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Evaluation of the weight distribution of a class of cyclic codes

based on index 2 Gauss sums

Tao Feng∗ and Koji Momihara†

Abstract

The duals of cyclic codes with two zeros have been extensively studied, and their weight
distributions have recently been evaluated in some cases ([8, 16, 23, 24]). In this note, we de-
termine the weight distribution of a certain new class of such codes by computations involving
index 2 Gauss sums.
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1 Introduction

Let p be a prime, q be a power of p, and k be a positive integer. An [n, k, d]-linear code C is a
k-dimensional subspace of Fn

q with minimum distance d. Each element in C is called a codeword.
If any cyclic shift of each codeword in C is again in C, the code is called cyclic. To determine all
the nonzero weights and their frequencies of a given code is one of the main problems in algebraic
coding theory. The weight enumerator of C is defined as the polynomial 1 +

∑n
i=1 Aix

i, where
Ai is the number of codewords of weight i in C. Furthermore, the sequence (A1, A2, . . . , An) is
called the weight distribution of the code C. Many important families of cyclic codes have been
extensively studied in the literature, but the weight distributions are generally difficult to compute
and there are only a few special families that this has been done. We assume that the reader is
familiar with the basic facts about coding theory, see for instance [15] and [22].

Let α be a primitive element of Fqk , and let h and e be positive integers such that e |h and h | q−1.

Put g = α(q−1)/h, β = α(qk−1)/e, and n = h(qk − 1)/(q − 1). Since the order of g−1 and (βg)−1

are both equal to n, the minimal polynomials f1(x) and f2(x) of g−1 and (βg)−1 divide xn − 1.

Furthermore, it is easy to show that g−qj 6= (βg)−1 for any integer j, so we have f1(x)f2(x) |xn−1.
By Delsart’s Theorem [7], the cyclic code C(q,k,h,e) with f1(x)f2(x) as its parity-check polynomial
can be represented in the following trace form. Let

c(a, b) = (Trqk/q(ag
0 + b(βg)0),Trqk/q(ag

1 + b(βg)1), . . . ,Trqk/q(ag
n−1 + b(βg)n−1)),

where Trqk/q is the relative trace from Fqk to Fq. Then, it holds that

C(q,k,h,e) = {c(a, b) | (a, b) ∈ F2
qk}.

The dimension of the code is 2k. The recent interest in the weight distribution of this type of
codes C(q,k,h,e) starts with [16], and is followed by [8], [23], [24]. The objective of this note is to
compute the weight distribution of a further class of such codes.
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In general, to evaluate the weight distribution of the code C(q,k,h,e) is quite difficult and most cases
remain unsettled. The weight distribution appears mostly rather complicated, but still there are
cases where not so many nonzero weights are involved and a neat expression is available. Here we
list the known cases in which the weight distributions have been explicitly evaluated.

(i) e > 1 and m = 1 [16],

(ii) e = 2 and m = 2 [16],

(iii) e = 2 and m = 3 [8],

(iv) e = 2 and −1 ∈ 〈p〉 (mod m) [8],

(v) e = 3 and m = 2 [23],

(vi) e = 4 and m = 2 [24],

where m = gcd ( q
k−1
q−1 ,

e
h (q − 1)). Furthermore, if we set h = q − 1 and drop the condition e|h,

then they are related to primitive cyclic codes with two zeros and have been extensively studied
in the literature, see for instance [4, 6, 18, 20, 21, 26] and the references therein.

The purpose of this note is to compute the weight distribution of C(q,k,h,e) for the case where
e = 2, m is a prime, the subgroup 〈p〉 generated by p ∈ Z∗

m has index 2 in Z∗
m and −1 6∈ 〈p〉.

Our evaluation is based on the explicit determination of certain index 2 Gauss sums and the
Davenport-Hasse theorem.

2 Index 2 Gauss sums

Let p be a prime, f a positive integer, and q = pf . The canonical additive character ψ of Fq is
defined by

ψ : Fq → C∗, ψ(x) = ζ
Trq/p(x)
p ,

where ζp = exp(2πip ), and Trq/p is the absolute trace. For each multiplicative character χ of F∗
q ,

we define a Gauss sum over Fq as follows:

Gq(χ) =
∑

x∈F∗

q

χ(x)ψ(x).

Below are a few basic properties of Gauss sums [13]:

(i) Gq(χ)Gq(χ) = q if χ is nontrivial;

(ii) Gq(χ
p) = Gq(χ);

(iii) Gq(χ
−1) = χ(−1)Gq(χ);

(iv) Gq(χ) = −1 if χ is principal.

In general, the explicit evaluation of Gauss sums is a very difficult problem. There are only a few
cases where the Gauss sums have been evaluated. The most well known case is the quadratic case
where the order of χ is two. In this case, it holds that

Gpf (χ) = (−1)f−1
(√
p∗
)f
, p∗ = (−1)

p−1
2 p. (2.1)
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The next well-studied case is the so-called semi-primitive case, where there exists an integer j
such that pj ≡ −1 (mod N), with N being the order of χ. Please refer to [1, 2, 5] for details on
the explicit evaluation of Gauss sums in this case.

The next interesting case is the index 2 case, where the subgroup 〈p〉 generated by p ∈ Z∗
N has

index 2 in Z∗
N and −1 6∈ 〈p〉. In this case, it is known that N can have at most two odd prime

divisors. Many authors have investigated this case, see e.g., [3, 14, 17, 19, 25]. In particular, a
complete solution to the problem of explicitly evaluating Gauss sums in this case is recently given
in [25]. We record here the following result which we shall use in the next section.

Theorem 2.1. ([25], Case A; Theorem 4.1) Let N = pℓ1, where p1 is a prime ≡ 3 (mod 4) with
p1 > 3. Assume that p is a prime such that ordpℓ

1
(p) = φ(pℓ1)/2. Let f = φ(N)/2, q = pf , and χ

be a multiplicative character of order N of F∗
q. Then, for 0 ≤ s ≤ ℓ− 1, we have

Gq(χ
ps
1) = p

f−cps1
2

(

a+ b
√−p1
2

)ps
1

,

where c is the class number of Q(
√−p1), and a and b are integers determined by a, b 6≡ 0 (mod p),

4pc = a2 + p1b
2, and a ≡ −2p

f+c
2 (mod p1).

Here, we should remark that index 2 Gauss sums have been successfully applied to the deter-
mination of the weight distribution of certain irreducible cyclic codes in [3]. Also, recently they
have been used in the construction of new infinite families of combinatorial configurations, such
as strongly regular graphs, skew Hadamard difference sets, and association schemes with nice
properties ([9, 10, 11, 12]).

To obtain our main result, we will need the following theorems, the first known as the Davenport-
Hasse theorem.

Theorem 2.2. ([13, Theorem 5.14]) Let χ be a nonprincipal multiplicative character on F∗
q = F∗

pf

and let χ′ be the lifted character of χ to F∗
qs , i.e., χ

′(α) := χ(NormFqs/Fq
(α)) for α ∈ Fqs . Then,

it holds that
Gqs(χ

′) = (−1)s−1(Gq(χ))
s.

Theorem 2.3. ([13, Theorem 5.30]) Let ψ be the canonical additive character of Fq and χ be a
multiplicative character of Fq of order d | q − 1. Then, it holds that

∑

x∈Fq

ψ(axd + b) = ψ(b)

d−1
∑

i=1

χ−i(a)Gq(χ
i)

for any a, b ∈ Fq with a 6= 0.

3 The weight distribution

In this section, we shall use the same notations as in the Introduction. Moreover, we fix the
settings as follows:

(i) e = 2;

(ii) m = gcd ( q
k−1
q−1 ,

e
h (q − 1)) is a prime ≡ 3 (mod 4), which we write as p1;

(iii) q = pf , fk is divisible by p1−1
2 , say fk = sp1−1

2 for some positive integer s;

(iv) p is of index 2 modulo p1.
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Under these assumptions, we will determine the weight distribution of the cyclic code C(q,k,h,e).

Let α be a fixed primitive element of Fqk , and for each x ∈ Fqk ,. We define C
(ℓ,qk)
i := αi〈αℓ〉 for

any ℓ | qk − 1, i ∈ Z. Then, for any a, b ∈ Fqk , the Hamming weight of c(a, b) is n − Z(qk, a, b),
where

Z(qk, a, b) = |{x ∈ C
((q−1)/h,qk)
0 |Trqk/q(ax+ βlogα(x)bx) = 0}|,

where we use From [8, 16], we have the following formula on Z(qk, a, b):

Z(qk, a, b) =
h(qk − 1)

q(q − 1)
+

h

eq
m

e−1
∑

i=0

∑

x∈C
(m,qk)

(q−1)i/h

ψ((a+ βib)x), (3.1)

where ψ is the canonical additive character of Fqk .

Remark 3.1. By Theorems 2.1 and 2.2, the Gauss sum Gqk(χ) with χ a multiplicative character
of order p1 of Fqk is given as

Gqk (χ) = (−1)s−1
(

Gp(p1−1)/2(χ′)
)s

= (−1)s−1p
(p1−1−2c)s

4

(

a+ b
√−p1
2

)s

∈ Q(
√
−p1),

where a, b, and c are as defined in Theorem 2.1, and χ′ is a character of Fp(p1−1)/2 whose lift to
F∗
qk is χ. To ease the notation, we introduce the integers as, bs such that

as + bs
√−p1
2

:=

(

a+ b
√−p1
2

)s

.

We comment that we allow bs to have a sign ambiguity of ±1. We are now ready to prove our
main result.

Theorem 3.2. Let C(q,k,h,e) be the [n, 2k] cyclic code satisfying the above assumptions (i)–(iv).

Each codeword c(a, b) has weight n− Z(qk, a, b), and we associate to it the number

Y (qk, a, b) :=
eq

h
(Z(qk, a, b)− h(qk − 1)

q(q − 1)
) + 2.

Then the multiset {Y (qk, a, b) | a, b ∈ Fqk} has values and corresponding multiplicities as listed in
Table 1.

Proof: By the equation (3.1) above, it suffices to compute the sum
∑

i=0,1

∑

z∈C
(p1,qk)

(q−1)i/h

ψ((a+ (−1)ib)x). (3.2)

Let E = {0, 1} and Ea,b
0 = {i ∈ E | a+(−1)ib = 0}. If i ∈ Ea,b

0 , then the inner sum is (qk − 1)/p1.
Therefore, we have

∑

i=0,1

∑

z∈C
(p1,qk)

(q−1)i/h

ψ((a+ (−1)ib)z)− qk − 1

p1
|Ea,b

0 |

=
1

p1

∑

i∈E\Ea,b
0

∑

z∈F
∗

qk

ψ((a+ (−1)ib)α(q−1)i/hzp1)

=
1

p1

∑

i∈E\Ea,b
0





∑

z∈F
qk

ψ((a+ (−1)ib)α(q−1)i/hzp1)− 1





= −e− |Ea,b
0 |

p1
+

1

p1

∑

i∈E\Ea,b
0

p1−1
∑

j=1

χ−j(a+ (−1)ib)Gqk (χ
j),

4



Table 1: The values of Y (qk, a, b) and their corresponding multiplicities

Y (qk, a, b) frequency

2qk 1

(−1)sp
s(p1−1−2c)

4 (as − bsp1)
(

p1−1
2

)2
(

qk−1
p1

)2

(−1)sp
s(p1−1−2c)

4 (as + bsp1)
(

p1−1
2

)2
(

qk−1
p1

)2

(−1)sp
s(p1−1−2c)

4 (1 − p1)as

(

qk−1
p1

)2

(−1)sp
s(p1−1−2c)

4
as−bsp1

2 + qk (p1−1)(qk−1)
p1

(−1)sp
s(p1−1−2c)

4
(as+bsp1)

2 + qk (p1−1)(qk−1)
p1

(−1)sp
s(p1−1−2c)

4
1−p1

2 as + qk 2(qk−1)
p1

(−1)sp
s(p1−1−2c)

4 as
(p1−1)2

2

(

qk−1
p1

)2

(−1)s

2 p
s(p1−1−2c)

4 (−as(−2 + p1)− bsp1) (p1 − 1)
(

qk−1
p1

)2

(−1)s

2 p
s(p1−1−2c)

4 (−as(−2 + p1) + bsp1) (p1 − 1)
(

qk−1
p1

)2

where χ is a fixed multiplicative character of order p1. It follows that

Y (qk, a, b) = qk|Ea,b
0 |+

∑

i∈E\Ea,b
0

p1−1
∑

j=1

χ−j(a+ (−1)ib)Gqk(χ
j).

Now, by Remark 3.1, the Gauss sum Gqk(χ) is written as

Gqk(χ) = (−1)s−1p
(p1−1−2c)s

4

(

as + bs
√−p1
2

)

.

Since Gqk (χ
p) = Gqk (χ) and Gqk(χ

−1) = χ(−1)Gqk(χ) = Gqk(χ), the second summand in
Y (qk, a, b) is equal to

∑

i∈E\Ea,b
0



Gqk(χ)
∑

j∈〈p〉

χ−j(a+ (−1)ib) +Gqk(χ
−1)

∑

j∈−〈p〉

χ−j(a+ (−1)ib)





= (−1)s−1p
(p1−1−2c)s

4

∑

i∈E\Ea,b
0

2Re







(

as + bs
√−p1
2

)

∑

j∈〈p〉

ψp1(−jℓa+(−1)ib)







,

where ψp1 is the canonical additive character of Fp1 and ℓa+(−1)ib is the integer such that

ℓa+(−1)ib ≡ logα(a+ (−1)ib) (mod p1).

Now, we compute the sum
∑

j∈〈p〉 ψp1(jx). If x ≡ 0 (mod p1), it is clear that

∑

j∈〈p〉

ψp1(jx) =
p1 − 1

2
.

Let η be the quadratic character of F∗
p1
. If x 6≡ 0 (mod p1), by (2.1), it holds that

∑

j∈〈p〉

ψp1(jx) =
1

2

∑

j∈F∗

p1

(1 + η(j))ψp1 (xj)

=
−1 + η(x)Gp1 (η)

2
=

−1 + η(x)
√−p1

2
.
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Then, the equation (3.3) is reformed as

(−1)s−12p
(p1−1−2c)s

4 Re

{(

as + bs
√−p1
2

)

(3.3)

×
(

N0
−1−√−p1

2
+N1

−1 +
√−p1
2

+N2
p1 − 1

2

)}

where N0 and N1 are the numbers of nonzero squares and nonsquares modulo p1 in {ℓa+(−1)ib | i ∈
E \Ea,b

0 }, respectively, and N2 is the number of zeros modulo p1 in {ℓa+(−1)ib | i ∈ E \Ea,b
0 }. After

simplification, we see that the expression in (3.3) is equal to (−1)s

2 p
(p1−1−2c)s

4 times

(N0 +N1 +N2 − p1N2)as + (N1 −N0)p1bs.

Since e = 2, there are ten possibilities for the values of the tuple (|Ea,b
0 |, N0, N1, N2). We shall com-

pute the frequency of each plausible tuple (|Ea,b
0 |, N0, N1, N2), which we denote by N|Ea,b

0 |,N0,N1,N2
.

As a consequence, we obtain the values and multiplicities of Y (qk, a, b) in Table 1.

It is clear that N2,0,0,0 = 1, N1,1,0,0 = N1,0,1,0 = (p1−1)(qk−1)
p1

, N1,0,0,1 = 2(qk−1)
p1

. For instance,

N1,1,0,0 is the number of pairs (a, b) such that a + b = 0, logα(a − b) = logα(2a) (mod p1) is a
nonzero square or a− b = 0, logα(a+ b) = logα(2a) (mod p1) is a nonzero square, which is easily

seen to be 2 · p1−1
2 · qk−1

p1
= (p1−1)(qk−1)

p1
. The other three numbers are obtained similarly.

Furthermore, by considering the case where at least one of a + b, a − b is in
⋃

i∈〈p〉 C
(p1,q

k)
i , we

have

N1,1,0,0 + 2N0,2,0,0 +N0,1,1,0 +N0,1,0,1

= |{(a, b) ∈ F2
qk | a+ b ∈

⋃

i∈〈p〉

C
(p1,q

k)
i }|+ |{(a, b) ∈ F2

qk | a− b ∈
⋃

i∈〈p〉

C
(p1,q

k)
i }|

= qk
(qk − 1)(p1 − 1)

p1
.

Similarly, we have

N1,0,1,0 +N0,1,1,0 + 2N0,0,2,0 +N0,0,1,1 = qk
(qk − 1)(p1 − 1)

p1
,

N1,0,0,1 +N0,1,0,1 +N0,0,1,1 + 2N0,0,0,2 = 2qk
qk − 1

p1
.

It is therefore enough to compute the values of N0,2,0,0, N0,0,2,0, and N0,0,0,2 only. Now, we
introduce the following notations: for b 6= 0

u := ab−1 ∈ Fqk \ {±1},
t := logα(u+ 1) (mod p1).

s := logα(u− 1) (mod p1),

x := logα(b) (mod p1),

and
M := {u ∈ Fqk \ {±1} | (u+ 1)/(u− 1) ∈ C

(p1,q
k)

0 }.
Note that |M | = (qk − 1)/p1 − 1. Moreover, we will use the well known fact ([1, p. 81]) that

|(〈p〉+ u) (mod p1) ∩ 〈p〉 (mod p1)|

= |(−〈p〉+ u) (mod p1) ∩ −〈p〉 (mod p1)| =
p1 − 3

4
.

6



Now we are ready to compute the values of N0,2,0,0, N0,0,2,0, and N0,0,0,2, from which all the
remaining numbers N0,1,1,0, N0,1,0,1, N0,0,1,1 will follow.

(1) N0,0,0,2: Recall that

N0,0,0,2 = |{(a, b) ∈ F2
qk | a+ b, a− b ∈ C

(p1,q
k)

0 }|.

There are (qk − 1)/p1 such pairs with b = 0. Assume b 6= 0. Then a+ b, a− b ∈ C
(p1,q

k)
0 amounts

to t+ x = 0, s+ x = 0 in Zp1 , so t = s, i.e., u+1
u−1 ∈ C

(p1,q
k)

0 , which amounts to saying that u ∈M .

For each such u, there is a unique x ∈ Zp1 , so (qk − 1)/p1 of b ∈ C
(p1,q

k)
x . Now we have

N0,0,0,2 =
qk − 1

p1
+
qk − 1

p1
· |M | =

(

qk − 1

p1

)2

.

(2) N0,2,0,0: Recall that

N0,2,0,0 = |{(a, b) ∈ F2
qk |a+ b, a− b ∈

⋃

i∈〈p〉

C
(p1,q

k)
i }|.

There are p1−1
2 · qk−1

p1
such pairs with b = 0. Assume b 6= 0. Then a + b, a − b ∈

⋃

i∈〈p〉 C
(p1,q

k)
i

amounts to t+ x, s+ x ∈ 〈p〉, i.e., x ∈ (〈p〉 − t+ s)∩ 〈p〉. There are two cases: (1) s = t and there
are p1−1

2 x’s, (2) s 6= t and there are p1−3
4 x’s. Note that s = t if and only if u ∈ M . A similar

argument as in the determination of N0,2,0,0 gives that

N0,2,0,0

=

(

p1 − 1

2

)(

qk − 1

p1

)

+ |M | ·
(

p1 − 1

2

)(

qk − 1

p1

)

+ (p1 − 1)

(

p1 − 3

4

)(

qk − 1

p1

)2

=

(

p1 − 1

2

)2 (
qk − 1

p1

)2

.

(3) N0,0,2,0: Proceed exactly the same way as above and we obtain N0,0,2,0 =
(

p1−1
2

)2
(

qk−1
p1

)2

.

To sum up, we get the result listed in Table 1. �

Example 3.3. Consider the case where

(p, f, k, e, h,m) = (3, 5, 55, 2, 2, 11).

In this case, p = 3 is index 2 modulo 11 and the class number of Q(
√
−11) is 1. The Gauss sum

G35(χ) with χ a character of order 11 of F35 is given as (1±
√
−11)/2, where the sign ambiguity

± will not matter. Then, the Gauss sum G35·11(χ
′) for the lifted character χ′ of χ is given as

(

1±
√
−11

2

)11

=
67± 253

√
−11

2
,

i.e., a11 = 67, b11 = ±253. By Table 1, the code Cq,k,h,e is a [2(355 − 1)/(35 − 1), 22, 317(−1358+
333)]-linear code over F35 with the following weight distribution:

1 + 25ℓ2x2A(B−1358) + 25ℓ2x2A(B+1425) + ℓ2x2A(B−335) + 10ℓxA(B−1358) + 10ℓxA(B+1425)

+2ℓxA(B−335) + 50ℓ2xA(2B+67) + 10ℓ2xA(2B−1693) + 10ℓ2x2A(B+545),

where A = 317, B = 333, ℓ = (355 − 1)/11.
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4 Conclusion

In this short note, we explicitly determine the weight distribution of a class of cyclic codes C(q,k,h,e)
under certain index 2 condition as specified at the beginning of Section 3 when e = 2.

Under the assumptions (ii)–(iv), if we allow e > 1 to be arbitrary, then there will be
(

e+3
3

)

possible

weights, and at least
(

e+2
2

)

of them have roughly the same (nonzero) count when qk is large
compared to pe1, according to the estimate by Xiong [24]. For instance, theoretically we should
be able to determine the weight enumerator under the assumptions (ii)–(iv) when e = 3 using
the same technique here by more involved computations, but in general there will be 20 weights.
Therefore, it will be of interest to determine the cases where there are only few nonzero weights,
say, less than ten. We leave this for future work.

If we have a multiplicative character χ of prime order p1 over a finite field Fq1 , and Gq1(χ) is
in the quadratic subfield of Q(ζp1), then our method also apply and yield similar results. In our
construction, the index 2 condition is used to guarantee this point. So it will be interesting to
determine all such Gauss sums. We leave this for future work.

As we see in the application of applying Gauss sums to the construction of combinatorial objects,
we first succeed in the index 2 case, and then extend to the index 4 case and then even more
complicated settings. We wonder this will be the case in the application discussed in this note.
We leave this for future work.
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