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All the stabilizer codes of distance3
Sixia Yu, Juergen Bierbrauer, Ying Dong, Qing Chen, and C.H.Oh

Abstract—We give necessary and sufficient conditions for the
existence of stabilizer codes[[n, k, 3]] of distance 3 for qubits:
n−k ≥ ⌈log2(3n+1)⌉+ǫn where ǫn = 1 if n = 8 4

m
−1

3
+{±1, 2}

or n = 4
m+2

−1

3
− {1, 2, 3} for some integerm ≥ 1 and ǫn = 0

otherwise. Or equivalently, a code[[n, n−r, 3]] exists if and only
if n ≤ (4r − 1)/3, (4r − 1)/3 − n /∈ {1, 2, 3} for even r and
n ≤ 8(4r−3 − 1)/3, 8(4r−3 − 1)/3 − n 6= 1 for odd r. Given
an arbitrary length n we present an explicit construction for an
optimal quantum stabilizer code of distance3 that saturates the
above bound.

Index Terms—quantum error correction, 1-error correcting
stabilizer codes, quantum Hamming bound, optimal codes

I. I NTRODUCTION

Quantum error-correcting codes [2], [13], [17], [19] provide
us an active way of protecting our precious quantum data
from quantum noise and play an essential role in various
quantum informational processes. Simply speaking, a QECC
is just a subspace that corrects certain types of errors. When
the subspace is specified by the joint+1 eigenspace of a group
of commuting multilocal Pauli operators, i.e., direct products
of local Pauli operators, the codes are called stabilizer codes
[6], [7], [9]. We consider only binary codes here. As usual
we shall denote by[[n, k, d]] a stabilizer code of lengthn
and distanced, i.e., correcting up to⌊d−1

2 ⌋-qubit errors, that
encodesk logical qubits. The redundancyr = n − k counts
the number of the independent generators of the stabilizer.

One fundamental task is to construct optimal codes, e.g.,
codes with largest possiblek with fixed n andd. In the case
of d = 2 all optimal stabilizer codes are known. In the simplest
nontrivial cased = 3, a systematic construction for all lengths
has not been achieved yet. Known results include Gottesman’s
optimal codes family [10] of lengths2m with m ≥ 3 which
has been generalized for even lengths [14] by using Steane’s
enlargement construction [20] with some codes being optimal
and some are suboptimal, i.e., one logical qubit less than the
quantum Hamming bound.

A code of distanced is degenerateif there are harmless
undetectable errors acting on less thand qubits, i.e., errors can
not be detected but do not affect the encoded quantum data.
If all errors acting on less thand qubits can be detected, the
codes arenon-degenerateor pure. For a pure code of distance
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3 all errors that occurred on at most2 qubits can be detected.
The quantum Hamming bound (qHB), e.g.,

r ≥ sH = ⌈log2(3n+1)⌉ (equivalentlyn ≤ (2r − 1)/3) (1)

for a stabilizer code[[n, n − r, 3]], had been proven initially
for non-degenerate codes. It is also valid for degenerate codes
of distances3 and5 [9] and of a large enough length as shown
in [1] via the linear programming (LP) bound [7], [15]. Our
main result reads

Theorem 1 Let fm = (4m − 1)/3. A stabilizer code[[n, n−
r, 3]] exists if and only if

r ≥ sH + ǫn (2)

whereǫn = 1 if n = 8fm + {±1, 2} or n = fm+2 − {1, 2, 3}
for some integerm ≥ 1 and ǫn = 0 otherwise (equivalently:
n ≤ fr/2, fr/2 − n /∈ {1, 2, 3} for evenr, n ≤ 8f(r−3)/2, n 6=
8f(r−3)/2 − 1 for odd r).

For the definition of quantum stabilizer codes see [6], [7].
The translation into the language of finite geometries is in [4],
see also the manuscript [8]. Here the Pauli matrices are
identified with the binary pairs,{I,X, Y, Z} = F

2
2, and an

[[n, n − r]] quantum code is described by a check matrix of
the stabilizer. The defining condition is that any two generators
are orthogonal with respect to the symplectic inner product.
Each of then qubits corresponds to a pair of columns of the
check matrix. Each column is a binaryr-tuple. The nonzero
tuples are identified with the points of the(r−1)-dimensional
binary projective space:Fr

2 \ {0} = PG(r − 1, 2). In this
setting the stabilizer is described by a family ofn lines in
PG(r − 1, 2).

After introducing some notation and recalling known results
essential to our construction in Sec.II, we shall present a
general construction for optimal codes of arbitrary length
n > 38 that saturates the bound Eq.(2) in Sec.III. In Sec.IV
we shall prove the only if part by showing that the qHB cannot
be attained whenǫn = 1. In Sec. V we shall provide explicitly
some of the pure optimal codes of lengthsn < 38, which are
essential to our general construction, using a generalization of
the code pasting method.

II. N OTATIONS AND KNOWN RESULTS

Our construction is based on two families of pure codes
and Gottesman’s stabilizer pasting [11] to build new codes
from old pure codes. As usual we denote byX,Y, Z the
Pauli operators and byI the identity operator. Furthermore we
write X(n) = X1X2 . . . Xn whereXi is the Pauli operatorX
acting nontrivially on thei-th qubit only and use analogous
expressions forY (n), Z(n), and I(n). For simplicity we
shall denote by[n, r] the stabilizer of apure stabilizer code
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[[n, n−r, 3]] while simply by[n] the stabilizer anoptimalpure
code of lengthn, e.g.,[5] stands for the perfect code[[5, 1, 3]]
whose stabilizer reads

X X X X I
Z Z Z Z I
X Y Z I X
Y Z X I Z

, (3)

where a juxtaposition of some Pauli operators in the same row
means their direct product.

Codes family [2m] (m ≥ 3). The first family of codes is
the Gottesman family of optimal codes[[2m, 2m −m− 2, 3]]
with m ≥ 3 that saturate the quantum Hamming bound [10].
In the geometric setting this is equivalent to the observation
that the points inPG(r − 1, 2) outside a subspacePG(r −
3, 2) can be partitioned into lines. In Ref.[4] this is referred
to as the Blokhuis-Brouwer construction [3]. By construction,
these codes are non-degenerate and two observablesX(2m) =
X1 . . . X2m and Z(2m) = Z1 . . . Z2m are generators of the
stabilizer. For simplicity we denote by[2m] a set ofm + 2
generators of the stabilizer of Gottesman’s code, the first two
generators beingX(2m) andZ(2m).

An explicit construction of the remainingm generators
is given by the check matrix[Hm|AmHm] where Hm =
[c0, c1, . . . , c2m−1] with the (k + 1)-th columnck being the
binary vector representing integerk (k = 0, 1, . . . , 2m − 1)
andAm is any invertible and fixed point freem×m matrix,
i.e., Ams 6= 0 andAms 6= s for all s ∈ Fm

2 . As an example,
the unique code[23] has a stabilizer generated by

X X X X X X X X
Z Z Z Z Z Z Z Z
I Z I Z Y X Y X
I Z X Y I Z X Y
I Y Z X Z X I Y

. (4)

Codes family [8 ·m] (m ≥ 3). The second family of codes
are of parameters[[8m, 8m−lm−5, 3]] with lm = ⌈log2 m⌉ as
constructed in Ref.[14]. One crucial property of this family is
that they are stabilized by allX and allZ observablesX(8m)
and Z(8m). Here we shall provide a different construction
based on Gottesman’s family.

We divide8m qubits intom blocks of8-qubit. The first five
stabilizers of the code are[23]⊗m whose first two generators
are X(8m) and Z(8m). In the case ofm = 3, 4 the codes
are defined in Table I. In the case ofm ≥ 5 so that lm ≥
3, the remaininglm generators of the stabilizer are obtained
from Gottesman’s code[2lm ] by at first removing the first two
generators and then removing arbitrary2lm − m qubits and
finally replacing each single-qubit Pauli operatorsX,Y, and
Z in the remaining stabilizers by the corresponding8-qubit
operatorsX(23), Y (23), and Z(23) respectively. In Table I
we also present an example in the casem = 6.

Obviously all lm + 5 generators defined above are com-
muting with each other. Because of the first5 generators of
the stabilizer any2-errors in the same8-qubit block can be
detected. For any2 errors in two different8-qubit blocks, the
last lm generators together with the first two generators define

TABLE I
SOME EXAMPLES FROM CODES FAMILY[8 ·m].

[23] [23] [23]
I(23) X(23) Y (23)
I(23) Y (23) Z(23)

[8 · 3] = [[24, 17, 3]]

[23] [23] [23] [23]
I(23) X(23) Y (23) Z(23)
I(23) Y (23) Z(23) X(23)

[8 · 4] = [[32, 25, 3]]

[23] [23] [23] [23] [23] [23]

I(23) Z(23) Y (23) X(23) Y (23) X(23)

X(23) Y (23) I(23) Z(23) X(23) Y (23)

Z(23) X(23) Z(23) X(23) I(23) Y (23)

[8 · 6] = [[48, 40, 3]]

TABLE II
THE STABILIZER FOR THE CODE OBTAINED FROM PASTING.

X(n2) I(n1)

Z(n2) I(n1)

S3 T1

S4 T2

...
...

Ss2
Ts2−2

I(n2) Ts2−1

...
...

I(n2) Ts1

or

X(n2) I(n1)

Z(n2) I(n1)

S3 T1

S4 T2

...
...

Ss1+2 Ts1

Ss1+3 I(n1)

...
...

Ss2
I(n1)

a subcode of Gottesman’s code[2lm ] and therefore detect all
2 errors in different blocks. Thus all2-errors can be detected
so that we have constructed a pure1-error-correcting code of
length8m.

We shall abuse the notation slightly to denote all the codes
of this family by [8 ·m] though some of them are not optimal.
In fact whenfr+1 +1 ≤ m ≤ 22r+1 and 22r+1+1

3 ≤ m ≤ 22r

with r ≥ 1, the code[8 ·m] is optimal sincelm + 5 = sH in
these cases. Otherwise the code is suboptimal, i.e.,lm + 5 =
sH + 1.

Stabilizer pasting (Gottesman [11]) In the geometric set-
ting stabilizer pasting was rediscovered in Ref.[4] as the
generalized Blokhuis-Brouwer construction.
Given two non-degenerate stabilizer codes[n2, s2] =
〈S1, S2, . . . , Ss2〉 and [n1, s1] = 〈T1, T2, . . . , Ts1〉 of distance
3, if two observablesX(n2) andZ(n2) belong to[n2, s2], say,
S1 = X(n2) andS2 = Z(n2), then the stabilizer defined in
Table II defines a non-degenerate stabilizer code[n2 + n1, s]
with s = max{s2, s1 + 2}, denoted as[n2, s2]✄ [n1, s1].

As a first example of stabilizer pasting we obtain an optimal
code [13] = [[13, 7, 3]] by pasting the optimal code[23] of
lengthn2 = 8 and s2 = 5 stabilizers with the perfect code
[5], i.e,, n1 = 5 and s1 = 4. The resulting code is of length
n1 + n2 = 13 with s1 + 2 = 6 > s2 = 5 stabilizers.

If there is a third pure code[n3, s3] with X(n3) andZ(n3)
belonging to its stabilizer then the stabilizer pasting results in
a pure code

[n1 + n2 + n3, s] = [n3, s3]✄ [n2, s2]✄ [n1, s1] (5)
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TABLE III
THE STABILIZERS OF THE PURE OPTIMAL CODES[[n, n− r, 3]] FOR

n ≤ 38 AND n 6= 6. ALL THE 2-ERROR-DETECTING BLOCKS SUCH AS
[28, 7]2 ARE CONSTRUCTED INSEC. V EXPLICITLY.

n r Stabilizer n r Stabilizer

10 6 Table VI 5 4 [4, 4]1 ✄ [1]1
11 6 [10, 6]1 ✄ [1]1 7 6 [6, 6]1 ✄ [1]1
12 6 [10, 6]2 ✄ [2, 4]2 8 5 [23]

13 6 [10, 6]2 ✄ [3, 4]2 9 6 [6, 6]2 ✄ [3, 4]2
14 6 [10, 6]1 ✄ [4, 4]1 18 7 [10]✄ [23]

15 6 [10]✄ [5] 19 7 [18, 7]1 ✄ [1]1
16 6 [24] 20 7 [18, 7]2 ✄ [2, 4]2
17 6 Eq.(8) 21 6 [24]✄ [5]

22 7 [18, 7]1 ✄ [4, 4]1
31 7 [28, 7]2 ✄ [3, 4]2 23 7 [18, 7]2 ✄ [5, 5]2
32 7 [25] 24 7 [8 · 3]

33 7 [28, 7]2 ✄ [5, 5]2 25 7 [18, 7]1 ✄ [7, 5]1
34 7 [26, 7]2 ✄ [7, 5]1 ✄ [1]1 26 7 [18, 7]2 ✄ [7, 5]1 ✄ [1]1
35 7 [28, 7]1 ✄ [7, 5]1 27 7 [18, 7]1 ✄ [23]✄ [1]1
36 7 [28, 7]2 ✄ [7, 5]1 ✄ [1]1 28 7 [20, 7]2 ✄ [7, 5]1 ✄ [1]1
37 7 [32]✄ [5] 29 7 [8 · 3]✄ [5]

38 7 Eq.(11) 30 7 [28, 7]2 ✄ [2, 4]2

with s = max{s3, s2 + 2, s1 + 4}, which can be further
pasted with another code and so on. As a second example
the perfect code[[fm, fm − 2m, 3]] with fm = 4m−1

3 and
m ≥ 3 can be constructed by pasting Gottesman’s codes[22l]
(l = 2, 3, . . . ,m) with the pure perfect5-qubit code [11], [7],

[fm] = [22(m−1)]✄ [22(m−2)]✄ . . .✄ [24]✄ [5]. (6)

As a last example the optimal stabilizer code of length8fm
(m ≥ 2) can be constructed by pasting Gottesman’s codes
[22l+1] (l = 1, 3, . . . ,m) [7]

[8fm] = [22m+1]✄ [22m−1]✄ . . .✄ [23]. (7)

III. T HE GENERAL CONSTRUCTION

Our main tool is the pasting of codes to produce new codes
from old ones. Only pure codes can be used in the pasting.
Since the optimal stabilizer code forn = 6 is degenerate we
see that optimality does not imply pureness. Although from
the Grassl’s public code table we know that the optimal codes
for n ≤ 37 exist, we need to check in each case that pure
optimal codes exist.

Lemma 2 Non-degenerate optimal1-error correcting codes
of lengths10 ≤ n ≤ 17 and 31 ≤ n ≤ 38 exist.

Proof: An example of a pure code[[17, 11, 3]] was found
in Ref.[7] by a random search. A geometric construction in
Ref.[4] yields the following set of generators of the stabilizers

X X I Y X X Y Y X X X I I I Z Z Z
X Y I X Y X X Z Z Z Z X X X I I I
X Z I X X Y Z X I I I Z Z Z X X X
Z I X Y Z Z X Z Y I Z Y I Z Y I Z
Z I Y Z Y Z Y X Z Y I Z Y I Z Y I
Z I Z Z Z Y Z Y I Z Y I Z Y I Z Y

[17] = [[17, 11, 3]]

. (8)

A direct application of stabilizer pasting to two optimal codes
yields an optimal pure code[[37, 30, 3]] whose stabilizer reads
[37] = [25]✄ [5].

The following construction of an optimal pure code[38] =
[[38, 31, 3]] is translated from the geometric construction in
Ref.[4]. We denote byH32 = [H26, A,B] a 5 × 25 matrix
whose columnshi are all possible5-dimensional vector with
entries0, 1 whereA,B are two5× 3 matrices

A =













0 1 0
0 0 0
0 0 1
0 0 0
0 0 1













, B =













1 1 1
0 1 1
0 0 1
1 0 1
0 1 0













. (9)

Also we denote byH ′
32 = [H ′

26, A
′, B′] = E1+MH32 which

is another5× 25 matrix, where

E1 =













132
032
032
032
032













, M =













0 1 0 1 1
1 0 0 0 0
0 1 0 0 1
0 1 0 1 0
0 0 1 0 1













. (10)

Both M andI +M are invertible. Furthermore we denote

[P |Q] =













0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 1 1 0 1 1 1 0 0 1
1 0 0 0 1 1 0 1 0 1 1 0
0 1 1 0 0 1 1 0 1 0 1 0













.

The check matrix of the stabilizer[38] reads




126 13 13 06 126 13 13 06
026 03 13 06 126 03 13 06
H26 A A′ P H ′

26 B B′ Q



 . (11)

Optimal pure codes of lengths16 and 32 exist. We shall
postpone the explicit constructions of pure optimal codes
of the remaining lengths to Sec. V where the pasting of
stabilizers is generalized to the pasting of noncommuting sets
of generators. A typical example is the construction of an
optimal pure code[36] = [[36, 29, 3]] whose stabilizer is
explicitly given in Table V. All the pure optimal codes of
lengths5 ≤ n ≤ 38 with n 6= 6 are summarized in Table III.

Lemma 2 ensures that there exist[17− β] and [38− β] for
0 ≤ β ≤ 7, i.e, optimal pure codes of those lengths exist and
have6 and7 generators respectively. Forn > 38 we have the
following general construction:

Theorem 3 Supposen > 38 and n 6= 8ǫfm for any integer
m and ǫ = 0, 1. a) If 8fm − 1 ≤ n ≤ fm+2 − 4 for some
m ≥ 2 then the stabilizer

[8 ·(22m−1−α)]✄ [22m]✄ [22m−2]✄ . . .✄ [26]✄ [17−β] (12)

defines an optimal pure code[[n, n−2m−4, 3]] wherefm+2−
4 − n = 8α + β with α ≥ 0 and 0 ≤ β ≤ 7. Whenm = 2
the stabilizer is generated by[8 · (8 − α)] ✄ [17 − β]. b) If
fm+2 − 3 ≤ n ≤ 8fm+1 − 2 for somem ≥ 2 then the
stabilizer

[8 ·(22m−α)]✄ [22m+1]✄ [22m−1]✄ . . .✄ [27]✄ [38−β] (13)
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defines an optimal pure code[[n, n − 2m − 5, 3]] where
8fm+1 − 2 − n = 8α + β with α ≥ 0 and 0 ≤ β ≤ 7. When
m = 2 the stabilizer is generated by[8 · (16−α)]✄ [38− β].

Proof: At first from Lemma 1 and the constructions
of two codes families[8 · k] and [2k] it is clear that all
the stabilizer codes involved in Eq.(12) or Eq.(13) are non-
degenerate. Secondly by construction two families of codes
[8·k] and[2k] are stabilized by allX and allZ Pauli operators.
As a result the stabilizer pasting can be applied from right to
left so that Eq.(12) and Eq.(13) define pure stabilizer codesof
distance3.

Now we evaluate the parameters of the codes. It is easy to
see from the definition ofα andβ and the identityfm+2 =
22m+2 + 22m + . . . + 24 + 5 that the length of the resulting
codes are exactlyn. Recalling that the codes[8 · k] and [2k]
havelk = ⌈log k⌉+5 andk+2 stabilizers respectively while
the codes[17−β] and[38−β] have at most6 and7 stabilizers
respectively. Sinceα ≥ 0 we have⌈log(22m−a−α)⌉ ≤ 2m−a
for a = 0, 1, the stabilizers in Eq.(12) and Eq.(13) have2m+4
and2m+ 5 generators, respectively.

As a first example whenn = 81 we have[81] = [26]✄ [17]
which is an optimal code[[81, 73, 3]] apparently missing from
the public code table. As another example whenn = 305 we
havem = 3 and 8f3 − 1 = 167 < 305 < f5 − 4 = 337 so
that construction a) applies. Also we haveα = 4 andβ = 0
and as a consequence[305] = [8 · 28]✄ [26]✄ [17]. As a last
examplen = 371 we havem = 3 and340 ≤ n ≤ 677 with the
condition of case b satisfied. In this case677−371 = 8×38+2
so thatα = 38 and β = 2 and by construction Eq.(13) we
have[371] = [8 · 26]✄ [27] ✄ [35]. Both codes[[305, 195, 3]]
and [[371, 360, 3]] saturate the quantum Hamming bound.

IV. EXACT BOUND

In this section we shall prove the ‘only if’ part of Theorem
1, which amounts to showing that in the case ofǫn = 1,
i.e., n = 8fm + {±1, 2} or n = fm+2 − {1, 2, 3} for some
m ≥ 1, the quantum Hamming bound cannot be attained.
Suppose that there is a pure code[[n, k, 3]] that attains the
quantum Hamming bound, i.e., a code whose stabilizer has
sH generators. Let[Gx|Gz ] be its check matrix which is an
sH × 2n matrix satisfyingGxG

T
z +GzG

T
x = 0. Because the

code is supposed to be pure, the matrixS = [Gx|Gz |Gx+Gz],
composed of the syndromes of all possible1-qubit errors, must
have distinct columns. Moreover we haveSST = 0, meaning
that S is self orthogonal. Denote byY the sH × y matrix
composed ofy = 2sH − 3n− 1 sH -dim column vectors that
are not syndromes of any1-qubit errors. Being composed all
possiblesH-dim vectors the matrixH2sH = [0|S|Y ] is self
orthogonal and thusY is also self orthogonal. In other words,
the matrixY is the check matrix of some classical binary self-
orthogonal code[y, k, 3]2 for somek ≤ sH . On the one hand
it is an elementary fact that such self-orthogonal codes exist
only for y = 7, 8 wheny ≤ 10 [4]. On the other hand in the
case ofǫn = 1 we havey ∈ {1, 4, 10} if n = 8fm + {±1, 2}
while y ∈ {3, 6, 9} if n = fm+2−{1, 2, 3}. This contradiction
proves that the qHB cannot be attained by a pure code in the
caseǫn = 1.

Now suppose that the code[[n, k, 3]] attaining the qHB
is impure. In this case some generators of the stabilizer act
nontrivially only on 1) one qubit or 2) two qubits. In case 1)
by removing this generator together with the qubit it acts onwe
obtain a code[[n−1, k, 3]] which may be pure or impure. From
the qHB for the code[[n−1, k, 3]], i.e.,n−k−1 ≥ sH(n−1),
andsH(n) = sH(n−1) in the case ofǫn = 1, the bound Eq.(2)
follows immediately. Therefore we can assume that case 1)
does not happen.

In case 2) there are some single-qubit errors acting on
different qubits that lead to an identical syndrome. We suppose
that there is a numberv ≥ 1 of such degenerated syndromes
with each syndrome caused byui + 1 single-qubit errors
(acting on different qubits since case 1 does not happen)
whereui ≥ 1 and i = 1, 2, . . . , v. Because the product of
two single-qubit errors that lead to the same syndrome is
a stabilizer of the code, there is a setU of generators of
the stabilizer that act nontrivially exactly on two qubits and
obviously|U | =

∑v
i=1 ui := u ≤ n− k. According to Ref.[4]

(Theorem 3.2) it holds

n− (u+ v) ≤
2n−k−u − v − 1

3
. (14)

Here we provide an alternative proof of the above inequality
which may apply also to nonadditive codes. LetWi be the
set of qubits thatui + 1 single-qubit errors, which lead to
an identical syndrome, act on and obviously|Wi| = ui + 1
since different errors must act on different qubits. Because two
different degenerated syndromes cannot be caused by single-
qubit errors acting on the same qubit, we have a disjoint union
W = ∪v

i=1Wi with |W | = u+v. Let W̄ denote the remaining
|W̄ | = n−u−v qubits that all the generators inU trivially act
on. Without loss of generality, applying some local Clifford
transformations and relabeling the qubits when necessary,we
can assume that thosev degenerated syndromes are caused by
single-qubit errorsXi with i = 1, 2, . . . v. Define

P̂1 = P̂ +

v
∑

i=1

XiP̂Xi +
∑

Ea,a∈W̄

EaP̂Ea (15)

whereP̂ is the projector of the coding subspace of[[n, k, 3]]
and the last summation is over all possible1-qubit errors (3|W̄ |
of them) in qubits belonging tōW . Note that each term in
the definition of P̂1 is a projector and all these projectors
are orthogonal to each other. Let̂Q be the projector of the
subspace stabilized by the generators inU and obviously
TrQ̂ = 2n−|U|. Being also stabilized byU , the subspace
P̂1 is a subspacêQ. As a consequenceTrP̂1 ≤ TrQ̂, i.e.,
(

1 + v + 3|W̄ |
)

TrP ≤ 2n−u, which becomes exactly the
inequality Eq.(14) consideringTrP = 2k.

From inequality Eq.(14) it follows that an impure code
attaining the qHB must satisfy3n + 1 ≤ 2sH−u + 3u + 2v
which will be shown in what follows to be impossible when
ǫn = 1. SupposesH ≥ 6. It follows from ǫn = 1 that
3n + 1 ≥ 2sH + 10 and we shall prove2sH (1 − 2−u) >
10+3u+2v. Indeed ifu ≤ 6 we have always2sH (1−2−u) ≥
26 − 26−u > 10 + 5u ≥ 10 + 3u + 2v. If u ≥ 6 we have
2sH (1 − 2−u) ≥ 63 × 2sH−6 > 10 + 5sH ≥ 10 + 2v + 3u
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sincev ≤ u ≤ sH . Suppose nowsH = 5 and fromǫn = 1 it
follws n = 7, 9, 10. In casen = 7 inequality Eq.(14) becomes
22 ≤ 25−u+3u+2v. This is impossible because foru = 1, 2, 3
we have22 − 25−u > 5u ≥ 3u + 2v and for u ≥ 4 we
have22 − 25−u > 14 + u ≥ 3u + 2v sinceu + v ≤ 7. In
the cases ofn = 9, 10 the inequality Eq.(14), which becomes
28, 31 ≤ 25−u+3u+2v, is impossible because25−u+5u ≤ 26
for 1 ≤ u ≤ 5. If sH = 4 and ǫn = 1 we haven = 4 and
the corresponding code must be pure. All these contradictions
show that the qHB cannot be attained by impure code either
whenǫn = 1.

V. SPECIAL CONSTRUCTIONS

In this section we shall prove Lemma 1 by constructing
explicitly all the remaining optimal non-degenerate codesof
lengths n ≤ 38 except for n = 6. Our main tool is a
generalization of the pasting of stabilizer codes to a pasting
of 2-error detecting blocks (2ed-block) as defined below.

Definition 4 A 2-error detecting block[n, s]e is generated by
a set ofs multilocal Pauli operators acting onn qubits withe
pairs being non-commuting that detects up to2-qubit errors.

Each non-degenerate stabilizer code[n, s] detects all 2-
errors and so they define 2ed-blocks[n, s]0 with all the
generators commuting. By shortening a pure code we generally
obtain 2ed-blocks with some noncommuting pairs of genera-
tors. Some examples of 2ed-blocks are presented in Table IV.

2ed-blocks pasting: Given two 2ed-blocks[n2, s2]e2 and
[n1, s1]e1 that are generated by〈S1 = X(n2), S2 =
Z(n2), . . . , Ss2〉 and 〈T1, T2 . . . , Ts1〉 respectively, thens =
max{s1, s2+2} generators as given in Table II is a 2-ed block
[n1+n2, s]e with |e1−e2| ≤ e ≤ e1+e2. For convenience we
shall denote by[n1, s2]e1 ✄ [n2, s1]e2 the resulting 2ed-block.

The 2ed-block given in Table II detects up to 2-qubits
errors because firstly all the errors happening on then1-block
or n2-block can be detected because[n1, s1]e1 and [n2, s2]
are two pure codes of distance 3 and secondly two qubits
errors happening on different blocks can be detected by the
first two generatorsX(n2) ⊗ I(n1) and Z(n2) ⊗ I(n1). If
two noncomuting generators are arranged in the same row
the resulting generators will become commuting. As a result
e can be zero whene1 = e2 and all noncommuting pairs

TABLE IV
SOME EXAMPLES OF2-ERROR-DETECTING BLOCKS.

X I

Z I
I X

I Z

[2, 4]2

X X X

Z Z Z
X Y Z

Y Z X

[3, 4]2

X X X X

Z Z Z Z
X Y Z I

Y Z X I

[4, 4]1

X X X

Z Z Z

Z I Z
Z X Y

Y Z X

[3, 5]2

X X X X X

Z Z Z Z Z

Y X Y X I
I Z X Y I

Z X I Y I

[5, 5]2

X X X X X X X

Z Z Z Z Z Z Z

Z I Z Y X Y X
Z X Y I Z X Y

Y Z X Z X I Y

[7, 5]1

are carefully matched. In this case we obtain a pure 1-error-
correcting stabilizer code, since all 2-qubit errors can be
detected.

From the above arguments we see that although the1-qubit
block, denoted as[1]1 = 〈X,Z〉, detects only single qubit
errors, it can be regarded as a 2ed-block because there is no
2-qubit errors on a single qubit block. For example we have
[2, 4]2 = [1]1 ✄ [1]1. As another example the perfect code
[[5, 1, 3]] in Eq.(3) can be regarded as the pasting of two 2ed-
blocks [4, 4]1 ✄ [1]1.

A 2ed-block fails to define a code because there are
some pairs of noncommuting generators. By pasting two or
more 2ed-blocks these noncommuting generators may become
commuting and we thus obtain a 1-error correcting stabilizer
code. Our construction is therefore a kind of puncturing
plus pasting. By puncturing some old stabilizer codes we
obtain some 2ed-blocks that generally contain some pairs of
noncommuting generators. By pasting with some other 2ed-
blocks and carefully matching their noncommuting pairs we
are able to produce some new stabilizer codes. To complete
the constructions given in Table III we have only to construct
explicitly all the relevant 2ed-blocks.

We consider the optimal code[25] as in Table V whose
stabilizer is defined by the check matrix[RH5|A5RH5] with

A5 =













1 1 0 0 0
1 1 0 1 0
0 1 0 0 0
0 1 1 0 1
0 1 1 0 0













, R =













1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
1 1 1 0 0













. (16)

ObviouslyA5 is revertible and fixed-point free andR is in-
vertible. By removing four coordinates[c5, c10, c19, c28] from
this [25] we obtain the 2ed-block[28, 7]2 and by removing
the first four coordinates[c0, c1, c2, c3] we obtain A 2ed-block
[28, 7]1. By 2ed-blocks pasting with 2ed-blocks in Table IV
we obtain the pure optimal codes of lengths30, 31, 33 and35
in addition to a previously unknown optimal code

[36] = [28, 7]2 ✄ [7, 5]1 ✄ [1]1 (17)

whose stabilizer is explicitly given in Table V.
From three partitions of[24] as shown in Table VI we can

obtain a pure optimal code[10] as well as the unique optimal
code[[6, 0, 4]] of distance 4 and four different 2ed-blocks. By
pasting with the perfect 5-qubit code we obtain[15] = [10]✄
[5]. Also we obtain all the optimal pure codes of lengths from
11 to 14 as well as an optimal pure[7] = [6, 6]1✄ [1]1. Finally
the remaining 2ed-blocks appeared in Table III are given in
Table VII.

VI. D ISCUSSIONS

We have described a general construction of all the optimal
stabilizer codes of distance3 for lengthsn > 38 by pasting
known codes and a special construction of the optimal pure
stabilizer codes of length5 ≤ n ≤ 38 case by case by
employing a generalization of the stabilizer pasting to non-
commuting sets of stabilizers, i.e., 2ed-blocks pasting. For
three families of lengths we have worked out analytically the
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TABLE V
THE STABILIZER FOR THE OPTIMAL CODE[[36, 29, 3]].

[[32, 25, 3]]

5 10 19 28 0 1 2 3 4 6 7 8 9 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 29 30 31

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X I I I I I I I I

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z I I I I I I I I

Z I X Y I Z I Z I I Z I Z Z I Z I Z Y X Y Y X Y X Y X Y X X Y X X X X X X X X I

Y Z Y Z I Y Z X I Z X I Y X I Y Z X Z X I Z X I Y Z X I Y X I Y Z Z Z Z Z Z Z I

Z X Z X I Z I Z I I Z X Y Y X Y X Y I Z I I Z I Z X Y X Y Y X Y Y Z X Z X I Y X

I X X I I Z X Y Z Y X I Z Y Z I Y X Z I Y I Z X Y Z I Y X Z X Y Z X Y I Z X Y Z

Y Y Y Y I Z I Z X X Y Y X X Z I Z I X Y X I Z I Z Z I Z I X Y X Z I Z Y X Y X I

[28, 7]2 [7, 5]1 [1]1

TABLE VI
THREE PARTITIONS OF THE OPTIMAL CODE[24].

[24] = [[16, 10, 3]]

X X X X X X X X X X X X X X X X

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

I X Y Z I I I X Y Z Y X Z Z Y X

I Y Z X I I I Y Z X Z Y X X Z Y

I I I I X Y Z X Z Y X Y Z X Y Z

I I I I Y Z X Y X Z Y Z X Y Z X

[10] = [[10, 4, 3]] [[6, 0, 4]]

X X X X X X X X X X X X X X X X

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

I X Y Z Y X Z Z Y X I I I X Y Z

I Y Z X Z Y X X Z Y I I I Y Z X

I I I I X Y Z X Y Z X Y Z X Z Y

I I I I Y Z X Y Z X Y Z X Y X Z

[10, 6]1 [6, 6]1

X X X X X X X X X X X X X X X X

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

I X Y Z I I I X Y Z Y Z X Z X Y

I Y Z X I I I Y Z X Z X Y X Y Z

I I I I X Y Z X Y Z X Y Z X Y Z

I I I I Y Z X Y Z X Y Z X Y Z X

[10, 6]2 [6, 6]2

linear programming bound, which is strictly stronger than the
quantum Hamming bound and ensures the optimality of our
codes for these lengths. for all lengths exceptn = 6 there are
pure optimal codes.

Apparently the construction given by Theorem 2 is not
unique. Firstly there are different constructions for the optimal
code[2m] [7]. Secondly there are other constructions such as

[8 · (22m−1 − α1)]✄ [8 · (22m−3 − α2)]✄ . . .
. . .✄ [8 · (23 − αm−1)]✄ [17− β] (18)

or

[8 · (22m − α1)]✄ [8 · (22m−2 − α2)]✄ . . .
. . .✄ [8 · (24 − αm−1)]✄ [38− β] (19)

whereαi + 3 ≤ 22(m−i+1)−1 or 22(m−i+1) respectively and
α =

∑m−1
i=1 αi. For different choices of{αi} the resulting

TABLE VII
FURTHER CONSTRUCTIONS OF2ED-BLOCKS.

[5, 5]2 [5, 5]2 [5, 5]2 [3, 5]2

I(5) X(5) Y (5) Z(3)

I(5) Y (5) Z(5) X(3)

[18, 7]1

[7, 5]1 [5, 5]2 [3, 5]2 [3, 5]2

I(7) X(5) Y (3) Z(3)

I(7) Y (5) Z(3) X(3)

[18, 7]2

[7, 5]2 [5, 5]2 [5, 5]2 [3, 5]2

I(7) X(5) Y (5) Z(3)

I(7) Y (5) Z(5) X(3)

[20, 7]2

[7, 5]2 [7, 5]2 [7, 5]2 [5, 5]2

I(7) X(7) Y (7) Z(5)

I(7) Y (7) Z(7) X(5)

[26, 7]2

codes may be inequivalent. This raises the problem of the
classification of the optimal codes. Finally our approach should
turn out to be useful to investigate nonbinary codes (see
Ref.[3]) as well.
Remarks At time of finishing the first version of this paper
the optimal codes of lengthsn = 36, 37, 38, 81, which have
been constructed in Ref.[4] have been missing in Grassl’s code
table. ⊓⊔
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