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Non-asymptotic Upper Bounds for Deletion
Correcting Codes

Ankur A. Kulkarni Negar Kiyavash

Abstract—Explicit non-asymptotic upper bounds on the
sizes of multiple-deletion correcting codes are presented. In
particular, the largest single-deletion correcting code for q-
ary alphabet and string length n is shown to be of size at
most qn−q

(q−1)(n−1)
. An improved bound on the asymptotic rate

function is obtained as a corollary. Upper bounds are also
derived on sizes of codes for a constrained source that does
not necessarily comprise of all strings of a particular length,
and this idea is demonstrated by application to sets of run-
length limited strings.

The problem of finding the largest deletion correcting code
is modeled as a matching problem on a hypergraph. This
problem is formulated as an integer linear program. The
upper bound is obtained by the construction of a feasible
point for the dual of the linear programming relaxation of
this integer linear program.

The non-asymptotic bounds derived imply the known
asymptotic bounds of Levenshtein and Tenengolts and im-
prove on known non-asymptotic bounds. Numerical results
support the conjecture that in the binary case, the Varshamov-
Tenengolts codes are the largest single-deletion correcting
codes.

Index Terms—Deletion channel, multiple-deletion correct-
ing codes, single-deletion correcting codes, non-asymptotic
bounds, hypergraphs, integer linear programming, linear
programming relaxation, Varshamov-Tenengolts codes.

I. INTRODUCTION

A deletion channel is a communication channel that takes
a string of symbols as its input and transmits only a subset
of the input symbols leaving the order of the symbols
unchanged. Symbols that are not transmitted constitute the
errors in the channel and are called deletions. A deletion
channel is distinct from the widely studied erasure channel
wherein the positions of the errors are known. This paper
mainly concerns deletion channels where the maximum
number of deletions, denoted s, is fixed.

A codebook or a deletion correcting code for the deletion
channel is a set C of input strings, no two of which on
transmission through the channel can result in the same
output. For a string x, call the set of strings obtained by
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deletion of s symbols from x, the s-deletion set of x. An
s-deletion correcting code is thus a set of input strings with
pairwise disjoint s-deletions sets.

To explain our contribution, consider the case where
s = 1 (the single-deletion channel). An open problem
pertaining to this channel is the determination of the size of
the largest or optimal codebook C = C∗n, for input strings
comprising of all strings of length n [1]. The classical
bound of Levenshtein [2] provides one benchmark for
optimality. For the case of binary strings, Levenshtein [2]
showed that the size |C∗n| of an optimal codebook for the
single-deletion channel is asymptotically at most 2n

n . It is
important to note here the sense in which this asymptoticity
is being defined. A function f : N → R is said to
be asymptotically less than or equal to another function
g : N → R, written f . g, if limn→∞

f(n)
g(n) ≤ 1. f is

said to be asymptotically equal to g, written f ∼ g, if
f . g and g . f . Thus Levenshtein’s result says that
limn→∞

|C∗n|
2n/n ≤ 1. Levenshtein then constructs a codebook

of size at least 2n

n+1 , thereby proving 2n

n . |C∗n|, and hence
concludes that the optimal codebook C∗n has size asymptot-
ically equal to 2n

n , i.e. C∗n satisfies limn→∞
|C∗n|
2n/n = 1.

If the function g is bounded, the asymptotic equality
f ∼ g implies equality of the limiting values of f(n) and
g(n) or their near-equality for sufficiently large n. However
since g(n) = 2n/n is unbounded, Levenshtein’s asymptotic
results do not allow one to obtain a fine approximation
to |C∗n|, or conclude if for a particular n, |C∗n| is greater
or less than 2n

n , or even conclude the boundedness or
unboundedness of the difference ||C∗n| − 2n

n |. Indeed, the
best known codes for the binary version of this channel,
the Varshamov-Tenengolts (VT) codes [3], are of size at
least 2n

n+1 for input length n. Although this sequence is
asymptotically equal to 2n

n (and recently verified by exact
search to be optimal for string lengths n ≤ 10 [4]), the
difference 2n

n −
2n

n+1 grows to infinity.
In other words, for this problem, asymptotic optimality

of a codebook does not say much about its optimality per
se. The challenges noted above continue to hold (and are
perhaps more severe) for larger alphabet and larger number
of deletions. For the case of multiple deletions, asymptotic
bounds exist, thanks to Levenshtein [2] for binary alphabet,
but little is known about the quality of these bounds, since
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no matching lower bounds exist. A more useful bound for
any such channel would be a non-asymptotic upper bound
that also implies known asymptotic bounds. Such a bound
can serve as a hard bound on the size of a codebook for any
string length and help in assessing the quality of specific
code constructions. Such non-asymptotic upper bounds are
the subject of this paper.

We derive explicit non-asymptotic upper bounds on the
sizes of codebooks for any number of deletions s and any
alphabet size q. These bounds imply the known asymptotic
bounds of Levenshtein [2] and generalize them to larger
alphabet. For the case of a single deletion we obtain this
bound in closed form. We show that for string length
n, an optimal q-ary single-deletion codebook has size at
most qn−q

(q−1)(n−1) . This implies the asymptotic upper bound
of qn

(q−1)n shown by Tenengolts [5]. In the binary case,
together with the size of the VT codes (which effectively
provide non-asymptotic lower bounds), our upper bound
2n−2
n−1 implies Levenshtein’s asymptotic results.

From these bounds we derive an upper bound on the
asymptotic rate function. For a channel where the number
of deletions is a constant fraction of string length, this
function gives the asymptotic value of the rate of the largest
deletion correcting code, as a function of the fraction of
symbols that are deleted. This bound on the rate function
improves on the previous bound shown by Levenshtein [6].

We then extend this methodology to derive bounds on
deletion correcting codes for constrained sources. These are
codebooks for a specific set of strings, i.e., not necessarily
the set of all strings of a particular length. Recording
systems such as magnetic tapes impose physical constraints
on the patterns that symbols can take in codewords [7]. If
such a code is subsequently transmitted through a deletion
channel, the codewords can be thought of as a constrained
source. As a specific demonstration of this idea, we derive
non-asymptotic upper bounds on sizes of codebooks for
run-length limited sources for the single-deletion channel.

The bounds are obtained as follows. We characterize the
largest codebook for the deletion channel as a maximum
matching on a suitably defined hypergraph. The problem
of finding a maximum matching is written as a 0-1 integer
linear program. The fractional matching on this hypergraph
is the solution of the linear programming relaxation of this
integer linear program, and its value is an upper bound on
the size of the maximum matching. Our upper bound is
obtained by constructing a feasible solution for the dual
of this linear program. For the single-deletion channel the
construction is such that it allows for the calculation of the
dual objective in closed form as qn−q

(q−1)(n−1) . Unfortunately,
for larger number of deletions, due to the complicated na-
ture of the resulting expressions, we are unable to produce
closed form expressions.

Computations on a computer reveal that for the binary
single-deletion channel the optimal fractional matching size
is quite close to the size of the VT codes. For strings of
length up to 14, the difference between the size of the VT
codes and the optimal fractional matching is at most 8;
this indicates that the VT codes are either optimal or very
close to being optimal (at least up to string length 14).
On a side note, the hypergraph approach also appears to
be more amenable to algorithmic approaches due to its
compact representation; this aspect of this paper may be
of independent interest.

A. Related work

A wide-ranging survey on various results and challenges
associated with deletion correction and its variants was
recently presented by Mercier et al. [8]. Sloane’s survey [1]
deals specifically with the binary single-deletion channel
and illuminates several deep open questions pertaining to
the VT codes. Here we recall some highlights from this
area of work.

The study of the deletion channel has a long history
going back at least to the seminal work of Levenshtein [2]
wherein asymptotic bounds on the sizes of optimal binary
codebooks were derived. For s deletions and binary input
strings, Levenshtein [2] showed that the largest codebook
C∗2,s,n for string length n satisfies the asymptotic relations

2s(s!)22n

n2s
. |C∗2,s,n| .

s!2n

ns
. (1)

Levenshtein [2] also noticed that the Varshamov-Tenengolts
codes [3], which were proposed for asymmetric error
correction, served as asymptotically optimal codes for the
binary single-deletion channel; these remain to date the
best known codes and have recently been confirmed to be
optimal for string length up to 10. An independent line of
study on this topic appears to have been contemporaneously
pursued by Ullman [9], [10].

Thereafter there have been many efforts at code construc-
tion. An attempt at generalizing the VT codes for the binary
multiple-deletion channel was made by Helberg and Fer-
reira [11]; that this generalization indeed corrects deletion
errors was recently shown by Abdel-Ghaffar et al. [12].
For non-binary alphabet this problem was first studied
by Calabi and Harnett [13] and Tanaka and Kasai [14].
Later Tenengolts proposed a construction similar to the
VT codes for the q-ary single-deletion channel and showed
that the optimal codebook for string length n, C∗q,1,n, is
of size at least qn

qn and satisfies the asymptotic upper
bound |C∗q,1,n| .

qn

(q−1)n [5]. Interestingly, no asymptotic
bounds for q-ary s-deletion correcting codes appear to have
been explicitly articulated, though Levenshtein’s original
proof from [2] seems extendable to q-ary strings. The VT
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codes are number-theoretic and the underlying number-
theoretic logic was generalized to correct larger number
of asymmetric errors by Varshamov [15].

Butenko et al. attempted to find codes algorithmically
by casting this problem as a maximum independent set
problem on a class of graphs [16]. Schulman and Zuck-
erman considered a construction that is in part algorithmic
and showed the existence of ‘asymptotically good’ codes
for deletions whose number increases proportionally to the
length of the string [17]. More recently, the algorithmic
approach has been pursued by Khajouei et al. [18] and
a graph coloring based approach was studied by Cullina
et al. [19]. Finding codes for the deletion channel, either
algorithmically or through a number-theoretic construction,
is a considerable challenge, as evidenced by the attempts at
achieving the records for largest codebooks on the webpage
maintained by Sloane [4].

Deletion errors have also been studied for run-length lim-
ited sources – which we consider in this paper as a example
of a constrained source – by Roth and Siegel [20], Hilden et
al. [21] and Bours [22], amongst others. However in these
works, the deletion errors considered have a specific pattern
and do not exactly correspond to the deletion channel we
consider. Exceptions to this are the recent works of Cheng
et al. [23] and Palunčić et al. [24] which consider codes
for run-length limited sources for the deletion channel in
its full generality.

The topic of deletion errors has spawned research on
related questions, such as the existence of ‘perfect codes’
(Levenshtein [25]), and the combinatorial problems of
counting subsequences (e.g., Hirschberg and Regnier [26],
Swart and Ferreira [27], Mercier et al. [28] and more
recently, Liron and Langberg [29]) and the reconstruction of
sequences (Levenshtein [30], [31]). Another body of active
ongoing research studies the capacity of the deletion chan-
nel (e.g., Mitzenmacher [32], Kanoria and Montanari [33],
and Diggavi et al. [34]).

The question of non-asymptotic upper bounds, which is
our interest, is comparatively less studied. One may scan
Levenshtein’s proof of the asymptotic bound from [2] to
see if a non-asymptotic bound has been found in it as
an intermediate step. For the single deletion channel, the
bound so discovered (see Sloane’s proof [1, Theorem 2.5])
is greater than 2n

n−2
√
n logn

(for binary alphabet) which is
clearly weaker than our bound. In fact, Levenshtein [6] has
presented a somewhat more general bound on the size of a
q-ary s-deletion correcting code:

|C∗q,s,n| ≤
qn−s∑s

i=0

(
r−s+1

i

) + q

r−1∑
i=0

(
n− 1

i

)
(q − 1)i, (2)

where r is any integer satisfying 1 ≤ s ≤ r + 1 ≤ n. It is
not clear which value of r provides the strongest bound
of these (although a heuristic argument using Stirling’s

approximation suggests that r ≈ n
2 should be optimal in the

binary single-deletion case; this is essentially Levenshtein’s
original argument [2]). We have found via numerical cal-
culation that the strongest of the bounds in (2) is weaker
than our bound. Additionally, our bound in the single-
deletion case also has the attractiveness of being in closed
form. Levenshtein in another paper derives another non-
asymptotic bound for the size of a q-ary single-deletion
codebook [25, Theorem 5.1],

|C∗q,1,n| ≤
qn−1 + (n− 2)qn−2 + q

n
, (3)

but this bound is asymptotically much weaker than Tenen-
golts’ asymptotic bound of qn

(q−1)n (their ratio grows to
infinity; our bound implies Tenengolts’ asymptotic bound).
Sloane’s website [4] contains several numerical bounds
found by calculating the Lovász ϑ [35] on certain graphs.
But unlike our bounds, there are no expressions (closed
form or otherwise) for these bounds.

The scarcity of non-asymptotic upper bounds is perhaps
due to the property that deletion sets of distinct strings can
have distinct sizes. This point has also been stressed by
Sloane [1, Section “Optimality”]: “It is more difficult to
obtain upper bounds for deletion-correcting codes than for
conventional error-correcting codes, since the disjoint balls
De(u) (deletion sets) associated with the codewords ... do
not all have the same size. Furthermore the metric space
(Fn2 , d)1 is not an association scheme and so there is no
obvious linear programming bound.” In the light of this
comment it is interesting that our non-asymptotic bound is
obtained from a linear programming argument, and it relies
critically on the sizes of the deletion sets.

B. Organization

This paper is organized as follows. Section II comprises
of preliminaries including, notation, problem definition,
background on hypergraphs and the derivation of lemmas
that are of use in our analysis. Section III contains the
hypergraph characterization of the optimal codebook and
the derivation of the upper bounds for single-deletion
correcting codes. In Section IV we extend the analysis to
obtain bounds on codes for larger number of deletions and
derive a bound on the asymptotic rate function. In Section
V, we derive bounds on codebooks for constrained sources,
in particular, for run-length limited sources. Numerical
simulations comparing the values of Levenshtein’s bound
from (2), our bound, the tightest bound obtainable by our
logic, and the best known codes are presented in Section VI.
In Section VII we discuss our results and possible avenues
for tightening our bound and conclude the paper.

1d is the Levenshtein or edit distance, cf. Definition 2.4.



4

II. PRELIMINARIES

Let Fq = {0, 1, . . . , q−1} be a q-ary alphabet and let Fnq
denote the set of all q-ary sequences of length n. Any such
q-ary sequence is called a string. We let F∗q =

⋃∞
n=0 Fnq

denote set of all strings; here F0
q denotes the empty string.

Let x = x1 . . . xn be a string. A subsequence of x is formed
by taking a subset of the symbols of x and aligning them
without altering their order. In other words, a subsequence
of x is a sequence y = xi1 . . . xik , where 1 ≤ k ≤ n and
the indices satisfy 1 ≤ i1 < . . . < ik ≤ n; x is called a
supersequence of y. We say that y is obtained from x by
the deletion of n− k symbols and x is obtained from y by
the insertion of n− k symbols.

A specific type of subsequence that is important for our
results is a run, defined below.

Definition 2.1: Let x = x1 . . . xn ∈ Fnq be a string. A
run of x is a maximal contiguous subsequence with identi-
cal symbols, i.e. a run of x is a sequence xixi+1 . . . xi+j ,
1 ≤ i ≤ i+j ≤ n with the property that xi = xi+1 = . . . =
xi+j and the properties that, a) if 1 < i then xi−1 6= xi,
and b) if i+ j < n, then xi+j 6= xi+j+1. For any x ∈ F∗q ,
r(x) denotes the number of runs of x.
For example if q = 3 and x = 120010, the runs of x
are 1, 2, 00, 1, 0 and r(x) = 5. Clearly for any x ∈ Fnq ,
1 ≤ r(x) ≤ n.

Definition 2.2: For any string x ∈ F∗q , the set of subse-
quences of x obtained by deletion of s symbols is denoted
by Ds(x) and set of supersequences obtained by insertion
of s symbols into x is denoted by Is(x). We call Ds(x)
and Is(x) the s-deletion set of x and s-insertion set of x,
respectively.
For example if q = 3, s = 1 and x = 120010, then
D1(x) = {20010, 10010, 12010, 12000, 12001}. Notice
that subsequences obtained by the deletion of a symbol
from the same run of x are all identical. For example, in the
run 00, deletion of either 0 results in the same subsequence
12010. Consequently we have the following relation [25],

|D1(x)| = r(x), ∀x ∈ F∗q . (4)

For s > 1, expressions for |Ds(x)| get increasingly compli-
cated, and depend on statistics of x other than the number of
runs (see, e.g., [28] for one set of expressions). We discuss
bounds on |Ds(·)| later in Section IV.

Surprisingly, the size of Is(x) is independent of x, but
is a function only of the length of x and the size of the
alphabet [36, Lemma 1, p. 354]. Specifically, we have

|Is(x)| =

s∑
j=0

(
n

j

)
(q − 1)j ∀ x ∈ Fn−sq . (5)

We denote this quantity by ιq,s,n,

ιq,s,n ,
s∑
j=0

(
n

j

)
(q − 1)j . (6)

As a general rule, instead of using ‘1-deletion’ or ‘1-
insertion’ (correcting code, set,. . .), we use the more elegant
‘single-deletion’ (correcting code, set, . . .) etc.

The central object of our interest, namely, a deletion
correcting code is defined below.

Definition 2.3: A s-deletion correcting code (or “s-
deletion codebook”) for string length n and alphabet Fq is
a set C ⊆ Fnq with the property that the sets Ds(x), x ∈ C,
are pairwise disjoint. The largest such code is denoted by
C∗q,s,n and called an optimal s-deletion correcting code or
optimal s-deletion codebook.

A code capable of correcting s deletions is also capable
of correcting a total of s insertions and deletions [2],
whereby an s-deletion correcting code is also a s-insertion
correcting code (i.e., a set C ⊆ Fnq such that the sets
Is(x), x ∈ C, are pairwise disjoint) [2]. Another charac-
terization of single-deletion correcting codes is through the
Levenshtein distance.

Definition 2.4: For any x, y ∈ F∗q define the Levenshtein
distance or edit distance d(x, y) as minimum number of
insertions or deletions required to obtain x from y.
A set C ⊆ Fnq is a s-deletion correcting code if and only
if d(x, y) > 2s for any two distinct strings x, y ∈ C. In
summary, we have the following equivalence [2].

Lemma 2.1: For any x, y ∈ Fnq , the following three
statements are equivalent.

1) d(x, y) ≤ 2s,
2) Ds(x) ∩Ds(y) 6= ∅,
3) Is(x) ∩ Is(y) 6= ∅.

The following lemma, although not directly related to
deletion correction, will be required for our analysis.

Lemma 2.2: Let n, k, d ∈ N, k ≤ n, dk ≤ n and let
t1, . . . , tk be variables taking values in N. The number of
solutions (t1, . . . , tk) to the set of equations

k∑
i=1

ti = n, ti ≥ d, ti ∈ N,∀ 1 ≤ i ≤ n, (7)

is
(
n−k(d−1)−1

k−1

)
.

Proof: First suppose d = 1. Consider an array of n
1’s and insert k− 1 0’s between the 1’s, so that no two 0’s
are inserted next to each other and no 0’s are inserted at
the beginning or the end of the array. There is a one-to-one
correspondence between an arrangement of this kind and
a solution of (7): ti, for 1 < i < k, corresponds to the
number of 1’s between the (i− 1)th 0 and ith 0 and t1, tk
are the number of 1’s at the beginning and the end of the
array. The number of such arrangements is easily seen to
be
(
n−1
k−1

)
.

Now suppose d > 1. Notice that the system (7) is
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equivalent to the system

k∑
i=1

(ti − (d− 1)) = n− k(d− 1),

(ti − (d− 1)) ≥ 1, ti − (d− 1) ∈ N,∀ 1 ≤ i ≤ n.

This system reduces to the earlier case with d = 1, but with
variables t′i = ti − (d − 1), for i = 1, . . . , k. The number
of solutions in this case is

(
n−k(d−1)−1

k−1

)
.

A. Background on hypergraphs

The contents of this section are sourced from Berge [37].
A hypergraph is a generalization of the concept of

a graph. In a graph edges are pairs of vertices. In a
hypergraph, one allows arbitrary nonempty sets of vertices,
including those with exactly one element, to be the so-
called hyperedges. Formally,

Definition 2.5: A hypergraph H is a tuple (X, E), where
X is a finite set and E is a collection of nonempty subsets
of X such that

⋃
E∈E E = X . X is called the vertex set,

its elements are called vertices and the elements of E are
called hyperedges.
When a vertex belongs to a hyperedge, we say it is covered
by the hyperedge. The above definition assumes that the
hypergraph contains no exposed vertex, i.e., a vertex that
is covered by no hyperedge. This is a matter of convention;
other definitions, e.g. [38], do not impose this requirement.

Let E = {E1, . . . , Em} be the set of hyperedges
of the hypergraph H = (X, E). For a set of indices
J ⊆ {1, . . . ,m}, the partial hypergraph generated by J
is HJ = (XJ , {Ej |j ∈ J}), where XJ =

⋃
j∈J Ej .

Hyperedges are defined as sets and as such one can talk
of intersection of hyperedges. Specifically, two hyperedges
are disjoint if there is no vertex that is covered by both
hyperedges. The idea of packing neighborhoods or spheres
used in coding theory sits naturally in the theory of hyper-
graphs. A packing of hyperedges is called a matching.

Definition 2.6: A matching of a hypergraph H = (X, E)
is a collection of pairwise disjoint hyperedges E1, . . . , Ej ∈
E . The matching number of H, denoted ν(H), is the largest
j for which such a matching exists.
A dual concept (in a sense we make precise below) of a
matching is a transversal.

Definition 2.7: A transversal of a hypergraph H =
(X, E) is a subset T ⊂ X that intersects every hyperedge
in E . The transversal number of H, denoted τ(H), is the
smallest size of a transversal.

Suppose H = (X, E) is a hypergraph with n vertices
x1, . . . , xn and m hyperedges E1, . . . , Em. Consider a
matrix A ∈ {0, 1}n×m, where the element in the ith row

and jth column is

A[i, j] =

{
1 if xi ∈ Ej ,
0 otherwise.

A is called the incidence matrix of H. The matching
number and the transversal number are both solutions of
integer linear programs. In the rest of this paper, we refer
to problem (8) below as the matching problem and (9) as
the transversal problem on hypergraph H.

Lemma 2.3: The matching number and transversal num-
ber are solutions of integer linear programs:

ν(H) = max{1>z| Az ≤ 1, zj ∈ {0, 1}, 1 ≤ j ≤ m},
(8)

τ(H) = min{1>w|A>w ≥ 1, wi ∈ {0, 1}, 1 ≤ i ≤ n},
(9)

where 1 denotes a column vector of all 1’s of appropriate
dimension.

Proof: In the integer linear programming formulation
of the matching problem, each hyperedge Ej ∈ E cor-
responds to a variable zj ∈ {0, 1} and z is the vector
(z1, . . . , zm). The variable zj is interpreted as the indicator
function that identifies if hyperedge Ej is a part of the
matching represented by z. Thus zj = 1 if Ej is selected,
and zj = 0 otherwise. The matching problem has one
constraint for each vertex: for a vertex xi, the sum of zj
over those hyperedges j that cover vertex xi is at most 1;
hence, at most one of these zj takes value 1. Consequently,
a vector z is feasible for the matching problem if and only if
the collection {Ej : zj = 1} is a matching of H. It follows
that the matching number of H is the optimal value of (8).

By a similar construction, in the integer linear program-
ming formulation of the transversal problem, let each vertex
xi ∈ X correspond to a variable wi ∈ {0, 1} and let
w = (w1, . . . , wn). The variable wi = 1 if and only
if vertex xi is included in the transversal represented by
w. The transversal problem has one constraint for each
hyperedge which says that for a hyperedge Ej , the sum of
wi over those vertices i that are covered by Ej is at least
1, whereby at least one of these wi takes value 1. There is
thus a one-to-one correspondence between a transversal of
H and a feasible vector w for (9). The transversal number
is thus characterized by (9).

Notice that the mathematical programs in (8) and (9) are
duals of each other. A fundamental theorem of integer linear
programming states that a pair of dual programs satisfy
weak duality. Weak duality means that of the pair of dual
problems, the value of the maximization problem is no
greater than the value of the minimization problem [39].
Applied to (8)-(9), this implies, for any hypergraph H,

ν(H) ≤ τ(H). (10)
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We note a technical point about problems (8)-(9) that
helps in simplifying our analysis. Notice that the constraint
zj ∈ {0, 1} in (8) and the constraint wi ∈ {0, 1} in (9)
may as well be replaced with the constraints zj ∈ Z+ and
wi ∈ Z+, respectively, where Z+ is the set of nonnegative
integers, to give the following equivalent characterizations
for ν(H) and τ(H)

ν(H) = max{1>z| Az ≤ 1, zj ∈ Z+, 1 ≤ j ≤ m}, (11)

τ(H) = min{1>w|A>w ≥ 1, wi ∈ Z+, 1 ≤ i ≤ n}.
(12)

To see the equivalence between (8) and (11), notice that no
vector z ∈ Zm+ satisfying Az ≤ 1 can have a component
greater than 1. And in (9), observe that no minimizing w ∈
Zn+ of (12) can have a component greater than 1. From
now on, we consider only the formulations (11)-(12). Note
that sources such as Berge [37] omit the above analysis and
directly employ (11)-(12) to define ν(H) and τ(H).

The linear programming relaxation of an integer program
is constructed by replacing the requirement that a variable
takes only integral values by a requirement that allows the
variable to also take any real value between the integral
values (i.e., in the convex hull of the integral values) [39].
By ν∗(H) and τ∗(H) we denote the values of the linear
programming relaxations of (11) and (12), respectively. i.e.,

ν∗(H) = max{1>z| Az ≤ 1, z ≥ 0}, (13)

τ∗(H) = min{1>w|A>w ≥ 1, w ≥ 0}, (14)

where for simplicity, we denote a vector of zeros of
appropriate size also by ‘0’. ν∗(H) and τ∗(H) are called
the fractional matching number and fractional transversal
number of H. A vector z feasible for (13) is called a
fractional matching and the set {z : Az ≤ 1, z ≥ 0} is
called the fractional matching polytope of H. A vector
w feasible for (14) is called a fractional transversal and
the set {w : A>w ≥ 1, w ≥ 0} is called the fractional
transversal polytope. 1>z and 1>w are called the weights
of z and w. ν∗(H) and τ∗(H) being linear programs satisfy
the fundamental property of strong duality [39], i.e.,

ν∗(H) = τ∗(H).

Thus for any hypergraph the fractional matching number
and the fractional transversal number are equal. In general,
integer programs do not satisfy strong duality and thereby
equality may not hold in (10). Equality or lack thereof in
(10) depends on the shape of the fractional matching and
fractional transversal polytopes. On a side note, we recall
that linear programming relaxations have been employed in
the decoding of binary linear codes by Feldman et al. [40].

Fractional matchings and transversals do not have as
direct a counting interpretation as the vectors feasible for
(8)-(9). However they are extremely useful for obtaining

bounds. Since the feasible regions of the integer programs
are strictly contained in the feasible regions of their of
the linear programming relaxations, we immediately have
ν(H) ≤ ν∗(H) and τ∗(H) ≤ τ(H). Furthermore, we have
the following lemma.

Lemma 2.4: For any hypergraph H, we have

ν(H) ≤ ν∗(H) = τ∗(H) ≤ τ(H).

In particular,

ν(H) ≤ τ∗(H) ≤ 1>w,

for any fractional transversal w.
Proof: Since fractional matchings and transversal

problems are relaxations of the matching and transversal
problem, ν(H) ≤ ν∗(H) and τ∗(H) ≤ τ(H). By the
duality theorem of linear programming ν∗(H) and τ∗(H)
are equal. By definition, any fractional transversal w must
have weight no less than the fractional transversal number,
by which the last claim follows.

We end this survey with one final concept, that of a line
graph.

Definition 2.8: A line graph of a hypergraph H =
(X, E) is a graph L(H) with vertices given by the hyper-
edges of H and two vertices in L(H) are joined by an edge
if they intersect as hyperedges in H.
An independent set of a graph is a set of vertices, no two
of which share an edge. For a graph G we denote the size
of its largest independent set, or its independence number,
by α(G). Now consider a hypergraph H. An independent
set of its line graph L(H) corresponds to a collection of
hyperedges of H that are pairwise disjoint. Consequently,

ν(H) = α(L(H)), (15)

i.e., the matching number of a hypergraph equals the
independence number of its line graph.

III. NON-ASYMPTOTIC UPPER BOUNDS FOR
SINGLE-DELETION CORRECTING CODES

A. Hypergraph characterization

The contents of this subsection apply to any s number of
deletions. We will specialize to single-deletions and present
our bounds in the following subsection.

Consider the following hypergraphs.

HD
q,s,n = (Fn−sq , {Ds(x)|x ∈ Fnq }),
HI
q,s,n = (Fn+s

q , {Is(x)|x ∈ Fnq }).

In each of these hypergraphs, hyperedges correspond to
strings in Fnq and the vertices are strings in Fn−sq and
Fn+s
q for HD

q,s,n and HI
q,s,n, respectively. By Definition

2.3, an s-deletion correcting code in Fnq corresponds to
disjoint hyperedges in HD

q,s,n and therefore corresponds to
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a matching in HD
q,s,n. The size of the largest codebook

for string length n, |C∗q,s,n| is thus equal to ν(HD
q,s,n),

the matching number of HD
q,s,n. The matching problem for

HD
q,s,n when written explicitly, is as follows,

|C∗q,s,n| = maximize
z

∑
y∈Fnq

z(y)

subject to
∑
y∈Is(x) z(y) ≤ 1, ∀x ∈ Fn−sq ,

z(y) ∈ Z+, ∀y ∈ Fnq .

Here the integer variables are denoted z(y), y ∈ Fnq . The
constraints are that for each vertex x ∈ Fn−sq , the sum of
z(y) over those y for which the hyperedge corresponding
to y covers x (i.e., y ∈ Is(x)) is at most unity. Since a
code is an s-deletion correcting code if and only if it is
an s-insertion correcting code, a matching of HI

q,s,n also
corresponds to a s-deletion correcting code and thereby,
ν(HI

q,s,n) = |C∗q,s,n|.
Another characterization of the optimal codebook

adopted in [19], [18], [1] employs the following graph.
Definition 3.1: Let Lq,s,n be the graph with vertex set

Fnq wherein two vertices are adjacent if their Levenshtein
distance is at most 2s.
The optimal s-deletion codebook corresponds to the max-
imum independent set in this graph. The Levenshtein
distance (restricted to Fnq × Fnq ) is the shortest path metric
on the graph Lq,1,n. The hypergraph characterization relates
to this characterization through the concept of a line graph.
Specifically,

Lemma 3.1: For any q, s, n ∈ N, the graph Lq,s,n is the
line graph of hypergraph HD

q,s,n and of hypergraph HI
q,s,n.

Consequently,

ν(HD
q,s,n) = α(Lq,s,n) = |C∗q,s,n|,

ν(HI
q,s,n) = α(Lq,s,n) = |C∗q,s,n|.

Proof: By the Definition 2.4 of Levenshtein distance
and by Lemma 2.1, two vertices in Lq,s,n share an edge if
and only if their s-deletion (and s-insertion) sets intersect.
Consequently, Lq,s,n = L(HD

q,s,n) = L(HI
q,s,n). By (15),

the matching numbers of HD
q,s,n and HI

q,s,n are both equal
to the independence number of Lq,s,n.

If one attempts to upper bound the size of a code by
packing graph Lq,s,n with non-overlapping neighborhoods
centered around strings in Fnq , the main difficulty encoun-
tered is that the resulting neighborhoods are not of the
same size. This property of the Levenshtein distance is a
fundamental departure from, say, the Hamming distance
under which the sizes of the neighborhoods are same for
every string.

Alternatively, one may pack Fn−sq with deletion sets of
strings in Fnq . This approach too encounters the difficulty
that deletion sets are of different sizes. For example for

s = 1, if one argues that

|C∗q,1,n| min
x∈Fnq

|D1(x)| ≤
∑

x∈C∗q,1,n

|D1(x)| ≤ qn−1,

since minx∈Fnq |D1(x)| = 1, one gets the bound |C∗q,1,n| ≤
qn−1 which is far weaker than the asymptotic bound (the
ratio qn−1

qn/n(q−1) approaches infinity for large n). A similar
situation results for s > 1. Levenshtein’s bound (2) is
obtained by a refinement of this approach in which strings
are classified in two categories based on their number of
runs.

Since insertion-correction and deletion-correction are
equivalent, and since insertion sets are of the same size
for each string of a given length (cf., (5)), one may exploit
this to pack Fn+s

q with insertion sets. Unfortunately, this
leads to a weak upper bound. For example, for s = 1 we
get the bound qn+1

n(q−1)+q , which is asymptotically q times

larger than the known upper bound (this bound is 2n+1

n+1 for
binary alphabet and the asymptotic size is 2n

n ).
The approaches of packing deletion sets or insertion sets

can be conceptually unified by casting them as matching
problems on hypergraphs HD

q,s,n and HI
q,s,n, respectively.

Since insertion sets are of the same size, hypergraph HI
q,s,n

is uniform [37]; indeed the matching problem is well
studied on uniform hypergraphs (see e.g., [37, Chapter
3],[41] and [42]). It is a quirk of the problem of deletion-
correcting codes that although the characterization of C∗q,s,n
via HI

q,s,n is analytically convenient and well studied, it
leads to a weak bound.

The other hypergraph HD
q,s,n is regular, since all vertices

in HD
q,s,n have the same number of hyperedges covering

them [37]. Although this hypergraph does not belong to
a category where the matching problem appears to be
well studied, we show in the following sections that,
if appropriately tackled, it does lead to a better bound.
The crux of the proof of our bound lies in tackling this
hypergraph.

B. The non-asymptotic upper bounds for single-deletion
correcting codes

In this section we present bounds on single-deletion
correcting codes. The bounds we obtain are based on two
concepts. The first is a monotonicity relationship between
the number of runs of a string (recall Definition 2.1) under
the operation of insertion. The second is the property that
the size of the deletion set is also equal to the number of
runs (cf. (4)). We first note the monotonicity.

Lemma 3.2: Let q, n ∈ N and let x ∈ F∗q be a string.
Then for any supersequence y ∈ I1(x), the number of runs
of x and y satisfy r(x) ≤ r(y).
This lemma is quite obvious; we omit the proof for brevity.
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Our proof utilizes Lemma 2.4; for easy reference the
fractional transversal problem of HD

q,1,n is written below
explicitly.

τ∗(HD
q,1,n) = minimize

w

∑
x∈Fn−1

q
w(x)

subject to
∑
x∈D1(y) w(x) ≥ 1, ∀y ∈ Fnq ,

w(x) ≥ 0, ∀x ∈ Fn−1
q .

Notice that the variables are w(x), x ∈ Fn−1
q and the

constraint is that for any y ∈ Fnq , the sum of w(x) over
those x that are covered by the hyperedge corresponding
to y (i.e., x ∈ D1(y)), is at least unity.

Theorem 3.1: Let q, n ∈ N, q ≥ 2, n ≥ 2. The optimal
q-ary single-deletion correction code C∗q,1,n satisfies

|C∗q,1,n| ≤
qn − q

(q − 1)(n− 1)
.

Proof: By Lemma 3.1, the size of the largest single-
deletion correcting code equals the matching number of
hypergraph HD

q,1,n, i.e., ν(HD
q,1,n) = |C∗q,1,n|. By Lemma

2.4, to show the required upper bound on ν(HD
q,1,n) it

suffices to construct a fractional transversal of HD
q,1,n

with weight equal to qn−q
(q−1)(n−1) . To this end, consider

the fractional transversal w, where the component of w
corresponding to string x ∈ Fn−1

q , denoted w(x), is given
by

w(x) =
1

r(x)
, ∀ x ∈ Fn−1

q ,

where r(x) is the number of runs of x. Clearly, w ≥ 0. To
show that w is indeed a fractional transversal, observe that
for any y ∈ Fnq ,

∑
x∈D1(y)

w(x) =
∑

x∈D1(y)

1

r(x)

(a)

≥ |D1(y)|
r(y)

(b)
= 1.

The inequality in (a) follows from monotonicity relation-
ship claimed in Lemma 3.2 and the equality in (b) follows
from the size of the deletion set, given in (4). It only
remains to calculate the weight of this transversal. For this,
note that the number of strings of length n−1 with exactly
r runs is q(q − 1)r−1 ×

(
n−2
r−1

)
. This is because, we have

q choices for the symbol of the first run and for every
subsequent run we have q − 1 choices for its symbol. The
number of choices for the lengths of the runs equals the
number of integral solutions (t1, . . . , tr) to

r∑
i=1

ti = n− 1, ti ≥ 1, 1 ≤ i ≤ r,

which, by Lemma 2.2, is
(
n−2
r−1

)
. Consequently, the weight

of w is∑
x∈Fn−1

q

w(x) =

n−1∑
r=1

q(q − 1)r−1

(
n− 2

r − 1

)
.
1

r

= q

n−1∑
r=1

(n− 2)!

(n− r − 1)!(r − 1)!
.
1

r
.(q − 1)r−1

(c)
=

q

(q − 1)(n− 1)

n−1∑
r=1

(
n− 1

r

)
(q − 1)r

=
q
(
(1 + (q − 1))n−1 −

(
n−1

0

))
(q − 1)(n− 1)

=
qn − q

(q − 1)(n− 1)
.

In (c), we have simplified (n−2)!
(n−r−1)!(r−1)! .

1
r =

1
n−1

(n−1)!
(n−r−1)!r! . By Lemma 2.4, qn−q

(q−1)(n−1) is an upper
bound on |C∗q,1,n|.

Although this bound is non-asymptotic, as a corollary we
get the asymptotic results of Levenshtein [2] and Tenengolts
[5].

Corollary 3.2: The optimal single-deletion correcting
code for binary alphabet has size that asymptotically satis-
fies

|C∗2,1,n| ∼
2n

n
.

The optimal single-deletion correcting code for q-ary al-
phabet satisfies

|C∗q,1,n| .
qn

(q − 1)n
.

Proof: For binary alphabet, Levenshtein [2] shows that
the VT codes correct single deletions. These codes are of
size at least 2n

n+1 , whereby |C∗2,1,n| ≥ 2n

n+1 . Combining this
with Theorem 3.1 shows that

2n

n+ 1
≤ |C∗2,1,n| ≤

2n − 2

n− 1
.

Thus
|C∗2,1,n|
2n/n

n→ 1. For the q-ary case, since by Theorem

3.1, |C∗q,1,n| ≤
qn−q

(q−1)(n−1) , limn→∞
|C∗q,1,n|

qn/n(q−1) ≤ 1.

IV. NON-ASYMPTOTIC UPPER BOUNDS FOR
MULTIPLE-DELETION CORRECTING CODES AND THE

ASYMPTOTIC RATE FUNCTION

We now extend the logic used in the bound above to
channels with multiple deletions.

And as we did in the single-deletion case, we will use the
hypergraph HD

q,s,n to obtain our bound. The key property
employed in the proof of Theorem 3.1 was that the number
of runs of a string increases under the insertion of a symbol.
This is in fact a specific consequence of a more general
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property shown by Hirschberg and Regnier [26, Lemma
3.1]: for any s, the size of the s-deletion set of a string
increases under the insertion of a symbol. This result is
articulated in the following lemma. Here if x = x1x2 . . . xn
and y = y1y2 . . . ym are q-ary strings, ‘xy’ denotes the
string x1x2 . . . xny1y2 . . . ym.

Lemma 4.1: Let s ∈ N. For any strings x, y ∈ F∗q and
any symbol σ ∈ Fq , |Ds(xy)| ≤ |Ds(xσy)|.

The original result from [26, Lemma 3.1] seems to
pertain to nonempty strings x, y; this is apparent from their
proof. However the extension to the case where one of x, y
is empty is trivial and we have included it in the above
statement. The consequence is that, in this lemma, σ can
be thought of as a symbol inserted into an existing string
xy. A recursive application of Lemma 4.1 then immediately
yields that for any s and any string x ∈ Fnq ,

|Ds(x)| ≤ |Ds(y)|, ∀ y ∈ Is(x). (16)

Looking back at the size of the single-deletion set from (4),
one sees that the monotonicity relationship of Lemma 3.2
is a special case of (16).

We now exploit (16) to give an upper bound on the
size of an s-deletion correcting code for arbitrary s. The
proof utilizes, as before, the fractional transversal problem
of HD

q,s,n.

τ∗(HD
q,s,n) = minimize

w

∑
x∈Fn−sq

w(x)

subject to
∑
x∈Ds(y) w(x) ≥ 1, ∀y ∈ Fnq ,

w(x) ≥ 0, ∀x ∈ Fn−sq .

Theorem 4.1: Let s, q, n ∈ N such that n > s, q ≥ 2.
The optimal s-deletion correcting code C∗q,s,n satisfies

|C∗q,s,n| ≤
∑

x∈Fn−sq

1

|Ds(x)|
. (17)

Proof: We construct a fractional transversal for HD
q,s,n.

Consider the candidate fractional transversal w, such that
for any x ∈ Fn−sq , w(x) = 1

|Ds(x)| . Obviously, w ≥ 0.
Furthermore, for any y ∈ Fnq ,∑

x∈Ds(y)

w(x) =
∑

x∈Ds(y)

1

|Ds(x)|
(a)

≥ 1,

where (a) follows from the monotonicity relation (16).
Thus w is indeed a fractional transversal of HD

q,s,n. Now
by Lemma 2.4, the weight of w is an upper bound on
ν(HD

q,s,n) = |C∗q,s,n|, whereby the result follows.
In order to derive explicit bounds, we now discuss the

sizes of s-deletion sets. For s ≤ 5, Mercier et al. [28,
Section III.D] give closed form formulae for the size of s-
deletion sets, which unlike in the single-deletion case, have
quite a complicated form. Closed form expressions for 2-
deletion sets for binary alphabet are also given by Swart and

Ferreira [27] and Sloane [1]. The only results on deletion
sets valid for arbitrary s are bounds. For all x ∈ Fnq , the s-
deletion set of x admits the following lower bound, shown
recently by Liron and Langberg [29, Theorem VI.2]. For
any s < n and any string x ∈ Fnq with 2 < r(x) ≤ n,

|Ds(x)| ≥ δ(r(x), s) +

min(s−2,r(x)−3)∑
i=s+r(x)−n−1

δ(r(x)− 2, i)

(18)

where δ(r, s) ,


∑s
i=0

(
r−s
i

)
, r > s ≥ 0,

1, s = r ≥ 0,

0, s < 0 or s > r.

(19)

Notice that this bound on |Ds(·)| is always positive.
Additionally it is an improvement on previous bounds of
Levenshtein [25] and Hirschberg and Regnier [26].

By using the explicit formulae (e.g., [28], [27], [1]) for
the sizes of s-deletion sets in (17), one may obtain explicit
upper bounds on |C∗q,s,n|, for s ≤ 5. For general s, we
derive an upper bound on the right hand side of (17) by
combining Theorem 4.1 with the lower bound in (18). Note
that the explicit formulae will yield tighter bounds than the
one below.

Corollary 4.2: Let s, q, n ∈ N, q ≥ 2, n > 2s. The
optimal s-deletion correcting code C∗q,s,n satisfies

|C∗q,s,n| ≤ Uq,s,n,

where

Uq,s,n ,
n−s∑
r=3

q(q − 1)r−1
(
n−s−1
r−1

)
δ(r, s) +

∑min(s−2,r−3)
i=s+r−(n−s)−1 δ(r − 2, i)

+

2∑
r=1

q(q − 1)r−1

(
n− s− 1

r − 1

)
, (20)

and δ(·, ·) is as defined in (19).
Proof: By Theorem 4.1, we have

|C∗q,s,n| ≤
∑

x∈Fn−sq :r(x)≥3

1

|Ds(x)|
+

∑
x∈Fn−sq :r(x)<3

1

|Ds(x)|
.

For n−s > s and strings x ∈ Fn−sq such that r(x) ≥ 3, the
bound in (18) applies; furthermore, notice that for such x,
the bound in (18) is strictly positive. So using (18) in the
equation above, the first sum can be upper-bounded and
the resulting bound is the first term in (20). The second
sum in the equation above admits the trivial upper bound
|{x ∈ Fn−sq |r(x) ≤ 2}|, which is the second term in (20).
Hence the bound.

One of the aims of this paper was to produce non-
asymptotic upper bounds that imply known asymptotic
bounds. We now show that the bound Uq,s,n meets this
purpose. Our main result is that Uq,s,n (and the expression
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∑
x∈Fn−sq

1
|Ds(x)| ) implies the previous results of Leven-

shtein [2] stated in (1) for q = 2, and generalizes these
results to q-ary alphabet.

In order to do this, we first show a lower bound on (the
upper bound) Uq,s,n. For this we recall an upper bound
on sizes of deletion sets due to Levenshtein [25]: for any
n, q ∈ N,

|Ds(x)| ≤
(
r(x) + s− 1

s

)
, ∀x ∈ Fnq . (21)

Lemma 4.2: Let q, s, n ∈ N, n > 2s, q ≥ 2. The upper
bound Uq,s,n satisfies the lower bound

Uq,s,n ≥
∑

x∈Fn−sq

1

|Ds(x)|
≥
qn − q

∑s−1
r=0(q − 1)r

(
n−1
r

)
(q − 1)s

(
n−1
s

) .

Proof: The first inequality on the left follows from the
proof of Corollary 4.2. To show the second inequality, use
the upper bound on |Ds(·)| from (21), to get that the sum∑
x∈Fn−sq

1
|Ds(x)| is no less than

∑
x∈Fn−sq

1(
r(x)+s−1

s

) =

n−s∑
r=1

q(q − 1)r−1
(
n−s−1
r−1

)(
r+s−1
s

)
(a)
=

q

(q − 1)s
(
n−1
s

) n−s∑
r=1

(q − 1)r+s−1

(
n− 1

r + s− 1

)
,

=
qn − q

∑s−1
r=0(q − 1)r

(
n−1
r

)
(q − 1)s

(
n−1
s

) .

In (a) we have used that (n−s−1
r−1 )

(r+s−1
s )

=
( n−1
r+s−1)
(n−1
s )

. This proves
the claim.
Notice that the above calculations are a generalization of
our proof of the bound on single-deletion correcting codes
in Theorem 3.1.

We now prove the asymptotics of Uq,s,n by deriving a
matching asymptotic upper bound.

Theorem 4.3: Let q, s ∈ N, q ≥ 2. The upper bound on
s-deletion correcting codes Uq,s,n satisfies

Uq,s,n ∼
∑

x∈Fn−sq

1

|Ds(x)|
∼ s!qn

(q − 1)sns
,

as n→∞. Consequently, as n→∞,

|C∗q,s,n| .
s!qn

(q − 1)sns
.

Proof: Thanks to Lemma 4.2, to prove the first set of
asymptotics, it suffices to show that Uq,s,n . s!qn

(q−1)sns as
n→∞.

Fix r′ ∈ N, 1 ≤ s ≤ r′ ≤ n − s. We first claim that
Uq,s,n satisfies

Uq,s,n ≤
n−s∑
r=r′

q(q − 1)r−1
(
n−s−1
r−1

)
δ(r′, s)

+

r′−1∑
r=1

q(q − 1)r−1

(
n− s− 1

r − 1

)
. (22)

To see this, use (19) to conclude

δ(r, s) +

min(s−2,r−3)∑
i=s+r−(n−s)−1

δ(r − 2, i) ≥ δ(r, s) ≥ δ(r′, s),

for any r ≥ r′, and thus bound the terms in (20) cor-
responding to r ≥ r′. For terms corresponding to r < r′,
employ the trivial bound δ(·, ·) ≥ 1. Eq (22) further implies

Uq,s,n ≤
qn−s

δ(r′, s)
+

r′−1∑
r=1

q(q − 1)r−1

(
n− s− 1

r − 1

)
. (23)

Consider a binomial distribution with parameters (n−s−1)
and q−1

q . The Chernoff bound on the cumulative binomial
distribution implies that for r′ − 1 < q−1

q (n − s − 1), the

sum
∑r′−1
r=1 q(q − 1)r−1

(
n−s−1
r−1

)
is no more than

qn−s exp

(
−

((n− s− 1) q−1
q − r

′ − 2)2

2 q−1
q (n− s− 1)

)
.

Setting r′ = r = q−1
q (n − s − 1) −√

(n− s− 1) log(n− s− 1) in (23), using the Chernoff
bound and the fact that δ(r, s) ∼ s!( q−1

q )sns, as n → ∞,
we get

Uq,s,n .
s!qn

(q − 1)sns
,

as n → ∞. Combining this bound with Lemma 4.2, we
get Uq,s,n ∼

∑
x∈Fn−sq

1
|Ds(x)| ∼

s!qn

(q−1)sns . Finally, by
Corollary 4.2, we get |C∗q,s,n| .

s!qn

(q−1)sns .
Note that in addition to clarifying the asymptotics of

Uq,s,n the above theorem shows that using explicit formulae
for |Ds(·)| in (17) does not lead to any improvement over
Uq,s,n in an asymptotic sense.

Notice that the right hand side in (23) closely resembles
the expression in Levenshtein’s bound from (2). In fact
Levenshtein’s expression in (2) contains the term ‘

(
n−1
·
)
’ in

place of ‘
(
n−s−1
·
)
’, and therefore appears to be weaker than

(23). However this observation does not directly translate to
a proof that our bound Uq,s,n is stronger than Levenshtein’s
bound. This is because the parameter r in (2) is allowed to
vary between s−1 and n−1, whereas in (23), r′ is allowed
to vary between s − 1 and n − s. If one could make the
deft argument that for any n, s, values of r in (2) beyond
n − s are inconsequential to the comparison of (2) with
Uq,s,n, one could establish that Uq,s,n is indeed a better
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bound than Levenshtein’s. We have empirically found that
this is true; we discuss this in Section VI.

Finally, it is evident that the bound Uq,s,n, while explicit,
is hard to reduce to a closed form for any s 6= 1. It appears
that the single-deletion case is a unique one which allows
for a neat calculation of a closed form expression.

A. The asymptotic rate function

Consider the case of a deletion channel where a fraction
τ ∈ [0, 1] of the symbols in a q-ary string are deleted.
Denote by Rq(τ) the asymptotic value of the rate of the
largest code for this channel,

Rq(τ) , lim
n→∞

1

n
logq |C∗q,τn,n|. (24)

We call Rq(τ) the asymptotic rate function for the deletion
channel. Very little seems to be known about this function.
Levenshtein’s non-asymptotic bounds from (2) only lead
to the conclusion R2(τ) ≤ 0.7729 for τ ≥ 0.0757 [6]. In
this section we show that our non-asymptotic bound Uq,s,n
from Corollary 4.2 allows for a calculation of a finer bound
on Rq(·).

In order to perform this calculation, we need to address
some technicalities. Notice that Corollary 4.2 assumes
n > 2s to obtain the bound Uq,s,n. When s was fixed, this
restriction was immaterial. But for s = τn, this restriction
means that Corollary 4.2 can be used only for τ < 1

2 . For
τ ≥ 1

2 , we will use the trivial bound

|C∗q,τn,n| ≤
∑

x∈Fn−τnq

1

|Ds(x)|
≤ q(1−τ)n. (25)

Denote by hq(x), x ∈ [0, 1] the following function

hq(x) = −x logq(x)− (1−x) logq(1−x) +x logq(q− 1),

and let h(·) ≡ h2(·), denote the binary entropy function.
Theorem 4.4: Consider the asymptotic rate function

Rq(·) defined in (24). For τ ∈ [0, 1
2 ), the asymptotic rate

function satisfies

Rq(τ) ≤ max
ρ∈[0,1−τ ]

N(ρ; τ)−D(ρ; τ),

where

N(ρ; τ) = (1− τ)hq

(
ρ

1− τ

)
,

D(ρ; τ) = max
mτ,ρ≤µ≤min(τ,ρ)

(ρ− µ)h
(

min
(

µ
ρ−µ

)
, 1

2

)
log2 q

,

and mτ,ρ = max(2τ + ρ − 1, 0). For τ ∈ [ 1
2 , 1], the

asymptotic rate function satisfies

Rq(τ) ≤ (1− τ).
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Fig. 1: The upper on the asymptotic rate function Rq(τ)
guaranteed by Theorem 4.4 for alphabet sizes q = 2, . . . , 5
and τ ∈ [0, 1

2 ).

The proof is standard, but messy. We have relegated it to
the Appendix.

Some remarks about this bound on Rq(τ) are worth not-
ing. Fig 1 contains plots of this bound pertaining to various
alphabet sizes for τ ∈ [0, 1

2 ). For τ = 0, D(ρ; τ) = 0 and
hence Rq(0) ≤ maxρ∈[0,1] hq(ρ) = 1, which is expected.
Thereafter for small values of τ (say τ ≤ 1/10), one finds
that the rate drops quite sharply. For τ ≥ 1

2 , the above
bound says Rq(τ) ≤ 1− τ and so Rq(1) = 0, as expected.
One can easily see that this bound on the rate function is
superior to Levenshtein’s from [6].

However there are obvious shortcomings to our bound.
Notice in Fig 1 that our bound never hits zero for any
τ ∈ [0, 1

2 ); in fact it becomes zero only for τ = 1.
Independently of his bound, Levenshtein [6] argues that
Rq(τ) must be zero for all τ ≥ q−1

q . Our bound does
not imply this property (Levenshtein’s bound on the rate
function also does not imply this property). Furthermore,
in each of the plots in Fig 1, our bound shows an increase
beyond a certain value of τ . The true asymptotic rate
function Rq(τ) must decrease monotonically with τ . This
indicates that our bound becomes vacuous after a certain
value of τ.

A fascinating lesson in this is that a non-asymptotic
bound such as Uq,s,n that yields good asymptotics in one
regime may not necessarily do so in other regimes.

V. BOUNDS ON CODES FOR CONSTRAINED SOURCES

The bounds obtained in the previous sections pertain
to sizes of codebooks for the set of all strings of a
particular string length and from a particular alphabet. We
now consider the case where a codebook is sought for
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a constrained set of source strings in Fnq and extend the
results obtained above to present bounds for such codes.

Definition 5.1: Let S ⊆ Fnq be a set of strings and s ∈ N.
An s-deletion correcting code or s-deletion codebook for
S, is a subset C ⊆ S such that the sets Ds(x), x ∈ C,
are pairwise disjoint. The largest such code is denoted C∗S,s
and called the optimal s-deletion correcting code or optimal
s-deletion codebook for S.

Finding a bound on the optimal codebook for an arbitrary
set of strings S is significantly more challenging than
finding one when S = Fnq . Specifically, arguments such
as those based on Stirling’s approximation employed by
Levenshtein [2] and Tenengolts [5] rely on the availability
of all strings in Fnq .

We construct our bound by using a suitable hypergraph.
Let S ⊆ Fnq and define the hypergraph

HD
S,s = (Ds(S), {Ds(x) : x ∈ S}) ,

where Ds(S) =
⋃
x∈S Ds(x). HD

S,s is the partial hyper-
graph of HD

q,s,n generated by S. By arguments similar to
those previously used, it follows that ν(HD

S,s) = |C∗S,s|.
This matching problem for HD

S,s can be explicitly written
as follows.

|C∗S,s| = maximize
z

∑
y∈S z(y)

subject to
∑
y∈Is(x)∩S z(y) ≤ 1, ∀x ∈ Ds(S),

z(y) ∈ Z+, ∀y ∈ S.

Notice that in the constraint, the sum is over y belonging
to Is(x)∩S; this is because there may be a case where for
some x ∈ Ds(S), not all strings in Is(x) are present in S,
and may thereby not correspond to a hyperedge in HD

S,s. In
the language of graphs, the codebook C∗S,s is a maximum
independent set in LS,s, the subgraph of Lq,s,n induced by
strings in S. As before, it is easy to see that LS,s is the
line graph of HD

S,s.
In constructing our bound we exploit the “decoupling”

afforded by the fractional transversal problem for HD
S,s.

This problem can be explicitly written as follows.

τ∗(HD
S,s) = minimize

w

∑
x∈Ds(S) w(x)

subject to
∑
x∈Ds(y) w(x) ≥ 1, ∀y ∈ S,

w(x) ≥ 0, ∀x ∈ Ds(S).

In this problem there is a separate constraint for each hy-
peredge, i.e. for each string in S. Consequently, a fractional
transversal can be constructed for HD

S,s for any set S by
applying the logic used in Theorem 4.1.

Theorem 5.1: Let q, s, n ∈ N, n > s and let S be a set
of strings in Fnq . Then

|S|(
n+s−1

s

)
ιq,s,n

≤ |C∗S,s| ≤
∑

x∈Ds(S)

1

|Ds(x)|
. (26)

Proof: Notice that the fractional transversal problem
for HD

S,s contains a constraint for each string y belonging
to S and the sum in this constraint is over all x ∈ Ds(y).
Consequently, following Theorem 4.1, we see that w(x) =

1
|Ds(x)| , x ∈ Ds(S), is a fractional transversal of HD

S,s. The
upper bound thus follows.

To obtain the lower bound consider the line graph LS,s of
HD
S,s. The maximum independent set in LS,s is the optimal

matching of HD
S,s and thereby the largest codebook C∗S,s. A

well known bound given by Brook’s theorem or a “greedy”
algorithm for independent set construction [35] gives that

α(LS,s) = |C∗S,s| ≥
|S|

∆(LS,s) + 1
,

where ∆(LS,s) is the maximum degree of a vertex in
LS,s. The neighborhood of a vertex x in LS,s com-
prises of those strings obtained from x by deletion of
s symbols in x followed by the insertion of s symbols
in the resulting subsequence. Consequently, ∆(LS,s) ≤
maxx∈S,y∈Ds(S) |Ds(x)||Is(y)| − 1 ≤

(
n+s−1

s

)
ιq,s,n − 1,

where we have used the upper bound on |Ds(·)| from (21),
ιq,s,n was defined in (6) as the size of the insertion set for
strings in Fn−sq , and the subtracted 1 is because the string
itself is counted at least once while counting neighbors
produced by deletion and insertion. The result follows.

A. Run-length limited sources

In this section we will demonstrate the idea above
by applying the results of Theorem 5.1 to the specific
application of run-length limited codes. For simplicity we
consider only the single-deletion case; but the idea is more
general and can be extended readily to larger number of
deletions. The background on these codes is sourced from
the book chapter by Marcus, Roth and Siegel [43] and their
extended monograph available online [44].

Recordings on a magnetic tape when encoded into a
binary string result in strings that have no adjacent 1’s
and the number of 0’s between two consecutive 1’s is
constrained to be in a certain range. Let 0 ≤ d ≤ k. A
binary string is said to satisfy a (d, k)-run-length limited
(RLL) constraint if a) the string contains no adjacent 1’s,
i.e., the length of any 1-run is unity, b) the first and the last
runs are 0-runs and c) the length of any 0-run is at least d
and at most k [43]. In [44], the first and the last runs of 0’s
are allowed to have lengths less than d. In this section we
assume, mainly for simplicity, that in a (d, k)-RLL string,
the first and the last runs of the string must be 0-runs also
having length at least d.

The problem of correcting errors in RLL strings has been
considered by several authors (see [44, Chapter 9.5]) but
most of these works consider erasure error or substitutions
(see [22] and the discussion therein). Most works that
consider deletion, consider the deletion of 0’s only, since
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that is most relevant to the application (see, e.g., the
discussion in [17]). Recently Cheng et al. [23] and Palunčić
et al. [24] have considered deletion errors in RLL strings
for deletion of 0’s and 1’s.

Assume that a set of RLL strings as defined above are to
be transmitted through a single-deletion channel, wherein
both 0’s and 1’s can be deleted. In the theorem below
we derive a bound on the size of the largest codebook
for a (d,∞)-RLL set of strings. For 0 ≤ d ≤ k, by
Sn(d, k) ⊆ Fn2 we denote the set of binary strings of
length n satisfying the (d, k)-RLL constraint. First, we
characterize D1(Sn(d,∞)).

Lemma 5.1: Let n, d ∈ N and 1 < d ≤ n. Then we
have D1(Sn(d,∞)) = Sn−1(d,∞) ∪ S′n−1(d,∞), where
S′n−1(d,∞) is the set of binary strings of length n−1 such
that the first and last runs are 0-runs, between exactly one
pair of consecutive 1’s there are exactly d − 1 number of
0’s and between all other pairs of consecutive 1’s there are
at least d 0’s.

Proof: “⊆”: Consider a string in Sn(d,∞). A deleted
symbol must be a 0 or a 1.

1) If a 0 is deleted there are two possibilities: either
the run from which it is deleted has length d, or it
has length > d. In the former case, the subsequence
lies in S′n−1(d,∞), while in the latter case, it lies in
Sn−1(d,∞).

2) If a 1 is deleted, the 0-runs adjacent to the deleted 1
join to form a longer run of length at least 2d; the
subsequence thus lies in Sn−1(d,∞).

This shows that in either case, D1(Sn(d,∞)) ⊆
Sn−1(d,∞) ∪ S′n−1(d,∞).

“⊇”: To show the opposite inclusion, it suffices to show
that for any string x ∈ Sn−1(d,∞) ∪ S′n−1(d,∞) there
exists a string y ∈ Sn(d,∞) such that y ∈ I1(x). Consider
an arbitrary x ∈ Sn−1(d,∞) ∪ S′n−1(d,∞). Insert a 0 in
the shortest 0-run of x and call the resulting string y. Since
x has at most one 0-run of length d − 1, it follows that y
lies in Sn(d,∞).

Using this lemma and Theorem 5.1, we will prove an
upper bound on the size of a code for Sn(d,∞).

Theorem 5.2: Let n, d ∈ N, 1 < d ≤ n. The optimal
codebook for Sn(d,∞), C∗Sn(d,∞), satisfies

|C∗Sn(d,∞)| ≤
r̄∑
r=0

(
n− 2− r − (d− 1)(r + 1)

r

)
.

1

2r + 1

+

r̄′∑
r=1

(r + 1)

(
n− 2− r − (d− 1)(r + 1)

r − 1

)
.

1

2r + 1
,

(27)

where r̄ = bn−1−d
d+1 c and r̄′ = bn−dd+1 c.

Proof: From (26) and the size of single-deletion
sets stated in (4), |C∗Sn(d,∞)| ≤

∑
x∈D1(Sn(d,∞))

1
r(x) . By

Lemma 5.1, D1(Sn(d,∞)) = Sn−1(d,∞) ∪ S′n−1(d,∞).
Notice that by definition of S′n−1(d,∞), the sets
Sn−1(d,∞) and S′n−1(d,∞) are disjoint. Therefore,

|C∗Sn(d,∞)| ≤
∑

x∈Sn−1(d,∞)

1

r(x)
+

∑
x∈S′n−1(d,∞)

1

r(x)
. (28)

Since all 0-runs of a string in Sn−1(d,∞) have length at
least d and all 1-runs have unit length, and the starting and
ending runs are 0-runs, any string in Sn−1(d,∞) has an
odd number of runs and at most 2r̄ + 1 runs, where r̄ is
as stated in the theorem. Therefore a string in Sn−1(d,∞)
with, say 2r+ 1 runs, has r 1-runs of unit length and r+ 1
0-runs of lengths say `1, . . . , `r+1, where each `i ≥ d. The
number of strings with 2r + 1 runs in Sn−1(d,∞) is thus
equal to the number of integral solutions (`1, . . . , `r+1) of

r+1∑
i=1

`i = n− 1− r, `i ≥ d, 1 ≤ i ≤ r + 1.

By Lemma 2.2 this number is
(
n−2−r−(d−1)(r+1)

r

)
,

whereby the first term in the right hand side of (28) equals
the first term in the right hand side of (27).

Each string in S′n−1(d,∞) also has odd number of runs.
Furthermore, it has at least three runs and at most 2r̄′ + 1
runs, where r̄′ is defined in the statement of the theorem.
Consider a string with 2r+ 1 runs with r 1-runs and r+ 1
0-runs. First choose the 0-run with length d−1; this can be
chosen in r + 1 ways. Let `1, . . . , `r be the lengths of the
remaining 0-runs. The number of choices for the lengths of
the remaining runs is the number of integral solutions of

r∑
i=1

`i = n− 1− r − (d− 1), `i ≥ d, 1 ≤ i ≤ r.

Using Lemma 2.2, the number of strings in S′n−1(d,∞)

with 2r+1 runs is thus (r+1)
(
n−2−r−(d−1)r−(d−1)

r−1

)
. This

proves that the second term in (27) equals its counterpart
in (28).
Unfortunately, calculating these bounds in a simplified
closed form does not appear to be easy. Our aim in this
section was only to demonstrate the idea and the bound in
Theorem 5.1. Exact calculation of these bounds is beyond
the scope of this paper.

With this we conclude the theoretical portion of the
paper. In the following sections we will study how our
bounds compare numerically with the sizes of known
codebooks and with other bounds.

VI. NUMERICAL RESULTS

Recall that the upper bounds guaranteed by Theorems
3.1, 4.1 and 5.1 were obtained by constructing a fractional
transversal for the hypergraphs involved. To obtain an upper
bound on the size of optimal codebooks for the deletion
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n bLev-UBc b 2
n−2
n−1

c bLP-UBc |VT0(n)|
1 1 – 1 1
2 3 2 2 2
3 4 3 2 2
4 6 4 4 4
5 10 7 6 6
6 18 12 10 10
7 34 21 17 16
8 58 36 30 30
9 103 63 53 52
10 190 113 96 94
11 363 204 175 172
12 646 372 321 316
13 1182 682 593 586
14 2232 1260 1104 1096

(a) q = 2, binary

n bLev-UBc b qn−q
(n−1)(q−1)

c bLP-UBc |Tenengolts|
1 1 – 1 1
2 4 3 3 2
3 7 6 5 5
4 16 13 12 8
5 43 30 24 17
6 114 72 62 46
7 282 182 153 105
8 774 468 402 278

(b) q = 3

n bLev-UBc b qn−q
(n−1)(q−1)

c bLP-UBc |Tenengolts|
1 1 – 1 1
2 6 4 4 3
3 12 10 8 6
4 36 28 25 20
5 132 85 69 52
6 405 272 231 178

(c) q = 4

n bLev-UBc b qn−q
(n−1)(q−1)

c bLP-UBc |Tenengolts|
1 1 – 1 1
2 7 5 5 3
3 17 15 11 9
4 67 51 45 33
5 293 195 158 129
6 1146 781 657 527

(d) q = 5

TABLE I: The columns of the table show, from left to
right, the value of Levenshtein’s bound from (2) (Lev-UB),
values of upper bound obtained in Theorem 3.1, the
fractional matching number ν∗(HD

q,1,n) (LP-UB), and the
sizes of best known codes, for values of q and n. For
binary alphabet, the best known codes are the Varshamov-
Tenengolts codes VT0(n) [3], [2]. For larger alphabet, the
best codes known to us are those of Tenengolts [5], whose
size is denoted |Tenengolts|.

channel, it suffices to find the fractional matching number
itself, and ideally one would like to have an expression for
this number. We were not able to find such an expression
and constructed a fractional transversal as a proxy for it.

In the case of a single deletion, there already exist codes
which are known to be asymptotically good. This moti-
vates a comparison between our bound for single-deletion
correcting codes, the fractional matching number and the
sizes of the best known codes in order to ascertain the
quality of these codes. To do this, the fractional matching
problem for hypergraph HD

q,1,n (for single deletions) was
solved numerically on MATLAB for various values of q and
n. Table I documents the results obtained.

In each subtable of Table I, the columns contain from
left to right, the string length n, Levenshtein’s upper bound
(strongest one from (2); denoted Lev-UB), the bound from
Theorem 3.1, the value of the fractional matching number
found numerically (= ν∗(HD

q,1,n); denoted LP-UB), and
the best known code for each case. In the binary case
the best known code is the Varshamov-Tenengolts code
VT0(n) where

VTa(n) =

{
x1x2 . . . xn ∈ Fn2

∣∣∣∣∣∑
i

ixi = a mod n+ 1

}
.

VT0(n) is also conjectured [1] to be optimal for all n.
For larger alphabet the best codes we know of are those
of Tenengolts [5] (these are denoted |Tenengolts|). For
each q the largest value of n is as far as we could compute
with the resources available to us.

The first trend noticeable is that in any row values de-
crease from left to right. Thus the strongest of Levenshtein’s
bounds from (2) is weaker than our non-asymptotic bound.
Our non-asymptotic bound is also weaker than the value
of the fractional matching number (column LP-UB); this
shows that the fractional transversal we have constructed
to obtain the upper bound is not the optimal fractional
transversal.

Notice that in the binary case, shown in Table Ia, the
size of the Varshamov-Tenengolts code VT0(n) shows a
good match with with LP-UB. This indicates that these
codes are either optimal (as conjectured) or close to being
optimal, at least for n ≤ 14. Sloane’s website [4] carries
numerically obtained bounds for n ≤ 11, of which VT0(n)
has been confirmed as optimal for n ≤ 10. The bounds on
the website have been obtained by computing the Lovász
ϑ [35] on graphs Lq,1,n. The results in Table I may be
considered as additions to Sloane’s compilation.

For each value of q, n, Tenengolts’ construction gives a
two-parameter family of codes (the parameters being β, γ
in [5, Eq (2)]). The column |Tenengolts| contains for
the respective q, n, the largest code out of this family.
Unlike in the VT codes where it is known that of the
family VTa(n), a = 0, . . . , n, the code VT0(n) is the
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Fig. 2: Figure showing values of Uq,s,n (solid lines) and
Levenshtein’s bound (dotted lines) from (2) for q = 2,
s = 2, 3, 4 and 15 ≤ n ≤ 30.

largest, we are not aware of a similar characterization of
the largest code from Tenengolts’ family. Thus the column
|Tenengolts| was populated by explicitly calculating
the size of the code for each value of the parameters and
thereafter identifying the largest of those. It is clear from
this table that these codes are quite smaller than the frac-
tional matching number in LP-UB. This may mean either
that there is a large gap between the fractional matching
number and the matching number for these hypergraphs,
or that the Tenengolts codes are not optimal.

For larger number of deletions there exist no good
codes apart from those found by search. So no interesting
comparisons can be made for an existing code for a larger
number of deletions. However, we may compare our bound
with Levenshtein’s from (2). Figure 2 shows the comparison
for binary alphabet and s = 2, 3, 4 and 15 ≤ n ≤ 30.
We have focused on this region of n so as to allow the
distinctions between the lines for s = 2, 3, 4 coming from
Levenshtein’s bound to be clearly discerned; for smaller
values of n these lines overlap. One can easily eye-ball
that our bound is significantly better than Levenshtein’s.

We discuss the quality of our bound and prospects for
improving it in the next section.

VII. DISCUSSION

For the sake of this discussion, we limit ourselves to
the case of the single-deletion channel. Table I shows
that there is scope for improving our bound qn−q

(q−1)(n−1)
for the q-ary single-deletion channel. Since the bound is
not equal to the fractional matching number LP-UB, one
can obtain a better bound by merely finding a fractional

transversal with a smaller weight. However, in practice
a construction to this effect has eluded us. In fact, our
constructed transversal shows a close match to the optimal
fractional transversal found numerically, which makes any
improvement challenging. We discuss this below.

Figure 3 shows the optimal fractional transversal and the
fractional transversal we have constructed (w(·) ≡ 1

r(·) ) for
hypergraph HD

2,1,n, i.e. q = 2, n = 8 and s = 1 and for
hypergraph HD

5,1,4 (q = 5, n = 4, s = 1). Notice that in
both cases, the constructed fractional transversal matches
the general trend of the optimal fractional transversal. This
continues to hold for larger values of n. Indeed, in the
binary case, since

0 ≤
2n−2
n−1 − ν

∗(HD
2,1,n)

2n−1
≤

2n−2
n−1 −

2n

n+1

2n−1
→ 0,

the average difference between the constructed and op-
timal transversal vanishes for large n. A tighter bound
may be obtained by fine-tuning the constructed fractional
transversal, but since the general trend of the optimal
fractional transversal has already been captured by our
constructed transversal, the logic for further fine-tuning is
not obvious. Yet, this effort is not a lost cause: since the
number of vertices grows exponentially, a small saving in
this construction may imply a substantial improvement in
the bound.

We end with one final consideration and speculate on
what may be an alternative approach to obtaining better
bounds. Since the most successful approaches to code con-
struction for this problem have been number-theoretic one
may be inclined to conjecture that the size of the optimal
codebook |C∗q,1,n| depends not only on the numerical value
of n, but also on properties n has as a number. In the
binary case, in particular, since the fractional matching
number ν∗(HD

2,1,n) closely tracks |VT0(n)|, which is given
by a number-theoretic formula (see [1, Eq (7)]), it appears
that ν∗(HD

2,1,n) may also be given by a number-theoretic
expression. In contrast, neither our bounds nor their proofs
have any number-theoretic character. Perhaps a clue to
tightening these bounds lies in giving a number-theoretic
construction of the optimal fractional matching or a better
(possibly optimal) fractional transversal.

In summary, this paper considered the deletion channel
for general q-ary alphabet and an arbitrary number of
deletions and proved new non-asymptotic upper bounds on
the sizes of the optimal codebooks. The bounds are stronger
than known bounds and imply classical asymptotic bounds.
The bounds were derived via a hypergraph characteriza-
tion of the optimal codebook and a linear programming
argument. The approach was extended to derive bounds
on codebooks for general constrained sources and was
demonstrated for run-length limited sources. The paper
concluded with a discussion on numerical results and on
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(b) HD
5,1,4

Fig. 3: The horizontal axis consists of elements of F7
2

and F3
5, respectively, plotted in increasing order of their

decimal value. The vertical axis is the value of the frac-
tional transversals. In each case, the dotted line shows the
optimal fractional transversal and the solid line shows the
constructed fractional transversal w(x) ≡ 1

r(x) for HD
2,1,8

and HD
5,1,4, respectively. These lines are provided to aid in

discerning the trends in their values; they have no meaning
per se.

the quality of these bounds.

APPENDIX
PROOF OF THEOREM 4.4

Proof: First consider τ ∈ [0, 1
2 ).

For such a value of τ , the bound (20) applies. By (20),

Uq,τn,n =

(1−τ)n∑
r=3

q(q − 1)r−1
(

(1−τ)n−1
r−1

)
δ(r, τn) +

∑min(τn−2,r−3)
i=(2τ−1)n+r−1 δ(r − 2, i)

+

2∑
r=1

q(q − 1)r−1

(
(1− τ)n− 1

r − 1

)
.

Notice that the second sum being a mere polynomial in n
can be ignored in comparison to the first sum. Below, we
focus only on the first term and estimate its asymptotics by
finding its exponent.

Put r = ρn so that ρ ∈ [0, 1− τ ], and let

N(ρ; τ) = lim
n→∞

1

n
logq q(q − 1)ρn−1

(
(1− τ)n− 1

ρn− 1

)
,

D1(ρ; τ) = lim
n→∞

1

n
logq δ(ρn, τn),

D2(ρ; τ) = lim
n→∞

1

n
logq

min(τn−2,ρn−3)∑
i=(2τ−1+ρ)n−1

δ(ρn− 2, i).

Here N(ρ; τ) is the exponent of the numerator and the
exponent of the denominator is

D(ρ; τ) = max(D1(ρ; τ), D2(ρ; τ)).

Therefore, the asymptotic rate function satisfies

Rq(τ) ≤ max
0≤ρ≤1−τ

N(ρ; τ)−D(ρ; τ).

We now calculate the above exponents. It is easy to see
that

N(ρ; τ) = (1− τ)hq

(
ρ

1− τ

)
,

which is as required. Next consider D1(ρ; τ). Clearly, if
ρ ≤ τ, D1(ρ; τ) = 0. If τ ≤ ρ−τ

2 , i.e., ρ ≥ 3τ ,

D1(ρ; τ) = (ρ− τ)
h
(

τ
ρ−τ

)
log2 q

.

On the other hand if ρ < 3τ, D1(ρ; τ) = ρ−τ
log2 q

. In
summary, we get

D1(ρ; τ) = I{ρ>τ}

 (ρ− τ)h
(

min
(

τ
ρ−τ ,

1
2

))
log2 q

 .

Now consider D2(ρ; τ). Recall from (19) that if i <
0, δ(ρn − 2, i) = 0. In the expression for D2(ρ; τ), put
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i = µn, so that µ ∈ [max(2τ + ρ− 1, 0),min(τ, ρ)]. Then
arguing as above, we get

D2(ρ; τ) = max
mτ,ρ≤µ≤min(τ,ρ)

(ρ− µ)h
(

min
(

µ
ρ−µ

)
, 1

2

)
log2 q

,

where mτ,ρ = max(2τ+ρ−1, 0), as stated in the theorem.
We now show that D2(ρ; τ) dominates D1(ρ; τ) for any

ρ, τ . If ρ ≤ τ,D1(ρ; τ) ≡ 0, so, clearly, D2(ρ; τ) ≥
D1(ρ; τ). However, if ρ > τ , we find that µ = τ
satisfies µ ∈ [mτ,ρ,min(τ, ρ)]. To see this, observe that a)
min(τ, ρ) = τ , since ρ > τ , and b) τ ≥ mτ,ρ if and only
if ρ ≤ 1 − τ , which is the assumed range on ρ. But for
µ = τ the value of the maximand above equals D1(ρ; τ).
Consequently, D2(ρ; τ), which involves a maximization
over µ, dominates D1(ρ; τ). In summary,

D(ρ; τ) = D2(ρ; τ),

as required. This completes the first part of the theorem
pertaining to τ ∈ [0, 1

2 ).
Now consider τ ≥ 1

2 and use the trivial bound from (25).
In this case, clearly,

Rq(τ) ≤ (1− τ).

This covers all cases and the proof is complete.

REFERENCES

[1] N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes and
Designs: Proceedings of a Conference Honoring Professor Dijen K.
Ray-Chaudhuri on the Occasion of His 65th Birthday, The Ohio
State University, May 18-21, 2000. Walter de Gruyter, 2002.

[2] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8,
pp. 707–710, 1966.

[3] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors (in Russian),” Avtomatika i Telemekhanika, vol. 6,
no. 2, 1965.

[4] N. J. A. Sloane, “Challenge problems: Independent sets
in graphs,” Jul. last updated 2011. [Online]. Available:
http://neilsloane.com/doc/graphs.html

[5] G. M. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion,” Information Theory, IEEE Transactions on, vol. 30, no. 5,
pp. 766 – 769, Sep. 1984.

[6] V. I. Levenshtein, “Bounds for deletion/insertion correcting codes,”
in 2002 IEEE International Symposium on Information Theory, 2002.
Proceedings, Lausanne, Switzerland, 2002, p. 370.

[7] V. S. Pless and W. C. Huffman, Eds., Handbook of Coding Theory,
Volume II, 1st ed. North Holland, Nov. 1998.

[8] H. Mercier, V. Bhargava, and V. Tarokh, “A survey of error-
correcting codes for channels with symbol synchronization errors,”
IEEE Communications Surveys Tutorials, vol. 12, no. 1, pp. 87 –96,
2010.

[9] J. Ullman, “On the capabilities of codes to correct synchronization
errors,” IEEE Transactions on Information Theory, vol. 13, no. 1,
pp. 95 –105, Jan. 1967.

[10] ——, “Near-optimal, single-synchronization-error-correcting code,”
IEEE Transactions on Information Theory, vol. 12, no. 4, pp. 418 –
424, Oct. 1966.

[11] A. Helberg and H. Ferreira, “On multiple insertion/deletion correct-
ing codes,” IEEE Transactions on Information Theory, vol. 48, no. 1,
pp. 305 –308, Jan. 2002.
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