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Abstract—Phase-change memory (PCM) is a promising non-

volatile solid-state memory technology. A PCM cell stores ata
by using its amorphous and crystalline states. The cell chayes
between these two states using high temperature. Howeveinse
the cells are sensitive to high temperature, it is important when
programming cells, to balance the heat both in time and space

In this paper, we study the time-space constraint for PCM,
which was originally proposed by Jiang et al. A code is calle@n
(a, B, p)-constrained code if for any o consecutive rewrites and
for any segment of g contiguous cells, the total rewrite cost of
the 8 cells over thosea rewrites is at most p. Here, the cells
are binary and the rewrite cost is defined to be the Hamming
distance between the current and next memory states. Firstye
show a general upper bound on the achievable rate of these cesl
which extends the results of Jiang et al. Then, we generalizbeir
construction for (« > 1,8 = 1,p = 1)-constrained codes and
show another construction for (a« = 1, 8 > 1, p > 1)-constrained
codes. Finally, we show that these two constructions can besed
to construct codes for all values ofa, 3, and p.

|. INTRODUCTION

programming, there is a significant asymmetry between the
two operations of increasing and decreasing a cell level.

As in a flash memory, a PCM cell has a limited lifetime;
the cells can tolerate only aboub” — 108 RESET opera-
tions before beginning to degrade [13]. Therefore, it if sti
important when programming cells to minimize the number
of RESET operations. Furthermore, a RESET operation can
negatively affect the performance of a PCM in other ways.
One of them is due to the phenomenon of thermal crosstalk.
When a cell is RESET, the levels of its adjacent cells may in-
advertently be increased due to heat diffusion associatdd w
the operation[]5],[[21]. Another problem, called thermat ac
cumulation, arises when a small area is subjected to a large
number of program operations over a short period of time [5],
[21]]. The resulting accumulation of heat can significanityif
the minimum write latency of a PCM, since the programming
accuracy is sensitive to temperature. It is therefore dbkr
to balance the thermal accumulation over a local area of PCM
cells in a fixed period of time. Coding schemes can help over-
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Phase-change memory (PCM) devices are a promising techif§ime the performance degradation resulting from these-phys
ogy for non-volatile memories. Like a flash memory, a PCNfal phenomena. Lastras et dl. [18] studied the capacity of a
consists of cells that can be in distinct physical stateshén Write-Efficient Memory (WEM) [2] for a cost function that
simplest case, the PCM cell has two possible states, an ant®r@ssociated with the write model of phase-change memories
phous state and a crystalline state. Multiple-bit per c€VR despribed above. -
can be implemented by using partially crystalline stafgs [5  Jiang et al.[[16] have proposed codes to mitigate thermal
While in a flash memory one can decrease a cell level onqg,oss—talk and heat accumulation effects in PCM. Under thei
by erasing the entire block of abol® cells that contains it, thermal cross-talk model, when a cell is RESET, the levels of
in a PCM one can independently decrease an individual c&fl immediately adjacent cells may also be increased. Hence
level — but only to level zero. This operation is called a RESE these neighboring cells exceed their target level, thiep a
operation. A SET operation can then be used to change ## have to be RESET, and this effect can then propagate to
cell state to any valid level. Therefore, in order to deceems Many more cells. In[16], they considered a special case of
cell level from one non-zero value to a smaller non-zerowalithis and proposed the use of constrained codes to limit the
one needs to first RESET the cell to level zero, and then SEfepagation effect. Capacity calculations for these couere

it to the new desired leve[]5]. Thus, as with flash memor§!SO presented. _
The other problem addressed in[16] is that of heat accu-
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constructions and achievable-rate bounds to a largergoortimaps the cell-state vector to the represented information s

of the parameter space. In Sectibh I, we formally defingol. We denote thendividual rate on thei-th write of the

the constrained-coding problem for PCM. In Sectionh IIl, us«, 3, p)-constrained code by,;. Note that the alphabet size
ing connections to two-dimensional constrained coding, vaé the messages on each write does not have to be the same.
present a scheme to calculate an upper bound on the achiEve rate R of the («, 3, p)-constrained code is defined as

able rate for all values ofy, 5 and p. If the value of « m

or 8 is 1 then the two-dimensional constraint becomes a R = lim Dim1 Ri' (1)
one-dimensional constraint and we calculate the upperdoun m—eo M

on the achievable rate for all values pf This result coin-  We assume that the number of writes is large and in
cides with the result in([16] foa > 1,3 = 1,p = 1) and the constructions we present there will be a periodic se-
(a=1,8>1,p=1). We also derive upper bounds for somguence of writes. Thus, it will be possible to change any
cases with parameters satisfyifg > 1,3 > 1,p = 1) using (o, 3, p)-constrained cod€ with varying individual rates to
known results on the upper bound of two-dimensional coan (a, 3, p)-constrained cod€’ with fixed individual rates
strained codes. In Sectidn ]IV, code constructions are givestich that the rates of the two constrained codes are the same.
First, a trivial construction is given and we show an improvel his can be achieved by using multiple copies of the cGde
ment for (o = 1,3 > 1, p > 1)-constrained codes and extendnd in each copy of to start writing from a different write

the construction in[[16] ofa > 1,3 = 1,p = 1)-constrained within the period of writes. Therefore, we assume that there
codes to arbitraryp. Finally, we show how to extend theis no distinction between the two cases and the rate is as de-
constructions for all values af, 5 and p. fined in Equation[{ll), which is the number of bits written per
cell per write.

The encoding and decoding maps can be either the same
on all writes or can vary among the writes. In the latter case,
In this section, we give a formal definition of the constraine we will need more cells in order to index the write number.
coding problem. The number of cells is denoted by However, arguing as i [26], it is possible to show that these
and the memory cells are binary. The cell-state vectogstra cells do not reduce asymptotically the rate and tbeeef
are the binary vectors fronf0, 1}". If a cell-state vector we assume here that the encoder and decoder know the write
u = (uy,...,u,) € {0,1}" is rewritten to another cell-state number.
vectorv = (vi,...,v,) € {0,1}", then the rewrite cost is A rate R is called an(a, 3, p)-achievable rate if there ex-
defined to be the Hamming distance betweeandv, that is ists an(«, 3, p)-constrained cod€ such that the rate af is
R. We denote byC,,(«, 8,p) the supremum of al(«, 8, p)-
achievable rates while fixing the number of cells torbélhe

The Hamming weight of a vecton is wt(u) = dy(u,0). (@B, p)-capacity of the (o, 3, p)-constraint is denoted by
The complement of a vectas is @ = (uy,...,u,). For a C(a, B,p) and is defined to be
v?]ctorcc = (z1,...,2p), We defing ‘for alll g.plg qg < n, Cla, B,p) = lim Cy(a, B, p).
xl = (zp, Tpt1,...,24). The set{i,i+1,...,5} is denoted n—00
by [i : j] for i < 4, and in particular{1,2,...,[2"%|} is Our goal in this paper is to give lower and upper bounds on
denoted by[1 : 2"%] for an integem and realR. the (o, 3, p)-capacity,C(a, 3, p), for all values ofa, 3, and
p. Clearly, if p > af then C(«, 5,p) = 1. So we assume
Definition 1. Let o, 3, p be positive integers. A code satis- throughout the paper that < «f. Lower bounds will be
fies the(ct, 3, p)-constraint if for any o consecutive rewrites 9iven by specific constrained code constructions while fire u
and for any segment of contiguous cells, the total rewriteP€" bounds will be derived analytically using tools dravanr
cost of thoseB cells over thosen rewrites is at mosb, the theory of one- and two-dimensional constrained codes.
andC is called an(«, 3, p)-constrained code That is, if
v; = (vi1,...,vin), fori > 1, is the cell-state vector on the [1l. UPPERBOUND ON THE CAPACITY
i-th write, then, forall > 1 andl < j <n-—[(+1, In this section, we will present upper bounds on theg, p)-
capacity obtained using techniques from the analysis of
{(ky€) s vigh e # Vitky1540,0 <k <a,0 <L < B} <p. two-dimensional constrained codes. There are a number of
] ] ) o two-dimensional constraints that have been extensivelg-st
We W!|| specn‘y(_a, B,p)—gonstralned cod_es by an explicit CONjeq, e.g., 2-dimensionald, k)-runlength-limited (RLL) [17],
struction of their encoding and decoding maps. On e [23], no isolated bits[[12],[[14], and the checkerboard con-
write, for > 1, the encoder straint [20], [25]. Given a two-dimensional constraifit its

Sl 2nRi] x {0,1}" > {0,1}" capacity is defined to be

Il. PRELIMINARIES

dyg(uw,v) =|{i : w; #v;,1 <i<n}.

. . . logycs(m,n)
maps the new information symbol and the current cell-state Cop(S) = lim —2———

sN—r mn
vector to the next cell-state vector. The decoder ] e ]
wherecg(m,n) is the number ofn x n arrays that satisfy the

D; - {0,1}" = [1 : 2"F9) constraintS. The constraint of interest for us in this work is



the one where in each rectangle of size b, the number of Unfortunately, good upper bounds are known only for some
ones is at mosp. special cases of the values ®f 5, p, and in particular, when
p = 1. The checkerboard constraint has attracted considerable

Definition 2. Leta, b, p be positive integers. Afm x n)-array attention over the past 20 years and some lower and upper
A = (aij)1<i<cmi<i<n € {0,1}™*™ is called an(a,b,p)- bounds on the capacity were given in][20],][24],][25]. For in-
arrayif in each sub-array ofl of sizea x b, the number of 1's stance, some upper bounds for the square checkerboard con-
isatmosp. Thatis, foralll < i< m—a+1,1<j <n—-b+1, straint are shown in[25], from which we can conclude that
C(2,2,1) < 0.43431 and C(3,3,1) < 0.25681.

In the rest of this section we discuss the cases whetel
The capacity of the constraint is denoted®p (a, b, p). or 5 = 1 corresponding to one-dimensional constraints.

] o First, let us consider the upper bound 6Ha = 1,8,p).

Note that whenp = 1, the (a,a,1) constraint coincides we yse the one-dimensionéd, k)-runlength-limited (RLL)
with the square checkerboard constraint of order 1 [25].  constrained codes [27], where the number of 0's between ad-

~The connection Dbetween the capacity of the WQacent1's is at least and at mosk:. In fact, Jiang et al[[16]
dimensional constrairt’,p (a, b, p) and the(a, 5, p)-capacity  ghowed that the capacity of thed — 1, 00)-RLL constraint
is the following. is an upper bound o’(1, 3, 1), which is a special case of
Theorenfdl. The lowest curve in Fig. 1 shows the capacity of
the (8 — 1, 00)-RLL constraint. We extend the upper bounds
to arbitraryp > 1. First, let us generalize the definition of
RLL-constrained codes.

{(k,0) : 0<k<a—1,0<0<b—1ak e =1} <p.

Theorem 1.For alla, 3, p, C(a, 8,p) < Cop(a, 3,p).

Proof: Let C be an(«, 3, p)-constrained code of lengih
For any sequence of. writes, let us denote by;, for i > 0,
the cell-state vector on theth write, wherev, is the all-zero

vector. Them x n-array A = (a; ;) is defined to be Definition 3. Let 53, p be two positive integers. A binary vector
’ u satisfies the(3, p)-window-weight-limited (WWL) con-
Ajj = Vij + Vi-1j, straint if for any 8 consecutive cells there are at mpst’s

andu is called a3, p)-WWL vector. We denote the capacity

here the addition is a modulo 2 sum. Thatds,, = 1 if .
W ton | u ! 19y " ofthe constraint b v, (3, p).

and only if thej-th cell is changed on theth write. SinceC

is an (a, §, p)-constrained code, for all < ¢ <m —aand  Note that forp = 1, the (3, 1)-WWL constraint is the(3 —
I<j<n-p+1, 1, 00)-RLL constraint. According to Theorel (1, 3, p) is
(B, 0) s vik e # viprstgee,0 <k < a,0 < £ < B} <p, Upper bounded by the capacity of thé p)-WWL constraint,
' ' Cwwr(8,p). Thus, we are interested in finding the capac-

and therefore ity of this constraint. The approach is similar to the oneduse

E0) c 0<k<a—1,0<0<B—1app10 =1} <p. in [25] in order to find an upper bound on the capacity of the
H( ) b e }’ P checkerboard constraint.
Thus, A is an(a, 3, p)-array of sizem x n.

Every write sequence of the codg corresponds to an Definition 4. A mergeof two vectorsu andv of the same
(o, B8,p)-array and thus the number of write sequences Wngthn is a function:
length m is at most the number of«, 3, p)-arrays, which
is upper bounded by C2p(A:p) for m,n large enough. fo 0,13 x {0,1}" > {0, 1}" L U {F}.
Hence, the number of distinct write sequences is at most ) ) )
9mnCap(a.8.0)  However, if the individual rate on théth If the lastn — 1 bits ofu are the same as the finst- 1 bits of
write is R;, then the total number of distinct write sequence® the vectorf, (u, v) is the vectom concatenated with the last
is [T, 2"%:. We conclude that bit of v, otherwisef,,(u,v) = F.

ﬁ gnRi < gmnCap(a.B.p) Definition 5. Let 3, p be two positive in'tegers. Lédts , denote
the set of all vectors of length — 1 having at mosp 1’s. That
is, Sgp = {s € {0,1}°~1 : wt(s) < p}. The size of the set
SppisM =" (°71). Letsy, sa, ..., su be an ordering of
the vectors irSs ,. Thetransition matrixfor the (3, p)-WWL
constraintAg , = (a; ;) € {0,1}M*M js defined as follows:

=1
and, therefore,

™ R
2o B < Cep(a, B, p).
m

If m goes to infinity, the rate of anf, 3, p)-constrained code

R satisfies o 1 if fB_l(si, Sj) 75 Fandwt(fg_l(si, Sj)) < p,
R < Cop(a, B,p), %=1 0 otherwise.
i.e., C(a, B,p) < Cap(a, B,p). u mple 1. The following illustrates the construction of the

X Ex
Theoren{1 prowde§ a scheme to calculate an upper boujg@fgﬁi3 ,_» transition matrix. Note that
on the («, 8, p)-capacity from an upper bound on the capac-"""
ity of a two-dimensional rectangular checkerboard comstra S5 2 = {s1, 82, 83,84} = {(0,0),(0,1),(1,0), (1,1)},



The merge ofs; and s; for i,j = 1,2,3,4 determines the present an example of the labeled graph (transition diagram
matrix Az ». For example,fa(s1,81) = (0,0,0), a11 = 1; for the (8 = 7,p = 2)-WWL constraint in Fig[R. An(g, p)-
fa(s2,81) = F, az1 = 0; fa(s1,82) = (0,0,1), a12 =1 # WWL vector can be generated by reading off the labels along
az,1. This shows that the matrix is not necessarily symmetripaths in the graph and the sequences in the ellipses indicate
Finally, f2(ss,s3) = (1,1,1), andas 3 = 0 since (1,1,1) the six most recent digits generated.

does not satisfy the (3,2)-WWL constraint.

0 0
Azo =

O = O =
O = O =

11
0 0
1 0

Definition 6. A matrix A € {0, 1}**M jsirreducibleif for all
1 < i,j < M there exists some > 0 such tha{ A™); ; > 0.
Note thatn can be a function af andj.

Lemma 1. For positive integer§, p, the transition matrixi, g
is irreducible.

Proof of Lemmal[ll In our construction ofdg y,, it is pos-
sible to show thatAj; ) ; is the number of vectors of length
n+  — 1 starting ins;, ending ins; and satisfying(3, p)-
WW.L constraint, wheres; ands; are defined in Definitiof]5. Fig. 2. Labeled graphs presenting the (7,2)-WWL constraint
Therefore,Ag , is irreducible if such a vector of length > 1
exists such that it starts wity; and ends ins;, for every pair
of (i,7). Clearly it exists since adding zeros betwegnand Remark 2. According to Theorerl1, the capaci€y(«, 1, p)

s; gives such a valid vector. This proves the irreducibility o6 also upper bounded by the capacity of tfg p)-WWL
Ag p. m constraint,Cywwr (o, p). Jiang et al.[[16] proposed an upper
The next theorem is a special case of Theorem 3.97ih [18ound on the rate of afn, 1, 1)-constrained code with fixed
block lengthn and multiple cell levels. By numerical experi-
Theorem 2. The capacity of th€3, p)-WWL constraint is ments, we find that their upper bound appears to converge to
our upper bound for binary cells when— oc.

Cwwr(B,p) = 10gs(Anaz),

wherel,.... is the largest real eigenvalue 4f, ,,. IV. LOWERBOUND ON THE CAPACITY
In this section, we give lower bounds on the capacity of the
(«, B, p)-constraint based upon specific code constructions.
The first construction we give is a trivial one which achieves
rate 2. Then, we will show how to improve it for the cases
(1,8,p) and («, 1,p). In this section we assume that for all
positive integerse,y the value ofz(mody) belongs to the
group{1,...,y} via the correspondende— y.

The idea of Construction] 1 is to partition the setrotells
into subblocks of siz&. Suppose = 5(¢—1)+r, wherel <
g < aandl < r < B. The encoding process has a periodwof
writes. On the firsyy — 1 writes, all cells in each subblock are
programmed with no constraint. On tlgeth write, the firstr
cells in each subblock are programmed with no constraint and
the rest of the cells are not programmed (staying at level 0).
On the(q + 1)-st to thea-th write, no cells are programmed.
The details of the construction are as follows.

Proof: See Theorem 3.9 i [19].
Fig. [ showsCyww (3, p), which is the upper bound of
C(1,p,p), forp =1,2,3,4 respectively.

Cpyy (. P) (bits/cell)

0 5 10 15 20 25
B (or @ Construction1 Let «, 3, p be positive integers. We construct

an(«a, 8, p)-constrained codé of lengthn as follows. To sim-
plify the construction, we assume thh. Letq = [%W T =
p(modf). Foralli > 1, on thei-th write, the encoder uses the

Remark 1. There is a way of presenting thig, p)-WWL con- following rules:
straint using labeled graphs (state transition diagraM&. o If 1 <i(moda) < ¢, n bits are written to the cells.

Fig. 1. Upper bound oi'(1, 3, p)



o Ifi(moda) = g, rn/B bits are written in all cells; such encoding magwwr, : {1,..., M} — Cwwr and a decoding

thatl < j(modf) < r. map Dwwr : Cwwr — {1,..., M}, such that for alim €
e Ifi(mod«) > ¢, no information is written to the cells.  {1,..., M}, Dwwr(Ewwr(m)) = m.
The decoder is implemented in a very similar way. The problem of finding(3, p)-WWL codes that achieve

the capacityCywwr(8,p) is of independent interest and we

Example 2. Fig. [@ shows a typical writing sequence of ar@ddress it next. Covef ][9] provided an enumerative scheme
(o= 3,3 = 3,p = 2)-constrained code of length 15 based off calculate the lexicographic order of any sequence in the
Constructiori L. Thé-th row corresponds to the cell-state vecconstrained system. For the special casepof 1, corre-

tor before thei-th write. The cells in the box in theth row sponding to RLL block codes, Datta and McLaughlin![10],
are the only cells that can be programmed onitttewrite. It [11] proposed enumerative methods for bindr k)-RLL

can be seen that the rate of the code is the ratio between €réles based on permutation codes. Eérp)-WWL codes,

number of boxed cells and the total number of cells, which Y€ find enumerative encoding and decoding strategies with
2 linear complexity enumerating all3, p)-WWL vectors. We

9" . . ..
present the coding schemes and the complexity analysis in
Appendix[A. In the sequel, we will simply assume that there

0: 0 0 0 0 exist such codes with rat'e arbitrarily close to the capacity

1: 110010100000010 as the block length goes to infinity for all positive integers

2: 110010100000010 p and 8. The next construction us€s, p)-WWL codes to

3 | 1 1|0 |0 1 |0 |1 0 b|0 0|0 |O 1 |0 construct(1, 3, p)-constrained codes.

‘51: } gg } 88 i } 8 8 } g } i 8 Construction 2 Let 3, p be positive integers s/uch tfptg s.

6 |1 0|0 |1 0|O |1 1 p|0 1|0 |1 1|0 Let Cwwi be a(B,p)-WV\_/L code qf lengthn anc_i sizeM .

7. 000010 1001100710 LetEwwr andDWWL be its encoding and decoijmg maps. A

3. 000010100110010 (1,[3,.p)-const'ralned codé; 3 of lengthn = 2n’ + 5 — 1
and its encoding map and decoding map are constructed as
follows.

Fig. 3. A sequence of writes of @, 3, 2)-constrained code 1) Theencodingmag : {1,...,M} x {0,1}" — {0,1}"

is defined for allm,w) € {1,..., M} x {0,1}" to be
E((m,u)) = v, where

a) ’Ul/ = ull +5WWL(’ITL)

b) v P = =0,

Theorem 3. The codeC constructed in Constructidl is an
(a, B, p)-constrained code and its rateHs= a—”ﬂ.

n /41
Proof: We show that for alli > 1 and1 < j < n — c) vy, g = ul ,
S + 1, the rewrite cost of the cellg;, ¢j;1,...,cj15-1 over 2) The decoding map : {0,1}™ — {1,..., M} is defined
the writesi, i + 1,...,9+ o — 1, is at mostp. For all 0 < for allu € {0,1}" to be
k < o —1 such thatl < (i + k)(moda) < z, all of the 8
cells can be written and since there are 1 such values the D(u) = DWWL(v’f/ + v, 5).

rewrite cost on these writes is at mdst— 1)3. For k, such

that (i + k)(moda) = z, at mosty out of theses cells are Example 3. Here is an example of afv = 1,8 = 3,p = 2)
programmed and therefore the rewrite cost is at mobor all code withn’ = 4 for the first 4 writes. The message set has
other values oft no other cells are programmed. Thereforesize M,,, = 13 (See the definition ofl/,,, in Definition[7). The

the total rewrite cost is at most length of the memory i8n’+3—1 = 10. Suppose on the sec-
» ond write, the message ia = 7. Since lexicographically the
(—1)-B+y= ({B-‘ - 1) B+ (pmod 3) = p. seventh element i§,(3,2) is (0110), the encoder will copy

the previous left block1011) to the right block and flip the

The total number of bits written on thesewrites ispn/8  second and the third bits in the left blo¢k011) — (1101).
and hence the rate of the code is

00 0 O0|/0 0[O0 OO0 O

roP/B _p Istwrite m=11: 1 0 1 1|0 0|0 0 0 0O
an  af ondwrite m=7: 1 1 0 1|0 0|1 0 1 1
B 3dwite m=13: 0 0 0 0|0 0|1 1 0 1

Ath write m=4: 0 0 1 1|0 0{0 O 0 O

A. Space Constraint |mprovement
= P Theorem 4. The codeC, s, is a(1, 5, p)-constrained code. If

In this subsection, we improve the lower bound@(L, 5. 1) e rate of the cod@y 1, is Ry 1, then the rate of the code
over that offered by the trivial construction. L&}, (5, p) be Crpp IS o n' Rww .. Both the encoder and decoder of
the set of all(3,p)-WWL vectors of lengthn. We define a Cis Y have ngpleXIt}O( )

1,8,p

(8, p)-WWL code Cywr, of lengthn as a subset af,, (3, p).
If the size of the cod€y w1, is M, then it is specified by an Proof: Let u be the cell-state vector in Constructigh 2.



1) Foru?’, encoder step a) guarantees that the positionstbat the cell-state vector before théh write isc;, the encoder
rewritten cells satisfy(3, p)-WWL constraint. So there is a map

are at mosp reprogrammed cells in any consecutive
b reprog " E 12" x {0,1}" — {0,1}",

cells inuy .
2) Foruy, g, three consecutive writes should be exansuch that for all(m, ¢ ; ;) € [1: 2"%¢] x {0,1}",
ined. Letw, v, u be the cell-state vectors before thth, N ’n N
(i+1)-st, (i+2)-nd writes,i > 1. Encoder step a) means citig Seiy = Eilm, ey ),
thatot = wi +Ewwr(m:), wherem; € {1,..., M} where the relation«” is defined in Definitiori 7. The decoder
is the message to encode on kté write. Since encoder . R
step c) guarantees thaf,,, ; = w} andu, ; = v, D; - {0,1}" — [1:2"7%],
we haveug,Hj = vﬁ,+ﬁ+5WWL(mi). This proves that gatisfies
Upiig /satlsfles the1, 8, p) constraint. Di(Ei(m, ¢}y 1)) = m.
3) Foru!’,t7~", the cell levels are always set to be 0, which o
it ; gor all m € [1: 2],
ensures that no violation of the constraint happens _ ) _
tweenuy’ andul, . It has been shown in[15] that the sum-capacity ¢fverite
WOM IS Csum = 1Og2(t + 1).

On each write, one of\/ messages is encoded as a vector

of lengthn. Hence, the rate i — (log;,M Qn,fﬁfl) =

ﬁ/ﬁ_l “Rwwr.

The encode€ and decode® come directly fromEyry
and Dyww ., which have complexityO(n) both in time and
in space. Thereforef andD both have linear complexity in
time and in space. |

Corollary 1. Let 3, p be two positive integers such thak j3,

then }

Cwwrir(B,p) p

C(laﬂap)>max{ 9 75

The constructeda, 1, 1)-constrained code has a period of
2(t + «) writes. On the first writes of each period, the en-
coder simply writes the information using the encoding maps
of the ¢t-write WOM code. Then, on thét + 1)-st write no
information is written but all the cells are increased toelev
one. On the followingy — 1 writes no information is written
and the cells do not change their levels; that completes half
of the period. On the next writes the same WOM code is
again used; however since now all the cells are in level one,
the complement of the cell-state vector is written to the mem
ory on each write. On the next write no information is written
and the cells are reduced to level zero. In the dastl writes

no information is written and the cells do not change their

Corollary[d provides a lower bound that is achieved by pragalues. We present this construction now in detail.

tical coding schemes. In fact, following similar proofs i,
[7], [8], we can prove the following theorem using probaili
tic combinatorial tools[[3].

Theorem 5. Let 3, p be positive integers such that> p, then

C(1,8,p) = Cwwr(B,p),

whereCww (B, p) is the capacity of thégs, p)-WWL con-
straint.

Proof: See AppendixB.

B. Time Constraint I mprovement

Jiang et al. constructed in_[16] &w, 1, 1)-constrained code.

Let us explain their construction as it serves as the basis

our construction. Their construction uses Write-Once Mgmo
(WOM)-codes|[2R]. A WOM is a storage device consisting of

cells that can be used to store anyqo¥alues. In the binary

case, each cell can be irreversibly changed from state 0 to

state 1. We denote bjp, t; 2751 ... 278 a t-write WOM

codeCy  such that the number of messages that can be writ-
ten to the memory on its-th write is 2", and the sum-rate

of the WOM code is defined to b&sym = >;_, R;. The

Construction 3 Let o be a positive integer and 1€ be an
[n,t;2nFa 2B towrite WOM code. LetE;(m,v;_1) be
thei-th encoder oy, form € [1 : 2"] i € [1 : t]. An
(o, 1, 1)-constrained codé,, ; 1 is constructed as follows. For
alli > 1, leti’ = i(mod (2(t + «0))), wherel < i’ < 2(t + «).
The cell-state vector after thieth write is denoted by;. On the
i-th write, the encoder uses the following rules:

o Ifi' € [1: 1], write My € [1: 2] such that
ci = Ey(My,ci1).

o If i/ =t + 1, no information is written and the cell-state
vector is changed to the all-one vectori.e.,c; = 1.

o Ifi' € [t+ 2 : ¢+ ], no information is written and the

cell-state vector is not changed.

Ifi' € [t+a+1: 2t+a], write My, € [1: 2" —1—a]

such that

foe

ci=C—t—a(My_4—a,Ci_1).

If i/ = 2t + o + 1, no information is written and the cell-
State vector is changed to the all-zero vedigi.e.,c; =
0.

o Ifi! €2t +a+1:2(t+ «)], noinformation is written
and the cell-state vector is not changed.

sum-capacityCsym is defined as the supremum of achievable
sum-rates. The code is specified byairs of encoding and Remark 3. This construction is presented differently [n [16].

decoding maps(&;, D;), wherei € {1,2,...,t}. Assuming

This results from the constraint of having the same rate on



each write which we can bypass in this work. Consequently,e If i’ € [pt + 2 : a + t], no information is written and the
in our case we can have varying rates and thus the €gde, cell-state vector is not changed.
can achieve a higher rate.
Theorem 7.The cod&,, 1 ,, is an(a, 1, p)-constrained code. If
Theorem 6.The cod&,, 1 1 is an(«, 1, 1)-constrained code. If thet-write WOM codeCyy, is sum-rate optimal, then the rate of
thet-writle V\(/glg codeCyy is sum-rate optimal, then the rate oC,, ; ,, is ’”%ft“),
. log,
Cann 1855 Proof: This is similar to the proof of Theoref 6, so we
Proof: In every period oR(t+«) writes, every cell is pro- present here only a sketch of the proof. In every perioghof
grammed at most twice; once in the fits¢ 1 writes and once ¢) writes, each cell is rewritten at mogttimes. In particular,
in the first¢z 4 1 writes of the second part of the write-periodthe first rewrite happens before ttiet 1)-st write. After that,
After every sequence+ 1 writes, the cell is not programmedthe cell is rewritten at most — 1 times until the(¢p + 1)-st
for o—1 writes. Therefore the rewrite cost of every cell amongrite and then not programmed far+ ¢ — (tp + 1) writes.
« consecutive rewrites is at most Therefore, each cell is rewritten at mgstimes ona + t —
If the rate of the WOM cod€y is Ry then2nRy bits  (¢p+1) + (ip+ 1) —t = o writes. This proves the validity of
are written in every period df(t + «) writes. Hence, the rate the code.

of Co11 is ;Z‘fg)vn = %. If Cy is sum-rate optimal, the  If the rate of the WOM codé€yy is Ry thenpn Ry bits are
rate 0fCq.1 1 is thereforebgtz(til)' m Written during each period ef+¢ writes since the WOM code

) . . H 2pnR R
The next table shows the highest rates (f,1,1)- IS usedp times. Hence, the rate k.. is 2(17(;:-15‘;;1 =B

constrained codes based on Construdfion 3afef 4,...,8.  If that Cyy is sum-rate optimal, the rate 6f, 1 ,, is /%21,

a 4 5 6 7 8 u

1l 0.25 | 0.2 | 0.167| 0.143| 0.125 . .
rate ofC, 1, | 0.290| 0.256] 0.235] 0.216| 0.201 Remallrk 4, Ir1 Constructior ¥ we required that > (p - 1)t
’ and, in particular < p%l f > LJ we can simply

Next, we would like to. extend Constructiéh 3 in or_der t%se Constructiohl4 while taking = (p — 1)t, i.e., the period
construct(c, 1, p)-constrained codes for all > 2. For sim- : .

L X . ; of writes is nowpt and and we construct &p — 1)t, 1, p)-
plicity of the construction, we will assume thatis an even ; o .
: i : e . constrained code, which is also &m, 1, p)-constrained code.
integer; and the required modification for odd value9 fill . )

. . The rate of the code &y, /t, where Ry, is the rate of the

be immediately clear. We choose= 1 such thaix > (p—1)t WOM codec
and the period of the code is + ¢. On the firstt writes of we
each period, the encoder uses the encoding map afwrée The next corollary provides lower bounds 6fa;, 1, p).
WOM code. In the following writes, it uses the bit-wise com-
plement of a WOM code as in Constructidn 3. This procedu@orollary 2. Leta, p be positive integer such that< «. Then,
is repeated fof times; this completes the firgh writes in the {plogz(t +1) logy(t* +1) B}

eriod. On the(t 1)-st write, no new information is writ- C(a,1,p) > , ,
P e(p+ ) (a p)/t,gpg%+, o+t t* o

ten and the cell-state vector is changed to the all-zerocovect
During the (tp 4+ 2)-nd to (a + t)-th writes, no information Where

is written and the cell-state vector is not changed. That-com 1<t< {%J A= {Lw _
p—

pletes one period ofc + ¢ writes. p—1
Construction 4 Let «, p,t be positive integers such that >

(p — 1)t. Let Cy be an[n,t; 2" .. 2nF] t-write WOM
code. Foii € [1 : t], let€;(m,v;_1) be its encoding map on the
i-th write, wheren € [1 : 2"%]. An (a, 1, p)-constrained code
Ca,1,p Is constructed as follows. For all> 1, leti’ = i(mod
(a+t)),¢" =i'( mod 2t) wherel < i’ < (a+t),1 <"’ < 2t.
The cell-state vector after thieth write is denoted by;. On the
i-th write, the encoder uses the following rules:

o Ifi’ € [1:pt]andi” € [1 : t], write M;» € [1 : 2"8i]
such that

R (bits/cell)

ci = Ep (M, ci1).

o Ifi' € [1:pt]andi” € [t + 1 : 2t], write M;_, € [1 :

R,L//,
2" t] such that Fig. 4. Lower bound orC(a, 1, p)

ci = Ein_(Min_¢,€Ci—1). Figure[4 shows the rates ¢f, 3 = 1, p) constrained codes

« If i’ = pt 4+ 1, no information is written and the cell-stateobtained by selecting the besfor each pair of «, p). In com-
vector is changed 0, i.e.,c; = 0. parison to the codes in Constructioh 1 whose rates are shown



by the dashed lines, our construction approximately daubleherez;(n) is the number of 8, p)-WWL vectors of length
the rates. Our lower bounds achieve approximal8f§ of the n that have the vectos; as a prefix, wherec” denotes the
corresponding upper bounds 6f{a, 1, p). transpose ofe.

Lemma 2. The vectorses p 11, n = (3, satisfy the first-order

. . . . . . recursion:
In this section, we are interested in combining the improve-

ments in time and in space to provide lower bounds on the
capacity of(«, 3, p)-constraints.

C. Time-Space Constraint |mprovement

T pnt1 = App Tapn-

Proof: See [25]. [ |

The encoder and decoder have access to a maAtgix ,, €

z("Mamrwhere thei-th row of X, is al =

C(a,1,p) C(1,5,p) 1,...,77 + . For simplicity, X g, , is written as X ?f no

3 ) o } confusion can occur. We denote By(i,j) the entry in the

i-th row andj-th column of X and we defineX (7, :), X (:, j)

Proof: An («, 8, p)-constrained code can be constructetb be thei-th row vector, j-th column vector of X, re-

in two ways. spectively, i.e., X (i,:) = (X(i,1),...,X(i,Ms_1)) and

1) Let C be a (1,8, p)-constrained code of rat& and X(:,j) = (X(1,5),...,X(n + 3,j))". From LemmalR,
length n. We construct a new cod€ with the same Xg,» Can be calculated efficiently with time complexity

number of cells. New information is written to theO(n).

memory on alki-th writes, wheré = 1(mod ), simply 1) Decoder: Based onXg ,,,,, we present an enumerative

by using the[ £ ]-th write of the codeC. Then, the code method to calculate the order of each elementSir(5, p).
Note that the order of a vector is the decoded message corre-

Theorem 8. For all«, 3, p positive integers,

C(o, B,p) = maX{

C' is an(a, B, p)-constrained code and its rate &y c.

2)

Therefore, we conclude th&t(«, 5, p) > M.
Let C be an(«, 1, p)-constrained code of rat® and
length n. We construct a new codé’ for ng cells:

sponding to that vector. In this algorithm, the decoder scan
the vector from left to right. Whenever the decoder finds a 1
in the vector, the order of the vector will increase. The ifeta

(c1,¢2,...,¢np). The codeC’ uses the same encodingOf the algorithm are presented below. Here- (c1,...,¢,) €
and decoding maps of the code while using only Sn(3,p) is the binary vector to be decoded; the algorithm cal-
the n cells ¢; such thati = 1(modj). Then, the code culateso(c) € {1,..., Mp,}.

C" is an(a, 3, p)-constrained code and its rate &/ j5.

Therefore, we conclude that(c, 3, p) > W Algorithm 1 DECODING: CALCULATE o(c), ¢ € S,.(83,p)

The capacity must be greater than or equal to the maximum®: fétent =0,j =1,i =0;
of the two lower bounds. [ | 2:  while (i <n){

3. while(j <nande(j) # 1)

APPENDIXA 4 j=j41;

In this section, we show an enumerative encoding and de-5: if(j=n+1)
coding strategy with linear complexity for the set @f, p)- 6 o(e) = ent + 1;
WWL vectors. ' ) '

7 algorithm ends;
Definition 7. LetX = {x1,..., .y} be a set of distinct binary 8 }

vectorsz; € {0,1}",i=1,...,N. Lety(x) denote the deci- 9: /*A 1 is detected ire.”/
mal representation of a vectore {0,1}". Forx,y € {0,1}", 10: letd = (0,...,0) with lengthf — 1;

we sayz = y (orz < y)ifandonly if(x) < ¥(y) (0r  13:/¢q is a vector storing: — 2 bits to the left of the detected
Y(x) < 4(y)). Theorderof the element; in X is defined as: 4 appended with a 0.%/

ord(:vi):‘{j::vjjwi,lgjgN}’. 12: if(j=>p-1)
. B8—-2 _ j—1 .
Let {ci1,...,ca,} be an ordering of the elements in 13: letd; ™ = ¢j 512
14: else/*j < g —1%

Sn(8,p), whereM,, = |S,(8,p)|- The encoder and decoder

of a (3,p)-WWL code give a one-to-one mapping be- 15: letd) % =c] ™",

tvx;]eens,z(ﬂ,)p) and {1,. -O-lan}, rgam)eWEWMEL(T)n) =C¢m  16.  findk € [1: Ms_,] such thas, = d;
where o(c,,) = m and Dywwr(c,n) = olen) = m, . . o B .
for all m = {1,...,M,}. Now the problem is to calcu- L7 ?ntfcth_—X(n JH+B =Lk
late o(c,,) given ¢,,. Let si,...,sx, , be the ordering 18 i=jij=i+L
of the vectors inSg, introduced in Definition[b, where 19: }
Mgp_1 = [Sp,| = [Ss-1(B,p)| = 227 ('8;1)- Let 20: o(c)=cnt+1;

Tspn = (z1(n), 22(n), ..., 20, , (n))7, 21: algorithm ends.



Example 4. Suppose we would like to decode(@, 3)-WWL
vectore = (1011001001) of length 10.

o A 1 is detected(1011001001), wherei = 0,5 = 1.
The decoder aims to find the number of vectars
such that(0000000000) < ¢ < (1000000000). Now
d = (00000) = 81, sok =1,andn —j+ 8 — 1 = 14.
Thereforeent = 0 + X 3,16(14, 1) = 236.

A 1 is detected(1011001001), wherei = 1,57 = 3.
The decoder aims to find the number of vectars
such that(1000000000) < ¢ < (1010000000). Here
d = (00100) = s5, S0k =5, andn —j+ 5 —1 = 12.
Therefore,ent = 236 + X6 3,16(12,5) = 308.

A 1 is detected(1011001001), wherei = 3,5 = 4.
The decoder aims to find the number of vectars
such that(1001000000) < ¢ =< (1011000000). Here
d = (01010) = 811, sok =11, andn—j+ 5 —1=11.
Therefore,ent = 308 + X 3,16(11,11) = 343.

A 1 is detected(1011001001), wherei = 4,5 = 7.
The decoder aims to find the number of vectdrs
such that(1011000000) < ¢ =< (1011001000). Here
d = (11000) = s23, SOk =23, andn—j+ 3 —1=38.
Therefore,ent = 343 + X6.3,16(8, 23) = 351.

Finally, a 1 is detected1011001001), wherei = 7,j =
10. The decoder aims to find the number of vectérs
such that(1011001000) < ¢ < (1011001001). Hered =
(01000) = sg, sok =9, andn—j+3—1 = 5. Therefore,
cnt = 351 + X6,3,16(5, 9) = 352.

We calculate thab(c) = ent + 1 = 353 andc is decoded as
353.

Theorem 9. Algorithm[ calculates the order of(, p)-WWL

the length and the firgy; digits of ¢, the number of possible
can be calculated based on the mafXixin the following way.
Since the(g, p)-WWL constraint is local, ifj; > § — 1, the
task is equivalent to calculating the numberéofvith length
n — j; + 3 — 1 such that the firsg — 1 digits are a prefix of
¢, in particular,éﬁa_1 = é;.LmQ; otherwise, forj; < 8—1, it
is equivalent to calculating the number éfwith lengthn —
ji + —1 such that the first — 1 digits are zeros followed by
lengthsj; prefix of ¢, that is,é” ' = (05_;_,,,&l"). Lines 10
— 15 in Algorithm[d find the firs3 — 1 digits of ¢ and Lines
16 and 17 calculate the number @fwhich is the number of
vectorse satisfyinge;_; < ¢ < ¢;. Therefore, Algorithni 1L
calculatesN (¢;—1,¢;) for i € {1,...,L} and sums them up
to derive the order ot.

Time complexity analysis. It can be seen from the algo-

rithm that the decoder scans the vector that is to be decoded
only once. Whenever the decoder detects a 1, it uses binary

searches to find the corresponding prefix veatan X, while
the number of 1's is no more tha¥¥. Therefore, the time
complexity of the decoder is no more ﬂ(a(%p log Mg_1) =
O(%1og>1_, ("71)) = O(n), where andp are fixed in-
tegers and not related to.

Joace complexity analysis. The space complexity comes
from the matrixX with n+ 8 — 1 rows andMgz_; columns.
Therefore, the space complexity is aléqn) since 5 and
Mpg_; are both fixed integers. [ |

2) Encoder: The encoder follows a similar approach to
map an integem € {1,...,M,} to a vectorc € S,,(53,p),
such thato(c) = m. We call ¢ the encoded vector for the
messagen. Note thatvm,,m; € {1,...,M,},m; < m; if
and only if ¢; < ¢j, whereo(c;) = m; ando(e;) = m,.

vector of lengthn in S,,(3,p). Its time complexity and spaceThe following encoding algorithm uses the matiX to effi-

complexity are botld(n).

Proof:

Correctness: Let ¢ be the vector to decode; that is, we see/K

to find ord(c). Fore; =< ¢o, we denote byV(cy, ¢2) the num-
ber of vectorsc such thatc; < ¢ < ¢s. Letey,...,cr, be a
sequence of vectors such that= ¢y < ¢; < e < -+ =
¢y, = c; then it is easy to see

L
o(c) = ZN(ci_l,ci) +1.
i=1

Let L be the number of 1's ir; let all the indices of 1's be
j1,742,---,jr in ascending order, that i< j; < --- < jr <
nandc;, =¢j, =---=¢;, =1. Forie {1,...,L}, ¢; is
chosen such that; = ¢;—; + 4, wherecy = 0, andé;, j €

{1,...,n}, denotes the vector where all entries are 0 except
for the j-th entry, which is a 1. Here addition is component-

wise modulo-2 summation.

Lines 3 and 4 together with Line 18 in Algorithioh 1 scan
and finde; according toc;_;. Therefore, we are left to prove
that Algorithm[1 calculateV(c; 1, c;) fori e {1,...,L}.

By definition, the firstj; — 1 digits of ¢; and¢;_; are the
same, and; ;, = 1 while ¢;_; ; = 0. Then a vectore €
{0,1}" satisfiesc,_; < ¢ < ¢; if and only if the firstj; digits
of ¢ are the same as those ef 1, i.e. &' = ¢/' ;. Given

ciently calculate the vectat € S,,(3,p) such thato(c) = m,
for m € {1,..., M, }. The algorithm has linear complexity.

Igorithm 2 ENCODING: FIND ¢ SUCH THATo(c) = m
letent = 0,¢ = (0, ...,0) with lengthn;

fori=1,2,...,n{
lett = ¢;
lett(i) =1;
if t satisfieq 3, p)-WWL constraint{
letq = (0,...,0) with lengthg — 1;
/*q is a vector storing — 2 bits to the left of (i) int, appended
with a 0.*/

if(i>6-1)
B—2 _ 4i—1 .
letg! ™" = t 5o

else/*i < B — 1%

letq—; =t7";
findk € [1: Mg_1] such thas;, = q.
letCntTry =cnt+ X(n—1+ 06— 1,k);
if (CntTry +1=m) {

c=1t;

returnc; algorithm ends;

}



if (CntTry+1<m){
lete(i) = 1;
letent = CntTry;
}
t
}

Example 5. Suppose we would like to encode one idf, =
421 (B8 = 6,p = 3)-WWL vectors of lengthn = 10. The
message to be encodedris= 353.

« ¢ = (0000000000), i = 1, ¢ = (1000000000),
g = (00000) = s1, so k = 1. Sincecnt = 0,
CntTry=cnt+X(n—i+8—-1,k) =236 <m—1,
SO setent = 236.

« ¢ = (1000000000), i = 2, ¢ = (1100000000),
g = (00010) = s3, SOk = 3. ComputeCntTry = cnt +
X(n—i+B—1,k) =236+ X(13,3) =355 >m — 1.

e ¢ = (1000000000), « = 3, t = (1010000000),
g = (00100) = s5, SOk = 5. ComputeCntTry = cnt +
X(n—i+B—1,k)=236+X(12,5) =308 <m —1,
so setent = 308.

« ¢ = (1010000000), i = 4, t = (1011000000),

= (01010) = s11, S0 k = 11. ComputeCntTry =
ent+X(n—i+p—1,k) =308+ X(11,11) =343 <
m — 1, so setent = 343.

« ¢ = (1011000000), i = 5, t = (1011100000) does not
satisfy (6, 3)-WWL constraint.

» ¢ = (1011000000), i = 6, t = (1011010000) does not
satisfy (6, 3)-WWL constraint.

e ¢ = (1011000000), « = 7, t = (1011001000),
g = (11000) = s923, S0 k = 23. ComputeCntTry =
ent+X(n—i+08—1,k) =343+ X(8,23) =351 <
m — 1, SO setent = 351.

e ¢ = (1011001000), i = 8, t = (1011001100) does not
satisfy (6, 3)-WWL constraint.

« ¢ = (1011001000), i = 9, ¢ = (1011001010),
g = (00100) = s5, s0o k = 5. ComputeCntTry =
ent+X (n—i+p—1,k) = 3514+ X(6,5) = 353 > m—1.

« ¢ = (1011001000), i = 10, ¢ = (1011001001), q =
(01000) = sg, so k = 9. ComputeCntTry = cnt +
X(n—i+pB—1,k)=351+X(59) =352 =m— 1.
Therefore,c =t = (1011001001) ando(c) = 353.

Theorem 10.Algorithm2encodes a messagec {1,..., M,}
to a(8, p)-WWL vectore € S,,(8, p) such thab(c) = m, and
its time complexity and space complexity are boin).

Proof:

10

entry. Then it uses binary search to find the corresponding
prefix vector in X, while the number of 1's is no more than
"” . Therefore, the complexity of the encoder is no more that
Plog Mp_1) = O(“F log 37, (?71)) = O(n), wherep

andﬁﬂ are fixed numbers

Foace complexity analysis: The matrix X is the primary
contributor to the space complexity. As is shown in the proof
of Theorenl®, the space complexity is al9¢n). [ |

Note that Algorithni2 and Algorithrl1 establish a one-to-
one mapping betweefl, ..., M,} and S, (53, p). Therefore
the rate of the encoder is maximized. If the blocklength goes
to infinity, the rate of the encoder approacti@s . (5, p).

APPENDIXB

In this section, we present the proof of TheorEm 5. The
reason for which the proof of Theordm 5 is non-trivial is the
following. Suppose the cell-level vector is updated from;
to ¢; on thei-th write. The encoder has full knowledge of
c;—1 and¢; since we assume there is no noise in the updat-
ing procedure. The decoder is required to recayet c; 1
with full knowledge ofe; but zero knowledge o€; ;. This
is similar to the work on memories with defects lin [6], where
the most interesting scenario is when the defect locatioas a
available to the encoder but not to the decoder. In genéral, i
can be modeled as a channel with staiés [1] where the side
information on states is only available to the encoder.

Proof: First we introduce some definitions. Recall that
Sn(8, p) is defined as the set B, p)-WWL vectors of length
n. S,(8,p) will be written asS for short if no confusion
about the parameters can occur. &t = {0,1}" be then-
dimensional binary vector space.

Definition 8. For a vector: € V,, and a seS C V,,, we define
S+x = {s+x|s € S} and denote it bip(x). We call vectors
in S(x) reachableby x and we sa)5(x) is centeredatx.

For two subset$,, Bo C V,,, we defineB; + B = {by +
ba|by € B1,bs € Bo}. We call a subseB C V,, S-goodif

S+B=|]JSb) =V,
beB

i.e.,V, is covered by the the union of translatesSotentered
at vectors inB.

Lemma3.If B C V, is S-good, thert + B is S-good,vt €
Vi

Lemmad.If B C V, isS-good, thervx € V,,, 3b € B,3s €
S, such thate + s = b.

Correctness. The proof of the correctness of the encoder is
similar to the proof of the correctness of the decoder. There Lemmal4 guarantees that B C V,, is anS-good subset,

fore, we omit the details.

then from any cell-state vectar, there exists &3, p)-WWL

Time complexity analysis. It can be seen from the algo-vectors, such thatc+s € B. We skip the proofs of Lemnid 3
rithm that the encoder scans the vector from left to righteonand[3, referring the reader to similar results and their fsroo
and tries to set each entry to 1. Whenever the encoder sat§7].
an entry to 1, it first determines whether the constraint is sa

isfied. This takesD(1) steps since we do not have to checkemmab5.If Gy, ...,

Gy are pairwise disjoin§-good subsets

the entire vector but only th& bits to the left of the set of V,,, then there exists @, /3, p)-constrained code of sizd .



In particular, ifG is anS-good(n, k) linear code, then there
exists &1, 3, p)-constrained code with ral!é‘—’C

Proof: If G, is S-good for alli € [1 : M], then from
Lemmd3, for anye € V,, andi € [1 : M], there exisy, € G;
ands; € S, such thate + s; = g,. Suppose the current cell-
state vector ise, then we can encode the message[l : M|
as a vectolf (i,z) = « + s; € G;, for somes; € S. The
decoder uses the mappii(x) = i, if * € G;, to give an
estimate ofi € [1 : M]. This yields a(1, 3, p)-constrained
code of sizel.

If G1,...,Gqn-r represent the cosets of aigood (n, k)
linear code G, then each coset isS-good according to

Lemmal3B. The rate of the resultir{d, 3, p)-constrained code

‘o log, (277 -
is ng(n ) = nk, [ ]

Now we are ready to prove Theorémh 5.

Let B; be a randomly chosefn, j) linear code with2’
codewords By = {0}), and letmp, = |V,,/(B; + S)| be
the number of vectors not reachable from any vectoBin
Let z € V,, be a randomly chosen vector and (g, be the
probability thatx ¢ B; + S. Then we have

mp, =2"Qp,.

11

result in an overestimate of the averagg®i, NSk,

> > Lizesy, .}

zcVy mGSB

Y > Lpeesy, )

mGSB zeV,

> 2

mGSBj z€m+SBj

Z N,

a:ESBj
= N3,

wherel 4 is the indicator function of the event, i.e., 14 =1
if A is true andl 4 = 0 otherwise.

Equality @ holds since, for a fixedt, if z € = +Sp,, then
x € Sp, , and vice versa. Equalitg) holds S|ncq:c+SB | =
|SB;| = NB Thus, the average value ¢f5, N S .| is
2~ "NQj Since the minimum ofSs; NSy, .| cannot exceed
this average, we conclude that there exists V,,, such that
|Sp; NSk, .| < N3, Then there exists;,1, such that

Np,,, >2Np, —2"Nj .

|- Then

Z |SBj N ng,z| =

zeV,

[

I

Thus,

The proof of the following lemma is based upon ideas dis-

cussed in[[4, pp. 201-202].

Lemma 6. There exists a linear codg; such that

2J
QB]‘ < QB()

Proof: Let B; = {y,,...,y,;} denote an(n, j) linear

code. If

SBj = B; + S,

then

@B

where Np, = |Sp,|.

Let z ¢ B; and letB,,, . be the(n,j + 1) linear code
formed by (z + B;) U B;. It can be seerB;; . comprises
the 27 vectors inB; plus 2/ new vectors of the fornz + y,
y € Bj. Let

,=1-2""Ng,,

SEj,z = Z—I—SBj

QB =1-27"Np,,
<1-2""(2Np, —27"Np )
=(1-2""Ng,)?
= Q2B]

It follows that there existd3;, such thatQ) p, [ |

i
< Q%,

Lemma7.If j > n—log|S|+ logn, then there existB; such

thathj < 1.

Proof: Note thatQp, =1—-2"" - Np, <
Then there exists3;, such that

1-277-18).

QBJ X Q
<@1-278)*
< (1 . 2_n|8|)2n710g\8\+10gn
= (1—27s]PIer
<e <27

Thenmp, =2"Qp, < 1. [ |
Sincemp, is an integer andh g, < 1, there exists an, j)
linear codeB; such thatmp, = 0, i.e., anS§-good B; exists.

It can be seen thaﬂgjyz has the same cardinality &gs,. According to Lemmdls, there exists a sequencélofs, p)-

Therefore, it containsV, vectors, too, some of which mayconstrained codes of lengthand rateR,, (1, 3, p) such that
already belong t&'s, . SinceSp = 5B, Ung,z, we have

it+1,z

— (n—log|S| +1
sup R, (1,8,p) > lim n — (n — log|S] +logn)

Np,.,.=2Ng —|Ss, NSs .| " e "

Bj+1.z B; — |8, ijz‘ I log|S| —logn

= im —
Thus Np,, ., is maximized by choosing that minimizes "—>°°1 Sn
|SB, QSEMJ- — lim log |S]

Let us now calculate the average |6fz. N S5 | over all nmee N

idered sin | = Cww(5.p)
z € V,. Here allz € B, are also considered since they will WWL\P,P)-



We have seen in Theorelh 1 th@t1, 3,p) < Cwwr(53,p).
This concludes the proof th&t(1, 8,p) = Cww_r(8,p) W
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