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All the stabilizer codes of distance

Sixia Yu, Juergen Bierbrauer, Ying Dong, Qing Chen, and MH.

Abstract—We give necessary and sufficient conditions for the 3 all errors that occurred on at mdsqubits can be detected.

existence of stabilizer codeg[n, k,3]] of distance 3 for qubits:  The quantum Hamming bound (qHB), e.g.,

n—k > [log,(3n+1)]+e, wheree, = 1if n = 81— +{+1,2} _

or n = 4221 £1 2 3} for some integerm > 1 and e, =0 7 = su = [logy(3n+1)] (equivalentlyn < (2" —1)/3) (1)
otherwise. Or equivalently, a code[[n, n —r, 3]] exists if and only - A

if n < (4" —1)/3.(4" — 1)/3 —n ¢ {1,2.3} for even r and [0 @ stabilizer codd[n,n —r, 3]}, had been proven initially
n < 8(4"% —1)/3,8(4" %~ 1)/3 —n # 1 for odd r. Given fOr non—degenerate codes. It is also valid for degenerateso
an arbitrary length n we present an explicit construction for an of distances} and5 [9] and of a large enough length as shown
optimal quantum stabilizer code of distance3 that saturates the in [[I] via the linear programming (LP) bound] [7].[15]. Our

above bound. main result reads

Index Terms—quantum error correction, 1-error correcting
stabilizer codes, quantum Hamming bound, optimal codes Theorem 1 Let f,, = (4™ —1)/3. A stabilizer cod€[n,n —
r, 3]] exists if and only if

I. INTRODUCTION > SH A+ € 2

Quantum error-correcting codés [4], [13],[17].]19] prdei Wheree, = 1if n =38f, +{£1,2} or n = fi, 1> —{1,2,3}
us an active way of protecting our precious quantum daf@f some integern > 1 ande, = 0 otherwise (equivalently:
from quantum noise and play an essential role in variots< fr/2, fr/2 —n & {1,2,3} for evenr, n < 8f(,_3)/2,n #
quantum informational processes. Simply speaking, a QEGE—3),2 — 1 for oddr).
is just a subspace that corrects certain types of errorsnWhe
the subspace is specified by the joint eigenspace of a group
of commuting multilocal Pauli operators, i.e., direct pnots
of local Pauli operators, the codes are called stabilizeleso
[6], [7], [Q]. We consider only binary codes here. As usu
we shall denote by[n, k,d]] a stabilizer code of length
and distancel, i.e., correcting up tq%J—qubit errors, that
encodesk logical qubits. The redundancy= n — k£ counts
the number of the independent generators of the stabilizer.

One fundamental task is to construct optimal codes, e.
codes with largest possible with fixed n andd. In the case binary projective spacefs \ {0} = PG(r — 1,2). In this

of d " 2 all optimal stabilizer codes are knov_vn. In the S'mple§tetting the stabilizer is described by a family oflines in
nontrivial casel = 3, a systematic construction for all lengths G(r—1,2)

has not been achieved yet. Known results include Gottesman’ ¢ introducing some notation and recalling known result

(r)]ptlntw)al codes faT'lyEO] of IenlgthSm with "t;‘ >3 which essential to our construction in Sec.ll, we shall present a
as been generalized Tor even _eng [14] by using Ste*’?‘ eheral construction for optimal codes of arbitrary length
enlargement construction [20] with some codes being ophmn > 38 that saturates the bound Hd.(2) in Sec.lll. In Sec.lV

and some are suboptimal, i.e., one logical qubit less than We shall prove the only if part by showing that the gHB cannot

quantum Hamming bouhd. ] be attained when,, = 1. In Sec. V we shall provide explicitly
A code of distancel is degeneratef there are harmless ¢ a of the pure optimal codes of lengths: 38, which are

undetectable errors acting on less thiagubits, i.e., errors can gggential to our general construction, using a generilizaf
not be detected but do not affect the encoded quantum da{a, ~,ge pasting method.

If all errors acting on less thai qubits can be detected, the
codes areon-degenerater pure For a pure code of distance I

For the definition of quantum stabilizer codes see [6], [7].
he translation into the language of finite geometries i&in [
see also the manuscript! [8]. Here the Pauli matrices are
identified with the binary pairs{I, X,Y,Z} = F%, and an
Fn,n — r]] quantum code is described by a check matrix of
the stabilizer. The defining condition is that any two getesa

are orthogonal with respect to the symplectic inner product
Each of then qubits corresponds to a pair of columns of the
check matrix. Each column is a binarytuple. The nonzero
fiples are identified with the points of tiie— 1)-dimensional
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. . .. . TABLE |
[[n, n—r, 3]] while simply by|n] the stabilizer arptimalpure SOME EXAMPLES FROM CODES FAMILY[S - m].

code of lengthn, e.g.,[5] stands for the perfect codp, 1, 3]]
whose stabilizer reads

2% [2%]  [29] 2°] 2% 2°] [27]
XXXX T 1(2%) X(2°) Y(2°) 1(2%) X(2%) v (2°) 2(2%)
722727 I 1(23) Y(23) z(2%) 1(23) Y(2%) Z(23) X(23)
XV 21 X° (3) 8-3] = [[24, 17, 3]] 8.4 = [32, 25, 3]
Y ZX 1T Z

2T 2] 2% 7] 2] 2
1(2%) 2(2%) Y(2%) X(2%) Y (2%) X(2%)
X(2%) Y(2%) 1(2%) 2(2%) X(2°) Y (2%)
2(2%) X(2°) 2(2°) X(2°) I(2°) Y(2°)

[8- 6] = [[48, 40, 3]]

where a juxtaposition of some Pauli operators in the same row
means their direct product.

Codes family [2™] (m > 3). The first family of codes is
the Gottesman family of optimal codg@™, 2™ — m — 2, 3]]
with m > 3 that saturate the quantum Hamming bound [10].

In the geometric setting this is equivalent to the obseovati TABLE I

that the pOintS |nPG(’f‘ -1 2) OUtSide a SUbSpaCEG(T‘ _ THE STABILIZER FOR THE CODE OBTAINED FROM PASTING
3,2) can be partitioned into lines. In Réf.[4] this is referred

to as the Blokhuis-Brouwer constructidn [3]. By constranti Xnz) I(m1) X(n2) I(n1)
these codes are non-degenerate and two observalEs) = Z(na)  I(ny) Z(ny)  I(ny)
X1...Xom and Z(2™) = Zy ... Zym are generators of the S5 Ty S3 T
stabilizer. For simplicity we denote bj2™] a set ofm + 2 Sa T> Sa T

generators of the stabilizer of Gottesman’s code, the fivet t

generators beind (2™) and Z(2™). o

.. . .. SSz T5272 Ssl+2 Tsl
An explicit construction of the remaining. generators I(n2) Te,1 “Surs Im)
is given by the check matrixH,,|A,,H,,] where H,, = ] )
[co,c1, ..., cam_1] With the (k 4+ 1)-th columne; being the : : : :
binary vector representing integér(k = 0,1,...,2™ — 1) _dn2) Toy _ Ssy  I(m1)

and A,,, is any invertible and fixed point free, x m matrix,
i.e., A,s # 0 andA,,s # s for all s € F3*. As an example,

! 3 .
the unique codg2’] has a stabilizer generated by a subcode of Gottesman’s cof®~] and therefore detect all

XX XXXXXX 2 errors in different blocks. Thus al-errors can be detected
VA A A AV AV A AV so that we have constructed a purerror-correcting code of

1 Z1ZYXYX. (4) length8m.

I ZXY I ZXY We shall abuse the notation slightly to denote all the codes
I1YZXZXI1Y of this family by [8 - m] though some of them are not optimal.

In fact whenf, 1 +1 < m < 22*+! and 22”;“ <m <2

Codes family [8 -m] (m > 3). The second family of codeswith » > 1, the code[8 - m] is optimal since,, + 5 = s in
are of parameter§8m, 8m—I,, —5, 3]] with [,,, = [log, m| as these cases. Otherwise the code is suboptimal,j.e+ 5 =
constructed in Ref.[14]. One crucial property of this famg s, + 1.
that they are stabilized by all and allZ observablest(8m)  Stabilizer pasting (Gottesman[[11]) In the geometric set-
and Z(8m). Here we shall provide a different constructioning stabilizer pasting was rediscovered in Ref.[4] as the
based on Gottesman's family. generalized Blokhuis-Brouwer construction.

We divide8m qubits intom blocks of8-qubit. The first five Given two non-degenerate stabilizer codés,,s,] =
stabilizers of the code ar@®]®™ whose first two generators (S1,82,...,8s,) and[ny,s1] = (11, T», ..., Ts,) of distance
are X(8m) and Z(8m). In the case ofn = 3,4 the codes 3, if two observables (n,) andZ(n,) belong to[n, s3], say,
are defined in Table I. In the case of > 5 so thatl,, > S, = X(ny) and Sy = Z(n»), then the stabilizer defined in
3, the remaining,, generators of the stabilizer are obtainedable 1l defines a non-degenerate stabilizer cpget n, s]
from Gottesman’s codg!™] by at first removing the first two with s = max{ss, s; + 2}, denoted asny, so] > [n1, 51].
generators and then removing arbitray — m qubits and  As a first example of stabilizer pasting we obtain an optimal
finally replacing each single-qubit Pauli operatdfsY, and ¢code [13] = [[13,7,3]] by pasting the optimal codf?] of
Z in the remaining stabilizers by the correspondigubit |engthn, = 8 ands, = 5 stabilizers with the perfect code
operatorsX (2%), Y (2°), and Z(2°) respectively. In Table | [5], i.e, n; = 5 ands, = 4. The resulting code is of length
we also present an example in the case- 6. ny +no = 13 with s; + 2 = 6 > s, = 5 stabilizers.

Obviously alll,,, + 5 generators defined above are com- |f there is a third pure cod@s, s3] with X (ns) and Z(ns)

muting with each other. Because of the filsgenerators of pelonging to its stabilizer then the stabilizer pastingilssin
the stabilizer any2-errors in the sam&-qubit block can be 3 pure code

detected. For ang errors in two differeng8-qubit blocks, the
lasti,,, generators together with the first two generators define [n1 + no + ng, s] = [ns, s3] > [na, s2] > [n1,s1]  (5)




TABLE Il

THE STABILIZERS OF THE PURE OPTIMAL CODE$[n, n — 7, 3]] FOR A direct appli_cation of stabilizer pasting to two OP_timaldHS
n < 38 AND n # 6. ALL THE 2-ERRORDETECTING BLOCKS sUCHAs  Yyields an optimal pure codé37, 30, 3]] whose stabilizer reads
[28, 7]2 ARE CONSTRUCTED INSEC. V EXPLICITLY. 37] = [2°] > [5]

The following construction of an optimal pure cof#8] =
[[38,31,3]] is translated from the geometric construction in

n_r__ Stabilizer n_r__ Stabilizer Ref.[4]. We denote byHs, = [Hag, A, B] @5 x 2° matrix
10 6 Table VI 54 [4,41 > [1h whose columng:; are all possiblé-dimensional vector with
116 [10,6] &> [1]s 76 6,61 [1h entries0, 1 where 4, B are two5 x 3 matrices
12 6 [10,6]2 > [2,4]2 85 [2%]
13 6 [10,6]2 > [3,4]2 96 [6,6]2>[3,4]2 010 111
14 6 [10,6]1 > [4,4]1 18 7 [10] > [29) 0 0 O 0 1 1
15 6 [10] > [5)] 19 7 [18,7)1 > (1)1 A= 0 0 1 |, B=| 0 0 1 (9)
16 6 [24] 20 7 [18,7)2 1> [2,4]2 00 0 1 0 1
17 6 Eq.[8) 21 6 [2%] > [5] 0 0 1 01 0
22 7 [18,7)1 > [4,4]1
317 (28,72 [3,4) 237 [18,7]2 5 [5,5]2 Also we denote by, = [Hyg, A', B'| = Eq + M H3z which
327 [27] 247 [8-3] is another5 x 25 matrix, where
337 [28,7)2 > [5,5]2 25 7 [18,7)1 > [7,5)1 135 010 1 1
347 [26,720>[7,51 > [ 267 (18,720 [7,5]1 > [1)a O 1 00 0 0
35 7 [28,7)1>[7,5)1 27 7 [18,7)1 &> [23] > [1]
36 7 [28,720> (7,51 > [1]1 28 7 [20,7)20>[7,5]1 &> [1]1 Er=1 0 |, M=[0 11001 (10)
377 [32] > [5] 207 [8-3]>[5) 032 010 10
38 7 Eq.[) 30 7 [28,7)2 > [2,4]2 032 0 01 01
Both M andI + M are invertible. Furthermore we denote
001 11 11 00O0O0O0
with s = max{s3, s2 + 2,51 + 4}, which can be further 00 0O0OOTU OD|0O 1 1 111
pasted with another code and so on. As a second examplg?|@Q]=| 0 0 0 1 1 O0f1 1 1 0 0 1
the perfect cod€[f,,, fn — 2m,3]] with f,, = =1 and 10001 1[0 10110
m > 3 can be constructed by pasting Gottesman’s cd2fés 0110011 01 010
(1=2,3,...,m) with the pure perfec-qubit code[11], 7], The check matrix of the stabiliz€B8] reads
[fn] = 220" V] > 222> 2 > 5] (6) log 13 13 Og| 1o 13 13 Og
As a last example the optimal stabilizer code of lenggh, 026 03 13 0| 126 O3 13 06 |- (11)
(m > 2) can be constructed by pasting Gottesman’s codes Hyy A A" P|Hy B B Q
221 (1 =1,3,...,m) [7] Optimal pure codes of lengths and 32 exist. We shall
8fm] = 22" > 22" > ... > [27]. (7) Postpone the explicit constructions of pure optimal codes
of the remaining lengths to Sec. V where the pasting of
[1l. THE GENERAL CONSTRUCTION stabilizers is generalized to the pasting of noncommutéig s
Our main tool is the pasting of codes to produce new cod@k generators. A typical example is the construction of an
from old ones. Only pure codes can be used in the pastifgptimal pure code[36] = [[36,29,3]] whose stabilizer is

Since the optimal stabilizer code far= 6 is degenerate we xplicitly given in Table V. All the pure optimal codes of
see that optimality does not imply pureness. Although frofngths5 < n < 38 with n # 6 are summarized in Table III.

the Grassl's public code table we know that the optimal codes u
for n < 37 exist, we need to check in each case that pureLémma 2 ensures that there exist — 5] and (38 — j] for
optimal codes exist. 0 < B <7, ie, optimal pure codes of those lengths exist and

have6 and7 generators respectively. For> 38 we have the
Lemma 2 Non-degenerate optimal-error correcting codes following general construction:
of lengths10 <n < 17 and 31 < n < 38 exist.
Theorem 3 Supposer > 38 and n # 8¢ f,, for any integer
Proof: An example of a pure codgl 7,11, 3]] was found ,,, and e — 0,1.a) f 8f;n — 1 < 1 < frmis — 4 for some
in Ref.[7] by a random search. A geometric construction ip, > 9 then the stabilizer -
Ref.[4] yields the following set of generators of the stiieits N
[8-(22" 71 —a)]>[22"]> 222> .. > [20] > [17 - 6] (12)
XXIYXXYYXXXI1I11ZZ7ZZ

XY I XYXXZ222XXXTITTI]I defines an optimal pure codlg, n—2m—4, 3]| wheref,,, 5 —
4—n=8a+ B witha>0and0 < 3 < 7. Whenm = 2

XZIXXYZXITII1IZZZXXX Sa+,
ZIXYZZXZYT1ZY T2y 17 . (g8) thestabilizeris generated by - (8 — )] > [17 — . b) If
2 IY ZY ZYXZY I ZY T ZY I Jfmyz =3 < n < 8fpmq1 — 2 for somem > 2 then the
ZI1Z222ZYZYIZY T ZYIT1ZY stabilizer

[17] = [[17,11, 3]] [8-(22™ —a)]>[22™ T > 22 > > [27] > [38 — 6] (13)



defines an optimal pure cod@n,n — 2m — 5,3]] where
8fmi1 —2—n=8a+ S witha >0and0 < g < 7. When
m = 2 the stabilizer is generated B¢ - (16 — )] > [38 — f].

Proof: At first from Lemma 1 and the construction

of two codes families[8 - k] and [2*] it is clear that all
the stabilizer codes involved in EQ.{12) or Egl(13) are n

degenerate. Secondly by construction two families of cod
are stabilized by alK and allZ Pauli operators.

[8-k] and[2*]

Now suppose that the codgn, k, 3]] attaining the qHB
is impure. In this case some generators of the stabilizer act
nontrivially only on 1) one qubit or 2) two qubits. In case 1)
by removing this generator together with the qubit it actsven
Sobtain a codé[n—1, k, 3]] which may be pure or impure. From
the qHB for the cod¢ln—1,k,3]],i.e.,n—k—1 > sg(n—1),
Uhdsy (n) = sy (n—1) in the case of,, = 1, the bound Ed{2)
follows immediately. Therefore we can assume that case 1)
does not happen.

(0]

As a result the stabilizer pasting can be applied_ from right t In case 2) there are some single-qubit errors acting on
left so that Eq[(I2) and EQ.(13) define pure stabilizer cades e rent qubits that lead to an identical syndrome. We sisgp

distance3.

that there is a number > 1 of such degenerated syndromes

Now we evaluate the parameters of the codes. It is easy{fh each syndrome caused by + 1 single-qubit errors

see from the definition ofv and 5 and the identityf,,12 =

22m+2 4 92m 4 4 2% 45 that the length of the resulting

codes are exactly. Recalling that the cod€8 - k] and [2¥]

havel, = [logk] + 5 andk + 2 stabilizers respectively while

the codeg17— 5] and[38 — 5] have at mos6 and7 stabilizers
respectively. Since: > 0 we have[log(2?"~*—a)] < 2m—a
for a = 0, 1, the stabilizers in Eq.(12) and Hg.{13) h&ve+4
and2m + 5 generators, respectively. [ |

As a first example when = 81 we have[81] = [26] > [17]

which is an optimal codg81, 73, 3]] apparently missing from

the public code table. As another example whega 305 we
havermn = 3 and8f; — 1 = 167 < 305 < f5 —4 = 337 so
that construction a) applies. Also we hawe= 4 and = 0
and as a consequen{395] = [8 - 28] > [2°] > [17]. As a last
examplen = 371 we havem = 3 and340 < n < 677 with the
condition of case b satisfied. In this cas& —371 = 8 x 3842
so thata = 38 and 3 = 2 and by construction Eq.(IL3) w
have[371] = [8 - 26] > [27] > [35]. Both codes|[305, 195, 3]]
and[[371, 360, 3]] saturate the quantum Hamming bound.

IV. EXACT BOUND

In this section we shall prove the ‘only if’ part of Theore
1, which amounts to showing that in the caseegf = 1,
ie,n =8f, +{+1,2} orn = fh,42 — {1,2,3} for some

m > 1, the quantum Hamming bound cannot be attained.
Suppose that there is a pure code, k, 3]] that attains the

guantum Hamming bound, i.e., a code whose stabilizer

(acting on different qubits since case 1 does not happen)
whereu; > 1 andi = 1,2,...,v. Because the product of
two single-qubit errors that lead to the same syndrome is
a stabilizer of the code, there is a g6t of generators of
the stabilizer that act nontrivially exactly on two qubitsda
obviously|U| = }";_; u; := u < n— k. According to Ref[[4]

(Theorem 3.2) it holds

2n—k—u —uv—1

3

Here we provide an alternative proof of the above inequality
which may apply also to nonadditive codes. L&t be the
set of qubits thati; + 1 single-qubit errors, which lead to
an identical syndrome, act on and obviou§ly/;| = u; + 1
since different errors must act on different qubits. Beegu®
different degenerated syndromes cannot be caused by single
€ qubit errors acting on the same qubit, we have a disjointrunio
W = UY_, W; with [W| = u+v. Let W denote the remaining
|W| = n—u—v qubits that all the generators in trivially act
on. Without loss of generality, applying some local Cliffor
transformations and relabeling the qubits when necesgary,
ncan assume that thosedegenerated syndromes are caused by
single-qubit errorsX; with i = 1,2,...v. Define

n—(u+v) < (14)

P=P+ zv:XiPXi + > E.PE,
i=1 Eo,a€W

(15)

has

sy generators. LefG,|G.] be its check matrix which is an where P is the projector of the coding subspace|ff, , 3]]
sy x 2n matrix satisfyingG,G? + G.GL = 0. Because the and the last summation is over all possiblgqubit errors §| V|

code is supposed to be pure, the maftix [G,|G.|G.+G.],

of them) in qubits belonging tdV. Note that each term in

composed of the syndromes of all possiblgubit errors, must the definition of P, is a projector and all these projectors

have distinct columns. Moreover we has&” = 0, meaning
that S is self orthogonal. Denote by the sy x y matrix
composed ofy = 2°% — 3n — 1 sy-dim column vectors tha

are orthogonal to each other. Lét be the projector of the
subspace stabilized by the generatorslinand obviously
t Tr) = 2"V, Being also stabilized by/, the subspace

are not syndromes of an-qubit errors. Being composed allP; is a subspacé). As a consequenc@rP; < TrQ, i.e.,

possiblesy-dim vectors the matrixtHss» = [0]S|Y] is self
orthogonal and thu¥’ is also self orthogonal. In other word

(1 +v+ 3[W|)TrP < 2"7“, which becomes exactly the
sjnequality EqI[IH) consideringrP = 2*.

the matrixY is the check matrix of some classical binary self- From inequality Eql{1l4) it follows that an impure code
orthogonal codey, k, 3]» for somek < sy. On the one hand attaining the qHB must satisf$n + 1 < 257" 4 3u 4 2v
it is an elementary fact that such self-orthogonal codestexivhich will be shown in what follows to be impossible when

only for y = 7,8 wheny < 10 [4]. On the other hand in the ¢,

case ofe,, = 1 we havey € {1,4,10} if n =8f,, + {£1,2}
whiley € {3,6,9} if n = f,,12—{1,2,3}. This contradiction

1. Supposesy > 6. It follows from ¢, = 1 that
3n +1 > 2°7 4+ 10 and we shall prove®# (1 — 27%) >
104+ 3u+2v. Indeed ifu < 6 we have alwayg# (1—27%) >

proves that the gHB cannot be attained by a pure code in tife— 26=% > 10 + 5u > 10 + 3u + 2v. If u > 6 we have

casee,, = 1.

291 (1 —27%) > 63 x 25876 > 10 + 5sy > 10 + 2v + 3u



sincev < u < sy. Suppose nowy = 5 and frome,, = 1 it are carefully matched. In this case we obtain a pure 1-error-

follws n = 7,9, 10. In casen = 7 inequality Eq[[T¥) becomescorrecting stabilizer code, since all 2-qubit errors can be

22 < 2°~“43u+2v. This is impossible because for=1,2,3 detected.

we have22 — 2°~% > 5u > 3u + 2v and foru > 4 we From the above arguments we see that although tebit

have22 — 2°~% > 14 + u > 3u + 2v sinceu +v < 7. In  block, denoted asl]; = (X, Z), detects only single qubit

the cases ofi = 9, 10 the inequality EgL{T4), which becomeserrors, it can be regarded as a 2ed-block because there is no

28,31 < 25744 3u+2v, is impossible becauge~“+5u < 26 2-qubit errors on a single qubit block. For example we have

for1 <u <5 If sy =4ande, =1 we haven = 4 and [2,4]; = [1]; > [1]1. As another example the perfect code

the corresponding code must be pure. All these contradgtid|[5, 1, 3]] in Eq.(3) can be regarded as the pasting of two 2ed-

show that the qHB cannot be attained by impure code eithelocks[4, 4]; > [1];.

whene,, = 1. A 2ed-block fails to define a code because there are

some pairs of noncommuting generators. By pasting two or

V. SPECIAL CONSTRUCTIONS more 2ed-blocks these noncommuting generators may become

explicitly all the remaining optimal non-degenerate codés code. Our construction is therefore a kind of puncturing
lengthsn < 38 except forn = 6. Our main tool is a PlUS pasting. By puncturing some old stabilizer codes we
generalization of the pasting of stabilizer codes to a pgstiobtain some 2ed-blocks that generally contain some pairs of
of 2-error detecting blocks (2ed-block) as defined below. NOncommuting generators. By pasting with some other 2ed-

blocks and carefully matching their noncommuting pairs we
Definition 4 A 2-error detecting blocKn, s]. is generated by are able to p_roducg some new stabilizer codes. To complete
a set ofs multilocal Pauli operators acting om qubits withe ~the constructions given in Table Il we have only to consitruc
pairs being non-commuting that detects up2tqubit errors. ~ xplicitly all the relevant 2ed-blocks.

N We consider the optimal codR®] as in Table V whose
Each non-degenerate stabilizer coies| detects all 2- stabilizer is defined by the check matfiR Hs| A5 RHs] with

errors and so they define 2ed-blocks, s], with all the

generators commuting. By shortening a pure code we gewperall 11000 10000

obtain 2ed-blocks with some noncommuting pairs of genera- 11010 00001

tors. Some examples of 2ed-blocks are presented in Table IV, 45 = [ 01000 |, R=f 01000 |. (16)
2ed-blocks pasting Given two 2ed-blockgns, s2]., and 01101 00010

[n1,s1]e, that are generated byS; = X(n2),S2 = 01100 11100

Z(n2),...,Ss,) and (T, T3 ..., Ty, ) respectively, thens =  Opviously A5 is revertible and fixed-point free andl is in-
max{s1, s +2} generators as given in Table Il is a 2-ed blockertible. By removing four coordinatdss, c1o, 1o, cas] from
[n14n2, s|le With [e1 —es| < e < e1+e5. For convenience we thjs [25] we obtain the 2ed-blockes, 7], and by removing
shall denote by, sofe, > [n2, s1]e, the resulting 2ed-block. the first four coordinategi, c1, ¢z, cs] we obtain A 2ed-block
The 2ed-block given in Table II detects up to 2-qubitsg 7],. By 2ed-blocks pasting with 2ed-blocks in Table IV
errors because firstly all the errors happening onvihdlock e obtain the pure optimal codes of lengts 31, 33 and 35

or ny-block can be detected becausa, sie, and [nz,s2] in addition to a previously unknown optimal code
are two pure codes of distance 3 and secondly two qubits

errors happening on different blocks can be detected by the [36] = [28, 7|2 > [7,5]1 > [1]x 17)

twp noncamuting generators aré aranged in he same (JOSe SEbize i explcty given n Table
99 9 rom three partitions of2*] as shown in Table VI we can

the resulting generators will become commuting. As a res%llt)tain a imal codao I h . imal
e can be zero wher; = e, and all noncommuting pairs pure 0pt|_ma codgo] as we det € unique optima
code([6, 0, 4]] of distance 4 and four different 2ed-blocks. By
pasting with the perfect 5-qubit code we obt&is] = [10] >
Soue EXAMPLESOFEA-EIR_EOIXDETECTING CLocKs [5]. Also we obtain all the optimal pure codes of lengths from
11 to 14 as well as an optimal pufg = [6, 6], > [1];. Finally
the remaining 2ed-blocks appeared in Table Ill are given in

X 1 XXX XXXX Table VII.

Z 1 Z 7 Z Z 7 ZZ

I X XY Z XY ZI

Iz Y Z X Y Z X I VI. DISCUSSIONS

12,4]2 13,4]2 14,41 We have described a general construction of all the optimal
T T %X XXX XX TXXXXXX stabilizer codes of distance for lengthsn > 38 by pasting
Z Z 7 Z7Z7Z2ZZ ZZZZZZZ known codes and a special construction of the optimal pure
Zz1z YXYXI Z2I1ZYXYJX stabilizer codes of length < n < 38 case by case by
ZXY I ZXY I ZXYITZXY : o . .
YZ2X ZXIYI YZXZXIY employing a generalization of the stabilizer pasting to-non

commuting sets of stabilizers, i.e., 2ed-blocks pastingr. F

[3,5]2 5, 5]2 7,51 g pastnoy.

three families of lengths we have worked out analytically th



TABLE V

THE STABILIZER FOR THE OPTIMAL CODE[[36, 29, 3]].

THREE PARTITIONS OF THE OPTIMAL CODE2%].

[2*] = [[16,10, 3]]

XXXXXXXXXX XXXXXX

([32, 25, 3]]

5101928 0 1 2 3 4 6 7 8 9 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 202813
XX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXX 1111111 1
27227 Z7ZZ%%Z7Z22Z7Z7Z7Z%Z7Z7Z%Z2ZZ7Z%ZZ7Z7ZZZZ%Z7ZZ 1111111 1
ZI1XY 12121121221 Z1ZYXYYXYXYXYXXYX XXXXXXX I
YZY Z 1Y 2Z2X12ZXIYXIY ZXZXI1ZXI1YZXIYXIY Z22Z22Z2Z2Z I
ZX2ZX 12121 1ZXYYXYXY1Z2I11ZI1ZXYXYYXY YZXZXIY X
IXX I 1ZXYZYXI12ZY ZIYXZIYITIZXY ZIYXZXY ZXYI1ZXY Z
YYYY [ Z1ZXXYYXXZI12ZI1IXYXI1Z2ZI1Z2Z12ZI1XYX Z1ZYXYX I
(28,72 (7,51 (11

TABLE VI TABLE VI

FURTHER CONSTRUCTIONS ORED-BLOCKS.

[5,5]2 [5,5]2 [5,5]2 [3,5] (7,5]1 [5,5]2 [3,5]2 [3,5]2

2
I(5) X(5) Y(5) Z(3) I(7) X(5) Y(3) Z(3)
I(5) Y(5) Z(5) X(3) I(7) Y(5) Z(3) X(3)
[18, 7} 1 [187 7]2

[7,5]2 [5,5]2 [5,5]2 [3,5] [7,5]2 [7,5]2 [7,5]2 [5,5]2

2
I(7) X(5) Y(5) Z(3) I(7) X(7) Y(7) Z(5)
I(7) Y(5) Z(5) X(3) I(7) Y(7) Z(7) X(5)
[20, 7}2 [26, 7]2

codes may be inequivalent. This raises the problem of the

ssification of the optimal codes. Finally our approaabusth

turn out to be useful to investigate nonbinary codes (see

Ref.[3]) as well.

Z 7L Z Z Z Z Z ZZZ ZZZZZZ
I XY ZI111XYZ YXZZYX
1Y ZX T 1 1Y ZX ZYXXZY
I 111 XY ZXZY XY ZXYZ
1 I 1 1Y ZXYXZ YZXYZX
(10] = [[10, 4, 3]] [[6,0,4]]
XX XXXXXXXX XXXXXX
Z 7 Z Z Z Z Z ZZ Z ZZZZZZ
I XY ZYXZZY X 11 1XYZ
1Y ZXZYXXZY 1 11YZ7ZX
I I 11 XY ZXYZ XYZXZY
1 I 1 1Y ZXYZX YZXYXZ cla
[10, 6]1 (6,6]1
XXXXXXXXXX XXXXXX Re
Z 7L Z Z Z Z Z ZZZ ZZZZZZ
I XY ZI111XYZ YZXZXY
1Y ZX T 1 1Y ZX ZXYXYZ
I 111 XY ZXYZ XY ZXYZ
I 11 1Y ZXYZX YZXYZX
(10, 6]2 [6,6]2

(1]

linear programming bound, which is strictly stronger thha t [2]
guantum Hamming bound and ensures the optimality of ou[ !
codes for these lengths. for all lengths except 6 there are

pure optimal codes.

(4]

Apparently the construction given by Theorem 2 is not

unique. Firstly there are different constructions for tiptimal

(5]

code[2™] [7]. Secondly there are other constructions such as

[8 . (22m—1 o

or

(6]

Ozl)] > [8 : (22m—3 — Ozz)] >...
> [8(2° —ap-1)]>[17- 5] (18) ]
[8]
8- (22 — )] > [8- (2272 — )] > . .. -
> 8-2 —an-)]> B384 (19)

whereq; + 3 < 22(m—i+1)=1 gr 92(m—i+1) regpectively and [

m—1

OZZZi:

10]
1 «;. For different choices of «;} the resulting [11]

marks At time of finishing the first version of this paper

the optimal codes of lengths = 36, 37, 38,81, which have
been constructed in Refl[4] have been missing in Grasstle co
table.

O
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