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Abstract

In this paper, we characterize the capacity of a new class of single-source multicast discrete

memoryless relay networks having a tree topology in which the root node is the source and each parent

node in the graph has at most one noisy child node and any number of noiseless child nodes. This

class of multicast tree networks includes the class of diamond networks studied by Kang and Ulukus

as a special case, where they showed that the capacity can be strictly lower than the cut-set bound. For

achievablity, a novel coding scheme is constructed where each noisy relay employs a combination of

decode-and-forward (DF) and compress-and-forward (CF) and each noiseless relay performs a random

binning such that codebook constructions and relay operations are independent for each node and do not

depend on the network topology. For converse, a new technique of iteratively manipulating inequalities

exploiting the tree topology is used.

Index Terms

Relay network, compress-and-forward, decode-and-forward, diamond network, multicast tree net-

work

I. INTRODUCTION

In this paper, we consider a single-source multicast discrete memoryless relay network in which

the source wants to send the same message reliably to multiple destinations with the help of one or

more relays. A model of relay networks was introduced by van der Meulen in [1], [2]. However,

The material in this paper was presented in part at the Information Theory and Applications Workshop, UCSD, San Diego,

CA, USA, January/February 2010, at the IEEE International Symposium on Information Theory, Austin, TX, USA, June 2010,

and at the Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, Sep. 2010.
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the single-letter capacity characterization has been openeven for three-node relay networks, i.e.,

relay networks having a source, a relay, and a destination. In their seminal paper [3], Cover

and El Gamal developed two fundamental coding strategies for three-node relay networks. One

of them is decode-and-forward (DF), where the relay decodesthe message and forwards it to

the destination, which was shown to be optimal for physically degraded channels [3]. DF was

generalized for multiple relays in [4], [5]. In another strategy, compress-and-forward (CF), the

relay compresses its received block and sends the compressed information to the destination.

CF was shown to achieve the capacity for some classes of relaynetworks [6], [7]. Recently,

CF was generalized to noisy network coding in [8] for multiple relays, which includes many

previous results on relay networks [3], [9]–[11] as specialcases. A potentially better strategy is

to decode as much as possible and compress the residual information, i.e., a combination of DF

and CF [3]. Indeed such a strategy was shown to be optimal by Kang and Ulukus for a certain

class of diamond networks in [12], which consists of a source, a noisy relay, a noiseless relay

that receives exactly what the source sends, and a destination that has orthogonal finite-capacity

links from relays. For this class of diamond networks, it wasshown that a combination of DF

and CF at the noisy relay is optimal and the cut-set bound is ingeneral loose [12].

In this paper, we show the optimality of a combination of DF and CF for a new class of

single-source multicast relay networks with an arbitrary number of nodes, which includes the

class of diamond networks in [12] as a special case. In this class, which we call multicast tree

networks, a network has a tree topology in which the root nodeis the source and each parent

node in the graph has at most one noisy child node and any number of noiseless child nodes.

We note that the achievability and converse for diamond networks in [12] cannot be directly

generalized to those for our multicast tree networks. First, the codebook constructions and relay

operations of the coding scheme in [12] for diamond networks, which has a single destination,

vary according to the link capacities from relays to the destination. This cannot be used for

multicast tree networks since they have arbitrarily many destinations. Next, it would not be

easy to generalize the converse proof technique in [12] for diamond networks, which have only

four nodes in three levels, for our multicast tree networks,which have arbitrarily many nodes

in arbitrarily high levels. Therefore, for these two reasons, we need new techniques. The key

technical contributions in the achievability and conversein this paper are as follows:

• Achievability: For the generalization to multicast tree networks, we construct arobustcoding
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scheme where codebook constructions and relay operations are independent for each node

and do not depend on the network topology. Such a robustness of the coding scheme makes

the generalization from a single destination to multiple destinations possible.

• Converse: To get a very simple min-cut expression, we use a novel technique of iteratively

manipulating inequalities, i.e., we recursively reduce a number of inequalities into one using

the tree topology.

The organization of this paper is as follows. The model of a class of multicast tree networks

is presented in Section II. In Section III, we present lower and upper bounds on the capacity of

the class of multicast tree networks and show a condition forthese two bounds to coincide. In

Section IV, we derive the lower bound by presenting a coding scheme where each noisy relay

employs a combination of DF and CF and each noiseless relay performs a random binning. In

Section V, the upper bound is shown using a recursion exploiting the tree topology. In Section VI,

we present an equivalent capacity expression for diamond networks that shows that without loss

of optimality we can construct the coding scheme such that what is compressed after decoding

at a noisy relay is a noisy observation of almost uncoded information. The conclusion of this

paper is given in Section VII.

The following notations will be used in the paper. For two integersi and j, [i : j] denotes

the set{i, i + 1, . . . , j}, xji denotes a row vector(xi, xi+1, ...., xj), and xj denotesxj1. xS for

a setS denotes a row vector(xi : i ∈ S). According to the context,k sometimes denotes the

single-element set{k} for notational convenience.

In this paper, we follow the notion ofǫ-robustly typical sequence introduced in [13]. Let

Nxn(x) denote the number of occurrences ofx ∈ X in the sequencexn. Then,xn is said to be

ǫ-robustly typical (or just typical) forǫ > 0 if for every x ∈ X ,
∣

∣

∣

∣

Nxn(x)

n
− p(x)

∣

∣

∣

∣

≤ ǫp(x).

The set of allǫ-robustly typicalxn is denoted asTǫ(X), which is shortly denoted asTǫ. Similarly,

let Nxn,yn(x, y) denote the number of occurrences of(x, y) ∈ X × Y in the sequence(xn, yn).

The sequence(xn, yn) is said to beǫ-robustly typical (or just typical) if
∣

∣

∣

∣

Nxn,yn(x, y)

n
− p(x, y)

∣

∣

∣

∣

≤ ǫp(x, y)

for every (x, y) ∈ X × Y . The set of allǫ-robustly typical(xn, yn) is denoted byTǫ(X, Y ) or

Tǫ in short.
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II. M ODEL

A single-source multicast discrete memoryless relay network of N nodes

(X1 × ...× XN , p(y1, ..., yN |x1, ..., xN),Y1 × ...× YN)

consists of alphabetsXk,Yk for k ∈ [1 : N ] and a collection of conditional probability mass

functionsp (y1, ..., yN |x1, ..., xN) wherexk ∈ Xk andyk ∈ Yk for k ∈ [1 : N ]. Let K denote the

number of destinations. Let1 andDd denote the source and the set of nodes that forms thed-th

destination, respectively, and letY1 = XDd
= ∅ for d ∈ [1 : K]. We note thatDd for d ∈ [1 : K]

are not necessarily disjoint. LetD ,
⋃

d∈[1:K]Dd.

A
(

2nR, n
)

code for a single-source multicast discrete memoryless relay network ofN nodes

consists of a message setW1 = [1 : 2nR], a source encoder that assigns a codewordxn1 (w1) to

each messagew1 ∈ W1, a set of relay encoders, where encoderk ∈ [2 : N ]\D assigns a symbol

xk,i(y
i−1
k ) to every received sequenceyi−1

k for i ∈ [1 : n], and a set of decoders, where decoder

k ∈ [1 : K] assigns an estimatêw1,k to each received sequenceynDk
. The messageW1 is chosen

uniformly from the setW1. The average probability of error for a(2nR, n) code is given as

P (n)
e , P

{

Ŵ1,d 6=W1 for somed ∈ [1 : K]
}

.

A rateR is said to beachievableif there exists a sequence of(2nR, n) codes such thatP (n)
e → 0

asn→ ∞. The capacity is the supremum of all achievable rates.

A single-source multicast discrete memoryless relay network is called a multicast tree network

if the probability distribution has the form of

p (y1, ..., yN |x1, ..., xN) =
∏

k∈[1:N ]

p (yk|xpk)

wherepk is called theparent nodeof nodek andk is called achild nodeof nodepk. A child

node is considered to be one level lower than its parent node.A node without a parent node

is called theroot nodeand a node that has no child node is called aleaf node. Let Lk for

k ∈ [1 : N ] denote the set of leaf nodes that branches out from nodek. For treeT , let Tk for

k ∈ [1 : N ] denote thesubtreeof T that consists of nodek and all of its descendants inT .

In this paper, our goal is to present lower and upper bounds onthe capacity of a class of

multicast tree networks and to find some tightness conditions of those two bounds. In this class

of multicast tree networks, the source node is the root node,Dd ⊆ L1 for d ∈ [1 : K], and each

June 12, 2018 DRAFT
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Fig. 1. An example of our multicast tree networks. The solid and dashed lines represent noiseless and noisy links, respectively.

In this example, the parent node of node 3 is node 1 and the child nodes of node 3 are nodes 7 and 8. Node 1 is the root node

and nodes 5, 9, 10, 11, 12, 13, and 14 are the leaf nodes. A destination is a subset of leaf nodes. For instance, destination 1is

the set of nodes 5, 11, 12, and 13, destination 2 is the set of nodes 9, 12, and 14, and destination 3 is node 10.L2 is the set

of nodes 5, 9, 10, and 11.T3 is the subtree that consists of nodes 3, 7, 8, 12, 13, and 14.

parent node has at most one noisy child node and any number of noiseless child nodes, i.e.,

yk = xpk if k is a noiseless child node of nodepk. Without loss of generality, we assume that

D = L1. Let Gd , {k|Lk ∩ Dd 6= ∅} for d ∈ [1 : K]. Let nk andMk for k ∈ [1 : N ] denote

the noisy child node and the set of noiseless child nodes of node k, respectively. LetZk for

k ∈ [1 : N ] denote the set of child nodes of nodek, i.e.,Zk = nk ∪Mk. From now on, we only

consider this class of multicast tree networks. See Fig. 1.

A practical example of our multicast tree networks is depicted in Fig. 2, which represents

a sensor network where a sensor node wants to send a message tothe gateway nodes at the

boundary connected with infinite-capacity wired links. In this example, each relay node has

outgoing links to its neighbor relays such that one of the links is arbitrarily noisy and the others

are noiseless. Motivation for assuming noiseless links comes from a practical scenario where a

transmitter is using a fixed modulation scheme tuned for the worst link and thus the transmission

from the transmitter to the other receivers with better channel qualities looks almost noiseless.

III. M AIN RESULTS FORMULTICAST TREE NETWORKS

Let us present lower and upper bounds on the capacity of multicast tree networks.

June 12, 2018 DRAFT
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Fig. 2. A sensor network in which a sensor node wants to send a message to gateway nodes at the boundary connected with

infinite-capacity wired links. The solid and dashed lines represent noiseless and noisy links, respectively, and thicklines at the

boundary represent infinite-capacity wired links.

Theorem 1:The capacityC of multicast tree networks is lower- and upper-bounded as

C ≥ max∏
k∈[1:N] p(uk,xk)p(ŷnk

|uk,ynk
)
min

d∈[1:K]
min
Sd

∑

k∈ASd,d

I(Uk; Ynk
) +H(Xk|Uk)

+
∑

k∈BSd,d

I(Uk; Ynk
) + I(Xk; Ŷnk

|Uk)−
∑

k∈CSd,d

I(Ynk
; Ŷnk

|Uk, Xk) (1)

C ≤ max∏
k∈[1:N] p(uk,xk)

min
d∈[1:K]

max∏
k∈[1:N] p(ŷnk

|uk,ynk
)
min
Sd

∑

k∈ASd,d

I(Uk; Ynk
) +H(Xk|Uk)

+
∑

k∈BSd,d

I(Uk; Ynk
) + I(Xk; Ŷnk

|Uk)−
∑

k∈CSd,d

I(Ynk
; Ŷnk

|Uk, Xk) (2)

over all cutsSd ⊂ Gd such that1 ∈ Sd, Dd ⊆ Sc
d, Mk ∩ Gd ⊂ Sd if nk ∈ Sd, andpk ∈ Sd if

k ∈ Sd with cardinalities of alphabets such that

|Uk| ≤ |Xk|+ 4 (3a)

|Ŷnk
| ≤ |Uk||Ynk

|+ 2 ≤ |Xk||Ynk
|+ 4|Ynk

|+ 2 (3b)

for k ∈ [1 : N ]. Here,ASd,d, BSd,d, and CSd,d for d ∈ [1 : K] denote the following disjoint
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TABLE I

CLASSIFICATION OFk ∈ Sd INTO ASd,d, BSd,d, AND CSd,d

P
P
P
P
P
P
P
P
PP

Mk ∩Gd

nk ∩Gd nk ∩Gd 6= ∅
nk ∩Gd = ∅

nk ∩Gd ⊂ Sd nk ∩Gd ⊆ S
c
d

Mk ∩Gd 6= ∅
Mk ∩Gd ⊂ Sd k ∈ CSd,d k ∈ BSd,d k ∈ CSd,d

Mk ∩Gd ⊆ S
c
d – k ∈ ASd,d k ∈ ASd,d

Mk ∩Gd = ∅ k ∈ CSd,d k ∈ BSd,d –
“–” indicates that corresponding cases do not happen for a cut Sd of interest.

subsets ofSd.

ASd,d , {k|k ∈ Sd, Zk ⊆ Sc
d,Mk ∩Gd 6= ∅}

BSd,d , {k|k ∈ Sd, nk ∈ Sc
d,Mk ∩Gd ⊂ Sd, nk ∩Gd 6= ∅}

CSd,d , {k|k ∈ Sd, Zk ∩Gd ⊂ Sd}

See Table I.

Remark 1: In Theorem 1, a cutSd of interest for destinationd ∈ [1 : K] satisfies thatpk ∈ Sd

if k ∈ Sd andMk ∩Gd ⊂ Sd if nk ∈ Sd in addition to that1 ∈ Sd andDd ⊆ Sc
d. This additional

condition signifies that nodepk can decode whatever nodek can and a node inMk can decode

whatever nodenk can.

We can see that the lower and upper bounds in Theorem 1 meet when the maximizing

distribution of
∏

k∈[1:N ] p(ŷnk
|uk, ynk

) is independent of destinations. The following corollary

presents a class of such multicast tree networks. Letad for d ∈ [1 : K] denote the node at the

lowest level in the set{k|Dd ⊆ Lk}. The proof is in Appendix A.

Corollary 1: If Lai ∩Dj = ∅ for all i, j ∈ [1 : K] such thati 6= j, the lower and upper bounds

in Theorem 1 coincide.

Corollary 1 says that the lower and upper bounds meet when each set of nodes forming a

destination is included in a disjoint subtree. For example,the lower and upper bounds for the

multicast tree network represented in Fig. 1 meet when destination 1 is the set of nodes 5, 9,

10, and 11, destination 2 is the set of nodes 12 and 13, destination 3 is node 14.

For the single destination case, the lower and upper bounds in Theorem 1 coincide trivially.

In this case, the following corollary gives a simpler capacity expression.

June 12, 2018 DRAFT
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Corollary 2: For tree networks with a single destination, the capacity isgiven as

maxmin
S
I(US; YSc \XS) + I(XS; ŶSc|US)− I(YS; ŶS|US, XS) (4)

where the minimization is over all cutsS ⊂ [1 : N ] such that1 ∈ S, D ⊆ Sc, Mk ⊂ S if

nk ∈ S, andpk ∈ S if k ∈ S, and the maximization is over the joint distribution of
∏

k∈[1:N ]

p(uk, xk)p(ŷnk
|uk, ynk

) (5)

with cardinalities of alphabets satisfying (3) fork ∈ [1 : N ]. In (4), Ŷj = Xk for k ∈ [1 : N ]

and j ∈Mk andYSc \XS denotes the set

{Yj|j ∈ Sc, j /∈Mk for all k ∈ S}.

Proof: For a cutS of interest, we have

I(US; YSc\XS) =
∑

k∈AS,1∪BS,1

I(Uk; Ynk
)

I(XS; ŶSc|US) =
∑

k∈AS,1

I(Xk;Xk, Ŷnk
|Uk) +

∑

k∈BS,1

I(Xk; Ŷnk
|Uk)

=
∑

k∈AS,1

H(Xk|Uk) +
∑

k∈BS,1

I(Xk; Ŷnk
|Uk)

I(YS; ŶS|US, XS) =
∑

k∈CS,1

I(Ynk
; Ŷnk

|Uk, Xk)

from the joint distribution (5), which concludes the proof.

HereU corresponds to the part of a message intended to be decoded bya noisy relay and̂Y

corresponds the compressed version of a received block.

In contrast, only CF is performed at relays in noisy network coding [8], whose achievable

rate for general single-source single-destination discrete memoryless relay networks is given as

maxmin
S
I(XS; ŶSc, YD|XSc, Q)− I(YS; ŶS|X

N , ŶSc, YD, Q) (6)

where the minimization is over all cutsS ⊂ [1 : N ] such that1 ∈ S andD ⊆ Sc and the

maximization is over the joint distribution of

p(q)
∏

k∈[1:N ]

p(xk|q)p(ŷk|xk, yk, q).

Note that (4) and (6) are somewhat similar especially the parts involving Ŷ ’s but (4) includes

U ’s due to DF.

June 12, 2018 DRAFT
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IV. A CHIEVABILITY

Fix a joint distribution of (5). Fixǫ′′ > ǫ′ > 0 and fix rk,a ≥ 0, rk,b ≥ 0, and rnk,v ≥ 0 for

k ∈ [1 : N ] \D.

1) Codebook generation:For k ∈ [2 : N ], the index setWk of nodek is defined as

Wk ,











[1 : 2nrpk,a ]× [1 : 2nrk,v ] for k = npk

[1 : 2nrpk,a ]× [1 : 2nrpk,b] for k ∈Mpk

.

For k ∈ [1 : N ] \D, generate the codebooks following the steps below.

• Consider a random mappingγk from Wk to [1 : 2nrk,a]× [1 : 2nrk,b] such that eachwk ∈ Wk

is mapped toγk(wk) = (αk(wk), βk(wk)), whereαk(wk) and βk(wk) are uniformly and

independently chosen from[1 : 2nrk,a ] and [1 : 2nrk,b], respectively.

• Generate2nrk,a independent codewordsunk(αk) for αk ∈ [1 : 2nrk,a], of lengthn, according

to
∏n

i=1 p(uk,i).

• For eachαk ∈ [1 : 2nrk,a], generate2nrk,b conditionally independent codewordsxnk(βk|αk)

for βk ∈ [1 : 2nrk,b], of lengthn, according to
∏n

i=1 p(xk,i|uk,i(αk)).

• For eachαk ∈ [1 : 2nrk,a], generate2nrnk,v conditionally independent codewordsŷnnk
(vnk

|αk)

for vnk
∈ [1 : 2nrnk,v ], of lengthn, according to

∏n
i=1 p(ŷnk,i|uk,i(αk)).

• Let xnk(wk) denotexnk(βk|αk), where(αk, βk) = γk(wk) for wk ∈ Wk.

The codebooks are revealed to all parties.

2) Encoding at the source:For a messagew1 ∈ W1, the source sendsxn1 (w1).

3) Processing at nodek ∈ [2 : N ] such thatk = npk : Node k operates following the steps

below.

• Find a uniqueα̃pk such that

(unpk(α̃pk), y
n
k ) ∈ Tǫ′.

If there is no such̃αpk , randomly pickα̃pk ∈ [1 : 2nrpk,a ].

• Seek for aṽk such that

(unpk(α̃pk), y
n
k , ŷ

n
k (ṽk|α̃pk)) ∈ Tǫ′ .

If there are more than one such indices, randomly choose one among them. If there is no

suchṽk, randomly pickṽk ∈ [1 : 2nrk,v ].

June 12, 2018 DRAFT
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• Let w̃k = (α̃pk , ṽk).

• If Zk 6= ∅, nodek sendsxnk(w̃k).

4) Processing at nodek ∈ [2 : N ] such thatk ∈ Mpk : Nodek operates following the steps

below.

• Find a unique(α̃pk , β̃pk) such that

xnpk(β̃pk|α̃pk) = ynk .

If there is no such(α̃pk , β̃pk), randomly pick(α̃pk , β̃pk) ∈ [1 : 2nrpk,a ]× [1 : 2nrpk,b].

• Let w̃k = (α̃pk , β̃pk).

• If Zk 6= ∅, nodek sendsxnk(w̃k).

5) Decoding at the destinations:The d-th destination ford ∈ [1 : K] decodes the message

following the steps below.

• Construct a subsetFk,d of Wk for everyk ∈ [1 : N ] in the following way. Fork ∈ Dd, let

Fk,d , {w̃k}. For k /∈ Gd, let Fk,d , Wk. For all the otherk’s, i.e., k ∈ Gd \Dd, Fk,d’s are

constructed recursively as

Fk,d = {wk

∣

∣(unk(αk(wk)), x
n
k(βk(wk)|αk(wk)), ŷ

n
nk
(vnk

|αk(wk))) ∈ Tǫ′′,

(αk(wk), vnk
) ∈ Fnk,d, (αk(wk), βk(wk)) ∈ Fj,d for all j ∈Mk for somevnk

∈ [1 : 2nrnk,v ]}.

• Find a uniqueŵ1,d ∈ F1,d. If there is no sucĥw1,d, randomly pickŵ1,d ∈ W1. The destination

declares that̂w1,d was sent.

6) Analysis of the probability of error:We analyze the probability of error for messageW1

averaged over the codebook ensemble. LetW̃k denote the chosen index at nodek for k ∈ [2 : N ]

and letṼnk
denote the chosen covering index at nodenk for k ∈ [1 : N ]\D. Let us first introduce

the notion of a supporting rate.

Definition 1: For our coding scheme,Tk for k ∈ [1 : N ] is said tosupporta raterk or have

a supporting raterk for destinationd ∈ [1 : K] if, for any ǫ > 0,

µ
(n)
k,d , P(W̃k /∈ Fk,d) < ǫ

ν
(n)
k,d , P(w̃′

k ∈ Fk,d) < 2−n(rk−ǫ)

June 12, 2018 DRAFT
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for w̃′
k 6= W̃k for sufficiently smallǫ′ and ǫ′′ and sufficiently largen.1 Note that the supremum

of the supporting rate ofTk for destinationd ∈ [1 : K] becomes infinity and zero whenk ∈ Dd

andk /∈ Gd, respectively.

The following lemma shows thatR < r1 is achievable ifT = T1 supports a rater1 for all

destinations.

Lemma 1: If T = T1 supports a rater1 for all destinations,R < r1 is achievable.

Proof: Fix ǫ > 0. If T supports a rater1 for all destinations, the average probability of

error using our coding scheme is upper-bounded as

P (n)
e = P

{

Ŵ1,d 6=W1 for somed ∈ [1 : K]
}

≤
∑

d∈[1:K]

P
{

Ŵ1,d 6=W1

}

<
∑

d∈[1:K]

(

µ
(n)
1,d + 2nRν

(n)
1,d

)

< K
(

ǫ+ 2−n(r1−ǫ−R)
)

(7)

for sufficiently largen. Note that (7) is upper-bounded by(K + 1)ǫ for sufficiently largen if

R < r1 − ǫ. Thus,R < r1 is achievable.

Now, let us derive a sufficient condition for a supporting rate r1 of T for all destinations using

the following lemma. The proof is at the end of this section.

Lemma 2:Considerd ∈ [1 : K] and k ∈ Gd \ Dd. If Tj for j ∈ Zk supports a raterj for

destinationd, Tk supports a raterk for destinationd such that

rk ≤ I(Uk; Ynk
) +H(Xk|Uk) (8a)

rk ≤
∑

j∈Mk∩Gd

rj + I(Uk; Ynk
) + I(Xk; Ŷnk

|Uk) (8b)

rk ≤
∑

j∈Zk∩Gd

rj − I(Ynk
; Ŷnk

|Uk, Xk). (8c)

To get a bound on the supporting rater1 of T for destinationd ∈ [1 : K] using Lemma 2,

we apply the Fourier-Motzkin elimination to the set of inequalities (8) for allk ∈ Gd \Dd by

removing all the otherrk’s, i.e., k ∈ Gd \ Dd \ {1}.2 The resultant inequalities ofr1 can be

1P(w̃′

k ∈ Fk,d) for all w̃′

k 6= W̃k are the same due to the symmetry of the codebook generation.

2Note thatrk for k ∈ Dd is given by infinity.
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written as the min-cut form

r1 ≤ min
Sd

∑

k∈ASd,d

I(Uk; Ynk
) +H(Xk|Uk) +

∑

k∈BSd,d

I(Uk; Ynk
) + I(Xk; Ŷnk

|Uk)

−
∑

k∈CSd,d

I(Ynk
; Ŷnk

|Uk, Xk)

where the minimization is over all cutsSd considered in Theorem 1. Here, each cutSd cor-

responds to the set of inequalities that results in an inequality of r1 in the Fourier-Motzkin

elimination, i.e., the set of inequalities consists of (8a)for k ∈ ASd,d, (8b) for k ∈ BSd,d, and

(8c) for k ∈ CSd,d.

For all destinations, we obtain the following sufficient condition for a supporting rater1.

r1 ≤ min
d∈[1:K]

min
Sd

∑

k∈ASd,d

I(Uk; Ynk
) +H(Xk|Uk) +

∑

k∈BSd,d

I(Uk; Ynk
) + I(Xk; Ŷnk

|Uk)

−
∑

k∈CSd,d

I(Ynk
; Ŷnk

|Uk, Xk) (9)

From Lemma 1, all rates less than the right-hand side of (9) are achievable. By considering

all joint distributions of (5), the lower bound in Theorem 1 is proved.

Proof of Lemma 2:Fix d ∈ [1 : K] andk ∈ Gd\Dd. Fix anyǫ > 0. Without loss of generality,

assume that̃Wk = (1, 1) andγk(1, 1) = (1, 1). First,µ(n)
k,d is upper-bounded as

µ
(n)
k,d ≤ P

(

E1 ∪ E2 ∪
⋃

j∈Mk

E3j

)

≤ P

(

Ẽ1 ∪ Ẽ2 ∪ Ẽ3 ∪ Ẽ4 ∪ E1 ∪ E2 ∪
⋃

j∈Mk

E3j

)

≤ P(Ẽ1) + P(Ẽ2) + P(Ẽ3) + P(Ẽ4)

+ P(E1 ∩ Ẽ
c
1) + P(E2|Ẽ

c
2 ∩ Ẽ

c
3) +

∑

j∈Mk

P(E3j |Ẽ
c
4) (10)
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where the events are defined as

E1 = {(Un
k (1), X

n
k (1|1), Ŷ

n
nk
(Ṽnk

|1)) /∈ Tǫ′′}

E2 =
{

(1, Ṽnk
) /∈ Fnk,d

}

E3j = {(1, 1) /∈ Fj,d} for j ∈ Mk

Ẽ1 = {(Un
k (1), Y

n
nk
, Ŷ n

nk
(vnk

|1)) /∈ Tǫ′ for all vnk
∈ [1 : 2nrnk,v ]}

Ẽ2 =
{

(Un
k (1), Y

n
nk
) /∈ Tǫ′

}

Ẽ3 =
{

(Un
k (αk), Y

n
nk
) ∈ Tǫ′ for someαk 6= 1

}

Ẽ4 = {Xn
k (βk|αk) = Xn

k (1|1) for some(αk, βk) 6= (1, 1)} .

Note thatẼc
1 implies that(Un

k (1), Y
n
nk
, Ŷ n

nk
(Ṽnk

|1)) ∈ Tǫ′, Ẽc
2 ∩ Ẽ

c
3 implies thatW̃nk

= (1, Ṽnk
),

andẼc
4 implies thatW̃j = (1, 1) for all j ∈Mk. Let us upper bound each term in the right-hand

side of (10).

• If rnk,v > I(Ynk
; Ŷnk

|Uk) + δ(ǫ′),3 we haveP(Ẽ1) < ǫ for sufficiently largen from the

covering lemma [14].

• By the law of large numbers, we haveP(Ẽ2) < ǫ for sufficiently largen.

• If rk,a < I(Uk; Ynk
) − δ(ǫ′), we haveP(Ẽ3) < ǫ for sufficiently largen from the packing

lemma [14].

• If rk,a + rk,b < H(Xk) − δ(ǫ′) and rk,b < H(Xk|Uk) − δ(ǫ′), we haveP(Ẽ4) < ǫ for

sufficiently largen.

• We have

P(E1 ∩ Ẽ
c
1)

= P{(Un
k (1), X

n
k (1|1), Ŷ

n
nk
(Ṽnk

|1)) /∈ Tǫ′′, (U
n
k (1), Y

n
nk
, Ŷ n

nk
(Ṽnk

|1)) ∈ Tǫ′}

≤
∑

(un
k
,ynnk

,ŷnnk
)∈Tǫ′

p(unk , y
n
nk
, ŷnnk

)P{(unk(1), X
n
k (1|1), ŷ

n
nk
(Ṽnk

|1)) /∈ Tǫ′′ |u
n
k , y

n
nk
, ŷnnk

}

(a)

≤ ǫ

for sufficiently largen, where(a) is from the conditional typicality lemma [14].

3Here and from now on,δ(ǫ′) → 0 as ǫ′ → 0.
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• We haveP(E2|Ẽ
c
2 ∩ Ẽ

c
3) = µ

(n)
nk,d

< ǫ for sufficiently largen.

• We have
∑

j∈Mk
P(E3j |Ẽ

c
4) =

∑

j∈Mk
µ
(n)
j,d < ǫ for sufficiently largen.

Let us chooserk,a, rk,b andrnk,v as

rk,a = I(Uk; Ynk
)− 2δ(ǫ′)

rk,b = H(Xk|Uk)− 2δ(ǫ′)

rnk,v = I(Ynk
; Ŷnk

|Uk) + 2δ(ǫ′).

For the above choice ofrk,a, rk,b, andrnk,v, we haveµ(n)
k,d < 7ǫ for sufficiently largen.

Now, considerw̃′
k 6= (1, 1). ν(n)k,d is upper-bounded as

ν
(n)
k,d = P(w̃′

k ∈ Fk,d)

≤ P(E4 ∪ E5 ∪ E6)

≤ P(Ẽ2 ∪ Ẽ3 ∪ Ẽ4 ∪ E4 ∪ E5 ∪ E6)

≤ P(Ẽ2) + P(Ẽ3) + P(Ẽ4) + P(E4) + P(E5 ∩ Ẽ
c
2 ∩ Ẽ

c
3 ∩ Ẽ

c
4) + P(E6 ∩ Ẽ

c
2 ∩ Ẽ

c
3 ∩ Ẽ

c
4)

< 3ǫ+ P(E4) + P(E5 ∩ Ẽ
c
2 ∩ Ẽ

c
3 ∩ Ẽ

c
4) + P(E6 ∩ Ẽ

c
2 ∩ Ẽ

c
3 ∩ Ẽ

c
4) (11)

for sufficiently largen, where the events are given as

E4 = {γk(w̃
′
k) = (1, 1)}

E5 = {γk(w̃
′
k) = (1, βk), (U

n
k (1), X

n
k (βk|1), Ŷ

n
nk
(Ṽnk

|1)) ∈ Tǫ′′, (1, Ṽnk
) ∈ Fnk,d,

(1, βk) ∈ Fj,d for all j ∈ Mk for someβk 6= 1}

E6 = {γk(w̃
′
k) = (αk, βk), (U

n
k (αk), X

n
k (βk|αk), Ŷ

n
nk
(vnk

|αk)) ∈ Tǫ′′, (αk, vnk
) ∈ Fnk,d,

(αk, βk) ∈ Fj,d for all j ∈Mk for some(αk, βk) 6= (1, 1) and (αk, vnk
) 6= (1, Ṽnk

)}.

Let us upper bound each term in the right-hand side of (11).

• P(E4) is given as

P(E4) = 2−nrk,a2−nrk,b = 2−n(I(Uk;Ynk
)+H(Xk |Uk)−4δ(ǫ′)).
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• We have

P(E5 ∩ Ẽ
c
2 ∩ Ẽ

c
3 ∩ Ẽ

c
4)

≤
∑

βk 6=1

P(γk(w̃
′
k) = (1, βk)) P((U

n
k (1), X

n
k (βk|1), Ŷ

n
nk
(Ṽnk

|1)) ∈ Tǫ′′)
∏

j∈Mk

ν
(n)
j,d

(a)
< 2nrk,b2−n(rk,a+rk,b)2−n(I(Xk;Ŷnk

|Uk)−δ(ǫ′′))2−n(
∑

j∈Mk
rj−ǫ)

= 2−n(
∑

j∈Mk
rj+I(Uk;Ynk

)+I(Xk ;Ŷnk
|Uk)−2δ(ǫ′)−δ(ǫ′′)−ǫ)

for sufficiently largen, where(a) is because

P((Un
k (1), X

n
k (βk|1), Ŷ

n
nk
(Ṽnk

|1)) ∈ Tǫ′′) < 2−n(I(Xk;Ŷnk
|Uk)−δ(ǫ′′))

for βk 6= 1 from the joint typicality lemma [14].

• We get

P(E6 ∩ Ẽ
c
2 ∩ Ẽ

c
3 ∩ Ẽ

c
4)

≤
∑

αk ,βk,vnk

(αk ,βk)6=(1,1)

(αk,vnk
)6=(1,Ṽnk

)

P(γk(w̃
′
k) = (αk, βk)) P((U

n
k (αk), X

n
k (βk|αk), Ŷ

n
nk
(vnk

|αk)) ∈ Tǫ′′)
∏

j∈Zk

ν
(n)
j,d

(a)
< 2n(rk,a+rk,b+rnk,v)2−n(rk,a+rk,b)2−n(I(Xk;Ŷnk

|Uk)−δ(ǫ′′))2−n(
∑

j∈Zk
rj−ǫ)

= 2−n(
∑

j∈Zk
rj−I(Ynk

;Ŷnk
|Uk,Xk)−2δ(ǫ′)−δ(ǫ′′)−ǫ)

for sufficiently largen, where(a) is from the joint typicality lemma [14].

Note thatrj = 0 for j /∈ Gd. Thus, we have

ν
(n)
k,d

< 2−n(min{I(Uk;Ynk
)+H(Xk |Uk),

∑
j∈Mk∩Gd

rj+I(Uk;Ynk
)+I(Xk ;Ŷnk

|Uk),
∑

j∈Zk∩Gd
rj−I(Ynk

;Ŷnk
|Uk,Xk)}−2ǫ)

for sufficiently smallǫ′ and ǫ′′ and sufficiently largen.

V. UPPERBOUND

Fix d ∈ [1 : K]. LetUk,i ,
(

Xn
k,i+1, Y

i−1
nk

)

andŶnk,i , Y n
Lnk

∩Dd
for k ∈ [1 : N ] andi ∈ [1 : n].

Note that

p (uk,i, xk,i, ynk,i, ŷnk,i) = p (uk,i, xk,i) p (ynk,i|xk,i) p (ŷnk,i|uk,i, ynk,i)
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for k ∈ [1 : N ] and i ∈ [1 : n]. Consider a cutSd considered in Theorem 1.

Let us first present two lemmas and a corollary.

Lemma 3:For k ∈ [1 : N ], the following inequalities and equality hold.
n
∑

i=1

I(Uk,i; Ynk,i) +H(Xk,i|Uk,i)−H(Xn
k ) ≥ 0 (12a)

n
∑

i=1

I(Uk,i; Ynk,i) + I(Xk,i; Ŷnk,i|Uk,i)− I(Xn
k ; Y

n
Lnk

∩Dd
) ≥ 0 (12b)

−
n
∑

i=1

I(Ynk,i; Ŷnk,i|Uk,i, Xk,i) + I(Y n
nk
; Y n

Lnk
∩Dd

|Xn
k ) = 0 (12c)

Lemma 4:The following inequalities hold.

I(Xn
k ; Y

n
Lk∩Dd

)−H(Xn
k ) ≤ 0 for k ∈ [1 : N ] (13a)

I(Xn
k ; Y

n
Lk∩Dd

)− I(Xn
k ; Y

n
Lnk

∩Dd
) ≤

∑

j∈Mk∩Gd

I(Xn
j ; Y

n
Lj∩Dd

) for k ∈ BSd,d (13b)

I(Xn
k ; Y

n
Lk∩Dd

) + I(Y n
nk
; Y n

Lnk
∩Dd

|Xn
k ) ≤

∑

j∈Zk∩Gd

I(Xn
j ; Y

n
Lj∩Dd

) for k ∈ CSd,d (13c)

The proofs of Lemmas 3 and 4 are in Appendices B and C, respectively. From Lemmas 3 and

4, we have the following corollary.

Corollary 3: We have

I(Xn
1 ; Y

n
Dd
) ≤

∑

k∈ASd,d

n
∑

i=1

I(Uk,i; Ynk,i) +H(Xk,i|Uk,i)

+
∑

k∈BSd,d

n
∑

i=1

I(Uk,i; Ynk,i) + I(Xk,i; Ŷnk,i|Uk,i)−
∑

k∈CSd,d

n
∑

i=1

I(Ynk,i; Ŷnk,i|Uk,i, Xk,i).

Proof: We have

I(Xn
1 ; Y

n
Dd
) ≤ I(Xn

1 ; Y
n
Dd
) +

∑

k∈Sd

ψ(k) +
∑

k∈ASd,d

n
∑

i=1

I(Uk,i; Ynk,i) +H(Xk,i|Uk,i)

+
∑

k∈BSd,d

n
∑

i=1

I(Uk,i; Ynk,i) + I(Xk,i; Ŷnk,i|Uk,i)−
∑

k∈CSd,d

n
∑

i=1

I(Ynk,i; Ŷnk,i|Uk,i, Xk,i)

from Lemma 3, whereψ(k) for k ∈ Sd is defined as

ψ(k) ,























−H(Xn
k ) if k ∈ ASd,d

−I(Xn
k ; Y

n
Lnk

∩Dd
) if k ∈ BSd,d

I(Y n
nk
; Y n

Lnk
∩Dd

|Xn
k ) if k ∈ CSd,d

.
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Now, it remains to show

I(Xn
1 ; Y

n
Dd
) +

∑

k∈Sd

ψ(k) ≤ 0. (14)

From Lemma 4, we have

I(Xn
k ; Y

n
Lk∩Dd

) + ψ(k) ≤
∑

j∈Zk∩Sd

I(Xn
j ; Y

n
Lj∩Dd

) (15)

for k ∈ Sd. Using the inequality (15) recursively for allk ∈ Sd starting fromk = 1, the

inequality (14) is proved from the fact that nodek at the boundary ofSd is included inASd,d

andZk ∩ Sd = ∅ for k ∈ ASd,d.

Now, we are ready to prove the upper bound in Theorem 1. In the following, ǫn tends to zero

asn tends to infinity. We have

nR = H(Xn
1 )

= I(Xn
1 ; Y

n
Dd
) +H(Xn

1 |Y
n
Dd
)

(a)

≤ I(Xn
1 ; Y

n
Dd
) + nǫn

(b)

≤ nǫn +
∑

k∈ASd,d

n
∑

i=1

I(Uk,i; Ynk,i) +H(Xk,i|Uk,i)

+
∑

k∈BSd,d

n
∑

i=1

I(Uk,i; Ynk,i) + I(Xk,i; Ŷnk,i|Uk,i)

−
∑

k∈CSd,d

n
∑

i=1

I(Ynk,i; Ŷnk,i|Uk,i, Xk,i)

where(a) is due to Fano’s inequaility and(b) is from Corollary 3.

Let Q denote a time-sharing random variable uniformly distributed over [1 : n] that is

independent of all the other variables. Define random variables(U ′
k, Xk, Ynk

, Ŷ ′
nk
) for k ∈ [1 : N ]

such that

p
(

U ′
k = uk, Xk = xk, Ynk

= ynk
, Ŷ ′

nk
= ŷnk

|Q = i
)

= p
(

Uk,i = uk, Xk,i = xk, Ynk,i = ynk
, Ŷnk,i = ŷnk

)
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for i ∈ [1 : n]. Let Uk , (U ′
k, Q) and Ŷnk

, (Ŷ ′
nk
, Q) for k ∈ [1 : N ]. Then, we have

1

n

n
∑

i=1

I(Uk,i; Ynk,i) +H(Xk,i|Uk,i) = I(U ′
k; Ynk

|Q) +H(Xk|U
′
k, Q)

≤ I(Uk; Ynk
) +H(Xk|Uk),

1

n

n
∑

i=1

I(Uk,i; Ynk,i) + I(Xk,i; Ŷnk,i|Uk,i) = I(U ′
k; Ynk

|Q) + I(Xk; Ŷ
′
nk
|U ′

k, Q)

≤ I(Uk; Ynk
) + I(Xk; Ŷnk

|Uk),

and

1

n

n
∑

i=1

I(Ynk,i; Ŷnk,i|Uk,i, Xk,i) = I(Ynk
; Ŷ ′

nk
|U ′

k, Xk, Q)

= I(Ynk
; Ŷnk

|Uk, Xk).

Hence, we get

R− ǫn ≤
∑

k∈ASd,d

I(Uk; Ynk
) +H(Xk|Uk)

+
∑

k∈BSd,d

I(Uk; Ynk
) + I(Xk; Ŷnk

|Uk)

−
∑

k∈CSd,d

I(Ynk
; Ŷnk

|Uk, Xk). (16)

Note that only the marginal distributionsp (uk, xk, ynk
, ŷnk

)’s for k ∈ [1 : N ] are needed to

evaluate the right-hand side of (16). Thus, we do not lose generality when we only consider

the joint distribution of (5). Since the definition of̂Ynk
for k ∈ [1 : N ] depends onDd’s for

d ∈ [1 : K], the minimization overd ∈ [1 : K] has to be outside the maximization over
∏

k∈[1:N ] p(ŷnk
|uk, ynk

), which results in the upper bound (2). The cardinality bound(3) for Uk

and Ŷnk
for k ∈ [1 : N ] can be obtained in a similar way as in [15].

VI. D IAMOND NETWORKS

In this section, we present an alternative capacity expression for a simple tree network with a

single destination, called a diamond network, in which the root node has one noisy child node

and one noiseless child node, each node at the second level has a single noiseless child node,
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and nodes at the third level form the destination. In the following, nodes 1, 2, and 3 are the

source, noisy relay, and noiseless relay, respectively.

The capacity of diamond networks was first characterized by Kang and Ulukus [12].

Theorem 2 (Kang and Ulukus [12]):The capacity of diamond networks is given as

max
p(u1,x1)p(ŷ2|y2,u1):

r2≥I(Y2;Ŷ2|U1,X1)

r3≥H(X1|U1,Ŷ2)

min{I(U1; Y2) +H(X1|U1), r2 + r3 − I(Y2; Ŷ2|U1, X1)} (17)

with cardinalities of alphabets bounded by

|U1| ≤ |X1|+ 4 (18a)

|Ŷ2| ≤ |U1||Y2|+ 2 ≤ |X1||Y2|+ 4|Y2|+ 2. (18b)

Now, the following theorem shows an alternative capacity expression for diamond networks,

whose proof is in Appendix D.

Theorem 3 (Alternative expression):The capacity of diamond networks is given as

max
p(u1,x1)p(ŷ2|y2,u1):

r3≥H(X1|U1,Ŷ2)

r2+r3≥I(U1;Y2)+H(X1|U1)+I(Y2;Ŷ2|U1,X1)

I(U1; Y2) +H(X1|U1) (19)

with cardinalities of alphabets bounded by (18).

Theorem 3 shows that we do not lose optimality when the codebook construction of the combi-

nation of DF and CF is restricted to the superposition of2n(I(U1;Y2)−ǫ) ‘cloud centers’Un
1 , i.e.,

the part of the message decoded by the noisy relay, and2n(H(X1|U1)−ǫ) ‘satellites’Xn
1 for each

Un
1 , i.e., the remaining part of the message. This means that theoptimality of the combination

of DF and CF at the noisy relay in diamond networks intuitively makes sense since the relay

compresses a noisy observation of almost uncoded information that has no structure. Otherwise,

the optimality of compressionafter decoding at the noisy relay, which ignores the codebook

structure at the source, would have been counterintuitive.

On the other hand, Theorem 1 gives the following min-cut capacity expression for diamond

networks with cardinalities of alphabets bounded by (18).

max
p(u1,x1)p(ŷ2|y2,u1)

min{I(U1; Y2) +H(X1|U1),r3 + I(U1; Y2) + I(X1; Ŷ2|U1),

r2 + r3 − I(Y2; Ŷ2|U1, X1)} (20)
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We note that the relationship between the two capacity characterizations (19) and (20) is similar

to that between the two equivalent achievable rate characterizations of CF for 3-node relay

networks in [3] and [16], which are given by (21) and (22), respectively. Here, node indices

follow the convention that nodes 1, 2, and 3 are the source, relay, and destination, respectively.

max
p(x1)p(x2)p(ŷ2|y2,x2):

I(X2;Y3)≥I(Y2;Ŷ2|X2,Y3)

I(X1; Ŷ2, Y3|X2) (21)

max
p(x1)p(x2)p(ŷ2|y2,x2)

min{I(X1; Ŷ2, Y3|X2),I(X1, X2; Y3)− I(Y2; Ŷ2|X1, X2, Y3)} (22)

VII. CONCLUSION

We characterized the capacity of a class of multicast tree networks having an arbitrary number

of nodes, which includes the class of diamond networks studied in [12] as a special case. For

achievability, we constructed a robust coding scheme that uses a combination of DF and CF in

every noisy relay and a random binning in every noiseless relay in a way that the codebook

constructions and relay operations are independent for each node. For converse, we used a

novel technique of iteratively manipulating inequalitiesexploiting the tree topology. For diamond

networks, we showed that the optimality of the combination of DF and CF at the noisy relay is

intuitively convincing by proving that it does not lose optimality to restrict the coding scheme

such that what is compressed after decoding at the noisy relay is a noisy observation of almost

uncoded information.

APPENDIX A

PROOF OFCOROLLARY 1

Let Cpkk , maxp(xpk
) I(Xpk ; Yk) for k ∈ [2 : N ] denote the point-to-point capacity between

nodespk andk and letC(k, d) for d ∈ [1 : K] andk such thatLk ⊇ Dd denote the capacity of

tree networkTk with a sourcek and a single destinationDd. For a lower bound on the right-hand

side of (1), let us choose the joint distribution
∏

k∈[1:N ] p(uk, xk)p(ŷnk
|uk, ynk

) as follows:

• For k such thatk ∈ Tad for somed ∈ [1 : K], choosep(uk, xk)p(ŷnk
|uk, ynk

) that achieves

C(ad, d).

• For k such thatk /∈ Tad for all d ∈ [1 : K] andnk 6= ∅, choosep(xk) that achievesCknk

and letUk = Xk and Ŷnk
= ∅.
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• For k such thatk /∈ Tad for all d ∈ [1 : K] andnk = ∅, let Xk uniformly distributed over

Xk and letUk = Ŷnk
= ∅.

For the above choice of distribution, we obtain the following lower bound.

C ≥min

{

min
k/∈

⋃
d∈[1:K] Tad

min
j∈Zk

Ckj, min
d∈[1:K]

C(ad, d)

}

=min

{

min
d∈[1:K]

min
k∈Gd∩T c

ad

min
j∈Zk∩Gd

Ckj, min
d∈[1:K]

C(ad, d)

}

= min
d∈[1:K]

min

{

min
k∈Gd∩T c

ad

min
j∈Zk∩Gd

Ckj, C(ad, d)

}

= min
d∈[1:K]

C(1, d).

Now, note that the right-hand side of (2) is clearly upper-bounded bymind∈[1:K]C(1, d). Hence,

the lower and upper bounds in Theorem 1 coincide.

APPENDIX B

PROOF OFLEMMA 3

Considerk ∈ [1 : N ]. We have

H(Xn
k )

=
n
∑

i=1

H(Xk,i|X
n
k,i+1)

≤
n
∑

i=1

I(Y i−1
nk

; Ynk,i) +H(Xk,i|X
n
k,i+1)

=

n
∑

i=1

I(Xn
k,i+1, Y

i−1
nk

; Ynk,i)− I(Xn
k,i+1; Ynk,i|Y

i−1
nk

) +H(Xk,i|X
n
k,i+1, Y

i−1
nk

) + I(Xk,i; Y
i−1
nk

|Xn
k,i+1)

(a)
=

n
∑

i=1

I(Xn
k,i+1, Y

i−1
nk

; Ynk,i) +H(Xk,i|X
n
k,i+1, Y

i−1
nk

)

=

n
∑

i=1

I(Uk,i; Ynk,i) +H(Xk,i|Uk,i)

where(a) is from Csiszár sum identity [17], which proves (12a).
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We have

H(Xn
k |Y

n
Lnk

∩Dd
) =

n
∑

i=1

H(Xk,i|X
n
k,i+1, Y

n
Lnk

∩Dd
)

≥
n
∑

i=1

H(Xk,i|X
n
k,i+1, Y

i−1
nk

, Y n
Lnk

∩Dd
)

=

n
∑

i=1

H(Xk,i|Uk,i, Ŷnk,i). (23)

Note that combining (23) with (12a) proves (12b).

We have

I(Y n
nk
; Y n

Lnk
∩Dd

|Xn
k ) =

n
∑

i=1

I(Ynk,i; Y
n
Lnk

∩Dd
|Xn

k , Y
i−1
nk

)

(a)
=

n
∑

i=1

I(Ynk,i; Y
n
Lnk

∩Dd
|Xn

k,i, Y
i−1
nk

)

=
n
∑

i=1

I(Ynk,i; Ŷnk,i|Uk,i, Xk,i)

where(a) is from the following Markov chains:

X i−1
k ↔ (Xn

k,i, Y
i−1
nk

) ↔ Y n
Lnk

∩Dd

X i−1
k ↔ (Xn

k,i, Y
i
nk
) ↔ Y n

Lnk
∩Dd

,

which proves (12c).

APPENDIX C

PROOF OFLEMMA 4

For k ∈ [1 : N ], the inequality (13a) holds trivially.
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For k ∈ BSd,d, we have

I(Xn
k ; Y

n
Lk∩Dd

)− I(Xn
k ; Y

n
Lnk

∩Dd
) = I(Xn

k ; Y
n
Lk∩Lc

nk
∩Dd

|Y n
Lnk

∩Dd
)

(a)

≤ I(Xn
k ; Y

n
Lk∩Lc

nk
∩Dd

)

= I(Xn
k ; Y

n⋃
j∈Mk

(Lj∩Dd)
)

(b)

≤
∑

j∈Mk

I(Xn
k ; Y

n
Lj∩Dd

)

(c)
=

∑

j∈Mk∩Gd

I(Xn
k ; Y

n
Lj∩Dd

)

(d)

≤
∑

j∈Mk∩Gd

I(Xn
j ; Y

n
Lj∩Dd

)

where(a) is from the Markov chain

Y n
Lk∩Lc

nk
∩Dd

↔ Xn
k ↔ Y n

Lnk
∩Dd

, (24)

(b) is from the Markov chain

Y n⋃
m∈Mk,m<j Lm∩Dd

↔ Xn
k ↔ Y n

Lj∩Dd
(25)

for j ∈Mk, (c) is becauseLj ∩Dd = ∅ for j /∈ Gd, and(d) is from the following Markov chain

Xn
k ↔ Xn

j ↔ Y n
Lj∩Dd

(26)

for j ∈Mk ∩Gd. Note that (26) holds sincej ∈Mk ∩Gd is not a leaf node from the definition

of BSd,d. Thus, (13b) is proved.
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For k ∈ CSd,d, we get

I(Xn
k ; Y

n
Lk∩Dd

) + I(Y n
nk
; Y n

Lnk
∩Dd

|Xn
k )

= I(Xn
k ; Y

n
Lnk

∩Dd
) + I(Xn

k ; Y
n
Lk∩Lc

nk
∩Dd

|Y n
Lnk

∩Dd
) + I(Y n

nk
; Y n

Lnk
∩Dd

|Xn
k )

= I(Xn
k , Y

n
nk
; Y n

Lnk
∩Dd

) + I(Xn
k ; Y

n
Lk∩Lc

nk
∩Dd

|Y n
Lnk

∩Dd
)

(a)
= I(Y n

nk
; Y n

Lnk
∩Dd

) + I(Xn
k ; Y

n
Lk∩Lc

nk
∩Dd

|Y n
Lnk

∩Dd
)

(b)

≤ I(Y n
nk
; Y n

Lnk
∩Dd

) +
∑

j∈Mk

I(Xn
k ; Y

n
Lj∩Dd

)

(c)

≤ I(Y n
nk∩Gd

; Y n
Lnk

∩Dd
) +

∑

j∈Mk∩Gd

I(Xn
k ; Y

n
Lj∩Dd

)

(d)

≤
∑

j∈Zk∩Gd

I(Xn
j ; Y

n
Lj∩Dd

)

where(a) is from the Markov chain

Xn
k ↔ Y n

nk
↔ Y n

Lnk
∩Dd

,

(b) is from the Markov chains (24) and (25),(c) is becauseLj ∩Dd = ∅ for j /∈ Gd, and(d) is

from the Markov chains (26) and

Y n
nk∩Gd

↔ Xn
nk∩Gd

↔ Y n
Lnk

∩Dd
. (27)

Note that (26) and (27) hold sincenk∩Gd andj ∈Mk∩Gd are not leaf nodes from the definition

of CSd,d. Thus, (13c) is proved.

APPENDIX D

PROOF OFTHEOREM 3

Let us note that the constraint onr2 in (17) can be easily verified to be redundant. Fixr2 and

r3. Let R1 andR2 denote (17) without the constraint onr2 and (19), respectively. It is trivial to

showR2 ≤ R1. To showR1 ≤ R2, it is enough to show that for allp(u1, x1)p(ŷ2|u1, y2) such

thatR < I(U1; Y2) +H(X1|U1) andr3 ≥ H(X1|U1, Ŷ2), whereR , r2 + r3 − I(Y2; Ŷ2|U1, X1),
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there existsp(u∗1, x
∗
1)p(ŷ2

∗|u∗1, y2) that satisfies

R = I(U∗
1 ; Y2) +H(X∗

1 |U
∗
1 ), (28a)

R ≤ r2 + r3 − I(Y2; Ŷ
∗
2 |U

∗
1 , X

∗
1 ), (28b)

r3 ≥ H(X∗
1 |U

∗
1 , Ŷ

∗
2 ). (28c)

Now, consider a joint distribution ofp(u1, x1)p(ŷ2|u1, y2) such thatR < I(U1; Y2) +H(X1|U1)

and r3 ≥ H(X1|U1, Ŷ2). Let B denote a Bernoulli random variable with parameterλ ∈ [0, 1].

Let (U ′′
1 , X

′′
1 , Ŷ

′′
2 ) and (U ′′′

1 , X
′′′
1 , Ŷ

′′′
2 ) denote the triplets of random variables given as

(U ′′
1 , X

′′
1 , Ŷ

′′
2 ) =











(U1, X1, Ŷ2) if B = 1

(X1, X1, ∅) if B = 0
, (U ′′′

1 , X
′′′
1 , Ŷ

′′′
2 ) =











(∅, ∅, ∅) if B = 1

(X1, X1, ∅) if B = 0
.

We will show the existence ofp(u∗1, x
∗
1)p(ŷ2

∗|u∗1, y2) that satisfies (28) separately for the cases of

R > I(X1; Y2) andR ≤ I(X1; Y2). First, consider the case ofR > I(X1; Y2). LetU∗
1 = (U ′′

1 , B),

X∗
1 = X ′′

1 , and Ŷ ∗
2 = (Ŷ ′′

2 , B). Note thatI(U∗
1 ; Y2) +H(X∗

1 |U
∗
1 ) is a continuous function ofλ

and becomesI(U1; Y2) +H(X1|U1) and I(X1; Y2) whenλ = 1 andλ = 0, respectively. From

the intermediate value theorem, there existsλ ∈ [0, 1] such thatR = I(U∗
1 ; Y2) + H(X∗

1 |U
∗
1 ).

Furthermore, (28b) and (28c) are satisfied from

I(Y2; Ŷ
∗
2 |U

∗
1 , X

∗
1 ) = I(Y2; Ŷ

′′
2 |U

′′
1 , X

′′
1 , B)

= λI(Y2; Ŷ2|U1, X1)

≤ I(Y2; Ŷ2|U1, X1)

and

H(X∗
1 |U

∗
1 , Ŷ

∗
2 ) = H(X ′′

1 |U
′′
1 , Ŷ

′′
2 , B)

= λH(X1|U1, Ŷ2)

≤ H(X1|U1, Ŷ2),

respectively.

Next, consider the case ofR ≤ I(X1; Y2). Let U∗
1 = (U ′′′

1 , B), X∗
1 = X ′′′

1 , andŶ ∗
2 = (Ŷ ′′′

2 , B).

Note thatI(U∗
1 ; Y2) + H(X∗

1 |U
∗
1 ) is a continuous function ofλ and becomes0 and I(X1; Y2)
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whenλ = 1 andλ = 0, respectively. From the intermediate value theorem, thereexistsλ ∈ [0, 1]

such thatR = I(U∗
1 ; Y2) +H(X∗

1 |U
∗
1 ). Furthermore, (28b) and (28c) are satisfied from

I(Y2; Ŷ
∗
2 |U

∗
1 , X

∗
1 ) = I(Y2; Ŷ

′′′
2 |U ′′′

1 , X
′′′
1 , B) = 0

and

H(X∗
1 |U

∗
1 , Ŷ

∗
2 ) = H(X ′′′

1 |U
′′′
1 , Ŷ

′′′
2 , B) = 0,

respectively.
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