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Abstract—Phase-change memory (PCM) is a promising non-
volatile solid-state memory technology. A PCM cell stores data
by using its amorphous and crystalline states. The cell changes
between these two states using high temperature. However, since
the cells are sensitive to high temperature, it is important, when
programming cells, to balance the heat both in time and space.

In this paper, we study the time-space constraint for PCM,
which was originally proposed by Jiang et al. A code is calledan
(α, β, p)-constrained code if for any α consecutive rewrites and
for any segment ofβ contiguous cells, the total rewrite cost of
the β cells over thoseα rewrites is at most p. Here, the cells
are binary and the rewrite cost is defined to be the Hamming
distance between the current and next memory states. First,we
show a general upper bound on the achievable rate of these codes
which extends the results of Jiang et al. Then, we generalizetheir
construction for (α > 1, β = 1, p = 1)-constrained codes and
show another construction for (α = 1, β > 1, p > 1)-constrained
codes. Finally, we show that these two constructions can be used
to construct codes for all values ofα, β, and p.

I. I NTRODUCTION

Phase-change memory (PCM) devices are a promising technol-
ogy for non-volatile memories. Like a flash memory, a PCM
consists of cells that can be in distinct physical states. Inthe
simplest case, the PCM cell has two possible states, an amor-
phous state and a crystalline state. Multiple-bit per cell PCMs
can be implemented by using partially crystalline states [5].

While in a flash memory one can decrease a cell level only
by erasing the entire block of about106 cells that contains it,
in a PCM one can independently decrease an individual cell
level – but only to level zero. This operation is called a RESET
operation. A SET operation can then be used to change the
cell state to any valid level. Therefore, in order to decrease a
cell level from one non-zero value to a smaller non-zero value,
one needs to first RESET the cell to level zero, and then SET
it to the new desired level [5]. Thus, as with flash memory
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programming, there is a significant asymmetry between the
two operations of increasing and decreasing a cell level.

As in a flash memory, a PCM cell has a limited lifetime;
the cells can tolerate only about107 − 108 RESET opera-
tions before beginning to degrade [13]. Therefore, it is still
important when programming cells to minimize the number
of RESET operations. Furthermore, a RESET operation can
negatively affect the performance of a PCM in other ways.
One of them is due to the phenomenon of thermal crosstalk.
When a cell is RESET, the levels of its adjacent cells may in-
advertently be increased due to heat diffusion associated with
the operation [5], [21]. Another problem, called thermal ac-
cumulation, arises when a small area is subjected to a large
number of program operations over a short period of time [5],
[21]. The resulting accumulation of heat can significantly limit
the minimum write latency of a PCM, since the programming
accuracy is sensitive to temperature. It is therefore desirable
to balance the thermal accumulation over a local area of PCM
cells in a fixed period of time. Coding schemes can help over-
come the performance degradation resulting from these phys-
ical phenomena. Lastras et al. [18] studied the capacity of a
Write-Efficient Memory (WEM) [2] for a cost function that
is associated with the write model of phase-change memories
described above.

Jiang et al. [16] have proposed codes to mitigate thermal
cross-talk and heat accumulation effects in PCM. Under their
thermal cross-talk model, when a cell is RESET, the levels of
its immediately adjacent cells may also be increased. Hence,
if these neighboring cells exceed their target level, they also
will have to be RESET, and this effect can then propagate to
many more cells. In [16], they considered a special case of
this and proposed the use of constrained codes to limit the
propagation effect. Capacity calculations for these codeswere
also presented.

The other problem addressed in [16] is that of heat accu-
mulation. In this model, therewrite cost is defined to be the
number of programmed cells, i.e., the Hamming distance be-
tween the current and next cell-state vectors. A code is saidto
be (α, β, p)-constrained if for any α consecutive rewrites and
for any segment ofβ contiguous cells, the total rewrite cost
of the β cells over thoseα rewrites is at mostp. A specific
code construction was given for the(α > 1, β = 1, p = 1)-
constraint as well as an upper bound on the achievable rate
of codes for this constraint. An upper bound on the achiev-
able rate was also given for(α = 1, β > 1, p = 1)-constrained
codes.

The work in [16] dealt with only a few instances of the
parametersα, β and p. In this paper, we extend the code
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constructions and achievable-rate bounds to a larger portion
of the parameter space. In Section II, we formally define
the constrained-coding problem for PCM. In Section III, us-
ing connections to two-dimensional constrained coding, we
present a scheme to calculate an upper bound on the achiev-
able rate for all values ofα, β and p. If the value of α
or β is 1 then the two-dimensional constraint becomes a
one-dimensional constraint and we calculate the upper bound
on the achievable rate for all values ofp. This result coin-
cides with the result in [16] for(α > 1, β = 1, p = 1) and
(α = 1, β > 1, p = 1). We also derive upper bounds for some
cases with parameters satisfying(α > 1, β > 1, p = 1) using
known results on the upper bound of two-dimensional con-
strained codes. In Section IV, code constructions are given.
First, a trivial construction is given and we show an improve-
ment for (α = 1, β > 1, p > 1)-constrained codes and extend
the construction in [16] of(α > 1, β = 1, p = 1)-constrained
codes to arbitraryp. Finally, we show how to extend the
constructions for all values ofα, β andp.

II. PRELIMINARIES

In this section, we give a formal definition of the constrained-
coding problem. The number of cells is denoted byn
and the memory cells are binary. The cell-state vectors
are the binary vectors from{0, 1}n. If a cell-state vector
u = (u1, . . . , un) ∈ {0, 1}n is rewritten to another cell-state
vector v = (v1, . . . , vn) ∈ {0, 1}n, then the rewrite cost is
defined to be the Hamming distance betweenu andv, that is

dH(u,v) = |{i : ui 6= vi, 1 6 i 6 n}|.

The Hamming weight of a vectoru is wt(u) = dH(u, 0).
The complement of a vectoru is u = (u1, . . . , un). For a
vectorx = (x1, . . . , xn), we define for all1 6 p 6 q 6 n,
xq
p = (xp, xp+1, . . . , xq). The set{i, i+ 1, . . . , j} is denoted

by [i : j] for i 6 j, and in particular,{1, 2, . . . , ⌊2nR⌋} is
denoted by[1 : 2nR] for an integern and realR.

Definition 1. Let α, β, p be positive integers. A codeC satis-
fies the(α, β, p)-constraint if for any α consecutive rewrites
and for any segment ofβ contiguous cells, the total rewrite
cost of thoseβ cells over thoseα rewrites is at mostp,
and C is called an(α, β, p)-constrained code. That is, if
vi = (vi,1, . . . , vi,n), for i > 1, is the cell-state vector on the
i-th write, then, for alli > 1 and1 6 j 6 n− β + 1,
∣

∣

∣
{(k, ℓ) : vi+k,j+ℓ 6= vi+k+1,j+ℓ, 0 6 k < α, 0 6 ℓ < β}

∣

∣

∣
6 p.

We will specify(α, β, p)-constrained codes by an explicit con-
struction of their encoding and decoding maps. On thei-th
write, for i > 1, the encoder

Ei : [1 : 2nRi ]× {0, 1}n 7→ {0, 1}n

maps the new information symbol and the current cell-state
vector to the next cell-state vector. The decoder

Di : {0, 1}
n 7→ [1 : 2nRi ]

maps the cell-state vector to the represented information sym-
bol. We denote theindividual rate on the i-th write of the
(α, β, p)-constrained code byRi. Note that the alphabet size
of the messages on each write does not have to be the same.
The rate R of the (α, β, p)-constrained code is defined as

R = lim
m→∞

∑m

i=1Ri

m
. (1)

We assume that the number of writes is large and in
the constructions we present there will be a periodic se-
quence of writes. Thus, it will be possible to change any
(α, β, p)-constrained codeC with varying individual rates to
an (α, β, p)-constrained codeC′ with fixed individual rates
such that the rates of the two constrained codes are the same.
This can be achieved by using multiple copies of the codeC
and in each copy ofC to start writing from a different write
within the period of writes. Therefore, we assume that there
is no distinction between the two cases and the rate is as de-
fined in Equation (1), which is the number of bits written per
cell per write.

The encoding and decoding maps can be either the same
on all writes or can vary among the writes. In the latter case,
we will need more cells in order to index the write number.
However, arguing as in [26], it is possible to show that these
extra cells do not reduce asymptotically the rate and therefore
we assume here that the encoder and decoder know the write
number.

A rateR is called an(α, β, p)-achievable rate if there ex-
ists an(α, β, p)-constrained codeC such that the rate ofC is
R. We denote byCn(α, β, p) the supremum of all(α, β, p)-
achievable rates while fixing the number of cells to ben. The
(α, β, p)-capacity of the (α, β, p)-constraint is denoted by
C(α, β, p) and is defined to be

C(α, β, p) = lim
n→∞

Cn(α, β, p).

Our goal in this paper is to give lower and upper bounds on
the (α, β, p)-capacity,C(α, β, p), for all values ofα, β, and
p. Clearly, if p > αβ then C(α, β, p) = 1. So we assume
throughout the paper thatp < αβ. Lower bounds will be
given by specific constrained code constructions while the up-
per bounds will be derived analytically using tools drawn from
the theory of one- and two-dimensional constrained codes.

III. U PPERBOUND ON THE CAPACITY

In this section, we will present upper bounds on the(α, β, p)-
capacity obtained using techniques from the analysis of
two-dimensional constrained codes. There are a number of
two-dimensional constraints that have been extensively stud-
ied, e.g., 2-dimensional(d, k)-runlength-limited (RLL) [17],
[23], no isolated bits [12], [14], and the checkerboard con-
straint [20], [25]. Given a two-dimensional constraintS, its
capacity is defined to be

C2D(S) = lim
m,n→∞

log2 cS(m,n)

mn
,

wherecS(m,n) is the number ofm×n arrays that satisfy the
constraintS. The constraint of interest for us in this work is



3

the one where in each rectangle of sizea× b, the number of
ones is at mostp.

Definition 2. Let a, b, p be positive integers. An(m× n)-array
A = (ai,j)16i6m,16j6n ∈ {0, 1}m×n is called an(a, b, p)-
arrayif in each sub-array ofA of sizea × b, the number of 1’s
is at mostp. That is, for all1 6 i 6 m−a+1, 1 6 j 6 n−b+1,
∣

∣{(k, ℓ) : 0 6 k 6 a− 1, 0 6 ℓ 6 b− 1, ai+k,j+ℓ = 1}
∣

∣ 6 p.

The capacity of the constraint is denoted byC2D(a, b, p).

Note that whenp = 1, the (a, a, 1) constraint coincides
with the square checkerboard constraint of ordera− 1 [25].

The connection between the capacity of the two-
dimensional constraintC2D(a, b, p) and the(α, β, p)-capacity
is the following.

Theorem 1.For allα, β, p, C(α, β, p) 6 C2D(α, β, p).

Proof: Let C be an(α, β, p)-constrained code of lengthn.
For any sequence ofm writes, let us denote byvi, for i > 0,
the cell-state vector on thei-th write, wherev0 is the all-zero
vector. Them× n-arrayA = (ai,j) is defined to be

ai,j = vi,j + vi−1,j ,

where the addition is a modulo 2 sum. That is,ai,j = 1 if
and only if thej-th cell is changed on thei-th write. SinceC
is an (α, β, p)-constrained code, for all1 6 i 6 m − α and
1 6 j 6 n− β + 1,
∣

∣{(k, ℓ) : vi+k,j+ℓ 6= vi+k+1,j+ℓ, 0 6 k < α, 0 6 ℓ < β}
∣

∣ 6 p,

and therefore
∣

∣{(k, ℓ) : 0 6 k 6 α−1, 0 6 ℓ 6 β−1, ai+k,j+ℓ = 1}
∣

∣ 6 p.

Thus,A is an (α, β, p)-array of sizem× n.
Every write sequence of the codeC corresponds to an

(α, β, p)-array and thus the number of write sequences of
length m is at most the number of(α, β, p)-arrays, which
is upper bounded by2mnC2D(α,β,p), for m,n large enough.
Hence, the number of distinct write sequences is at most
2mnC2D(α,β,p). However, if the individual rate on thei-th
write is Ri, then the total number of distinct write sequences
is

∏m

i=1 2
nRi . We conclude that

m
∏

i=1

2nRi 6 2mnC2D(α,β,p)

and, therefore,
∑m

i=1 Ri

m
6 C2D(α, β, p).

If m goes to infinity, the rate of any(α, β, p)-constrained code
R satisfies

R 6 C2D(α, β, p),

i.e.,C(α, β, p) 6 C2D(α, β, p).
Theorem 1 provides a scheme to calculate an upper bound

on the(α, β, p)-capacity from an upper bound on the capac-
ity of a two-dimensional rectangular checkerboard constraint.

Unfortunately, good upper bounds are known only for some
special cases of the values ofα, β, p, and in particular, when
p = 1. The checkerboard constraint has attracted considerable
attention over the past 20 years and some lower and upper
bounds on the capacity were given in [20], [24], [25]. For in-
stance, some upper bounds for the square checkerboard con-
straint are shown in [25], from which we can conclude that
C(2, 2, 1) 6 0.43431 andC(3, 3, 1) 6 0.25681.

In the rest of this section we discuss the cases whereα = 1
or β = 1 corresponding to one-dimensional constraints.
First, let us consider the upper bound onC(α = 1, β, p).
We use the one-dimensional(d, k)-runlength-limited (RLL)
constrained codes [27], where the number of 0’s between ad-
jacent 1’s is at leastd and at mostk. In fact, Jiang et al. [16]
showed that the capacity of the(β − 1,∞)-RLL constraint
is an upper bound onC(1, β, 1), which is a special case of
Theorem 1. The lowest curve in Fig. 1 shows the capacity of
the (β − 1,∞)-RLL constraint. We extend the upper bounds
to arbitraryp > 1. First, let us generalize the definition of
RLL-constrained codes.

Definition 3. Let β, p be two positive integers. A binary vector
u satisfies the(β, p)-window-weight-limited (WWL) con-
straint if for any β consecutive cells there are at mostp 1’s
andu is called a(β, p)-WWL vector. We denote the capacity
of the constraint byCWWL(β, p).

Note that forp = 1, the(β, 1)-WWL constraint is the(β−
1,∞)-RLL constraint. According to Theorem 1,C(1, β, p) is
upper bounded by the capacity of the(β, p)-WWL constraint,
CWWL(β, p). Thus, we are interested in finding the capac-
ity of this constraint. The approach is similar to the one used
in [25] in order to find an upper bound on the capacity of the
checkerboard constraint.

Definition 4. A mergeof two vectorsu and v of the same
lengthn is a function:

fn : {0, 1}n × {0, 1}n 7→ {0, 1}n+1 ∪ {F}.

If the lastn− 1 bits ofu are the same as the firstn− 1 bits of
v, the vectorfn(u,v) is the vectoru concatenated with the last
bit of v, otherwisefn(u,v) = F.

Definition 5. Let β, p be two positive integers. LetSβ,p denote
the set of all vectors of lengthβ − 1 having at mostp 1’s. That
is, Sβ,p = {s ∈ {0, 1}β−1 : wt(s) 6 p}. The size of the set
Sβ,p isM =

∑p

i=0

(

β−1
i

)

. Lets1, s2, . . . , sM be an ordering of
the vectors inSβ,p. The transition matrixfor the (β, p)-WWL
constraint,Aβ,p = (ai,j) ∈ {0, 1}M×M is defined as follows:

ai,j =

{

1 if fβ−1(si, sj) 6= F andwt(fβ−1(si, sj)) 6 p,
0 otherwise.

Example 1. The following illustrates the construction of the
Aβ=3,p=2 transition matrix. Note that

S3,2 = {s1, s2, s3, s4} = {(0, 0), (0, 1), (1, 0), (1, 1)},
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The merge ofsi and sj for i, j = 1, 2, 3, 4 determines the
matrix A3,2. For example,f2(s1, s1) = (0, 0, 0), a1,1 = 1;
f2(s2, s1) = F, a2,1 = 0; f2(s1, s2) = (0, 0, 1), a1,2 = 1 6=
a2,1. This shows that the matrix is not necessarily symmetric.
Finally, f2(s3, s3) = (1, 1, 1), and a3,3 = 0 since (1, 1, 1)
does not satisfy the (3,2)-WWL constraint.

A3,2 =









1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 0









.

Definition 6. A matrixA ∈ {0, 1}M×M is irreducibleif for all
1 6 i, j 6 M there exists somen > 0 such that(An)i,j > 0.
Note thatn can be a function ofi andj.

Lemma 1.For positive integersβ, p, the transition matrixAp,β

is irreducible.

Proof of Lemma 1: In our construction ofAβ,p, it is pos-
sible to show that(An

β,p)i,j is the number of vectors of length
n + β − 1 starting insi, ending insj and satisfying(β, p)-
WWL constraint, wheresi andsj are defined in Definition 5.
Therefore,Aβ,p is irreducible if such a vector of lengthn > 1
exists such that it starts withsi and ends insj , for every pair
of (i, j). Clearly it exists since adding zeros betweensi and
sj gives such a valid vector. This proves the irreducibility of
Aβ,p.

The next theorem is a special case of Theorem 3.9 in [19].

Theorem 2.The capacity of the(β, p)-WWL constraint is

CWWL(β, p) = log2(λmax),

whereλmax is the largest real eigenvalue ofAβ,p.

Proof: See Theorem 3.9 in [19].
Fig. 1 showsCWWL(β, p), which is the upper bound of

C(1, β, p), for p = 1, 2, 3, 4 respectively.
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Fig. 1. Upper bound onC(1, β, p)

Remark 1. There is a way of presenting the(β, p)-WWL con-
straint using labeled graphs (state transition diagrams).We

present an example of the labeled graph (transition diagram)
for the (β = 7, p = 2)-WWL constraint in Fig. 2. An(β, p)-
WWL vector can be generated by reading off the labels along
paths in the graph and the sequences in the ellipses indicate
the six most recent digits generated.
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Fig. 2. Labeled graphs presenting the (7,2)-WWL constraint

Remark 2. According to Theorem 1, the capacityC(α, 1, p)
is also upper bounded by the capacity of the(α, p)-WWL
constraint,CWWL(α, p). Jiang et al. [16] proposed an upper
bound on the rate of an(α, 1, 1)-constrained code with fixed
block lengthn and multiple cell levels. By numerical experi-
ments, we find that their upper bound appears to converge to
our upper bound for binary cells whenn→ ∞.

IV. L OWER BOUND ON THE CAPACITY

In this section, we give lower bounds on the capacity of the
(α, β, p)-constraint based upon specific code constructions.
The first construction we give is a trivial one which achieves
rate p

αβ
. Then, we will show how to improve it for the cases

(1, β, p) and (α, 1, p). In this section we assume that for all
positive integersx, y the value ofx(mody) belongs to the
group{1, . . . , y} via the correspondence0 → y.

The idea of Construction 1 is to partition the set ofn cells
into subblocks of sizeβ. Supposep = β(q−1)+r, where1 6

q 6 α and1 6 r 6 β. The encoding process has a period ofα
writes. On the firstq− 1 writes, all cells in each subblock are
programmed with no constraint. On theq-th write, the firstr
cells in each subblock are programmed with no constraint and
the rest of the cells are not programmed (staying at level 0).
On the(q + 1)-st to theα-th write, no cells are programmed.
The details of the construction are as follows.

Construction 1 Let α, β, p be positive integers. We construct
an(α, β, p)-constrained codeC of lengthn as follows. To sim-
plify the construction, we assume thatβ|n. Let q =

⌈

p
β

⌉

, r =

p(modβ). For all i > 1, on thei-th write, the encoder uses the
following rules:

• If 1 6 i(modα) < q, n bits are written to then cells.
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• If i(modα) = q, rn/β bits are written in all cellscj such
that1 6 j(modβ) 6 r.

• If i(modα) > q, no information is written to the cells.
The decoder is implemented in a very similar way.

Example 2. Fig. 3 shows a typical writing sequence of an
(α = 3, β = 3, p = 2)-constrained code of length 15 based on
Construction 1. Thei-th row corresponds to the cell-state vec-
tor before thei-th write. The cells in the box in thei-th row
are the only cells that can be programmed on thei-th write. It
can be seen that the rate of the code is the ratio between the
number of boxed cells and the total number of cells, which is
2
9 .

0:       0 0 0  0 0 0  0 0 0  0 0 0  0 0 0

1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 01: 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0

2:       1 1 0  0 1 0  1 0 0  0 0 0  0 1 0

3: 1 1 0 0 1 0 1 0 0 0 0 0 0 1 03: 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0

4:       1 0 0 1 0 0  1 1 0  0 1 0 1 1 0

5:       1 0 0  1 0 0  1 1 0  0 1 0  1 1 0

6 1 0 0 1 0 0 1 1 0 0 1 0 1 1 06: 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0

7: 0 0 0 0 1 0  1 0 0 1 1 0 0 1 0

8:       0 0 0  0 1 0  1 0 0  1 1 0  0 1 0

Fig. 3. A sequence of writes of a(3, 3, 2)-constrained code

Theorem 3. The codeC constructed in Construction1 is an
(α, β, p)-constrained code and its rate isR = p

αβ
.

Proof: We show that for alli > 1 and 1 6 j 6 n −
β + 1, the rewrite cost of the cellscj , cj+1, . . . , cj+β−1 over
the writesi, i + 1, . . . , i + α − 1, is at mostp. For all 0 6

k 6 α − 1 such that1 6 (i + k)(modα) < x, all of the β
cells can be written and since there arex− 1 such values the
rewrite cost on these writes is at most(x− 1)β. For k, such
that (i + k)(modα) = x, at mosty out of theseβ cells are
programmed and therefore the rewrite cost is at mosty. For all
other values ofk no other cells are programmed. Therefore,
the total rewrite cost is at most

(x− 1) · β + y =

(⌈

p

β

⌉

− 1

)

β + (p mod β) = p.

The total number of bits written on theseα writes ispn/β
and hence the rate of the code is

R =
pn/β

αn
=

p

αβ
.

A. Space Constraint Improvement

In this subsection, we improve the lower bound onC(1, β, p)
over that offered by the trivial construction. LetSn(β, p) be
the set of all(β, p)-WWL vectors of lengthn. We define a
(β, p)-WWL code CWWL of lengthn as a subset ofSn(β, p).
If the size of the codeCWWL is M , then it is specified by an

encoding mapEWWL : {1, . . . ,M} 7→ CWWL and a decoding
mapDWWL : CWWL 7→ {1, . . . ,M}, such that for allm ∈
{1, . . . ,M}, DWWL(EWWL(m)) = m.

The problem of finding(β, p)-WWL codes that achieve
the capacityCWWL(β, p) is of independent interest and we
address it next. Cover [9] provided an enumerative scheme
to calculate the lexicographic order of any sequence in the
constrained system. For the special case ofp = 1, corre-
sponding to RLL block codes, Datta and McLaughlin [10],
[11] proposed enumerative methods for binary(d, k)-RLL
codes based on permutation codes. For(β, p)-WWL codes,
we find enumerative encoding and decoding strategies with
linear complexity enumerating all(β, p)-WWL vectors. We
present the coding schemes and the complexity analysis in
Appendix A. In the sequel, we will simply assume that there
exist such codes with rate arbitrarily close to the capacity
as the block length goes to infinity for all positive integers
p and β. The next construction uses(β, p)-WWL codes to
construct(1, β, p)-constrained codes.

Construction 2 Let β, p be positive integers such thatp 6 β.
Let CWWL be a(β, p)-WWL code of lengthn′ and sizeM .
Let EWWL andDWWL be its encoding and decoding maps. A
(1, β, p)-constrained codeC1,β,p of lengthn = 2n′ + β − 1
and its encoding mapE and decoding mapD are constructed as
follows.

1) The encoding mapE : {1, . . . ,M} × {0, 1}n → {0, 1}n

is defined for all(m,u) ∈ {1, . . . ,M} × {0, 1}n to be
E((m,u)) = v, where

a) vn′

1 = un′

1 + EWWL(m).
b) v

n′+β−1
n′+1 = 0,

c) vn
n′+β = un′

1 ,
2) The decoding mapD : {0, 1}n → {1, . . . ,M} is defined

for all u ∈ {0, 1}n to be

D(u) = DWWL(v
n′

1 + vn
n′+β).

Example 3. Here is an example of an(α = 1, β = 3, p = 2)
code withn′ = 4 for the first 4 writes. The message set has
sizeMn′ = 13 (See the definition ofMn′ in Definition 7). The
length of the memory is2n′+β−1 = 10. Suppose on the sec-
ond write, the message ism = 7. Since lexicographically the
seventh element inS4(3, 2) is (0110), the encoder will copy
the previous left block(1011) to the right block and flip the
second and the third bits in the left block(1011) → (1101).

0 0 0 0 0 0 0 0 0 0
1st write, m = 11 : 1 0 1 1 0 0 0 0 0 0
2nd write, m = 7 : 1 1 0 1 0 0 1 0 1 1
3rd write, m = 13 : 0 0 0 0 0 0 1 1 0 1
4th write, m = 4 : 0 0 1 1 0 0 0 0 0 0

Theorem 4.The codeC1,β,p is a (1, β, p)-constrained code. If
the rate of the codeCWWL isRWWL, then the rate of the code
C1,β,p is n′

2n′+β−1 · RWWL. Both the encoder and decoder of
C1,β,p have complexityO(n).

Proof: Let u be the cell-state vector in Construction 2.
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1) Forun′

1 , encoder step a) guarantees that the positions of
rewritten cells satisfy(β, p)-WWL constraint. So there
are at mostp reprogrammed cells in anyβ consecutive
cells inun′

1 .
2) For un

n′+β, three consecutive writes should be exam-
ined. Letw,v,u be the cell-state vectors before thei-th,
(i+1)-st,(i+2)-nd writes,i > 1. Encoder step a) means
thatvn′

1 = wn′

1 + EWWL(mi), wheremi ∈ {1, . . . ,M}
is the message to encode on thei-th write. Since encoder
step c) guarantees thatvn

n′+β = wn′

1 andun
n′+β = vn′

1 ,
we haveun

n′+β = vn
n′+β+EWWL(mi). This proves that

un
n′+β satisfies the(1, β, p) constraint.

3) Forun′+β−1
n′+1 , the cell levels are always set to be 0, which

ensures that no violation of the constraint happens be-
tweenun′

1 andun
n′+β.

On each write, one ofM messages is encoded as a vector
of lengthn. Hence, the rate islog2 M

n
=

(

log2 M

n′
n′

2n′+β−1

)

=
n′

2n′+β−1 ·RWWL.
The encoderE and decoderD come directly fromEWWL

andDWWL, which have complexityO(n) both in time and
in space. Therefore,E andD both have linear complexity in
time and in space.

Corollary 1. Let β, p be two positive integers such thatp 6 β,
then

C(1, β, p) > max

{

CWWL(β, p)

2
,
p

β

}

.

Corollary 1 provides a lower bound that is achieved by prac-
tical coding schemes. In fact, following similar proofs in [4],
[7], [8], we can prove the following theorem using probabilis-
tic combinatorial tools [3].

Theorem 5.Let β, p be positive integers such thatβ > p, then

C(1, β, p) = CWWL(β, p),

whereCWWL(β, p) is the capacity of the(β, p)-WWL con-
straint.

Proof: See Appendix B.

B. Time Constraint Improvement

Jiang et al. constructed in [16] an(α, 1, 1)-constrained code.
Let us explain their construction as it serves as the basis for
our construction. Their construction uses Write-Once Memory
(WOM)-codes [22]. A WOM is a storage device consisting of
cells that can be used to store any ofq values. In the binary
case, each cell can be irreversibly changed from state 0 to
state 1. We denote by[n, t; 2nR1, . . . , 2nRt ] a t-write WOM
codeCW such that the number of messages that can be writ-
ten to the memory on itsi-th write is 2nRi , and the sum-rate
of the WOM code is defined to beRsum =

∑t

i=1Ri. The
sum-capacityCsum is defined as the supremum of achievable
sum-rates. The code is specified byt pairs of encoding and
decoding maps,(Ei,Di), wherei ∈ {1, 2, . . . , t}. Assuming

that the cell-state vector before thei-th write isci, the encoder
is a map

Ei : [1 : 2nRi ]× {0, 1}n → {0, 1}n,

such that for all(m, cni−1,1) ∈ [1 : 2nRi ]× {0, 1}n,

cni−1,1 � cni,1 = Ei(m, c
n
i−1,1),

where the relation “�” is defined in Definition 7. The decoder

Di : {0, 1}
n → [1 : 2nRi ],

satisfies
Di(Ei(m, c

n
i−1,1)) = m.

for all m ∈ [1 : 2nRi ],
It has been shown in [15] that the sum-capacity of at-write

WOM is Csum= log2(t+ 1).
The constructed(α, 1, 1)-constrained code has a period of

2(t + α) writes. On the firstt writes of each period, the en-
coder simply writes the information using the encoding maps
of the t-write WOM code. Then, on the(t + 1)-st write no
information is written but all the cells are increased to level
one. On the followingα− 1 writes no information is written
and the cells do not change their levels; that completes half
of the period. On the nextt writes the same WOM code is
again used; however since now all the cells are in level one,
the complement of the cell-state vector is written to the mem-
ory on each write. On the next write no information is written
and the cells are reduced to level zero. In the lastα−1 writes
no information is written and the cells do not change their
values. We present this construction now in detail.

Construction 3 Let α be a positive integer and letCW be an
[n, t; 2nR1 , . . . , 2nRt ] t-write WOM code. LetEi(m,vi−1) be
the i-th encoder ofCW , for m ∈ [1 : 2nRi ], i ∈ [1 : t]. An
(α, 1, 1)-constrained codeCα,1,1 is constructed as follows. For
all i > 1, let i′ = i(mod(2(t+ α))), where1 6 i′ 6 2(t+α).
The cell-state vector after thei-th write is denoted byci. On the
i-th write, the encoder uses the following rules:

• If i′ ∈ [1 : t], writeMi′ ∈ [1 : 2nR
′
i ] such that

ci = Ei′(Mi′ , ci−1).

• If i′ = t + 1, no information is written and the cell-state
vector is changed to the all-one vector1, i.e.,ci = 1.

• If i′ ∈ [t + 2 : t + α], no information is written and the
cell-state vector is not changed.

• If i′ ∈ [t+α+1 : 2t+α], writeMi′−t−α ∈ [1 : 2nRi′−t−α ]
such that

ci = Ei′−t−α(Mi′−t−α, ci−1).

• If i′ = 2t+ α + 1, no information is written and the cell-
state vector is changed to the all-zero vector0, i.e.,ci =
0.

• If i′ ∈ [2t + α + 1 : 2(t + α)], no information is written
and the cell-state vector is not changed.

Remark 3. This construction is presented differently in [16].
This results from the constraint of having the same rate on
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each write which we can bypass in this work. Consequently,
in our case we can have varying rates and thus the codeCα,1,p
can achieve a higher rate.

Theorem 6.The codeCα,1,1 is an(α, 1, 1)-constrained code. If
thet-write WOM codeCW is sum-rate optimal, then the rate of
Cα,1,1 is log2(t+1)

t+α
.

Proof: In every period of2(t+α) writes, every cell is pro-
grammed at most twice; once in the firstt+1 writes and once
in the firstt+1 writes of the second part of the write-period.
After every sequencet+1 writes, the cell is not programmed
for α−1 writes. Therefore the rewrite cost of every cell among
α consecutive rewrites is at most1.

If the rate of the WOM codeCW is RW then2nRW bits
are written in every period of2(t+α) writes. Hence, the rate
of Cα,1,1 is 2nRW

2(t+α)n = RW

t+α
. If CW is sum-rate optimal, the

rate ofCα,1,1 is thereforelog2(t+1)
t+α

.
The next table shows the highest rates of(α, 1, 1)-

constrained codes based on Construction 3 forα = 4, . . . , 8.

α 4 5 6 7 8
1/α 0.25 0.2 0.167 0.143 0.125

rate ofCα,1,1 0.290 0.256 0.235 0.216 0.201

Next, we would like to extend Construction 3 in order to
construct(α, 1, p)-constrained codes for allp > 2. For sim-
plicity of the construction, we will assume thatp is an even
integer; and the required modification for odd values ofp will
be immediately clear. We chooset > 1 such thatα > (p−1)t
and the period of the code isα + t. On the firstt writes of
each period, the encoder uses the encoding map of thet-write
WOM code. In the followingt writes, it uses the bit-wise com-
plement of a WOM code as in Construction 3. This procedure
is repeated forp2 times; this completes the firsttp writes in the
period. On the(tp+ 1)-st write, no new information is writ-
ten and the cell-state vector is changed to the all-zero vector.
During the (tp + 2)-nd to (α + t)-th writes, no information
is written and the cell-state vector is not changed. That com-
pletes one period ofα+ t writes.

Construction 4 Let α, p, t be positive integers such thatα >

(p − 1)t. Let CW be an[n, t; 2nR1 , . . . , 2nRt ] t-write WOM
code. Fori ∈ [1 : t], letEi(m,vi−1) be its encoding map on the
i-th write, wherem ∈ [1 : 2nRi ]. An (α, 1, p)-constrained code
Cα,1,p is constructed as follows. For alli > 1, let i′ = i(mod
(α+t)), i′′ = i′( mod 2t)where1 6 i′ 6 (α+t), 1 6 i′′ 6 2t.
The cell-state vector after thei-th write is denoted byci. On the
i-th write, the encoder uses the following rules:

• If i′ ∈ [1 : pt] andi′′ ∈ [1 : t], writeMi′′ ∈ [1 : 2nRi′′ ]
such that

ci = Ei′′(Mi′′ , ci−1).

• If i′ ∈ [1 : pt] andi′′ ∈ [t + 1 : 2t], writeMi′′−t ∈ [1 :
2nRi′′−t ] such that

ci = Ei′′−t(Mi′′−t, ci−1).

• If i′ = pt + 1, no information is written and the cell-state
vector is changed to0, i.e.,ci = 0.

• If i′ ∈ [pt + 2 : α + t], no information is written and the
cell-state vector is not changed.

Theorem 7.The codeCα,1,p is an(α, 1, p)-constrained code. If
thet-write WOM codeCW is sum-rate optimal, then the rate of
Cα,1,p is p log2(t+1)

α+t
.

Proof: This is similar to the proof of Theorem 6, so we
present here only a sketch of the proof. In every period of(α+
t) writes, each cell is rewritten at mostp times. In particular,
the first rewrite happens before the(t+1)-st write. After that,
the cell is rewritten at mostp− 1 times until the(tp + 1)-st
write and then not programmed forα + t − (tp + 1) writes.
Therefore, each cell is rewritten at mostp times onα + t −
(tp+1)+ (tp+1)− t = α writes. This proves the validity of
the code.

If the rate of the WOM codeCW isRW thenpnRW bits are
written during each period ofα+t writes since the WOM code
is usedp times. Hence, the rate ofCα,1,p is 2pnRW

2(α+t)n = pRW

α+t
.

If that CW is sum-rate optimal, the rate ofCα,1,p is p log2(t+1)
α+t

.

Remark 4. In Construction 4 we required thatα > (p − 1)t

and, in particular,t 6
⌊

α
p−1

⌋

. If t >
⌊

α
p−1

⌋

, we can simply

use Construction 4 while takingα = (p− 1)t, i.e., the period
of writes is nowpt and and we construct a((p − 1)t, 1, p)-
constrained code, which is also an(α, 1, p)-constrained code.
The rate of the code isRW /t, whereRW is the rate of the
WOM codeCW .

The next corollary provides lower bounds onC(α, 1, p).

Corollary 2. Letα, p be positive integer such thatp 6 α. Then,

C(α, 1, p) > max
t,t∗∈Z+,

{

p log2(t+ 1)

α+ t
,
log2(t

∗ + 1)

t∗
,
p

α

}

,

where

1 6 t 6

⌊

α

p− 1

⌋

, t∗ =

⌈

α

p− 1

⌉

.
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Fig. 4. Lower bound onC(α, 1, p)

Figure 4 shows the rates of(α, β = 1, p) constrained codes
obtained by selecting the bestt for each pair of(α, p). In com-
parison to the codes in Construction 1 whose rates are shown
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by the dashed lines, our construction approximately doubles
the rates. Our lower bounds achieve approximately78% of the
corresponding upper bounds onC(α, 1, p).

C. Time-Space Constraint Improvement

In this section, we are interested in combining the improve-
ments in time and in space to provide lower bounds on the
capacity of(α, β, p)-constraints.

Theorem 8.For allα, β, p positive integers,

C(α, β, p) > max

{

C(α, 1, p)

β
,
C(1, β, p)

α

}

.

Proof: An (α, β, p)-constrained code can be constructed
in two ways.

1) Let C be a (1, β, p)-constrained code of rateR and
length n. We construct a new codeC′ with the same
number of cells. New information is written to the
memory on alli-th writes, wherei ≡ 1(modα), simply
by using the

⌈

i
α

⌉

-th write of the codeC. Then, the code
C′ is an (α, β, p)-constrained code and its rate isR/α.
Therefore, we conclude thatC(α, β, p) > C(1,β,p)

α
.

2) Let C be an (α, 1, p)-constrained code of rateR and
length n. We construct a new codeC′ for nβ cells:
(c1, c2, . . . , cnβ). The codeC′ uses the same encoding
and decoding maps of the codeC, while using only
the n cells ci such thati ≡ 1(modβ). Then, the code
C′ is an (α, β, p)-constrained code and its rate isR/β.
Therefore, we conclude thatC(α, β, p) > C(α,1,p)

β
.

The capacity must be greater than or equal to the maximum
of the two lower bounds.

APPENDIX A

In this section, we show an enumerative encoding and de-
coding strategy with linear complexity for the set of(β, p)-
WWL vectors.

Definition 7. LetX = {x1, . . . ,xN} be a set of distinct binary
vectors,xi ∈ {0, 1}n, i = 1, . . . , N . Letψ(x) denote the deci-
mal representation of a vectorx ∈ {0, 1}n. Forx,y ∈ {0, 1}n,
we sayx � y (or x ≺ y) if and only if ψ(x) 6 ψ(y) (or
ψ(x) < ψ(y)). Theorderof the elementxi in X is defined as:

ord(xi) =
∣

∣{j : xj � xi, 1 6 j 6 N}
∣

∣.

Let {c1, . . . , cMn
} be an ordering of the elements in

Sn(β, p), whereMn = |Sn(β, p)|. The encoder and decoder
of a (β, p)-WWL code give a one-to-one mapping be-
tweenSn(β, p) and {1, . . . ,Mn}, namelyEWWL(m) = cm
where o(cm) = m and DWWL(cm) = o(cm) = m,
for all m = {1, . . . ,Mn}. Now the problem is to calcu-
late o(cm) given cm. Let s1, . . . , sMβ−1

be the ordering
of the vectors inSβ,p introduced in Definition 5, where
Mβ−1 = |Sβ,p| = |Sβ−1(β, p)| =

∑p
i=0

(

β−1
i

)

. Let

xβ,p,n = (x1(n), x2(n), . . . , xMβ−1
(n))T ,

wherexi(n) is the number of(β, p)-WWL vectors of length
n that have the vectorsi as a prefix, wherexT denotes the
transpose ofx.

Lemma 2.The vectorsxβ,p,n+1, n > β, satisfy the first-order
recursion:

xβ,p,n+1 = Aβ,p · xβ,p,n.

Proof: See [25].
The encoder and decoder have access to a matrixXβ,p,n ∈

Z
(n+β)×Mβ−1

+ , where thei-th row of Xβ,p,n is xT
β,p,i, i =

1, . . . , n + β. For simplicity, Xβ,p,n is written asX if no
confusion can occur. We denote byX(i, j) the entry in the
i-th row andj-th column ofX and we defineX(i, :), X(:, j)
to be the i-th row vector, j-th column vector ofX, re-
spectively, i.e.,X(i, :) = (X(i, 1), . . . ,X(i,Mβ−1)) and
X(:, j) = (X(1, j), . . . ,X(n + β, j))T . From Lemma 2,
Xβ,p,n can be calculated efficiently with time complexity
O(n).

1) Decoder: Based onXβ,p,n, we present an enumerative
method to calculate the order of each element inSn(β, p).
Note that the order of a vector is the decoded message corre-
sponding to that vector. In this algorithm, the decoder scans
the vector from left to right. Whenever the decoder finds a 1
in the vector, the order of the vector will increase. The details
of the algorithm are presented below. Herec = (c1, . . . , cn) ∈
Sn(β, p) is the binary vector to be decoded; the algorithm cal-
culateso(c) ∈ {1, . . . ,Mn}.

Algorithm 1 DECODING: CALCULATE o(c), c ∈ Sn(β, p)
1: let cnt = 0, j = 1, i = 0;

2: while (i 6 n){

3: while (j 6 n andc(j) 6= 1)

4: j = j + 1;

5: if (j = n+ 1)

6: o(c) = cnt+ 1;

7: algorithm ends;

8: }
9: /*A 1 is detected inc.*/

10: let d = (0, . . . , 0) with lengthβ − 1;

11: /*d is a vector storingβ−2 bits to the left of the detected
1, appended with a 0.*/

12: if (j > β − 1)

13: let dβ−2
1 = c

j−1
j−β+2;

14: else/*j < β − 1*/

15: let dβ−2
β−j = c

j−1
1 ;

16: find k ∈ [1 : Mβ−1] such thatsk = d;

17: cnt = cnt+X(n− j + β − 1, k);

18: i = j; j = i+ 1;

19: }

20: o(c) = cnt+ 1;

21: algorithm ends.
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Example 4. Suppose we would like to decode a(6, 3)-WWL
vectorc = (1011001001) of length 10.

• A 1 is detected(1011001001), where i = 0, j = 1.
The decoder aims to find the number of vectorsĉ
such that(0000000000) � ĉ ≺ (1000000000). Now
d = (00000) = s1, so k = 1, andn − j + β − 1 = 14.
Therefore,cnt = 0 +X6,3,16(14, 1) = 236.

• A 1 is detected(1011001001), where i = 1, j = 3.
The decoder aims to find the number of vectorsĉ
such that(1000000000) � ĉ ≺ (1010000000). Here
d = (00100) = s5, so k = 5, andn − j + β − 1 = 12.
Therefore,cnt = 236 +X6,3,16(12, 5) = 308.

• A 1 is detected(1011001001), where i = 3, j = 4.
The decoder aims to find the number of vectorsĉ
such that(1001000000) � ĉ ≺ (1011000000). Here
d = (01010) = s11, sok = 11, andn− j + β − 1 = 11.
Therefore,cnt = 308 +X6,3,16(11, 11) = 343.

• A 1 is detected(1011001001), where i = 4, j = 7.
The decoder aims to find the number of vectorsĉ
such that(1011000000) � ĉ ≺ (1011001000). Here
d = (11000) = s23, so k = 23, andn− j + β − 1 = 8.
Therefore,cnt = 343 +X6,3,16(8, 23) = 351.

• Finally, a 1 is detected(1011001001), wherei = 7, j =
10. The decoder aims to find the number of vectorsĉ

such that(1011001000)� ĉ ≺ (1011001001). Hered =
(01000) = s9, sok = 9, andn−j+β−1 = 5. Therefore,
cnt = 351 +X6,3,16(5, 9) = 352.

We calculate thato(c) = cnt+ 1 = 353 andc is decoded as
353.

Theorem 9.Algorithm 1 calculates the order of a(β, p)-WWL
vector of lengthn in Sn(β, p). Its time complexity and space
complexity are bothO(n).

Proof:
Correctness: Let c be the vector to decode; that is, we seek

to find ord(c). Forc1 � c2, we denote byN(c1, c2) the num-
ber of vectorŝc such thatc1 � ĉ ≺ c2. Let c1, . . . , cL be a
sequence of vectors such that0 = c0 � c1 � c2 � · · · �
cL = c; then it is easy to see

o(c) =

L
∑

i=1

N(ci−1, ci) + 1.

Let L be the number of 1’s inc; let all the indices of 1’s be
j1, j2, . . . , jL in ascending order, that is1 6 j1 < · · · < jL 6

n and cj1 = cj2 = · · · = cjL = 1. For i ∈ {1, . . . , L}, ci is
chosen such thatci = ci−1 + δji , wherec0 = 0, andδj , j ∈
{1, . . . , n}, denotes the vector where all entries are 0 except
for the j-th entry, which is a 1. Here addition is component-
wise modulo-2 summation.

Lines 3 and 4 together with Line 18 in Algorithm 1 scanc
and findci according toci−1. Therefore, we are left to prove
that Algorithm 1 calculatesN(ci−1, ci) for i ∈ {1, . . . , L}.

By definition, the firstji − 1 digits of ci andci−1 are the
same, andci,ji = 1 while ci−1,ji = 0. Then a vector̂c ∈
{0, 1}n satisfiesci−1 � ĉ ≺ ci if and only if the firstji digits
of ĉ are the same as those ofci−1, i.e. ĉji1 = c

ji
i−1,1. Given

the length and the firstji digits of ĉ, the number of possiblêc
can be calculated based on the matrixX in the following way.
Since the(β, p)-WWL constraint is local, ifji > β − 1, the
task is equivalent to calculating the number ofc̃ with length
n− ji + β − 1 such that the firstβ − 1 digits are a prefix of
ĉ, in particular,̃cβ−1

1 = ĉ
ji
ji−β+2; otherwise, forji 6 β− 1, it

is equivalent to calculating the number ofc̃ with lengthn−
ji+β−1 such that the firstβ−1 digits are zeros followed by
length-ji prefix of ĉ, that is,c̃β−1

1 = (0β−1−ji , ĉ
ji
1 ). Lines 10

– 15 in Algorithm 1 find the firstβ − 1 digits of c̃ and Lines
16 and 17 calculate the number ofc̃, which is the number of
vectorsĉ satisfyingci−1 � ĉ ≺ ci. Therefore, Algorithm 1
calculatesN(ci−1, ci) for i ∈ {1, . . . , L} and sums them up
to derive the order ofc.

Time complexity analysis: It can be seen from the algo-
rithm that the decoder scans the vector that is to be decoded
only once. Whenever the decoder detects a 1, it uses binary
searches to find the corresponding prefix vectord in X, while
the number of 1’s is no more thannp

β
. Therefore, the time

complexity of the decoder is no more thatO(np
β
logMβ−1) =

O(np
β
log

∑p

i=0

(

β−1
i

)

) = O(n), whereβ and p are fixed in-
tegers and not related ton.

Space complexity analysis: The space complexity comes
from the matrixX with n+ β − 1 rows andMβ−1 columns.
Therefore, the space complexity is alsoO(n) since β and
Mβ−1 are both fixed integers.

2) Encoder: The encoder follows a similar approach to
map an integerm ∈ {1, . . . ,Mn} to a vectorc ∈ Sn(β, p),
such thato(c) = m. We call c the encoded vector for the
messagem. Note that∀mi,mj ∈ {1, . . . ,Mn},mi 6 mj if
and only if ci � cj , whereo(ci) = mi and o(cj) = mj .
The following encoding algorithm uses the matrixX to effi-
ciently calculate the vectorc ∈ Sn(β, p) such thato(c) = m,
for m ∈ {1, . . . ,Mn}. The algorithm has linear complexity.

Algorithm 2 ENCODING: FIND c SUCH THAT o(c) = m
let cnt = 0, c = (0, . . . , 0) with lengthn;

for i = 1, 2, . . . , n {

let t = c;

let t(i) = 1;

if t satisfies(β, p)-WWL constraint{

let q = (0, . . . , 0) with lengthβ − 1;

/*q is a vector storingβ−2 bits to the left oft(i) in t, appended
with a 0.*/

if (i > β − 1)

let qβ−2
1 = ti−1

i−β+2;

else/* i < β − 1*/

let qβ−2
β−i = ti−1

1 ;

find k ∈ [1 : Mβ−1] such thatsk = q.

letCntT ry = cnt+X(n− i + β − 1, k);
if (CntT ry + 1 = m) {

c = t;
returnc; algorithm ends;

}
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if (CntT ry + 1 < m) {
let c(i) = 1;
let cnt = CntT ry;

}
}

}

Example 5. Suppose we would like to encode one ofMn =
421 (β = 6, p = 3)-WWL vectors of lengthn = 10. The
message to be encoded ism = 353.

• c = (0000000000), i = 1, t = (1000000000),
q = (00000) = s1, so k = 1. Since cnt = 0,
CntT ry = cnt+X(n− i+ β − 1, k) = 236 < m− 1,
so setcnt = 236.

• c = (1000000000), i = 2, t = (1100000000),
q = (00010) = s3, sok = 3. ComputeCntT ry = cnt+
X(n− i+ β − 1, k) = 236+X(13, 3) = 355 > m− 1.

• c = (1000000000), i = 3, t = (1010000000),
q = (00100) = s5, sok = 5. ComputeCntT ry = cnt+
X(n− i+ β − 1, k) = 236+X(12, 5) = 308 < m− 1,
so setcnt = 308.

• c = (1010000000), i = 4, t = (1011000000),
q = (01010) = s11, so k = 11. ComputeCntT ry =
cnt+X(n− i+ β − 1, k) = 308 +X(11, 11) = 343 <
m− 1, so setcnt = 343.

• c = (1011000000), i = 5, t = (1011100000) does not
satisfy (6, 3)-WWL constraint.

• c = (1011000000), i = 6, t = (1011010000) does not
satisfy (6, 3)-WWL constraint.

• c = (1011000000), i = 7, t = (1011001000),
q = (11000) = s23, so k = 23. ComputeCntT ry =
cnt+X(n − i + β − 1, k) = 343 +X(8, 23) = 351 <
m− 1, so setcnt = 351.

• c = (1011001000), i = 8, t = (1011001100) does not
satisfy (6, 3)-WWL constraint.

• c = (1011001000), i = 9, t = (1011001010),
q = (00100) = s5, so k = 5. ComputeCntT ry =
cnt+X(n−i+β−1, k) = 351+X(6, 5) = 353 > m−1.

• c = (1011001000), i = 10, t = (1011001001), q =
(01000) = s9, so k = 9. ComputeCntT ry = cnt +
X(n − i + β − 1, k) = 351 +X(5, 9) = 352 = m − 1.
Therefore,c = t = (1011001001) ando(c) = 353.

Theorem 10.Algorithm2encodes a messagem ∈ {1, . . . ,Mn}
to a(β, p)-WWL vectorc ∈ Sn(β, p) such thato(c) = m, and
its time complexity and space complexity are bothO(n).

Proof:
Correctness: The proof of the correctness of the encoder is

similar to the proof of the correctness of the decoder. There-
fore, we omit the details.

Time complexity analysis: It can be seen from the algo-
rithm that the encoder scans the vector from left to right once
and tries to set each entry to 1. Whenever the encoder sets
an entry to 1, it first determines whether the constraint is sat-
isfied. This takesO(1) steps since we do not have to check
the entire vector but only theβ bits to the left of the set

entry. Then it uses binary search to find the corresponding
prefix vector inX, while the number of 1’s is no more than
np
β

. Therefore, the complexity of the encoder is no more that

O(np
β
logMβ−1) = O(np

β
log

∑p

i=0

(

β−1
i

)

) = O(n), wherep
andβ are fixed numbers.

Space complexity analysis: The matrixX is the primary
contributor to the space complexity. As is shown in the proof
of Theorem 9, the space complexity is alsoO(n).

Note that Algorithm 2 and Algorithm 1 establish a one-to-
one mapping between{1, . . . ,Mn} and Sn(β, p). Therefore
the rate of the encoder is maximized. If the blocklength goes
to infinity, the rate of the encoder approachesCWWL(β, p).

APPENDIX B

In this section, we present the proof of Theorem 5. The
reason for which the proof of Theorem 5 is non-trivial is the
following. Suppose the cell-level vector is updated fromci−1

to ci on the i-th write. The encoder has full knowledge of
ci−1 and ci since we assume there is no noise in the updat-
ing procedure. The decoder is required to recoverci + ci−1

with full knowledge ofci but zero knowledge ofci−1. This
is similar to the work on memories with defects in [6], where
the most interesting scenario is when the defect locations are
available to the encoder but not to the decoder. In general, it
can be modeled as a channel with states [1] where the side
information on states is only available to the encoder.

Proof: First we introduce some definitions. Recall that
Sn(β, p) is defined as the set all(β, p)-WWL vectors of length
n. Sn(β, p) will be written asS for short if no confusion
about the parameters can occur. LetVn = {0, 1}n be then-
dimensional binary vector space.

Definition 8. For a vectorx ∈ Vn and a setS ⊂ Vn, we define
S+x = {s+x|s ∈ S} and denote it byS(x). We call vectors
in S(x) reachablebyx and we sayS(x) is centeredatx.

For two subsetsB1, B2 ⊂ Vn, we defineB1 + B2 = {b1 +
b2|b1 ∈ B1, b2 ∈ B2}. We call a subsetB ⊂ Vn S-goodif

S +B =
⋃

b∈B

S(b) = Vn,

i.e.,Vn is covered by the the union of translates ofS centered
at vectors inB.

Lemma 3. If B ⊂ Vn is S-good, thent + B is S-good,∀t ∈
Vn.

Lemma 4. If B ⊂ Vn is S-good, then∀x ∈ Vn, ∃b ∈ B, ∃s ∈
S, such thatx+ s = b.

Lemma 4 guarantees that ifB ⊂ Vn is anS-good subset,
then from any cell-state vectorx, there exists a(β, p)-WWL
vectors, such thatx+s ∈ B. We skip the proofs of Lemma 3
and 4, referring the reader to similar results and their proofs
in [7].

Lemma 5. If G1, . . . , GM are pairwise disjointS-good subsets
of Vn, then there exists a(1, β, p)-constrained code of sizeM .
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In particular, ifG is anS-good(n, k) linear code, then there
exists a(1, β, p)-constrained code with raten−k

n
.

Proof: If Gi is S-good for all i ∈ [1 : M ], then from
Lemma 4, for anyx ∈ Vn andi ∈ [1 : M ], there existgi ∈ Gi

andsi ∈ S, such thatx+ si = gi. Suppose the current cell-
state vector isx, then we can encode the messagei ∈ [1 :M ]
as a vectorE(i,x) = x + si ∈ Gi, for somesi ∈ S. The
decoder uses the mappingD(x) = i, if x ∈ Gi, to give an
estimate ofi ∈ [1 : M ]. This yields a(1, β, p)-constrained
code of sizeM .

If G1, . . . , G2n−k represent the cosets of anS-good (n, k)
linear codeG, then each coset isS-good according to
Lemma 3. The rate of the resulting(1, β, p)-constrained code

is log2(2
n−k)

n
= n−k

n
.

Now we are ready to prove Theorem 5.
Let Bj be a randomly chosen(n, j) linear code with2j

codewords (B0 = {0}), and letmBj
= |Vn/(Bj + S)| be

the number of vectors not reachable from any vector inBj .
Let x ∈ Vn be a randomly chosen vector and letQBj

be the
probability thatx /∈ Bj + S. Then we have

mBj
= 2nQBj

.

The proof of the following lemma is based upon ideas dis-
cussed in [4, pp. 201-202].

Lemma 6.There exists a linear codeBj such that

QBj
6 Q2j

B0
.

Proof: Let Bj = {y1, . . . ,y2j} denote an(n, j) linear
code. If

SBj
= Bj + S,

then

QBj
= 1− 2−nNBj

,

whereNBj
= |SBj

|.
Let z /∈ Bj and letBj+1,z be the(n, j + 1) linear code

formed by(z + Bj) ∪ Bj . It can be seenBj+1,z comprises
the 2j vectors inBj plus 2j new vectors of the formz + y,
y ∈ Bj . Let

S∗
Bj ,z

= z + SBj

It can be seen thatS∗
Bj ,z

has the same cardinality asSBj
.

Therefore, it containsNBj
vectors, too, some of which may

already belong toSBj
. SinceSBj+1,z

= SBj
∪S∗

Bj ,z
, we have

NBj+1,z
= 2NBj

−
∣

∣SBj
∩ S∗

Bj ,z

∣

∣.

Thus NBj+1,z
is maximized by choosingz that minimizes

|SBj
∩ S∗

Bj ,z
|.

Let us now calculate the average of|SBj
∩ S∗

Bj ,z
| over all

z ∈ Vn. Here allz ∈ Bj are also considered since they will

result in an overestimate of the average of|SBj
∩S∗

Bj ,z
|. Then

∑

z∈Vn

|SBj
∩ S∗

Bj ,z
| =

∑

z∈Vn

∑

x∈SBj

1{x∈S∗
Bj,z

}

=
∑

x∈SBj

∑

z∈Vn

1{x∈S∗
Bj,z

}

1©
=

∑

x∈SBj

∑

z∈x+SBj

1

2©
=

∑

x∈SBj

NBj

= N2
Bj
,

where1A is the indicator function of the eventA, i.e.,1A = 1
if A is true and1A = 0 otherwise.

Equality 1© holds since, for a fixedx, if z ∈ x+SBj
, then

x ∈ S∗
Bj ,z

and vice versa. Equality2© holds since|x+SBj
| =

|SBj
| = NBj

. Thus, the average value of|SBj
∩ S∗

Bj ,z
| is

2−nN2
Bj

. Since the minimum of|SBj
∩S∗

Bj ,z
| cannot exceed

this average, we conclude that there existsz ∈ Vn, such that
|SBj

∩ S∗
Bj ,z

| 6 N2
Bj

. Then there existsBj+1, such that

NBj+1
> 2NBj

− 2nN2
Bj
.

Thus,

QBj+1
= 1− 2−nNBj+1

6 1− 2−n(2NBj
− 2−nN2

Bj
)

= (1− 2−nNBj
)2

= Q2
Bj
.

It follows that there existsBj , such thatQBj
6 Q2j

B0
.

Lemma 7. If j > n− log |S|+ logn, then there existsBj such
thatmBj

< 1.

Proof: Note thatQB0
= 1− 2−n ·NB0

6 1− 2−n · |S|.
Then there existsBj , such that

QBj
6 Q2j

B0

6 (1− 2−n|S|)2
j

6 (1− 2−n|S|)2
n−log |S|+log n

= (1− 2−n|S|)2
n|S|−1·n

< e−n < 2−n.

ThenmBj
= 2nQBj

< 1.
SincemBj

is an integer andmBj
< 1, there exists an(n, j)

linear codeBj such thatmBj
= 0, i.e., anS-goodBj exists.

According to Lemma 5, there exists a sequence of(1, β, p)-
constrained codes of lengthn and rateRn(1, β, p) such that

sup
n
Rn(1, β, p) > lim

n→∞

n− (n− log |S|+ logn)

n

= lim
n→∞

log |S| − logn

n

= lim
n→∞

log |S|

n
= CWWL(β, p).
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We have seen in Theorem 1 thatC(1, β, p) 6 CWWL(β, p).
This concludes the proof thatC(1, β, p) = CWWL(β, p)
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