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Abstract

Unique lifting factorization results for group lifting structures are used to characterize the group-
theoretic structure of two-channel linear phase FIR perfect reconstruction filter bank groups. For D-
invariant, order-increasing group lifting structures, it is shown that the associated lifting cascade group C
is isomorphic to the free product of the upper and lower triangular lifting matrix groups. Under the same
hypotheses, the associated scaled lifting group S is the semidirect product of C by the diagonal gain
scaling matrix group D. These results apply to the group lifting structures for the two principal classes
of linear phase perfect reconstruction filter banks, the whole- and half-sample symmetric classes. Since
the unimodular whole-sample symmetric class forms a group, W , that is in fact equal to its own scaled
lifting group, W = SW , the results of this paper characterize the group-theoretic structure of W up to
isomorphism. Although the half-sample symmetric class H does not form a group, it can be partitioned
into cosets of its lifting cascade group, CH, or, alternatively, into cosets of its scaled lifting group, SH.
Homomorphic comparisons reveal that scaled lifting groups covered by the results in this paper have a
structure analogous to a “noncommutative vector space.”
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Fig. 1. Examples of the two principal classes of linear phase filter banks. (a) Whole-sample symmetric (WS) filter bank.
(b) Half-sample symmetric (HS) filter bank.

I. INTRODUCTION

Finite impulse response (FIR) multirate filter banks have become important tools in a variety of
digital audio and image coding applications. Perfect reconstruction (PR) filter banks are invertible linear
transformations and are typically employed in subband coding schemes that split their sources into
multiple frequency subbands for encoding and transmission. This enables subband rate allocation strategies
that provide significant coding gain over direct quantization and entropy encoding of untransformed input.
The present paper studies two-channel filter banks, which are commonly cascaded to generate more
complicated frequency partitions. As with Fourier transforms, filter banks have corresponding analog
transforms, and filter bank cascades are often called discrete wavelet transforms (DWTs) if the filter
bank corresponds to an analog wavelet multiresolution analysis [1], [2], [3], [4].

The reason subband coding is often proving superior to traditional block transform coding based on
Fourier, cosine, or Karhunen-Loeve transforms is localization. The subbands produced by a filter bank
are samplings of the signal’s information content that are simultaneously localized in both time (or
space) and frequency. This eliminates the need for block-based or windowed transforms to achieve joint
time-frequency localization. Such joint localization allows frequency-dependent quantization and entropy
coding to adapt to nonstationary input. Moreover, unlike traditional closed-loop prediction schemes such
as differential pulse code modulation (DPCM), FIR filter banks are open-loop transforms that allow
random access into coded bitstreams by decoding a limited subset of bitstream data nonrecursively.

Nonetheless, Fourier analysis still has a 200-year head start on wavelets and filter bank theory. The use
of Fourier transforms to analyze arbitrary translation-invariant linear operators is highly evolved. Fourier
analysis has been defined on arbitrary locally compact abelian groups, and the effort to generalize Fourier
analysis to noncommutative settings has led to the theory of unitary representations for nonabelian groups.
Applications of Fourier analysis in science and engineering are widespread. Even recent developments
like numerical algorithms and hardware based on the fast Fourier transform (FFT) enjoy big head starts
over algorithmic and hardware developments for filter banks.

The present paper attempts to narrow the maturity gap between Fourier and multiresolution analysis a
little bit by using established mathematics to characterize the algebraic structure of multirate filter banks.
Rather than generalizing to highly abstract settings or exotic filter banks, we concentrate on developing
a deeper understanding of filter banks that have already proven their value in practical applications,
namely, two-channel linear phase FIR PR filter banks. The whole-sample symmetric (WS) and half-sample
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symmetric (HS) classes, whose highpass impulse responses are, respectively, symmetric or antisymmetric
(see Fig. 1), correspond to multiresolution analyses with compactly supported symmetric or antisymmetric
mother wavelets. We will show that these two principal classes of linear phase filter banks can be
described in detail using group theory, something that has not been done previously. Our primary tool is
the uniqueness theory for lifting factorizations developed in [5], [6] and outlined in [7].

A. Outline of the Paper

Section II presents background on communication coding standards involving filter banks so readers
can appreciate the role filter banks play in contemporary digital communications and can assess the
evolving state of the art. Section III briefly reviews notation and terminology from [5], [6] regarding
group lifting structures. Section IV identifies lifting cascade groups that have unique irreducible group
lifting factorizations [5, Theorem 1] with free products of lower and upper triangular lifting matrix groups.
Section V presents the semidirect product representation of scaled lifting groups, a result that follows
easily, via an independent argument, from the same hypotheses as [5, Theorem 1]. This provides the group-
theoretic characterization of the WS filter bank group. The HS class, which does not form a group, is
completely described in terms of cosets of its associated matrix groups. Section VI shows how the group-
theoretic structure of scaled lifting groups parameterizes linear phase filter banks in terms of a unique
factorization framework that structurally enforces perfect reconstruction and linear phase properties. A
homomorphic correspondence between the formal algebraic properties of scaled lifting groups and most
of the axioms for vector spaces exhibits scaled lifting groups as a type of “noncommutative vector space”
(i.e., a nonabelian group with a group of scaling automorphisms).

II. BACKGROUND ON MULTIRATE FILTER BANKS IN DIGITAL CODING STANDARDS

A. Speech Coding

1) G.711: International standards for narrowband digital speech coding based on the venerable A-law
and µ-law logarithmic companding algorithms date back to ITU-T Recommendation G.711 (1972) [8], [9],
which was widely deployed in public switched telephone network (PSTN) systems. The G.711 encoder
ingests 3.4 KHz of audio bandwidth digitized at 8 kilosamples per second (Ksps) with 13- or 14-bit
amplitude quantization. It outputs 8-bit pulse code modulation (PCM) words using an A-law or µ-law
quantizer for a rate of 64 kilobits per second (Kbps). This is a pure fixed-rate scalar quantization encoder;
there is no frequency transformation nor entropy coding. Speech coding is heavily constrained by the
latency that humans can tolerate and application-specific processing, memory, and power limitations.
Thus, entropy coding was not added to G.711 until 2009, when several variable-length coding options,
including Rice-Golomb coding, appeared in ITU-T Recommendation G.711.0 [10].

A feature that is becoming increasingly important as high-fidelity media applications proliferate and
speech has to share bandwidth on multiplexed channels is Quality-of-Service (QoS) scalability. ITU-T
Recommendation G.711.1 [11], [12] is a backwards-compatible extension of G.711 that supports 16 Ksps
(7 KHz bandwidth) “wideband” speech while generating a layered (multiple bit rate) codestream that
contains an embedded 8 Ksps G.711-compliant narrowband bitstream. This is done using a two-channel,
32-tap linear phase pseudo quadrature mirror filter (PQMF) bank to split the wideband input into 8 Ksps
lowpass and highpass subbands. Linear phase is desirable to avoid nonlinear phase distortion in quantized
speech. The quadrature mirror relation reduces numerical filter bank design to the optimization of a single
lowpass filter, and if that filter has linear phase then the overall analysis-synthesis transfer function will
also have linear phase. Unfortunately, the only two-channel FIR PR solutions satisfying both of these
conditions are generalized Haar filter banks, so PQMF banks like the one in G.711.1 provide “near-
perfect,” alias-free reconstruction with a linear phase transfer function that has approximately constant
magnitude [13, Section 5.2].
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The G.711.1 lowband is encoded as layer 0 using one of the core G.711 PCM algorithms. An optional
enhancement bitstream (layer 1) encodes the residual from layer 0 by adaptive allocation of anywhere
from zero to three additional bits per PCM codeword, constrained to a rate of 16 Kbps, for an enhanced
narrowband codestream with a rate of 80 Kbps. Wideband content is provided in layer 2 of G.711.1
by coding the highpass PQMF subband using a modified discrete cosine transform (MDCT). The M -
channel MDCT can be regarded as a windowed “short-time discrete cosine transform” in which the signal
is blocked into length-2M blocks with 50% overlap and tapered by a window, much like the construction
of short-time Fourier transforms. A nontrivial fact is that, with proper window and cosine transform
design, one can save just M output samples from each length-2M block and still have an invertible
transformation. Obtaining critical sampling (a 1:1 ratio of output to input samples) with 50% overlap to
reduce blocking artifacts is clearly desirable in source coding applications, but it is far from obvious that
one can do so while maintaining invertibility [13], [3], [14].

One can also interpret MDCTs as M -channel cosine-modulated filter banks in which every filter is a
frequency-modulated version of a length-2M “prototype” lowpass filter, or window. Because modulation
is done with cosines rather than complex exponentials, a real-valued lowpass prototype yields real-valued
bandpass filters. This greatly reduces design complexity: instead of designing M filters, one only needs a
single window satisfying appropriate conditions. Moreover, the polyphase representation can be exploited
to reduce implementation complexity by decoupling cosine modulation from the lowpass prototype. Thus,
the filter bank can be implemented “separably,” using the 2M -polyphase representation of the lowpass
prototype and the M -point DCT-IV transform, which can be applied using FFT techniques [15]. This
highlights an important development in source coding: the traditional distinction between filter bank-based
“subband coding” and block-based “transform coding” has been blurred by MDCTs since the lowpass
filter is usually applied using polyphase time-domain methods while the cosine modulation is performed
using fast block transforms.

Layer 2 of the G.711.1 codestream is formed using an 80-point MDCT with a Malvar sinusoidal window
to split the 8 Ksps PQMF highband into M = 40 frequency channels. All but the four lowest-frequency
channels are quantized using interleave conjugate-structure vector quantization, resulting in 80 bits per
5 ms frame, or 16 Kbps for layer 2. The bitrate for a 7 KHz “wideband” codestream containing layers 0
and 2 is therefore 80 Kbps while the bitrate for all three layers is 96 Kbps. The layered structure of the
G.711.1 wideband codestream enables a range of QoS scalability features, such as narrowband G.711-
compliant PSTN compatibility and partial mixing of teleconferencing signals [12].

Annex D of G.711.1 [16], [17] extends the G.711.1 layered codestream to support “superwideband”
(14 KHz) input sampled at 32 Ksps with 16-bit precision. The superwideband input is split into two
16 Ksps subbands by a 32-tap linear phase PQMF bank similar to the PQMF bank in the G.711.1 core
encoder. The 16 Ksps “wideband” lowpass subband is passed to the G.711.1 core encoder, where it is split
again by the core PQMF bank into lowband and highband signals and encoded as described above, giving
Annex D a two-level Mallat-style subband decomposition. Two highband enhancement layers improve
performance in the 6.4–8.0 KHz range.

A major change for G.711.1 in Annex D is dynamic classification of input into transient and non-
transient frames based on the Annex D PQMF bank’s 8–14 KHz “super higher band” (SHB). The SHB
is split into 80 channels by a 160-point MDCT. Its output is used to classify non-transient frames into
harmonic, normal, or noise-like frames and to switch between different modes for quantizing SHB data
using spectral and temporal envelope coding and MDCT-domain vector quantization. Layering Annex D
enhancement and SHB coding on top of G.711.1 codestreams creates four additional superwideband
modes with bitrates of 96–128 Kbps [16]. The G.711.1 Annex D algorithm was developed jointly as a
superwideband extension for ITU-T Recommendation G.722 [18], [19], [17], the first ITU-T wideband
voice standard, which uses a linear phase PQMF bank to encode wideband input in a two-channel adaptive
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DPCM scheme.
2) G.729: ITU-T Recommendation G.729.1 [20], [21] is a wideband extension of the G.729 nar-

rowband standard [22], which is widely used for voice-over-IP (VoIP) communications. A 64-tap linear
phase PQMF bank splits the 16 Ksps input into 8 Ksps lowpass and highpass subbands, as in G.711.1.
The lowband is encoded using code-excited linear prediction (CELP) to produce a G.729-compatible core
layer at 8 Kbps and one 4 Kbps narrowband enhancement layer. Spectral and temporal envelope highband
coding at 2 Kbps yields a wideband codestream for just 14 Kbps, while MDCT vector quantization creates
9 highband enhancement layers providing scalability from 16 to 32 Kbps in 2 Kbps increments.

Annex E of G.729.1 [23] supports superwideband input (14 KHz, 32 Ksps) with 5 layers providing rates
from 36 to 64 Kbps. Unlike the superwideband extensions for G.711.1 and G.722, G.729.1 Annex E does
not split the input using a PQMF bank. Instead, G.729.1 Annex E employs essentially the same algorithm
used to extend ITU-T Recommendation G.718 [24], [25] for superwideband input [26, Annex B]. The
32 Ksps input is antialias-filtered using an IIR lowpass filter and subsampled to 16 Ksps for input to the
G.729.1/G.718 core wideband encoders. The full superwideband input is simultaneously transformed by a
640-channel MDCT using a novel asymmetric window originally engineered for G.718 [24]. The MDCT
7–14 KHz data is analyzed to classify individual frames as “tonal” or “non-tonal”; different MDCT vector
quantization schemes then create layers extending the core wideband coding to superwideband.

B. Audio Coding

As speech coding covers wider bandwidths and diverse multimedia content, speech and general audio
codecs are becoming more similar. This is particularly true of their time-frequency analysis, which is
driven largely by receiver characteristics; i.e., the human auditory system [27]. There are still fundamental
differences between speech and general audio, however, such as mature source models for speech,
limitations on size, weight, and power for mobile phones, and the desire for high-fidelity audio to provide
“perceptually transparent” coding across the entire auditory spectrum.

The lack of detailed source models for general audio and the availability of greater computational
power has driven high-fidelity audio towards adaptive quantization and entropy coding based on short-
time quasi-stationary modeling of the auditory system [28], [14]. The key feature of such models is
the “critical band” theory of the cochlea as a spectrum analyzer modeled by a nonuniform bank of
nonlinear (amplitude-dependent) bandpass filters exhibiting psychoacoustic masking behavior. This is
approximated in practice by cascaded filter banks and MDCTs with quantization strategies that exploit
perceptual masking of weak tones by nearby stronger tones.

1) MP3: One of the earliest high-fidelity audio standards to use perceptual modeling is the MPEG-1
Part 3 standard (1992) [29], [30], [14] created by the ISO/IEC Motion Picture Experts Group (MPEG).
MPEG-1 audio uses a uniform 32-channel, critically sampled, 512-point, near-perfect reconstruction
cosine-modulated PQMF bank based on the DCT-III, reflecting the limitations of early-1990s filter bank
technology. Layers 1 and 2 use perceptual modeling to perform dynamic time-frequency bit allocation
for block companding. Layer 3 (the “MP3” algorithm) refines the frequency partition by cascading the 32
uniform (750 Hz bandwidth) PQMF channels with adaptively switched MDCTs. An 18-channel MDCT
creates narrow frequency bands (41.67 Hz) to resolve low- and mid-frequency critical bandwidths for
perceptual coding of stationary frames while a 6-channel MDCT provides better temporal resolution for
mitigating pre-echo artifacts caused by transient attacks. Transition windows preserve invertibility when
switching between 6- and 18-channel MDCTs. Layer 3 also uses run-length and Huffman entropy coding.

2) AAC: The MPEG-2 Part 3 standard [31], [30], [14] defines an embedded multichannel (“5.1”)
surround-sound codestream that is backwards compatibility with MPEG-1 two-channel stereo decoding
and supports lower sampling rates than MPEG-1. MPEG-2 also has a more advanced, non-backwards-
compatible audio codec known as Advanced Audio Coding (AAC) [32]. The Low Complexity and Main
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profiles of MPEG-2 AAC eliminate the front-end PQMF bank in MPEG-1 in favor of a single MDCT
whose window size switches between 2048 points for stationary content and 256 points for transients.
The Scalable Sample Rate profile has a 4-channel front-end QMF bank followed by MDCTs to enable an
embedded codestream supporting multiple bitrates. The MPEG-4 Part 3 standard [33], [34], [14] includes
MPEG-2 AAC in Subpart 4 for “general audio” coding and adds a great many other object-based audio
coding tools to create a QoS-scalable toolkit supporting a vast range of audio modalities, including speech,
parametric (model-based) audio, synthetic audio, MIDI, surround-sound, and various lossless modes.

Based on spectral analysis of the input, the AAC MDCT can switch between a sinusoidal window
for narrowband selectivity and a Kaiser-Bessel window [35] for greater stopband attenuation. The per-
ceptually driven design of Kaiser-Bessel MDCT windows was pioneered for the Dolby AC-2 and AC-3
algorithms [36], [14]; AC-3 is the audio codec for the U.S. HDTV broadcast standard [37]. One novel
feature of the AC-3 MDCT is that it can switch between 512-point and 256-point windows without using
intervening transition windows to preserve invertibility [35].

C. Image Coding

Unlike audio, imagery essentially never contains sinusoidal waveforms, and the audio coding strategy
of transforming a source into hundreds of narrowband, quasi-stationary channels with long block lengths
is inappropriate for images. A good first approximation for natural images is to regard them as com-
posed of smooth but irregularly shaped regions separated by abrupt jump discontinuities that are readily
discerned by the highpass characteristic of the human visual system. While fine textures commonly
exist in continuous-tone images, preservation of fine texture generally is not as perceptually important
as preservation of sharp edges between regions. Image transforms thus need to provide highly localized
(sparse) representations of high-frequency transients (edges), a requirement that does not match up well
with the properties of Fourier analysis.

1) JPEG-1: The most widely used international standard for continuous-tone imagery is the standard
produced by the ISO/IEC Joint Photographic Experts Group and known as JPEG (or JPEG-1) [38], [39],
[40]. As a result of comprehensive engineering and perceptual studies in the 1984–88 time period [41],
[42], [43], the JPEG committee chose a block-transform algorithm using a two-dimensional nonoverlap-
ping 8 × 8-pixel DCT-II [15]. The relatively small block size (larger blocks would have provided more
coding gain) represents a compromise reflecting the need for good spatial localization of information in
the transform domain. Moreover, the committee was sensitive to the risk of imposing high implementation
costs (for the 1980s) in a first-generation communication standard.

A bank of uniform scalar quantizers is applied to the DCT output, with relative bit allocation between
different frequencies given by a perceptually tuned quantization matrix and absolute bit rate controlled
by a single scalar parameter. JPEG-1 offers Huffman coding as well as a higher-performance/higher-
complexity binary arithmetic coding option. The DCT architecture creates a limited amount of QoS
scalability. Progressive transmission across slow links can be provided by transmitting DCT coefficients
in order from lowest to highest spatial frequencies. Hierarchical scalability can be obtained by decoding
and rendering an 8:1 reduced-resolution thumbnail of an image using only the DC coefficient from each
8×8 block. “Reversibility” (lossless coding) is possible by entropy encoding and transmitting the residual
from a lossy JPEG-1 representation.

2) WSQ: In the late 1980s the U.S. Federal Bureau of Investigation (FBI) decided to digitize the
U.S. criminal fingerprint database, which at the time consisted of an acre of filing cabinets holding
over 100 million fingerprint cards. They found that JPEG-1 blocking artifacts were unavoidable at
entropies below about 0.8 bits/pixel and interfered with both human and automated forensic end-users.
After working with researchers at Yale, Washington University, and Los Alamos National Lab, the FBI
chose a 2-D DWT approach using cascaded two-channel linear phase PR filter banks, optimal subband
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rate allocation, uniform scalar quantization, and adaptive Huffman coding. The resulting Wavelet/Scalar
Quantization (WSQ) specification [44], [45], [46] included a scheme for handling linear phase filter banks
at image boundaries by symmetrically extending and periodizing finite-length input vectors, much like
the interpretation of the DCT-II as the DFT of a symmetrically extended vector [47], [48].

3) JPEG 2000: By the mid-1990s it was clear that subband coding offered significant improvements
in both rate-distortion performance and QoS scalability over JPEG-1, so the ISO committee created a new
work item known as JPEG 2000 to address the growing list of applications inadequately served by JPEG-
1 [49], [50], [51], [52]. JPEG 2000 was heavily influenced by the highly scalable embedded subband
coding approach in the PhD dissertation of Taubman [53]. The theory of lifting factorizations [54], [55],
[56] also had a big impact on JPEG 2000, which uses lifting to specify implementation and signaling
of PR filter banks. The ability to implement filter banks with dyadic lifting coefficients as nonlinear
integer-to-integer (“reversible”) transforms [57] is exploited to provide lossy-to-lossless QoS scalability,
greatly improving on the lossless coding features of JPEG-1. JPEG 2000 also uses symmetric extension
boundary handling, which can be implemented directly in terms of lifting factorizations [58], [59].

JPEG 2000 Part 1 has one irreversible filter bank (the same one used in WSQ) and one reversible
option [49, Annex F]. Both are WS PR wavelet filter banks suitable for cascaded DWT decompositions.
JPEG 2000 Part 2, Extensions, allows users to signal user-defined WS PR filter banks [60, Annex G] or
arbitrary two-channel PR filter banks (including HS and paraunitary filter banks) [60, Annex H]. Part 2
and Part 10, Extensions for three-dimensional data [61], include algorithms for using filter banks to
decorrelate multi-banded images such as multispectral or volumetric image cubes. JPEG 2000 Part 9,
Interactivity tools, APIs, and protocols (JPIP) [62], exploits the joint space-frequency localization of
DWT decompositions and the bit-plane localization of JPEG 2000’s binary arithmetic coding to provide
a client-server protocol enabling highly scalable interactive retrieval of compressed data.

4) NITFS: JPEG 2000 Part 1 is used in the U.S. National Imagery Transmission Format Standard
(NITFS) [63] for conventional military imagery, and a JPIP profile is provided in [64]. Much work
remains to be done on applying JPEG 2000 Part 2 extensions to the many unconventional modalities
that arise in military applications, such as multi- and hyperspectral imagery, infrared, SAR, LIDAR, etc.
One military application that has received attention is large volume streaming data (LVSD) [65], which
consists of wide-area surveillance video often collected from airborne platforms. Although LVSD is video
imagery, the LVSD profile uses intraframe (non-motion-compensated) JPEG 2000 Part 1 coding. LVSD
applications are characterized by single-frame image analysis requirements, very large frame sizes (up to
a gigapixel or more), slow frame rates (often less than 10 frames/sec.), and, sometimes, high bit depths or
unconventional modalities, all of which weigh against MPEG solutions. Another benefit of JPEG 2000 in
LVSD applications is the JPIP profile [64], which facilitates single-frame analysis of gigapixel imagery.

5) DCI: Another video application that has adopted JPEG 2000 intraframe coding in preference to
motion-compensated coding is the Digital Cinema Initiatives (DCI) specification for theater distribution
of feature films [66]. For the DCI application, having a resolution-scalable format that supports extremely
high fidelity (“better than traditional 35mm prints”) is more important than meeting stringent bandwidth
and hardware complexity constraints of the sort MPEG standards are designed to satisfy. E.g., the
maximum allowable DCI bit rate is 250 Mbps for the video signal (not including audio) whereas the
maximum allowable video rate in the Blu-Ray format (which uses MPEG-4 and VC-1) is 40 Mbps.

D. Video Coding

DWTs have yet to achieve commercial success in motion-compensated video coding. Video standards
from MPEG-1 up through MPEG-4/H.264 Advanced Video Coding (AVC) [67], [68], [69], [70] and the
new High-Efficiency Video Coding (HEVC) standard [71] have consistently used nonoverlapping block
DCTs to code motion prediction residuals. In AVC the 16×16-pixel motion prediction macroblocks may
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be partitioned into sub-macroblocks as small as 4×4 to improve spatial localization, so AVC employs an
integer-to-integer approximation of the 4×4 DCT-II to preserve the segmentation induced by block motion
compensation. Blocking artifacts are ameliorated by deblocking filters within the motion compensation
prediction loop. Intra-frame coding in AVC uses a variety of spatial prediction filters to reduce spatial
redundancy, so the DCT block transform encoder is compressing prediction residuals even in intra-coded
frames. As with MDCTs on audio residuals, DCT-IIs provide good transform coding performance on
closed-loop video prediction residuals.

When the Motion Picture Experts Group called for proposals for a scalable extension to MPEG-4/H.264
AVC, closed-loop motion compensation posed many challenges to both temporal and spatial scalability,
and open-loop motion-compensated 3-D subband coding was expected to offer competitive alternatives;
see Ohm [72] for an exposition of the situation circa 2005. Twelve of the 14 proposals submitted involved
some form of 3-D discrete wavelet transform, but none of the wavelet proposals was able to overcome the
considerable head start enjoyed by the AVC approach. In the end, the ISO/IEC/ITU-T Joint Video Team
used AVC’s reference picture memory control to enable hierarchical closed-loop temporal prediction and
formed a layered codestream with inter-layer prediction to enable spatial resolution scalability [73]. The
extension was approved as Amendment 3 to MPEG-4/H.264 AVC and incorporated as [67, Annex G:
Scalable Video Coding]. It is an open question whether promising wavelet transform approaches such
as [74] will eventually gain a foothold in the motion-compensated video coding market.

III. REVIEW OF PREVIOUS RESULTS

A. Group Lifting Structures

In previous work [5], [6] the author developed a theory of group lifting structures that provides a
group-theoretic framework for parameterizing classes of filter banks of practical interest, including linear
phase FIR filter banks. A major impetus for using group theory to describe filter banks is the fact that PR
filter banks do not naturally form vector spaces but do form matrix groups in the polyphase representation
(Figure 2). With few exceptions (e.g., [75], [76]) most research to date on multirate filter banks has relied
almost exclusively on mathematical tools from linear algebra and polynomial factorization (notably the
Euclidean algorithm).

The paper [5] introduced group lifting structures and constructed examples for the two principal
classes of linear phase filter banks [77], the WS and HS classes exemplified in Figure 1. A uniqueness
theorem [5, Theorem 1] was proven for “irreducible” lifting factorizations generated by a group lifting
structure that satisfies suitable hypotheses. The second paper [6] showed that the WS and HS group lifting
structures satisfy the hypotheses of the uniqueness theorem and therefore have irreducible group lifting
factorizations that are either unique (in the WS case) or “unique modulo rescaling” (in the HS case).
These unique factorization results are significant because elementary matrix decompositions, including
lifting factorizations, are highly nonunique in general.

The original motivation for group lifting factorizations arose from the author’s work on the ISO/IEC
JPEG 2000 image coding standards [49], [60], which are based on subband coding using DWTs (or
“wavelet transformations” in the language of [49], [60]). In particular, [60, Annex G] is devoted to the
signaling and lifting implementation of WS filter banks. One consequence of the uniqueness theorem for
WS group lifting factorizations [6, Theorem 1] is that a WS filter bank can be specified in JPEG 2000
Annex G-compliant syntax in one and only one way [6, Corollary 1]. Another consequence was disproving
an assertion made in [50, p. 294] that WS filter banks whose filters differ in length by two (the mimimal
amount for this class) always have lifting factorizations using first-order HS (type II) linear phase lifting
filters. A consequence of the uniqueness theorem for HS group lifting factorizations [6, Theorem 2] is that
there exist many HS filter banks, including the example filter banks in Annexes H.4.1.2.1 and H.4.1.2.2
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X(z) X0

X1

Y0

Y1

X̂0

X̂1

X̂(z)

z−1
+

G(z)H(z)z

↑

↑↓

↓

Fig. 2. The polyphase-with-advance filter bank representation.

of [60], that cannot be lifted from the Haar filter bank,

H0(z) = 0.5(z + 1), H1(z) = −z + 1, (1)

using whole-sample antisymmetric (WA, or type III) linear phase lifting filters.
Further motivation for group lifting factorizations is provided by the present paper, which shows that

the theory developed in [5], [6] allows one to characterize both classes of linear phase filter banks
in group-theoretic terms. This means we can describe the structure of the WS class, whose polyphase
matrices form a group, in terms of standard group-theoretic constructs involving the building blocks of
lifting factorization: upper and lower triangular lifting matrix groups and a group of diagonal gain-scaling
matrices. Abstract algebra has provided valuable tools in other branches of signal processing, notably
the application of finite (Galois) fields to channel coding, and the author hopes that the group-theoretic
perspective will provide useful and practical insights into subband coding.

B. Notation and Terminology

“X ≡ · · · ” means that X is equal to · · · by definition. Column vectors are denoted in bold math italic
while matrices are in bold upright fonts, e.g., Ax = b. Algebraic groups are denoted in calligraphic
fonts; G < H means G is a subgroup of H while G C H means G is a normal subgroup. If X ⊂ H then
the subgroup of H generated by X is

〈X〉 ≡ {x1 · · ·xn : xi ∈ X or x−1
i ∈ X} < H.

G ∼= H means G and H are isomorphic. Aut(G) is the group of automorphisms of G. The digit 1 denotes
various group identity elements, identity transformations, and trivial groups. The identity matrix, however,
is denoted I, as usual.

1) The polyphase-with-advance representation: Figure 2 depicts the polyphase-with-advance represen-
tation [2], [3], [56], [78] of a two-channel FIR PR filter bank [13]. All polyphase matrices H(z) studied
in this paper will be polyphase-with-advance analysis matrices. FIR polyphase matrices with FIR inverses
are characterized by:

|H(z)| ≡ det H(z) = ǎz−ď; ǎ 6= 0, ď ∈ Z. (2)

As noted in [78], [5], the family F of all such FIR PR filter banks forms a nonabelian (i.e., noncommu-
tative) group under matrix multiplication called the FIR filter bank group. The unimodular group, N , is
the normal subgroup of F consisting of all matrices of determinant 1,

|H(z)| = 1 . (3)

Daubechies and Sweldens [56] proved that every unimodular FIR matrix has a lifting factorization (or
lifting cascade),

H(z) = DK SN−1(z) · · ·S1(z) S0(z). (4)
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We shall work with slightly more general lifting decompositions in which H(z) is lifted from a base
filter bank, B(z):

H(z) = DK SN−1(z) · · ·S0(z) B(z). (5)

The gain-scaling matrix, DK , is a unimodular diagonal constant matrix with scaling factor K 6= 0,

DK ≡ diag(1/K, K). (6)

The lifting matrices, Si(z), are unimodular upper or lower triangular matrices with ones on the diagonal
and lifting filters, Si(z), on the off-diagonal, given via the homomorphisms

υ(S(z)) ≡
[

1 S(z)
0 1

]
, λ(S(z)) ≡

[
1 0

S(z) 1

]
. (7)

The update characteristic [60, Annex G.1] of a lifting step is a binary flag, m, indicating whether the
lift is a lowpass update (m = 0; upper triangular matrix) or a highpass update (m = 1; lower triangular
matrix). A lifting cascade is irreducible [5, Definition 3] if the lifting matrices are nontrivial (Si(z) 6= I)
and strictly alternate between lower and upper triangular. As noted in [5], any lifting cascade can be
simplified to irreducible form using matrix multiplication.

2) Linear phase FIR PR filter banks: In [78], [5] unimodular WS and HS filter banks were normalized
to satisfy delay-minimized conventions. Specifically, unimodular WS filter banks are normalized so that
the group delay of H0(z) is d0 = 0 and the group delay of H1(z) is d1 = −1. This is equivalent to
having H(z) satisfy the intertwining relation

H(z−1) = Λ(z)H(z)Λ(z−1), Λ(z) ≡ diag(1, z−1). (8)

Unimodular filter banks satisfying (8) form a subgroup of N called the unimodular WS group, W [5,
Definition 8]. It was shown in [5] that the lowpass lifting updates satisfying (8) have lifting filters Si(z)
that are half -sample symmetric about 1/2 and belong to the additive group of Laurent polynomials

P0 ≡
{
S(z) ∈ R[z, z−1] : S(z−1) = zS(z)

}
. (9)

Each filter in P0 is mapped isomorphically to a corresponding upper triangular lifting matrix υ(S(z)) in
a multiplicative but abelian (commutative) matrix group U ≡ υ(P0), making U ∼= P0 [5, Section III-A].
Similarly, lower triangular lifting matrices satisfying (8) have lifting filters that are half-sample symmetric
about −1/2 and belong to

P1 ≡
{
S(z) ∈ R[z, z−1] : S(z−1) = z−1S(z)

}
. (10)

The function λ maps P1 isomorphically onto an abelian group L ≡ λ(P1) of lower triangular lifting
matrices.

HS filter banks are normalized so that both group delays are d0 = d1 = −1/2. This is equivalent to
having H(z) satisfy

H(z−1) = LH(z)J, (11)

where
J ≡

[
0 1
1 0

]
, L ≡

[
1 0
0 −1

]
. (12)

It was shown in [78] that delay-minimized HS polyphase matrices do not form a group. The unimodular
HS class, H [5, Definition 9], is the set of all unimodular HS filter banks satisfying (11). HS filter banks
with unequal-length filters H0(z) and H1(z) can be lifted from equal-length HS “base” filter banks using
lifting matrices with WA lifting filters. Equal-length HS base filter banks can in turn be factored into
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(non-WA) lifting steps using the general machinery of [56]. WA lifting filters belong to the additive
“antisymmetric” group

Pa ≡
{
S(z) ∈ R[z, z−1] : S(z−1) = −S(z)

}
.

The upper and lower triangular WA lifting matrix groups are

U ≡ υ(Pa), L ≡ λ(Pa).
3) Group lifting structures: A group lifting structure [5, Definition 6] is an ordered four-tuple,

S ≡ (D,U ,L,B). (13)

The abelian group D ≡ {DK : K ∈ R} consists of gain-scaling matrices (6) parameterized by a
multiplicative group,

R < R∗ ≡ R\{0}, D : R ∼=−→ D. (14)

U and L are abelian groups of upper and lower triangular lifting matrices, and B is a set of base filter
banks.

The lifting cascade group, C, generated by S is the nonabelian subgroup of N generated by U and L
[5, Definition 6],

C ≡ 〈U ∪ L〉 = {SN · · ·S1 : N ≥ 1, Si ∈ U ∪ L} . (15)

The scaled lifting group, S, generated by S is the subgroup of N generated by D and C,

S ≡ 〈D ∪ C〉 . (16)

The universe of all filter banks generated by S is

DCB ≡
{

DCB : D ∈ D, C ∈ C , B ∈ B
}
.

A gain-scaling matrix DK ∈ D acts on polyphase matrices via the inner automorphism γK ≡ γDK
,

γKE(z) ≡ DK E(z) D−1
K . (17)

We use γ to denote the homomorphism

γ : D → Aut(N ). (18)

A group G of polyphase matrices is called D-invariant if D normalizes G, i.e., γKG = G for all DK ∈ D,
in which case we may regard γ as a homomorphism of D into Aut(G). A group lifting structure is called
D-invariant if U and L, and therefore C, are D-invariant groups.

The lifting cascade (5) is called strictly polyphase order-increasing (or just order-increasing) if the
polyphase orders of the partial products for 0 ≤ n < N , S−1(z) ≡ I, satisfy

order (Sn(z) · · ·B(z)) > order (Sn−1(z) · · ·B(z)) .

A group lifting structure is called order-increasing if every irreducible cascade in CB is order-increasing.
It is a non-trivial fact that the linear phase group lifting structures for WS and HS filter banks are
order-increasing [6].

If S is a D-invariant, order-increasing group lifting structure, the unique factorization theorem [5,
Theorem 1] says that all irreducible group lifting factorizations of H(z) ∈ DCB are “equivalent modulo
rescaling.” Specifically, given two irreducible factorizations in DCB of the same matrix,

H(z) = DK SN−1(z) · · ·S0(z) B(z)

= DK′ S
′
N ′−1(z) · · ·S′0(z) B′(z),
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the theorem states that the number of lifting steps is the same, N ′ = N , with base filter banks related
by gain rescaling

B′(z) = Dα B(z), α ≡ K/K ′, (19)

and lifting steps related by inner automorphisms,

S′i(z) = γαSi(z) , i = 0, . . . , N − 1. (20)

We express this by saying that irreducible lifting factorizations in S are “unique modulo rescaling” [5,
Definition 11]. This conclusion can be strengthened if, e.g., B = {I} (as with the WS group, W), in
which case the only possibility is α = 1 and we obtain unique irreducible group lifting factorizations.

IV. FREE PRODUCT STRUCTURE OF THE LIFTING CASCADE GROUP

We begin our study of lifting cascade groups by reviewing the definitions and properties of free
groups and free products of groups. Of particular importance is the definition of free products in terms
of a universal mapping property that provides the key to the proof of our main result in Section IV-C.

A. Free Groups

“Free” groups are generated by “relation-free” generators, a notion familiar from linear algebra where
the relation-free property is called linear independence and a set of linearly independent generators for
a vector space is called a basis. In contrast to the situation in linear algebra, in which every vector space
has a basis, a group with a set of relation-free generators is a rather special object, called a free group.

1) Defining free groups: Rather than formally defining free groups in terms of relation-free gen-
erators, the algebra literature [79], [80], [81] defines free groups in terms of a universal mapping
(existence/uniqueness) property involving group homomorphisms. This is an analogue of a standard result
from linear algebra [79, Theorem IV.2.1], where homomorphisms are known as linear transformations.

Proposition 1: Let V be a vector space over a field F with an indexed subset

B = (I) = {bi : i ∈ I} ⊂ V,
where bi = (i) for some index set I and indexing function  : I → V. The set B is a basis for V
if and only if, for every F-vector space W and every function f : I →W, there exists a unique linear
transformation

T : V →W

such that Tbi = f(i) for all i ∈ I .
Given  : I → V , the universal mapping property can be expressed in graphical terms by saying there

exists a unique linear transform T, depending on W and f , such that the diagram in Figure 3 commutes.
How do we interpret this universal mapping property in terms of more familiar linear-algebraic concepts?
When B is a basis for V , the linear transform T in Proposition 1 is just the linear extension (to all of
V ) of the mapping that carries each basis vector bi ∈ B to the given vector f(i) ∈ W . Uniqueness of
T means that every linear transformation of V is uniquely determined by its behavior on the basis B.
According to Proposition 1, this universal mapping property is actually equivalent to the statement that
B forms a basis for V .

Characterizing a basis in terms of a commutative diagram like Figure 3 is a “categorical” approach
to the notion of relation-free generators that depends only on universal mapping properties. Since this
characterization makes no mention of properties specific to vector spaces (e.g., linear independence),
it can be directly generalized to other categories, such as the category of groups, by replacing linear
transformations with homomorphisms of the appropriate type.
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I V

W



f
T

Fig. 3. Commutative diagram for the universal mapping property characterizing a vector space with a basis indexed by the
index set I .

I F

H



f
φ

Fig. 4. Commutative diagram for the universal mapping property defining a free group on the set I .

Definition 1 (Free groups [79], [80], [81]): Let F be a group with an indexed subset

(I) = {gi : i ∈ I} ⊂ F ,
where gi = (i) for some index set I and indexing function  : I → F . The group F is called a free
group on the set I if and only if, for every group H and every function f : I → H, there exists a unique
group homomorphism

φ : F → H
such that φ ◦  = f ; i.e., such that φ(gi) = f(i) for all i ∈ I . This is equivalent to saying there exists a
unique homomorphism φ, depending on H and f , such that the diagram in Figure 4 commutes.

Remarks: If F is free on I then  must be injective, and it also follows [80, Corollary 11.5] that (I)
generates F . Abstract nonsense involving manipulations of commutative diagrams [79, Theorem I.7.8]
shows that F is determined up to isomorphism by the cardinality of I , denoted |I|.

Proposition 2: Let F be free on I and F ′ free on I ′. If I and I ′ have the same cardinality (|I| = |I ′|)
then F and F ′ are isomorphic: F ∼= F ′.

The converse is also true [80], [81], and in light of Proposition 2 we sometimes speak of the free group
on I or on |I|-many generators. As mentioned above, the standard argument from linear algebra showing
that every vector space has a basis fails for groups because a maximal set of relation-free elements need
not generate the group. For instance, a finite group is never free since all elements satisfy a relation of the
form gn = 1 (the group identity element). Free groups do exist, however: infinite cyclic groups, denoted
〈x〉 ≡ {xn : n ∈ Z} in multiplicative notation, are infinite groups on one generator, x. Such groups are
free with |I| = 1 and are isomorphic to the free additive group Z.

Free groups are “universal groups” in the following sense. Suppose H is any group, and let X be a
subset of generators indexed by a set I:

H = 〈X〉 where X = {hi : i ∈ I} ⊂ H.
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Let F be a free group on I and define f(i) ≡ hi for each i ∈ I . Since F is free there exists a unique
homomorphism φ : F → H such that Figure 4 commutes, and φ maps F onto H because the hi generate
H. It follows [79, Corollary I.9.3], [80, Corollary 11.2] that H is isomorphic to a quotient of F ,

H ∼= F/ kerφ.

This of course begs the question of whether, given an index set I , there always exists a free group on I .
2) Constructing free groups: There is a constructive procedure, the “reduced word construction,” that

generates a canonical free group on any given index set, I , and therefore (by Proposition 2) generates
all free groups up to isomorphism. The reduced word construction and its generalization to free products
inspired one of the main results of this paper, Theorem 1. A rigorous treatment of the reduced word
construction is more technical than we indicate in the following (see [79], [80]), so the proof of Theorem 1
avoids these technical details by using a universal mapping characterization of free products. The intuition
behind the theorem, however, stems directly from the reduced word construction. Before tackling free
products, we first outline the construction of free groups.

Given a set I , create an alphabet X containing two distinct formal tokens, denoted xi and x−1
i , for

each i ∈ I . A word, w, on this token alphabet is a finite string of tokens,

w = t1t2 . . . tn,

where each tk equals some xi or x−1
i . The inverse of the above word, denoted w−1, is defined to be

w−1 ≡ t−1
n . . . t−1

2 t−1
1 ,

where (x−1
i )−1 is defined to be xi and thus (w−1)−1 = w. The empty word (the word with no tokens)

is denoted 1.
A word w is reduced if, for all i ∈ I , the tokens xi and x−1

i never occupy adjacent positions in w. E.g.,
the empty word is reduced, and if w is reduced then so is w−1. Given any word w, one can “simplify”
w to a reduced word w′ by “cancelling” (i.e., deleting) all adjacent pairs of the form xix

−1
i or x−1

i xi,
then scanning the remaining tokens for other such pairs in need of cancellation, etcetera, until a reduced
word is obtained.

The juxtaposition of an ordered pair of reduced words,

v = s1s2 . . . sm and w = t1t2 . . . tn,

is the concatenation of their token strings, denoted

(v, w) ≡ s1s2 . . . smt1t2 . . . tn.

If t1 = s−1
m then this new word, (v, w), is not a reduced word, so define the product of two reduced

words to be the simplified juxtaposition of their token strings,

vw ≡ (v, w)′. (21)

The empty word, 1, is an identity element for (21). The technical crux in proving that (21) defines a
group is verifying the associative law. An additional argument then shows that the reduced-word group
satisfies Definition 1; see [79, Section I.9], [80, Chapter 11], or [81, Chapter 2] for the details.
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Gi P

H

i

fi
φ

Fig. 5. Commutative diagram defining a free product of the groups Gi.

B. Free Products of Groups

Instead of seeking a group that is freely generated by a given set of generators xi, we now define a
group P that is “freely” generated by a given set of groups Gi.

Definition 2 (Free products [79], [80], [81]): Let {Gi : i ∈ I} be an indexed family of groups and let
P be a group with homomorphisms i : Gi → P . Then P is a free product of the groups Gi if and only
if, for every group H and family of homomorphisms fi : Gi → H, there exists a unique homomorphism

φ : P → H
such that φ ◦ i = fi for all i ∈ I . This is equivalent to saying that there exists a unique homomorphism
φ such that the diagram in Figure 5 commutes for all i ∈ I .

1) Properties: This is another “categorical” definition; the category-theoretic name for an object P
satisfying the universal mapping property in Figure 5 is a coproduct. For instance, in a category of vector
spaces the weak direct sum

∑
Vi of a set of vector spaces is a coproduct of the Vi. The formal connection

with free groups follows from Definitions 1 and 2.
Proposition 3: F is free on a set I if and only if F is a free product of infinite cyclic groups 〈xi〉,

indexed by i ∈ I .
The generators (or factors) Gi of a free product, P , are groups with their own internal structure, and the

homomorphisms i in a free product are injective [80, Lemma 11.49], so P contains isomorphic copies
of the factor groups Gi. As with free groups, abstract nonsense implies that free products are uniquely
determined up to isomorphism by their generators [79, Theorem I.7.5], [80, Theorem 11.50].

Proposition 4: Let {Gi : i ∈ I} be a collection of groups. If P and P ′ are both free products of the
groups Gi then P ∼= P ′.

2) Constructing free products: The reduced word construction can be adapted, with a few modifica-
tions, to construct a canonical free product of an arbitrary collection of groups, Gi, i ∈ I . The token
alphabet in the case of free products is defined to be the (disjoint) union of the factor groups: X = ·∪Gi.
The Gi are groups so X is closed under inversion: x ∈ X implies x−1 ∈ X . There are also many
more opportunities for simplification than just cancelling adjacent pairs of the form xix

−1
i . A word on

X is reduced if (1) two tokens from the same Gi never occupy adjacent positions, and (2) none of the
tokens is an identity element from any of the Gi. Given any word w, one can simplify w to a reduced
word, w′, by multiplying all pairs of adjacent tokens from the same group, deleting all identity elements,
scanning for other tokens in need of simplification, etcetera, until a reduced word is obtained. A product
for reduced words is defined as the simplified juxtaposition of token strings. Arguments similar to the
ones for free groups prove that this product is associative and that the resulting group of reduced words
satisfies Definition 2; see [79, Theorem I.9.6], [80, Theorem 11.51], [81, Theorem 6.2.2].

A commonly used hieroglyph for free products is ∗, e.g.,

P = G1∗G2.
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We will use this notation specifically to denote the free product realization given by the reduced word
construction. Definition 2 and the reduced word construction are insensitive to the order in which the
groups Gi are indexed, so the operator ∗ is trivially commutative; i.e.,

G1∗G2 = G2∗G1.

This should not be confused with the fact (which follows from the reduced word construction) that G1∗G2

is a nonabelian group. For instance, if g1 ∈ G1 and g2 ∈ G2 then g1g2 and g2g1 are different reduced
words:

g1g2 6= g2g1.

This is true even when the individual factor groups Gi are abelian, which is the case of interest in this
paper.

3) Connection with lifting cascade groups: What does the reduced word construction of free products
have to do with lifting cascade groups? Given a group lifting structure (D,U ,L,B) with upper and
lower triangular lifting matrix groups U and L, the lifting cascade group C is the group generated by
U and L. Although the string SN · · ·S1 in (15) represents the product of the lifting matrices Si(z), the
lifting cascade group is clearly in a one-to-many correspondence with the set of all words on the alphabet
U ∪ L. To eliminate degenerate, trivially nonunique lifting factorizations, the author created an ad hoc
definition of “irreducible” lifting cascades [5, Definition 3] (see Section III-B1 above).

The question of whether transfer matrices in C and reduced words on the alphabet U ∪ L are in one-
to-one correspondence sounds a lot like asking whether matrices in C have unique irreducible lifting
factorizations over U and L. This in turn is very close to the “uniqueness-modulo-rescaling” results
established in [6] for the two nontrivial classes of linear phase filter banks. The pain inflicted by reading
[6] indicates just how far irreducibility is from being sufficient for uniqueness of lifting factorizations.

While the “correspondence” just described between a lifting cascade group, C, and a reduced word
realization of a free product, U∗L, is highly suggestive, the subject matter is sufficiently technical that
a formal proof is needed to show that C is a free product of U and L. We prove directly that lifting
cascade groups with unique irreducible group lifting factorizations satisfy Definition 2 without assuming
any results on the existence of canonical free products. Modulo the technicalities behind the reduced
word construction it then follows from Proposition 4 that C ∼= U∗L.

C. Structure of Lifting Cascade Groups

1) Free product structure: Our unique factorization tool [5, Theorem 1] is based on group lifting
structures (D,U ,L,B). Since a lifting cascade group, C ≡ 〈U ∪ L〉, does not depend on D or B, neither
does the statement of Theorem 1 (below). The phenomenon of uniqueness modulo rescaling in the
conclusion of [5, Theorem 1] is addressed by the next lemma, which implies uniqueness of irreducible
group lifting factorizations in C whenever [5, Theorem 1] holds, even if factorizations in DCB are only
unique modulo rescaling.

Lemma 1: If S is a D-invariant, order-increasing group lifting structure with lifting cascade group
C ≡ 〈U ∪ L〉 then irreducible group lifting factorizations in C are unique.

Proof: Suppose we are given two irreducible group lifting factorizations of E(z) ∈ C with Si(z), S′i(z) ∈
U ∪ L:

E(z) = SN−1(z) · · ·S0(z) (22)

= S′N ′−1(z) · · ·S′0(z) . (23)
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Fig. 6. Universal mapping property for the coproduct C ∼= U∗L.

The base matrices are B(z) = I = B′(z) so E(z) ∈ DCB if and only if I ∈ B. If I /∈ B define a new
matrix G(z) ∈ DCB using any B(z) ∈ B and cascades (22) and (23):

G(z) ≡ SN−1(z) · · ·S0(z) B(z) (24)

= S′N ′−1(z) · · ·S′0(z) B(z) . (25)

In either case, the scaling matrices are DK = I = DK′ so application of [5, Theorem 1] to (22)–(23) or
(24)–(25) shows that N ′ = N and S′i(z) = Si(z) for i = 0, . . . , N − 1.

Theorem 1 (Lifting cascade group structure): Let U and L be lifting matrix groups with lifting cascade
group C ≡ 〈U ∪ L〉. If every element of C has a unique irreducible group lifting factorization over U ∪ L
then C is a free product of U and L and is therefore isomorphic to the reduced word realization,

C ∼= U∗L.
Proof: We show that C satisfies Definition 2. Let U and L be the inclusion isomorphisms of U and

L into C. Suppose we are given a group H and homomorphisms

fU : U → H and fL : L → H.
We need to show that there exists a unique homomorphism,

φ : C → H,
such that the diagram in Figure 6 commutes.

From now on, identify U and L with their isomorphic images in C under the inclusions U and L. To
make φ agree with fU and fL on U , L < C, define

φ(S) ≡
{
fU(S), S ∈ U ,
fL(S), S ∈ L. (26)

U ∩ L = I and fU(I) = 1H = fL(I) so (26) is well-defined. Extend φ to a function on all of C: if
E = SN · · ·S0 is the unique irreducible group lifting factorization of E ∈ C, define

φ(E) ≡ φ(SN ) · · ·φ(S0), (27)

where φ(Si) is given by (26). The associative law in H and uniqueness of irreducible group lifting
factorizations imply that (27) is well-defined; we must show it is a homomorphism.

Let E, E′ ∈ C and let N (respectively, N ′) be the lengths of their unique irreducible group lifting
factorizations,

E = SN−1 · · ·S0 and E′ = S′N ′−1 · · ·S′0.
We will prove that

φ(E)φ(E′) = φ(EE′) (28)

by induction on Ntot ≡ N +N ′. Property (28) is trivial if either matrix is I, so we always assume that
N, N ′ ≥ 1.
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Case: Ntot = 2 (N, N ′ = 1). We are given E = S0 and E′ = S′0. If S0 and S′0 have opposite
update characteristics then S0S

′
0 is the (unique) irreducible group lifting factorization of EE′ and (28)

is just definition (27) for φ(EE′). If S0 and S′0 have the same update characteristic (i.e., S0, S′0 ∈ G for
G = U or G = L), then φ(S0) = fG(S0) and φ(S′0) = fG(S

′
0) so (28) is the homomorphism property of

fG.
Case: Ntot > 2. Assume (28) holds for products in which N +N ′ < Ntot, and let E, E′ ∈ C have

irreducible group lifting factorizations with N +N ′ = Ntot lifting steps.
If S0 and S′N ′−1 have opposite update characteristics then

EE′ = SN−1 · · ·S1S0S
′
N ′−1S

′
N ′−2 · · ·S′0

is the irreducible group lifting factorization of EE′ so, by associativity in H,

φ(E)φ(E′) = (φ(SN−1) · · ·φ(S0)) · (φ(S′N ′−1) · · ·φ(S′0))

= φ(SN−1) · · ·φ(S0)φ(S′N ′−1) · · ·φ(S′0)

= φ(EE′) by (27).

If S0 and S′N ′−1 have the same update characteristic, i.e., S0, S′N ′−1 ∈ G for G = U or G = L, let
S′ ≡ S0S

′
N ′−1 ∈ G. By associativity in H and the homomorphism property of fG,

φ(E)φ(E′) = φ(SN−1) · · ·φ(S0)φ(S′N ′−1) · · ·φ(S′0)

= φ(SN−1) · · ·φ(S′) · · ·φ(S′0). (29)

Write EE′ = VW for the irreducible group lifting cascades

V ≡ SN−1 · · ·S1 and W ≡ S′S′N ′−2 · · ·S′0. (30)

(Note that V = I if N = 1. Similarly, W = I if S′ = I and N ′ = 1.) Reassociate factors in (29) and
use irreducibility of the cascades in (30) to get

φ(E)φ(E′) = φ(V)φ(W). (31)

If either V = I or W = I then the right-hand side of (31) trivially reduces to

φ(V)φ(W) = φ(VW). (32)

If neither V nor W is I then the total number of lifting matrices in (30) for V and W is at most Ntot−1,
and applying the induction hypothesis to V and W yields (32). In any case,

φ(E)φ(E′) = φ(VW) = φ(EE′). (33)

This proves that φ is a homomorphism. Uniqueness of φ is straightforward: since U ∪ L generates
C, definitions (26) and (27) show that any homomorphism ψ : C → H extending fU and fL necessarily
agrees with φ on all of C. We have therefore shown that C is a free product of U and L.

According to [79, Theorem I.9.6], [80, Theorem 11.51], [81, Theorem 6.2.2] the reduced word
construction also yields a free product, which we have been denoting U∗L, so by Proposition 4 this
implies that C is isomorphic to U∗L.

Remarks: By [6, Theorem 1 and Theorem 2] and Lemma 1, the lifting cascade groups for the WS
and HS group lifting structures have unique irreducible group lifting factorizations, so Theorem 1 implies
that they are free products of their lifting matrix groups.

The converse of Theorem 1 is also true, meaning that the free product representation C ∼= U∗L is
equivalent to uniqueness of irreducible group lifting factorizations. The proof follows from uniqueness
of reduced word representations in canonical free products [80, Theorem 11.52], [81, Theorem 6.2.3].

Proposition 5: Let C ≡ 〈U ∪ L〉; if C ∼= U∗L then irreducible group lifting factorizations in C are
unique.
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2) Free lifting cascade groups: In light of Theorem 1 it is natural to ask whether we can characterize
the group lifting structures for which C ≡ 〈U ∪ L〉 is a free group and not just a free product. In one
direction, we will show (Theorem 2) that if U and L are infinite cyclic groups and C ∼= U∗L (which
are highly restrictive hypotheses) then it follows easily that C is free, but this implication does not hold
without the condition C ∼= U∗L. The converse (i.e., the necessity of having a free product of two infinite
cyclic subgroups) follows from some basic facts about U and L and some nontrivial group theory.

The need to combine infinite cyclic groups using something as complicated as a free product in order
to get a free group can be understood in light of the theory of group presentations [79, Section I.9], [80,
Chapter 11], [81, Chapter 2], in which a free group is distinguished by having a set of “free” generators—
ones that do not satisfy any relations (factorizations of the identity). In previous work [5, Equation (4)
and Example 1] we presented irreducible liftings of the identity as obstructions to uniqueness of lifting
factorizations, and we now show that such relations can arise from as few as two generator matrices.

Example 1: Let U , L be infinite cyclic groups, U = 〈S0(z)〉 and L = 〈S1(z)〉, generated by lifting
filters S0(z) and S1(z):

S0(z) ≡ υ(S0(z)), S1(z) ≡ λ(S1(z)).

Let C ≡ 〈U ∪ L〉 be the associated lifting cascade group. In spite of having noncommuting generator
matrices S0(z) and S1(z), C may nonetheless fail to be a free group because of a relation involving
S0(z) and S1(z). E.g., consider

S0(z) ≡ az−d and S1(z) ≡ −a−1zd; a 6= 0, d ∈ Z.

The reader can verify that the corresponding lifting matrices satisfy the inobvious relation

(S0(z)S1(z))6 = I. (34)

This shows that S0(z) and S1(z) are not free generators for C. Moreover, using the notion of cyclically
reduced words [80, p. 434] and uniqueness of spelling for reduced words, one can show that free groups
never contain elements of finite, nonzero order. Since (34) says that the product S0(z)S1(z) has order 6,
C cannot be a free group on any set of generators.

Note that the WS and HS group lifting structures do not include monomial lifting filters, although [5,
Example 1] shows that excluding monomial lifting filters is far from sufficient for ensuring unique
irreducible group lifting factorizations.

Theorem 2: Let C ≡ 〈U ∪ L〉 be a lifting cascade group over nontrivial lifting matrix groups U and
L. C is a free group if and only if U and L are infinite cyclic and C ∼= U∗L.

Proof: If U and L are infinite cyclic groups and C ∼= U∗L then C is free on two generators by
Proposition 3.

Conversely, suppose C ≡ 〈U ∪ L〉 is a free group. Since U and L are subgroups of C, both U and L are
free by the Nielsen-Schreier Theorem [82, Theorem 7.2.1], [80, Theorem 11.44]. Lifting matrix groups
are abelian, but the free groups with two or more generators constructed by the reduced word construction
are nonabelian so Proposition 2 implies that U and L cannot be free on two or more generators. Therefore,
they must be free on just one generator apiece; i.e., infinite cyclic groups. Since C is generated by U and
L it is free on two generators, so Proposition 3 implies that C ∼= U∗L.

V. SEMIDIRECT PRODUCT STRUCTURE OF THE SCALED LIFTING GROUP

Our next topic is the group-theoretic structure of the scaled lifting group, S. The relationship between
the gain-scaling group, D, and the lifting cascade group, C, both of which are subgroups of S by
definition (16), is characterized by a construction called a semidirect product [83], [80], [81], [82].
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A. Semidirect Products of Groups

Definition 3 (Semidirect products): Let G be a (multiplicative) group with identity element 1G and
subgroups K and Q. G is the (internal) semidirect product of K by Q, denoted G = QnK, if the
following three axioms are satisfied.

G = 〈K ∪ Q〉 (K and Q generate G) (35)

K C G (K is a normal subgroup of G) (36)

K ∩Q = 1G (the trivial group) (37)

1) Product Representations: Let G be generated by subgroups K and Q. If K C G then Q acts on K
by inner automorphisms (“K is Q-invariant” [5], “Q normalizes K” [80]):

γ : Q → Aut(K) where γqk ≡ qkq−1 ∈ K. (38)

(Note that we have extended definition (18) for γ to the abstract group-theoretic setting.) The converse
also holds.

Lemma 2: If G = 〈K ∪ Q〉 and Q acts on K via inner automorphisms (38) then G = QK and K C G.
If (37) also holds (i.e., if G = QnK) then the product representations in G = QK are unique.

Proof: Any g ∈ G = 〈K ∪ Q〉 can be written

g = g0 · · · gn , gi ∈ K ∪Q . (39)

Products of the form gigi+1 = kq can be written kq = qk′ using (38), so (39) can be rewritten g =
(q0q1 · · · )(k′0k′1 · · · ), implying

G = QK. (40)

Normality of K in G follows easily using (38) and (40), and (37) implies uniqueness in (40) since
q0k0 = q1k1 implies

k0k
−1
1 = q−1

0 q1 ∈ K ∩Q = 1G . (41)

Remarks: We use the notation Q n K for semidirect products (compared to the more common
K o Q, e.g. [80]) because the convention in lifting is to put the scaling matrix DK at the left end of
the analysis cascade (5). This corresponds to the product representation S = DC for D-invariant group
lifting structures [5, formula (31)], which is of the form (40).

2) External semidirect products: If G = QnK then a “twisted multiplication” formula holds for
G = QK (cf. [80]):

g0g1 = (q0k0)(q1k1) = q0q1(γq−1
1
k0)k1,

g−1 = (qk)−1 = q−1γqk
−1.

(42)

Note how the formulas in (42) represent g0g1 and g−1 as factored elements of QK. This leads to an
alternate definition of semidirect product that does not require K and Q to be subgroups of a common
parent. Given any homomorphism

θ : Q → Aut(K),

one mimics (42) using θ in place of γ to define an associative twisted multiplication on the cartesian
product Q×K called the (external) semidirect product of K by Q, denoted Qnθ K. This is not the
same as the more familiar “direct” product of Q and K given by the set Q×K with coordinate-wise
multiplication. The external semidirect product thus defined on the set Q×K makes Qnθ K the internal
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semidirect product of 1Q ×K by Q× 1K. In this twisted product, the twisted conjugation of (1Q, k) by
(q, 1K) is given by the automorphism 1× θq ∈ Aut(1Q ×K); i.e.,

(q, 1K)(1Q, k)(q, 1K)−1 = (1Q, θqk) for all k ∈ K.

For example, wreath products [84], [85], [86] are defined in terms of external semidirect products.
The product formula in [84, Section III-B.1] can be interpreted as a twisted multiplication for a certain
automorphic group action [80, Chapter 7].

Suppose that G = QnK and we are given an isomorphism

ρ : K ∼=−→ J
of K onto some group J . We want to translate QnK into an equivalent external semidirect product of
J by Q. Use ρ to push the automorphisms γq from K onto J by defining

θq ≡ ρ ◦ γq ◦ ρ−1 for all q ∈ Q. (43)

Since γq is an automorphism of K and ρ is an isomorphism, the composition θq is an automorphism of
J . Moreover, γ is a homomorphism of Q into Aut(K) so we get a homomorphism

θ : Q → Aut(J ), (44)

which defines an external semidirect product Qnθ J .
Lemma 3: Let ρ and θ be given as above. Define

ψ : G = QnK = QK → Qnθ J ,
ψ(qk) ≡ (q, ρk). (45)

Then ψ is an isomorphism of G = QnK onto Qnθ J .
Proof: Note that ψ is well-defined since product representations in G = QK are unique by Lemma 2.

First show that ψ is a homomorphism.

ψ((q0k0)(q1k1)) = ψ(q0q1(γq−1
1
k0)k1) by (42)

=
(
q0q1, ρ((γq−1

1
k0)k1)

)
by (45)

=
(
q0q1, ρ(γq−1

1
k0)ρk1

)
=

(
q0q1, (θq−1

1
j0)j1

)
, where ji ≡ ρki

= (q0, j0)(q1, j1), the product in Qnθ J
= ψ(q0k0)ψ(q1k1).

Next, show that ψ : G = QK → Qnθ J is injective. The identity element in Qnθ J is (1Q, 1J );
suppose that

(1Q, 1J ) = ψ(qk) = (q, ρk).

Then q = 1Q = 1G , while ρk = 1J implies k = 1K = 1G since ρ is injective. This means that qk = 1G ,
proving that ψ is injective.

Finally, for any (q, j) ∈ Qnθ J let k ≡ ρ−1j ∈ K, which is well-defined since ρ is surjective. Thus,
ψ(qk) = (q, j), proving that ψ is surjective.
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B. Structure of Scaled Lifting Groups

Let S be a group lifting structure with scaled lifting group S ≡ 〈C ∪ D〉. We now give sufficient
conditions for S to be a semidirect product. Although the hypotheses of Theorem 3 are the same as those
of [5, Theorem 1], we do not invoke unique factorization but, rather, prove Theorem 3 directly from the
hypotheses by verifying Definition 3.

Theorem 3: If S is a D-invariant, order-increasing group lifting structure then S is the semidirect
product of C by D,

S = D n C.
Proof: Axiom (35), S = 〈C ∪ D〉, is true by definition.

Axiom (36), C C S, follows from Lemma 2 by D-invariance.
To prove Axiom (37), C ∩ D = I, let E 6= I be any nontrivial element of C. Let DK ∈ D and B ∈ B.

We have
order(DKB) = order(B),

but the order-increasing property of S implies

order(EB) > order(B) .

It follows that E 6= DK , which proves that C ∩ D = I.
Remarks: Axiom (37) implies that U and L do not generate lifting factorizations of gain-scaling

matrices (cf. [56, Section 7.3]). Theorem 3 shows that the order-increasing property implies (37) and,
by (41), uniqueness of product representations in (40). Thus, S = D n C implies uniqueness of product
representations in S = DC. This is considerably weaker, however, than the conclusion of [5, Theorem 1],
which also follows from D-invariance and the order-increasing property. It is unclear whether (37) follows
from weaker assumptions than the nontrivial order-increasing property.

Let us reconcile uniqueness of product representations in S = DC with nonuniqueness in [5, Theo-
rem 1]. If H(z) has multiple irreducible group lifting factorizations then [5, Theorem 1] says they are
equivalent modulo rescaling; i.e.,

H(z) = DK SN−1(z) · · ·S0(z) B(z) ≡ DEB ∈ SB
= DK′ γαSN−1(z) · · · γαS0(z) DαB(z) ≡ D′E′B′,

where α ≡ K/K ′ 6= 1. Since B′ ≡ DαB 6= B the S-factors are also different, D′E′ 6= DE, so there is
no contradiction with uniqueness of product representations in S = DC.

1) Combining Theorems 1 and 3: If S is a D-invariant, order-increasing group lifting structure then,
by Lemma 1, the hypotheses of both Theorem 1 and Theorem 3 are satisfied. Theorem 1 provides an
isomorphism, call it ρ, that maps lifting matrices to tokens,

ρ : C ∼=−→ U∗L.
Theorem 3 says that S = D n C, and Lemma 3 combines these representations into a single result.

Corollary 1: If S is a D-invariant, order-increasing group lifting structure then its scaled lifting group
has the structure

S ∼= D nθ (U∗L). (46)
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Remarks: The external semidirect product in Corollary 1 is based on the homomorphism θ (44).
Let us make this abstractly defined homomorphism more concrete. What is the action of the induced
automorphism θK on reduced words,

E = SN · · ·S0 ∈ U∗L?

It suffices to consider individual tokens Si and then combine these actions using the automorphism
property,

θKE = θKSN · · · θKS0.

Each token Si is the image under ρ of some lifting matrix, Si = ρ(Si(z)), and (43) says that the image
of Si under θK is

S′i ≡ θKSi = ρ (γKSi(z)) = ρ
(
S′i(z)

)
,

where the corresponding lifting matrix is given by the inner automorphism

S′i(z) ≡ γKSi(z) = DKSi(z)D
−1
K .

In other words, the action of θK on tokens corresponds to conjugation of lifting matrices by the scaling
matrix DK ∈ D.

2) WS Filter Banks: We can now give a group-theoretic characterization of the group of unimodular
WS filter banks,

W = DCW = SW .
The WS group lifting structure, SW ≡ (D,U ,L, I) [5, Example 2], is D-invariant and order-increasing
[6, Theorem 1] so Corollary 1 implies the following.

Corollary 2: Let SW ≡ (D,U ,L, I) be the group lifting structure for the unimodular WS group, W ,
defined in [5, Section IV]. The group-theoretic structure of W is

W ∼= D nθ (U∗L).

3) HS Filter Banks: We can also give a group-theoretic characterization of H, the class of all unimod-
ular HS filter banks satisfying (11), even though it does not form a group. The group lifting factorization
theory for H,

H = DCHBH = SHBH, (47)

BH ≡ {B ∈ H : order(B0) = order(B1)} , (48)

only provides uniqueness modulo rescaling since BH is nontrivial [6, Theorem 2], but its group lifting
structure is D-invariant and order-increasing so Theorem 1 applies to CH and Corollary 1 applies to SH.

The product representation (47) for H has the form of a collection of right cosets of SH by elements
of BH:

H =
⋃ {SHB : B ∈ BH} . (49)

Distinct elements of BH do not generate distinct cosets of SH, however, because irreducible group lifting
factorizations are only unique modulo rescaling. To see this, let B ∈ BH, H = DKEB ∈ SHB, and
α 6= 0; then

H = DK/α(γαE)B′ ∈ SHB′, B′ ≡ DαB ∈ BH. (50)

Since SHB∩SHB′ 6= ∅, a basic result in group theory [83, Proposition III.19], [79, Corollary I.4.3] says
that these cosets are identical, SHB = SHB′.
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This coset duplication can be eliminated by taking advantage of the fact that (48) is closed under
scaling, i.e., that DKBH = BH. Using (17) and D-invariance of CH, an arbitrary element of H = SHBH

can be written
DKEB = (γKE)(DKB) = E′B′ ∈ CHBH, (51)

and factorizations in CHBH are unique because there are no gain-scaling matrices, so every H ∈ H is in
a unique right coset CHB ⊂ CHBH.

Alternatively, one can restrict BH to obtain unique group lifting factorizations. If (48) is made more
restrictive, e.g.,

B′H ≡ {B ∈ BH : B0(1) = 1} , (52)

then B and B′ ≡ DαB can both satisfy (52) only if α = 1. Since any two irreducible group lifting
factorizations of H in SHBH are equivalent modulo rescaling, it follows that every H ∈ H is in a unique
right coset SHB ⊂ SHB′H.

Finally, [78, Theorem 12] implies that H cannot be expressed in terms of left cosets BSH or BCH for
B ∈ BH.

Corollary 3: Let SH ≡ (D,U ,L,BH) be the group lifting structure for the unimodular HS class, H,
defined in [5, Section IV]. Then the group-theoretic structure of SH is

SH ∼= D nθ (U∗L). (53)

H can be partitioned into disjoint right cosets (but not left cosets) of either CH or SH, with B′H given
by, e.g., (52):

H =
⋃ {CHB : B ∈ BH} (54)

=
⋃{SHB : B ∈ B′H

}
. (55)

VI. COMPARISON OF SCALED LIFTING GROUPS WITH VECTOR SPACES

Finite-dimensional vector spaces are popular parameter sets for numerical design applications because
every feasible solution has a unique representation as a linear combination of basis vectors. Defining
a vector space framework for PR filter banks is problematic, however, since filter banks naturally
form nonabelian groups, not vector spaces. In this section we compare and contrast the group-theoretic
characterizations derived above, which provide unique parametric factorizations for scaled lifting groups of
filter banks, with the more familiar unique factorization structures provided by vector spaces. Throughout
this section, P0 and P1 are finite-dimensional real vector spaces of lifting filters, such as filters of
bounded orders satisfying (9) and (10), respectively, with upper and lower triangular lifting matrix groups
U ≡ υ(P0) and L ≡ λ(P1).

A. Unique Representations in Lifting Matrix Groups

We can write down a low-level, homomorphic correspondence between vector space basis expansions
of lifting filters and (abelian) matrix factorizations of individual lifting matrices. Let {S1, . . . , Sn0

} be
a basis for the finite-dimensional vector space P0 of lifting filters for lowpass (upper triangular) lifting
matrices. Every S(z) ∈ P0 has a unique basis expansion

S(z) =

n0∑
i=1

aiSi(z), ai ∈ R. (56)
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Similarly, every T (z) ∈ P1 has a unique basis expansion in terms of a basis {T1, . . . , Tn1
} for P1,

T (z) =

n1∑
i=1

aiTi(z), ai ∈ R. (57)

These expansions are transformed by the homomorphisms υ, λ, and γ into factorizations of the corre-
sponding lifting matrices that are unique modulo permutations of the (commuting) matrix factors. Let

κi ≡
√
|ai| for ai ∈ R,

σi ≡ sgn(ai) = ±1,

Si(z) ≡ υ(Si(z)), and

Ti(z) ≡ λ(Ti(z)).

With this notation,
υ(aiSi(z)) = υ(σiκ

2
iSi(z)) = γ−1

κi Sσii (z),

where the inverse on γ−1
κi = γκ−1

i
is required by (6) and (17) in the upper triangular case. The isomorphism

υ thus transforms the basis expansion (56) for a lifting filter in P0 into a unimodular matrix factorization
of the corresponding lifting matrix in U ≡ υ(P0),

υ(S(z)) = υ(a1S1(z)) · · · υ(an0
Sn0

(z))

= γ−1
κ1

Sσ1

1 (z) · · · γ−1
κn0

S
σn0
n0 (z). (58)

The isomorphism λ similarly transforms (57) into a lower triangular matrix factorization in L ≡ λ(P1),

λ(T (z)) = λ(a1T1(z)) · · ·λ(an1
Tn1

(z))

= γκ1
Tσ1

1 (z) · · · γκn1
T
σn1
n1 (z). (59)

Formulas (58) and (59) are “basis expansions” for U and L. Uniqueness of the parameters ai in
(56) and (57) implies uniqueness of the parameters κi and σi in (58) and (59). This furnishes unique
parametric factorizations for lower and upper triangular lifting matrices with lifting filters drawn from
finite-dimensional vector spaces of polynomials.

Note that uniqueness of the lifting matrix factorizations (58) and (59) has nothing to do with unique
factorization properties of group lifting structures; it is a simple consequence of uniqueness of basis
expansions in the underlying vector spaces of lifting filters. If, however, a group lifting structure incorpo-
rating these two lifting matrix groups is D-invariant and order-increasing then every filter bank in S has
a unique irreducible group lifting factorization. The group-theoretic structure S ∼= D nθ (U∗L) given in
Corollary 1 therefore provides a vector space-like unique factorization framework for members of the
scaled lifting group in terms of “basis elements” (58) and (59), with “scalar multiplication” given by
unimodular scaling matrices in a gain-scaling group, D.

B. Automorphic Scaling Operations

Next, we explore the parallels between scaled lifting groups and vector spaces more closely. Assume
we have been given a D-invariant, order-increasing group lifting structure, where the gain-scaling group
D ≡ D(R) ∼= R is the isomorphic image of a multiplicative group R of real numbers (14). Recall the
axioms for vector spaces [87], [83], [79], [88].
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Definition 4 (Vector space): A vector space is an abelian group, (V,+), together with a field F and a
scalar multiplication operation that satisfies the following axioms for all a, b ∈ F and u, v ∈ V .

(a+ b)v = av + bv (60)

a(u + v) = au + av (61)

a(bv) = (ab)v (62)

1Fv = v (63)

We shall now show that axioms (61), (62), and (63) all have multiplicative (homomorphic) analogues
in S using the automorphic scaling action γ : D → Aut(S) but that axiom (60) does not, at least under
one fairly reasonable interpretation of what a homomorphic analogue of axiom (60) would be, no matter
how we might try to redefine automorphic scaling.

Axiom (61) says that scalar multiplication distributes over the group operation in V . The homomorphic
analogue in S, where the group operation is matrix multiplication, is

γK(EF) = (γKE)(γKF), (64)

which is just the automorphism property of γK : S → S.
Axiom (62) is an associative law for scaling. This translates into the homomorphism property of

γ : D → Aut(S),
γK′(γKE) = γK′KE, (65)

which says that γ is a group action of D on S.
Axiom (63) says that the multiplicative unit element acts as the identity operator. Its analogue in S is

the fact that the homomorphism γ maps D1 = I to the identity automorphism:

γ1E = E. (66)

What about Axiom (60), which says that scalar multiplication distributes over scalar addition? Finding
a homomorphic analogue is complicated by the fact that the multiplicative group D doesn’t necessarily
have an additive structure, so suppose R is closed under addition, e.g., R = (0,∞), the positive real
numbers. As in (64), we assume that the group operation (vector addition) on the right-hand side of (60)
is mapped to the group operation in S (matrix multiplication). If we regard K 7→ γK as a mapping of
R into Aut(S), can automorphic scaling in S distribute over addition in R, i.e., can K 7→ γKE be an
additive homomorphism:

γK+K′E = (γKE)(γK′E) ? (67)

While (67) is not satisfied by the scaling action γ defined by (6) and (17), is there any way to redefine
gain-scaling (e.g., using exponential functions) to make γ satisfy (67)? If so, K +K ′ = K ′ +K implies
that γKE and γK′E would have to commute for all E ∈ S and K ′,K ∈ R. In fact, something even
stronger would have to be true.

Proposition 6: Let the multiplicative group R be closed under addition. If there exists a multiplicative
homomorphism γ : R → Aut(S) that also satisfies (67) for all E ∈ S and K ′,K ∈ R then S is abelian.

Remarks: For any nonabelian group S, a multiplicative homomorphism γ : R → Aut(S) automati-
cally satisfies (64), (65), and (66). In the language of abstract algebra, however, Proposition 6 says there
is no such thing as a “nonabelian module” that also satisfies (67).

Proof: Let E,F ∈ S. Since R is also closed under addition, 2 = 1 + 1 ∈ R. The homomorphism γ
maps 1 to the identity automorphism γ1 so (67) implies

γ2E = (γ1E)2 = E2 (68)
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and
γ2(EF) = (EF)2. (69)

On the other hand, γ2 ∈ Aut(S) and (68) imply that

γ2(EF) = (γ2E)(γ2F) = E2F2. (70)

Equate (69) and (70) and cancel common factors:

(EF)2 = E2F2

FE = EF.

Since scaled lifting groups are nonabelian, (67) fails for any automorphic scaling operation. We have
thus shown that S = D n C has a scaling structure that is partially homomorphic to scalar multiplication
in vector spaces.

This phenomenon has precedent, and other continuous groups with scaling automorphisms have been
studied in the literature. For instance, homogeneous groups [89], [90] are nilpotent Lie groups equipped
with dilations (families of automorphisms δr, r > 0, that act as dilations on local coordinates for the
group). The class of homogeneous groups, which includes the Heisenberg group, has attracted attention
because of its close connections to harmonic analysis, mathematical physics, and partial differential
equations. Unfortunately, scaled lifting groups of the form D nθ (U∗L) are not nilpotent, so we leave
the connection between scaled lifting groups and other continuous groups-with-dilations as an open
question.

VII. CONCLUSIONS

The growing importance of multirate filter banks in digital communication standards, combined with
the fact that filter banks do not form vector spaces, has convinced the author that a better understanding
of the field can be gained by employing some well-established tools from algebraic group theory. The
structure theory derived here for groups of linear phase filter banks provides a mathematical framework
containing homomorphic analogues of many familiar linear algebraic properties. It is hoped that the
detailed parameterizations of linear phase filter banks described in this paper will prove useful for
filter bank designs based on parametric numerical optimization since the above classification is both
complete and injective; i.e., a given filter bank is not encountered at multiple points in parameter space
by optimization algorithms.

The lifting cascade group and scaled lifting group generated by a D-invariant, order-increasing group
lifting structure, S = (D,U ,L,B), have been determined up to isomorphism in terms of the building
blocks U , L, and D. The unique factorization theorem for D-invariant, order-increasing group lifting
structures in [5] implies that the lifting cascade group C ≡ 〈U ∪ L〉 is isomorphic to the free product,
U∗L, of the abelian lifting matrix groups U and L (Theorem 1). It is shown that C is a free group if
and only if U and L are infinite cyclic groups and C ∼= U∗L (Theorem 2).

When S is D-invariant and order-increasing it has also been shown that the scaled lifting group
S ≡ 〈C ∪ D〉 is given by the internal semidirect product of C by D (Theorem 3). This result is
proven in a relatively simple way directly from the D-invariance and order-increasing hypotheses without
explicitly invoking uniqueness of irreducible group lifting factorizations. Combining Theorems 1 and 3
characterizes D-invariant, order-increasing scaled lifting groups up to isomorphism in terms of U , L, and
D (Corollary 1):

S ∼= D nθ (U∗L).
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This result applies to the groupW = SW of unimodular whole-sample symmetric filter banks specified
in JPEG 2000 Part 2 Annex G (Corollary 2). It also applies to the scaled lifting group SH for the
unimodular half-sample symmetric class, H. While H does not form a group it can be partitioned
into cosets of either SH or CH (Corollary 3). Homomorphic comparisons are made between basis
expansions in vector spaces and the unique factorization structure of scaled lifting groups for D-invariant,
order-increasing group lifting structures. It is shown that such scaled lifting groups can be regarded as
noncommutative multiplicative analogues of vector spaces.
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