve

where the minimization is over all cutS C [1 : N] such thatl € S, D C S¢ M, C S if
n, € S, andp, € S if k£ € S, and the maximization is over the joint distribution of
IT s 20)p (i, |k, yn,) (5)
ke[1:N]
with cardinalities of alphabets satisfying (3) fore [1 : N]. In (), YJ = Xy, for k € [1: N]
andj € M, andYs. \ Xg denotes the set

{Y;|j € 5% j¢ M, forall ke S}.
Proof: For a cutS of interest, we have

I(Us; Y\ Xs) = Z I(Uy; Ya,)

kEAsJUBSAyl

k‘EAS’l k‘EBS’l

kEAsJ keBgs 1
I(Ys; Ys|Us, Xg) = Y (Y3 Vo [ Uk, X5,)
k‘ECsyl
from the joint distribution[(5), which concludes the proof. [ |

I(Xg; Ve

Here U corresponds to the part of a message intended to be decodachbigy relay and”
corresponds the compressed version of a received block.
In contrast, only CF is performed at relays in noisy netwookling [8], whose achievable

rate for general single-source single-destination discneemoryless relay networks is given as
max min I(Xs; Ve, Yp| Xse, Q) — I(Ys; Ys| XV, Yee, YD, Q) (6)

where the minimization is over all cutS C [1 : N] such thatl € S and D C S° and the
maximization is over the joint distribution of
p(e) I plerla)p(@eler yi. q).
ke[1:N]
Note that [@) and[{6) are somewhat similar especially thésgavolving Y’s but @) includes
U’s due to DF.
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IV. ACHIEVABILITY

Fix a joint distribution of [(b). Fixe” > ¢ > 0 and fixry, > 0,7, > 0, andr,, , > 0 for
kell: NJ\D.
1) Codebook generationfor i € [2: N], the index setV, of nodek is defined as
[1:2"pee] x [1:2"k0]  for k = ny,

Wy, & .
[1:27ma] x [1:27me] for k € M,,

Fork € [1: N]\ D, generate the codebooks following the steps below.

« Consider a random mapping from W to [1 : 2"k«e] x [1 : 2""*¢]| such that eacly, € W
is mapped toy,(wy) = (ax(wg), Br(wg)), where ay(wy) and gy (wy) are uniformly and
independently chosen frofd : 2"%«] and|[1 : 2""=*], respectively.

. Generate2"+« independent codewords!(ay) for a;, € [1 : 2"<], of lengthn, according
to [T, p(un,i)-

« For eachay € [1 : 2"*a], generate" =+ conditionally independent codeword$ (S |o)
for 5, € [1: 2"+, of lengthn, according to] [, p(@s;|uki(ax)).

« For eachy, € [1 : 2""*<], generate" "+ conditionally independent codeword$ (v, |c)
for v,, € [1: 2], of lengthn, according to[ [\, p(¥n,.iluki(c)).

o Let 2} (wy) denotex] (Bk|aw), where(ag, Br) = i(wy) for wy € W.

The codebooks are revealed to all parties.

2) Encoding at the sourcefFor a message; € W, the source sends} (w).

3) Processing at nodé € [2 : N| such thatk = n,,: Nodek operates following the steps

below.

« Find a uniquey,, such that
(Uﬁk (), ur) € To.

If there is no suchy,,, randomly picka,, € [1:2""#ke].

« Seek for ar;, such that

<ugk (55171@)7 yl?v Q?@k@m)) €To.

If there are more than one such indices, randomly choose @@ them. If there is no

suchdy, randomly picko, € [1 : 2"7ke].
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. Let @y, = (ay,, Tx)-
o If Z, # 0, nodek sendsz} (wy,).

4) Processing at nodé € [2 : N| such thatk € M, : Nodek operates following the steps
below.

« Find a unique(d,, , 3,,) such that
fCZk (Bpk|5‘pk) = Y-
If there is no suchd,, , By, ), randomly pick(é,, , 8,,) € [1 : 2" #re] x [1 = 2"ek].,
o Let g = (ay,, By)-
o If Z # 0, nodek sendsz} (wy).
5) Decoding at the destinationsthe d-th destination ford € [1 : K| decodes the message
following the steps below.
. Construct a subsdfy, ;, of W, for everyk € [1 : N]| in the following way. Fork € D,, let
Fl.q = {w}. Fork ¢ Gy, let Fy, 4 = W,. For all the othetk’s, i.e.,k € G4\ Dy, F.4's are

constructed recursively as

Fioa = {wg] (ug (o (wr)), 25 (B (wi) [k (wr)), G, (v, [k (wi))) € Tor,

(ag(wg), vp,) € Fopas (o (wy), Br(wy)) € Fj 4 for all j € M, for somew,, € [1: 2" ]}
« Find a uniquen, 4 € F 4. If there is no suchu, 4, randomly picki, 4 € W,. The destination

declares thaty; 4 was sent.

6) Analysis of the probability of errorWe analyze the probability of error for messddg
averaged over the codebook ensemble.llgtdenote the chosen index at nadéor k € [2 : N]
and letV,,, denote the chosen covering index at negdor k < [1 : N\ D. Let us first introduce
the notion of a supporting rate.

Definition 1: For our coding schemd, for k& € [1 : N| is said tosupporta rater, or have

a supporting rate, for destinationd € [1 : K| if, for any € > 0,
) 2 P(W, ¢ Fra) < e

I/](Cfg £ P(ﬁ); S Fk,d) < 27 rk=e)
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for w;, # W, for sufficiently smalle’ and¢” and sufficiently IargmH Note that the supremum
of the supporting rate df}, for destinationd € [1 : K| becomes infinity and zero whene D,
andk ¢ Gy, respectively.
The following lemma shows thak < r, is achievable ifl" = 17 supports a rate; for all
destinations.
Lemma 1:1f T = T} supports a rate; for all destinationsR < r; is achievable.
Proof: Fix e > 0. If T" supports a rate; for all destinations, the average probability of

error using our coding scheme is upper-bounded as
P =P {Wld # W, for somed € [1 : K]}

< Z P{Wl,d # W1}

del:K]
- Z ( d+2nR (n))
de 1: K
< K (e 427 R) (7)

for sufficiently largen. Note that (V) is upper-bounded B¥ + 1)e for sufficiently largen if
R <r; —e. Thus,R < ry is achievable. [ |
Now, let us derive a sufficient condition for a supportingerat of 7" for all destinations using
the following lemma. The proof is at the end of this section.
Lemma 2:Considerd € [1 : K] andk € G, \ Dy. If T; for j € Z, supports a rate; for

destinationd, T) supports a rate; for destinationd such that

T < ](Uk,Ynk)+H(Xk|Uk) (88.)

re < Y I(Uk Yo,) + 1(X0: Yo, |U) (8b)
JEMENGy

re < Y= I (Yo Yo Uk, Xi). (8c)
JEZLNGy

To get a bound on the supporting rateof 7' for destinationd € [1 : K| using Lemmd[12,
we apply the Fourier-Motzkin elimination to the set of inafities (8) for allk € G, \ D, by
removing all the other’s, i.e., k € G4\ D, \ {1} The resultant inequalities of, can be

p(w), € Fy.q) for all @), # W, are the same due to the symmetry of the codebook generation.

Note thatry, for k € Dy is given by infinity.
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written as the min-cut form

ri < min > IUGYa) + HXk|U) + > I(Ui; Ya,) + 1(Xi; Yo, |Us)

k€As,a keBg;,q
> IV, Yo, U Xi)
keCs,y,a
where the minimization is over all cuts; considered in Theorem 1. Here, each &ytcor-
responds to the set of inequalities that results in an indguaf »; in the Fourier-Motzkin
elimination, i.e., the set of inequalities consists [of| (8&) & € Ag, 4, (88) for k € Bg, 4, and
@B4) for k € Cs, 4.

For all destinations, we obtain the following sufficient ddron for a supporting rate;.

< min min Y I(UwYa,) + HXGWHUD) + ) 10k Ya) + 1(Xi; Vo, |Uk)
G[ } d keASd,d kJEBde

> IV Yo, |U Xi) (9)
keCs,.a
From LemmdlL, all rates less than the right-hand sidéJof (@)aahievable. By considering
all joint distributions of [(b), the lower bound in Theorémsl proved.
Proof of Lemmal2Fix d € [1 : K] andk € G4\ Dy. Fix anye > 0. Without loss of generality,

assume thatV}, = (1,1) and~,(1,1) = (1,1). First, /,L,(ﬁ is upper-bounded as

JEMy,

§P<E1UE2UE3UE4UE1UE2U U E3j>

JEMj,

< P(Ey) + P(E) + P(Es) + P(Ey)

+P(E NEY) + P(Eo|ESNES) + Y P(Ey|ES)  (10)

jEM,
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where the events are defined as

By = {(U} (1), Xp (L), Yy (Vi 1) & T}

Y Nk

Ey = {(17‘77%) ¢ Fnkvd}
Egj = {(1, 1) ¢ F’j,d} forj € M,

By = {(UrQ), Y, Y (v, ]1)) ¢ T for all v, € [1:27]}

) ng’ Nk

By = {(Up(1), V) ¢ T}

By = {(Uy(cw),Y;") € T for someay, # 1}

Ey = {X(Belaw) = XP(1]1) for some(ay, Bi) # (1,1)}.

Note thatE{ implies that(U7(1), Y,", Y, (V,, 1)) € Tu, ES N E§ implies thatW,,, = (1, V,,),
and F implies thatl¥; = (1,1) for all j € M,. Let us upper bound each term in the right-hand
side of [10).
e I v 0 > TV Yo |Us) + 6(6’)H we haveP(E,) < e for sufficiently largen from the
covering lemmal[14].
. By the law of large numbers, we haW ;) < e for sufficiently largen.
o If 70 < I(Uy; Yy,) — 6(€), we haveP(Es) < e for sufficiently largen from the packing
lemma [14].
o If 7o + ey < H(X3) — 6(¢) andry, < H(X,|Uy) — 6(¢), we haveP(E,) < e for
sufficiently largen.
« We have
P(F, N ES)
= P{UR(), X (1), Vi (Vg |1) ¢ Tor, (UF (1), Yy, Vi (Vi 1) € T}

) ng ) ng’ Nk

S pug oy gn ) PLup(1), X7 (L), g, (Vi 11) ¢ Torlug i, i,

(uysym, 97, )ETw

IN

INE

€

for sufficiently largen, where(a) is from the conditional typicality lemma [14].

®*Here and from now ong(¢’) — 0 ase’ — 0.
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. We haveP(E,|E5 N E5) = u”, < e for sufficiently largen.
- We have) .., P(Es;|ES) = > ien, uyg < e for sufficiently largen.
Let us choosey ,, 7., andr,, , as

Tka = I(Uk, Ynk) — 25(6/)
e = H(Xi|Ug) — 20(€)
Togo = 1 (Y Yo [Ux) + 25(€).

For the above choice of; ,, 4, andr,, ,, we haveu < Te for sufficiently largen.

Now, considerw;, # (1,1). u,(gvd is upper-bounded as

n)

IN

P(E,U Es5 U Eg)
<P(E,UE;UE UE,U FE5 U Ey)
< P(E,) + P(Es) + P(Ey) + P(E,) + P(Es N ES N ESNES) + P(Eg N ES N ES N ES)
< 3e+P(E,) +P(EsNESNESNES) + P(Es N ES N ES N ES) (11)
for sufficiently largen, where the events are given as
Ey = {w(@;) = (1,1)}
Es = {(@},) = (1, Be), (U (1), X3 (Bel1), Yo (Vo [1)) € T, (1, Vi) € Frnpay
(1,8y) € F; 4 for all j € M), for someg,, # 1}
Es = {7x(@},) = (o, Br), (Up(an), X (Below), Y (v, law)) € Tor, (s Vi) € Frpa,
(ag, Br) € Fjq for all j € M, for some(ay, Bi) # (1,1) and (ax, vn, ) # (1, Vi) }

Let us upper bound each term in the right-hand sidé_of (11).

. P(E),) is given as

P(E4) — 9 ka9 =k — 9= (Ur;Yny )+H(Xy|Uy)—45(e"))
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« We have
P(E; N ESNESN ES)

< > P(wlit) = (1, 80)) PUUR (1), Xp(Bel1), Vi (Ve 1) € Tr) TT w7

Br#1 JEM;,
@ 2nrk,b2_"(rk,a+rk,b)2_n(I(Xk§Ynk |Uk)_6(5//))2_”(2jeMk ;=€)

— 9 Cjenm, i+ (Up; Yoy )+ (Xp: Yo, [Uk)—26 (') —3(€" ) —€)

for sufficiently largen, where(a) is because
P((Ul?(l), Xl?(ﬂkn)a ?&(Vnku)) c TE") < 2—n(I(Xk§Ynk\Uk)—5(e//))

for 5, # 1 from the joint typicality lemmal[14].
« We get
P(FEs N ESN ESN ES)
< > P (i () = (., Br)) P(UR (), X7 (Brlow), Yo (v, low)) € Tor) T V")
ak,Br,vny, JE€Zy,

(almﬁk)?é(lLI)
(Olkﬂ)nk )7’&(17‘/”]@)
W ok atristrng) 9=k atri ) oI (X, [UR)~5(e)) =X e 2, 75—0)

— 2_"(Zjezk Tj_I(Ynk %Ynk | Uk, X )—268(€")—0(€")—¢)

for sufficiently largen, where(a) is from the joint typicality lemmal[14].
Note thatr; = 0 for j ¢ G,. Thus, we have

(n)
Vid

< g~ nmin{I(Uy:Yo )+H (Xk|Uk), e mynay P+ LUk Yo ) 1K Yo, (U e 2, v, 71 (Vg i Yo Uk X3} —26)

for sufficiently smalle¢’ and€¢” and sufficiently largen.

V. UPPERBOUND

Fixd € [1: K]. LetUy,; & (X7, Y5 ") andY,, ; £ Y7 fork e [1: N]andi € [1:n].
Note that

p (Uk,z', Thiy Yng, i an) =p (Uk,z', xkl) p (ynkz\ﬁfm) p (?Jn“\ukz, yn“)
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for k € [1: N] andi € [1 : n]. Consider a cufS; considered in Theorefd 1.
Let us first present two lemmas and a corollary.

Lemma 3:For k € [1 : N], the following inequalities and equality hold.

> Uk Yai) + H(XpilUsi) = HXE) > 0 (12a)
i=1
Y Uk Vo) + 1(Xai Vi il Uns) = HXEYE, p,) =0 (12b)
=1
= IV Yoyl Uniy Xiei) + 1Y, Vi Xi) =0 (12¢)

i=1
Lemma 4:The following inequalities hold.

(X35 YT ap,) — H(XE) <0 for ke[l:N] (13a)

XY ap) = IOXHYE, ap) < ) I(X]3Y(ep,) forke Bg,a  (13b)
JEMENGy

XY ap) + TG0 YE cp | XE) < Y I(X]3Yiap,)  forkeCsa  (13c)
JEZRNGy

The proofs of Lemmals]3 arid 4 are in Appendicés B[ahd C, respictFrom Lemmasg]3 and
[, we have the following corollary.

Corollary 3: We have

IXPYE) < DY T(Uks; Vo) + H(Xil U )

keASd,d =1

+ YD (Ui Vo) + 1 (X YorilUni) = > > 1Yot Yo il Ui Xia).

keBSd,d =1 keCSd,d =1
Proof: We have

X7 Yp) STXHYE)+ Y k) + Y Y I(Ukii Yay) + H(X5|Us,)

keSy kEASd,d i=1
+ Y (Ui Yood) + (X Yol Us) = D0 Y TV, 5 Vil Uris Xic)
k€Bs, 4 i=1 keCs,a i=1

from LemmalB, where) (k) for k € S, is defined as
—H(X,?) if ke ASd,d
W(k) =4 —I(XP3YE o) i k€ Bs,a-

ng’ = Ln

[(Yn'Ynkde|X£) if ke CSd,d
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Now, it remains to show

I(X75YE )+ > w(k) 0. (14)
keSy
From Lemmd}4, we have
I(Xg: Y, ap,) + (K Z (X3 Y] mp,) (15)
jEZkﬂSd

for k € S, Using the inequality[(15) recursively for all € S, starting fromk = 1, the

inequality [I4) is proved from the fact that nodeat the boundary of5, is included inAg, 4

andZ, NS, =0 for k € Ag, 4. ]
Now, we are ready to prove the upper bound in Thedrem 1. Indhenfing, ¢, tends to zero

asn tends to infinity. We have
nR = H(XT)
= I(X{5Yp,) + H(XTYS,)

a)

< I(X{;Yp,) + nen
(b) a

< ne, + Z Z I(Uki; Yn,i) + H( X i|Uryi)

keAded Z:1

+ > Y Ik Ya) + T(Xi; Yo il Uk)

k€Bs, q i=1
Z ZI<Ynk,i§Ynk,i|Uk,ian,i)
keCs,.a i=1
where(a) is due to Fano’s inequaility ang) is from Corollary3.
Let @ denote a time-sharing random variable uniformly distéoubver ([l : n] that is
independent of all the other variables. Define random veesdly/;, Xy, Y, , Yék) fork e [1: N]

such that

=D <Uk i — Uk, Xk i = Lk, Ynk,i = Yny,» ank,i = @nk)
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fori € [1:n]. Let U, £ (U}, Q) andY,, = (Y, Q) for k € [L: N]. Then, we have
1 - !/ !
=2 Uk Yoy i) + H (X i|Usg) = I(Uy; Y0 |Q) + H (X, | U}, Q)

S ](Uk7Ynk) -+ H(Xk|Uk),

1 - -
~ > Uk Yai) + 1(Xei Yo ilUks) = LU Yo, |Q) + 1(Xi: Y, U Q)

1=1

< I(Up; Yo,) + 1(Xi; Yo, |Us),
and

nk’ N

1< .
gZI(Ynk,i%Ynk,z’|Uk,i7Xk,z’) = 1(Yn; Yy, |Uk, X, Q)

= I(Y; Yo | Ur, X0).
Hence, we get

R—e, < Y I(UyY,,)+ H(Xi|U)

kGAsd d

+ > IO Ya,) + 1(X: Yo, [Uk)

k‘EBsde

> IV, Yo Uk, Xy). (16)

keCs,.q
Note that only the marginal distributions(uy, zx, Y, , 9s,)’s for k € [1 : N] are needed to
evaluate the right-hand side df {16). Thus, we do not losesigdity when we only consider
the joint distribution of [(5). Since the definition dﬁ‘nk for £ € [1 : N] depends onD,’s for
d € [1 : K], the minimization overd € [1 : K] has to be outside the maximization over
[Tiep.ny P(Gng |k, yny, ), which results in the upper bound (2). The cardinality bo@dfor 4,

and),, for k € [1: N] can be obtained in a similar way as in[15].

VI. DIAMOND NETWORKS

In this section, we present an alternative capacity exjmedsr a simple tree network with a
single destination, called a diamond network, in which thet node has one noisy child node

and one noiseless child node, each node at the second level siagle noiseless child node,
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and nodes at the third level form the destination. In theofelhg, nodes 1, 2, and 3 are the
source, noisy relay, and noiseless relay, respectively.
The capacity of diamond networks was first characterized Bggkand Ulukus[[12].

Theorem 2 (Kang and Ulukus [12])The capacity of diamond networks is given as

max min{I(U; Ya) + H(X1|U1), mo + 75 — I(Ya; Yo| Uy, X1)} 17)
p(u1,z1)p(g2lyz,u1):
ro>1(Y2;Y2|Ur,X1)
r3>H(X1|U1,Y2)

with cardinalities of alphabets bounded by
U] < [ X +4 (18a)
Vel < RAIIYa] +2 < 20|V + 41D + 2. (18b)

Now, the following theorem shows an alternative capacityregsion for diamond networks,
whose proof is in AppendikD.

Theorem 3 (Alternative expression)he capacity of diamond networks is given as

p(u1,21)p(J2|y2,u1):
T:;ZH(X1|U17Y2) .
ro+r3>I(U1;Ye)+H (X1 |Ur)+I(Yo;Y2|U1,X1)

with cardinalities of alphabets bounded hy](18).
Theoren{B shows that we do not lose optimality when the caalebonstruction of the combi-
nation of DF and CF is restricted to the superpositior2df(V1¥2)-¢) ‘cloud centers’U?, i.e.,
the part of the message decoded by the noisy relay,2aid*11"1)~<) ‘satellites’ X7 for each
Uy, i.e., the remaining part of the message. This means thadgtimality of the combination
of DF and CF at the noisy relay in diamond networks intuifivelakes sense since the relay
compresses a noisy observation of almost uncoded infaométiat has no structure. Otherwise,
the optimality of compressiorafter decoding at the noisy relay, which ignores the codkboo
structure at the source, would have been counterintuitive.

On the other hand, Theorelmh 1 gives the following min-cut capaxpression for diamond
networks with cardinalities of alphabets bounded [by (18).

pmax - nin{1(Ur:Y) + H(XG|U.rs + 1(Ur: Y2) + (X0 Ya[U1),

7’2+7‘3—I(Y2;Y2‘U17X1)} (20)
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We note that the relationship between the two capacity cheniaations[(19) and (20) is similar
to that between the two equivalent achievable rate charzat®ns of CF for 3-node relay
networks in [8] and[[16], which are given bl (21) and1(22),pextively. Here, node indices
follow the convention that nodes 1, 2, and 3 are the sourtay,rand destination, respectively.

max I(X1;Ys, V3| X)) (21)
p(z1)p(z2)p(d2|y2,72):
I(X2;Y3)>1(Y2;Y2| X2,Y3)

max min{I(Xy;Ys, Y3 Xo),I(X1, Xp; V3) — I(Ye; Yo| X1, X0, Y3)}  (22)

p(z1)p(z2)p(Y2|y2,72)

VIlI. CONCLUSION

We characterized the capacity of a class of multicast tréearks having an arbitrary number
of nodes, which includes the class of diamond networks stud [12] as a special case. For
achievability, we constructed a robust coding scheme tbe$ @ combination of DF and CF in
every noisy relay and a random binning in every noiselessyrgl a way that the codebook
constructions and relay operations are independent fdn eade. For converse, we used a
novel technique of iteratively manipulating inequaliteegploiting the tree topology. For diamond
networks, we showed that the optimality of the combinatibB and CF at the noisy relay is
intuitively convincing by proving that it does not lose optlity to restrict the coding scheme
such that what is compressed after decoding at the noisy i®la noisy observation of almost

uncoded information.

APPENDIX A
PROOF OFCOROLLARY [1]

Let Gy, = maxy, ) [(X,,; Vi) for k € [2: N] denote the point-to-point capacity between
nodesp, andk and letC(k, d) for d € [1 : K| andk such thatL, O D, denote the capacity of
tree networkl}, with a sourcek and a single destinatioR,. For a lower bound on the right-hand
side of [1), let us choose the joint distributify ;. xy p(uk, 21)P(Jny[ur, yn,) as follows:

« For k such thatk € T,, for somed € [1 : K|, choosep(u, xx)p(Un, |uk, yn,) that achieves

Clag,d).
« For k such thatk ¢ T,, for all d € [1 : K] andn; # 0, choosep(z) that achieves™y,,
and letU, = X, andY,, = 0.
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« For k such thatt ¢ T,, for all d € [1 : K] andn, =, let X, uniformly distributed over
X, and letU, =Y, = 0.

For the above choice of distribution, we obtain the follogviower bound.

C zmin{ min  min Cy;, min C’(ad,d)}

k¢ude[1 K] Tagy JEZ} de(1:K)

:min{ min ~ min  min Cj;, min C’(ad,d)}

de[l:K] keGaNTg, j€ZkNGy de[1:K]|

= min min{ min  min Cky,C(ad,d)}

del1:K] kE€GaNTS, J€EZNGy
= min C(1,d).
del1:K]

Now, note that the right-hand side @f (2) is clearly uppemied bymin,eq.x] C(1, d). Hence,
the lower and upper bounds in Theoreim 1 coincide. [ ]

APPENDIX B

PROOF OFLEMMA

Considerk € [1 : N]. We have

H(X})

= Z H(Xk,i‘Xl?,i+1)

i=1

< ZI Ynlk YY) + H (X X7 1)

- Z I(XE vt erk S Y0 — H(XE Ynk7i|Y7j]:1) + H (Xl X, Y’fk_l) (X Vo, 1|X]?’i+1)
np 0 L Mgyt

(@) - n i— i—
:ZI(Xk,iH»Y Vo) H (Xl X7, Yo )

= I(Uis; Yni) + H (X5l Ury)

i=1

where (a) is from Csiszar sum identity [17], which provds (12a).
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We have

H(X?|ankmad) - Z H(Xk7i|Xl?,i+1’ YIZLkrWDd)
i=1

n
> ) H (Xl X, Vi Y, np,)
=1

= H(Xpi|Usi, Vo).

=1
Note that combining[{23) witH (I2a) provds (12b).
We have

(Y YT, an, | XE) ZI (Yot YE, ap | X8 Yo )

ng?
i=1

(“ i—
ZIY%Z’YL ﬂDd|Xk27Y 1)

=1

= Z I(Ynk,i; Y/nk,i‘Uk,ia Xk,i)

i=1

where(a) is from the following Markov chains:
X e (XEL YD) & Y o
Xlzc 1 (Xk e YZ ) e YLnnkﬁDd’
which proves[(1Zc).

APPENDIX C

PROOF OFLEMMA [

For k € [1: N], the inequality[(13a) holds trivially.
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For k € Bg, 4, we have

I(X]?7 YlyzlkﬁDd) - I(X]?7 YlyzlnkﬂDd) = I(X]?’ ngﬁL%kﬂDd |YﬁlkﬁDd)

(a)
< I(Xy; YLnknLgk nDd>

= I(X35 Y )

Ujenr, (LiNDa)

(b)
<Y IXE Y,
JEMj,

(e n n
= Z I(Xk;YLJﬂDd)

JEMLNGy

(d)
< Y IXHYEep,)

JEMENGy

where(a) is from the Markov chain
YfkﬂL%kﬂDd Ae X]? e ankﬂDd7 (24)

(b) is from the Markov chain

n
UmG]Mk,m<j

LDy & Xi € YLnjnDd (25)
for j € My, (c) is becausd ;N D, = () for j ¢ G4, and(d) is from the following Markov chain
Xy < Xj < Y qp, (26)

for j € M, N G,4. Note that[(2B) holds sincge M, NG, is not a leaf node from the definition
of Bg, 4. Thus, [13b) is proved.
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Fork € Cg, 4, We get

XY ) + TV YE ol XE)

ng’

ng?

ng’

= I(Xl?a Y., YLnnkde) + I(X,?; Yfkngkde|YLrilkde)

—

a

= [(YJZ? YLnnkde) + [(XI?Q YLnkngLk de|YLnnkde)

LY YT cpg) + > I Y p,)

JEMj,

N

INS

—

)

S I(YniﬂGd’ YgilkﬁDd) + Z I(X]::L7 YIZﬂDd)
JEMENGy

(d)
< Y XY ap,)
JEZRNGy

where (a) is from the Markov chain
X < Yn’z <> YL”nkde,

(b) is from the Markov chaind (24) anf_(25);) is becausd.; N D, = 0 for j ¢ G4, and(d) is
from the Markov chaing (26) and

n

n n
nENGy Ad XnkﬁGd A YL7lkﬁDd' (27)

Note that[(Z6) and (27) hold sineg "G, and;j € M, NG, are not leaf nodes from the definition
of Cs, 4. Thus, [13k) is proved. [

APPENDIX D

PROOF OFTHEOREM[3

Let us note that the constraint e in (I74) can be easily verified to be redundant. Fixand
rs. Let R; and R, denote[(1l7) without the constraint en and [19), respectively. It is trivial to
show Ry < Ry. To showR; < R,, it is enough to show that for af}(u;, z1)p(ya|us, y2) such
that R < I(Uy;Ys) + H(X1|Uy) andrs > H(X,|Uy,Ys), whereR £ ry + 1y — I(Ya; Ya|Up, X1),
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there existo(uf, z7)p(y2"|ui, y2) that satisfies

R=I1(U;Ys) + H(X;|UY), (28a)
R <ry+rs— I1(Ye; Yo |Ur, X7), (28b)
rs > H(X|UT,Y5). (28c)

Now, consider a joint distribution g#(uy, z1)p(y2|ui, y2) such thatk < I(Uy;Ys) + H(X,|Uy)
andrs > H(X,|U;,Y,). Let B denote a Bernoulli random variable with parametee |0, 1].
Let (U7, X},Yy) and (U, X", Y}") denote the triplets of random variables given as

(U{/7X1/7}>2//) _ (UlelaYé) if B=1 ’ (U{//7X1//7}>2///) _ (@,@,@) if B=1

(X1, X,,0)  if B=0 (X, X,,0) if B=0
We will show the existence qf(uj, x5 )p(v2"|u?, o) that satisfies (28) separately for the cases of
R > I(X;Ys) andR < I(X;Y3). First, consider the case &f > 1(Xy;Ys). LetU; = (U{, B),
X = X/, andYy = (Y, B). Note thatl(U;;Ys) + H(X;|U?) is a continuous function o
and becomes (Uy;Ys) + H(X,|U;) and I(X;;Ys) when A = 1 and A = 0, respectively. From
the intermediate value theorem, there exists [0, 1] such thatkR = I(US;Ys) + H(X|UT).
Furthermore,[(28b) and_(28c) are satisfied from

I(Yo; Yo |US, X7) = 1(Ya; Y3 |UY, XY, B)
= )\I(Y%Yz‘Ul,Xl)

< I(Ya; Ya|Uy, X))

and
H(X{|U,Yy) = H(X{|UY, Y3, B)
= \H(X4|U3, Y2)
< H(X4|U3, Ya),
respectively.

Next, consider the case @ < I(Xy;Y3). Let U = (U, B), X; = X!", andY; = (Y}", B).
Note that/(U;;Ys) + H(X;|Uy) is a continuous function ok and become$ and I(X;;Y53)
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when\ = 1 and\ = 0, respectively. From the intermediate value theorem, tegigts\ € [0, 1]
such thatR = I(U;;Ys2) + H(X;|Uy). Furthermore,[(28b) and(28c) are satisfied from

(Yo Y3 |UT, X7) = 1(Ye; Y3 |UY, XY, B) = 0
and
H(X7|UT, YY) = H(X'|U, Yy, B) = 0,

respectively. [ |
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