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Abstract

A lossy source coding problem is studied in which a source encoder communicates with two

decoders, one with and one without correlated side information with an additional constraint on the

privacy of the side information at the uninformed decoder. Two cases of this problem arise depending on

the availability of the side information at the encoder. Theset of all feasible rate-distortion-equivocation

tuples are characterized for both cases. The difference between the informed and uninformed cases and

the advantages of encoder side information for enhancing privacy are highlighted for a binary symmetric

source with erasure side information and Hamming distortion.

Index Terms

lossy source coding, information privacy, side information, equivocation, discriminatory coding,

informed and uninformed encoders, Heegard-Berger problem, Kaspi problem.

I. INTRODUCTION

Information sources often need to be made accessible to multiple legitimate users simulta-

neously, some of whom can have correlated side information obtained from other sources or
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from prior interactions. A natural question that arises in this context is the following: can the

source publish (encode) its data in a discriminatory mannersuch that the uninformed user does

not infer the side information, i.e., it is kept private, while providing utility (fidelity) to both

users? Two possible cases arise in this context depending onwhether the encoder isinformedor

uninformed, i.e., it has or does not have access to the correlated side information, respectively.

This question is addressed from strictly a fidelity viewpoint by C. Heegard and T. Berger in [1],

henceforth referred to as the Heegard-Berger problem, for the uninformed case and by A. Kaspi

[2], henceforth referred to as the Kaspi problem, for the informed case wherein they determined

the rate-distortion function for a discrete and memorylesssource pair. Using equivocation as the

privacy metric, we address the question posed above using the source network models in [1] and

[2] with an additional constraint on the side information privacy at the decoder without access

to it, i.e., decoder 1 (see Fig. 1).

We prove here that the encoding scheme for the Heegard-Berger problem achieves the minimal

rate while guaranteeing the maximal equivocation for any feasible distortion pair at the two

decoders when the encoder is uninformed. Informally speaking, the Heegard-Berger coding

scheme involves a combination of a rate-distortion code anda conditional Wyner-Ziv code

which is revealed to both decoders. Our proof exploits the fact that conditioned on what is

decodable by decoder 1, i.e., the rate-distortion code, theadditional information intended for

decoder 2, i.e. the conditional Wyner-Ziv bin index, is asymptotically independent of the side

information,Y (see Fig. 1). Observing that the generation of the conditional Wyner-Ziv bin index

is analogous to the Slepian-Wolf binning scheme, we prove this independence property for both

the Slepian-Wolf and the Wyner-Ziv encoding. Next, we provea similar independence property

for the Heegard-Berger coding scheme, which in turn allows us to demonstrate the optimality

of this scheme for the problem studied in this paper.

On the other hand, for the informed encoder case, we present amodified coding scheme (vis-à-

vis the Kaspi scheme) which achieves the set of all feasible rate-equivocation pairs for the desired

fidelity requirements at the two decoders. The Kaspi coding scheme exploits the encoder side

informationY (see Fig. 1) via a combination of a rate-distortion code, intended for decoder 1,

and a conditional rate-distortion code, intended for decoder 2, which is then revealed to both the

decoders. However, conditioned on what is decodable by decoder 1, i.e., the rate-distortion code,

the conditional rate-distortion code does not explicitly ensure the asymptotic independence of the
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resulting index with the side informationY , and therefore, does not simplify the equivocation

computation at decoder 1. To resolve this difficulty, we present a two-step encoding scheme in

which the first step is the same as in the Kaspi problem while inthe second step we first choose

the codeword intended for decoder2 and then bin it. We prove that the resulting conditional bin

index is asymptotically independent of the side information Y .

The last part of our paper focuses on a specific source model, abinary equiprobable source

X with erased side informationY (with erasure probabilityp) and Hamming distortion con-

straints. For this source pair, we focus on the rate-distortion-equivocation tradeoffs for both the

uninformed and informed cases.

For the uninformed encoder case, we prove that the maximal equivocation is independent

of the fidelity requirementD2 at decoder2, i.e., the only information leaked about the side

information is a direct consequence of the distortion requirement at decoder1. We also explicitly

characterize the rate-distortion-equivocation tradeofffor this problem over the space of all

achievable distortion pairs. Our results clearly demonstrate the optimality of the Heegard-Berger

encoding scheme from both rate and equivocation standpoints.

In contrast, for the informed encoder case, we explicitly demonstrate the usefulness of encoder

side information. We first prove that the set of distortion pairs for which perfect equivocation

is achievable at decoder 1 is strictly larger than that for the uninformed case. We prove this by

showing that the informed encoder uses the side informationY via a single description which

satisfies the distortion constraints at both the decoders while simultaneously achieving perfect

privacy at decoder 1. Furthermore, we also demonstrate thataccess to side information leads

to a tradeoff between rate and equivocation. To guarantee a desired equivocation, we show that

the minimal rate required can be strictly larger than the rate-distortion function for the original

Kaspi problem.

The problem of source coding with equivocation constraintshas gained attention recently

[3]–[13]. In contrast to these papers where the focus is on anexternal eavesdropper, we address

the problem of privacy leakage to a legitimate user, i.e., weseek to understand whether the

encoding at the source can discriminate between legitimateusers with and without access to

correlated side information. Furthermore, our results on the rate-distortion-equivocation tradeoff

for a binary symmetric source with erased side information for both the informed and uninformed

encoder cases allow a clear comparison of the results for thesame models without an additional
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JXn

E[d(X, X̂2(J, Y ))] ≤ D2

E[d(X, X̂1(J))] ≤ D1

X̂1

X̂2

1

n
H(Y n|J) ≥ E

S

Fig. 1. Source network model.

privacy constraint as studied in [14] and [15].

The paper is organized as follows. In Section II, we present the system model. In Section III,

we first prove the asymptotic independence of the bin index and the decoder side information in

the Slepian-Wolf and Wyner-Ziv source coding problems. Subsequently, we establish the rate-

equivocation tradeoff regions for both the uninformed and informed cases. In Section IV, we

characterize the achievable rate-distortion-equivocation tradeoff for a specific source pair(X, Y )

whereX is binary andY results from passingX through an erasure channel. We conclude in

Section V.

II. SYSTEM MODEL

We consider a source network with a single encoder which observes and communicates all

or a part(Xn) of a discrete, memoryless bivariate source(Xn, Y n) over a finite rate link to

decoders1 and 2 at distortionsD1 andD2, respectively, in which decoder2 has access toY n

and an equivocationE about Y n is required at decoder1. The network is shown in Fig. 1

where the two cases with and without side information at the encoder correspond to the switch

S being in the closed and open positions, respectively. Without the equivocation constraint at

decoder1, the problems with the switch in open and closed positions, are the Heegard-Berger and

Kaspi problems for which the set of feasible(R,D1, D2) tuples are characterized by Heegard
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and Berger [1] and Kaspi [2], respectively. We seek to characterize the set of all achievable

(R,D1, D2, E) tuples for both problems.

Formally, let (X ,Y , p (x, y)) denote the bivariate source with random variablesX ∈ X and

Y ∈ Y . Furthermore, letX̂1 and X̂2 denote the reconstruction alphabets at decoders 1 and 2,

respectively, and letd1 andd2 such that

dk : X × X̂ → [0,∞), k = 1, 2, (1)

be distortion measures associated with reconstruction ofX at decoders 1 and 2, respectively.

Let S take the values 0 and 1 to denote the open and closed switch positions, respectively. An

(n,M,D1, D2, E) code for this network consists of an encoder

f : X n × S · Yn → J = {1, . . . ,M} (2)

and two decoders,

g1 : {1, . . . ,M} → X̂ n
1 , and

g2 : {1, . . . ,M} × Yn → X̂ n
2 .

The expected distortionD k at decoderk is given by

Dk = E
1

n

n
∑

i=1

dk

(

Xi, X̂i

)

, k = 1, 2, (3)

whereX̂1 = g1 (f (Xn)), X̂2 = g2 (f (Xn) , Y n) , and the equivocation rateE is given by

E =
1

n
H (Y n|J) , J ∈ J . (4)

Definition 1: The rate-distortion-equivocation tuple(R,D1, D2, E) is achievable for the above

source network if there exists an(n,M,D1+ǫ,D2+ǫ, E−ǫ) code withM ≤ 2n(R+ǫ) for n suffi-

ciently large. LetR denote the set of all achievable(R,D1, D2, E) tuples,R (D1, D2, E) denote

the minimal achievable rateR, andΓ (D1, D2) denote the maximal achievable equivocationE

such that

R (D1, D2, E) ≡ min
(R,D1,D2,E)∈R

R, and (5)

Γ (D1, D2) ≡ max
(R,D1,D2,E)∈R,∀R≥0

E. (6)

Remark 1:Γ (D1, D2) is the maximal privacy achievable aboutY n at decoder 1 andR (D1, D2, E)

is the minimal rate required to guarantee a distortion pair(D1, D2) and an equivocationE.

R (D1, D2,Γ(D1, D2)) is the minimal rate achieving the maximal equivocation for adistortion

pair (D1, D2) .
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III. RELATED OBSERVATIONS

In the context of lossless communications, [16] studies a problem of losslessly communicating

a bivariate source(X, Y ) to a single decoder via two encoders, one with access to theXn

sequences and the other with access to theY n sequences. A special case of this problem is one

in which the decoder has perfect access toY n for which a minimal rate ofRX ≥ H(X|Y ) is

needed [16] and it this problem (which leads to a corner pointin the Slepian-Wolf region) that

we address below.

On the other hand, [17] studies the problem of lossily communicating a partX of a bivariate

source(X, Y ) subject to a fidelity criterion to a single decoder which has access toY and proves

that a minimum rate ofR(D) ≥ min (I(X ;U)− I(Y ;U)) where the minimization is over all

distributionsp (u|x) and deterministic functionsg such thatX̂ = g (U, Y ) andE
[

d
(

X, X̂
)]

≤

D.

In both of the abovementioned problems, the coding index communicated is chosen with

knowledge of the decoder side information. In the lemmas that follow we prove that in both

cases the optimal encoding is such that the coding index is asymptotically independent of the

side informationY n at the decoder.

A. Slepian-Wolf Coding Coding: Independence of Bin Index and Side Information

Lemma 1:For a bivariate source(X, Y ) whereXn is encoded via the encoding functionfSW :

X n → J ∈ {1, . . . ,MJ} whileY n is available only at the decoder, we havelimn→∞ H (Y n|J)/n =

H (Y ) , i.e., limn→∞ I (Y n; J)/n → 0.

Proof: Let TA (n, ǫ) denote the set of strongly typicalA sequences of lengthn. We define

a binary random variableµ as follows:

µ (xn, yn) =







0, (xn, yn) 6∈ TXY (n, ǫ) ;

1, otherwise.
(7)

From the Slepian-Wolf encoding, since a typical sequencexn is assigned a bin (index)j at

random, we have that

Pr (J = j|Xn = xn ∈ TX (n, ǫ)) =
1

MJ

(8)

and

Pr (J = j|µ = 1) =
∑

xn

Pr (xn, J = j|µ = 1) ∈ ((1− ǫ) /Mj, 1/MJ) (9)
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where we have used the fact that for a typical setPr (TXY (n, ǫ)) ≥ (1− ǫ) [18, chap. 2].

The conditional equivocationH (Y n|J) can be lower bounded as

H (Y n|J) ≥ H (Y n|J, µ) (10)

= Pr (µ = 0)H (Y n|J, µ = 0) + Pr (µ = 1)H (Y n|J, µ = 1)

≥ Pr (µ = 1)H (Y n|J, µ = 1) (11)

= Pr (µ = 1)
∑

j Pr (j|µ = 1)H (Y n|j, µ = 1) (12)

where (10) follows from the fact that conditioning does not increase entropy, and (11) from the

fact that the entropy is non-negative. The probabilityPr (yn|j, µ = 1) can be written as

Pr (yn|j, µ = 1)

=
∑

xn

Pr (yn, xn|j, µ = 1) (13a)

=
∑

xn

Pr (xn|j, µ = 1)Pr (yn|xn, j, µ = 1) (13b)

=
∑

xn

Pr (xn, j|µ = 1)

Pr (j|µ = 1)
Pr (yn|xn, µ = 1) (13c)

≤ 2nǫ
′∑

xn

Pr (xn|µ = 1) /MJ

MJ

Pr (yn|xn, µ = 1) (13d)

= 2nǫ
′∑

xn

Pr (xn|µ = 1)Pr (yn|xn, µ = 1) (13e)

= 2nǫ
′

Pr (yn|µ = 1) (13f)

≤ 2−n(H(Y )−ǫ′′) (13g)

where (13b) follows from (8) and the fact thatY n − Xn − J forms a Markov chain (by

construction), and (13d) follows from (9). ExpandingH (Y n|j, µ = 1), we have

H (Y n|j, µ = 1) =
∑

yn
p (yn|j, µ = 1) log

1

Pr (yn|j, µ = 1)
(14)

≥
∑

yn
p (yn|j, µ = 1) log 2n(H(Y )−ǫ′′) (15)

= n (H(Y )− ǫ′′)
∑

yn
p (yn|j, µ = 1) (16)

≥ n (1− ǫ) (H(Y )− ǫ′′) (17)
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where (15) results from the upper bound onPr (yn|j, µ = 1) in (13g) and (17) from the fact that

for a typical setPr (TXY (n, ǫ)) ≥ (1− ǫ) [18, chap. 2]. Thus, the equivocationH (Y n|J) can

be lower bounded as

H (Y n|J) ≥ Pr (µ = 1)
∑

j Pr (j|µ = 1) (1− ǫ)n (H (Y )− ǫ′′) (18)

≥ n (1− ǫ)3 (H (Y )− ǫ′′) (19)

where we have used (9) and the fact that for a typical setPr (TXY (n, ǫ)) ≥ (1− ǫ) [18, chap.

2]. The proof concludes by observing thatH (Y n) ≥ H (Y n|J) and ǫ → 0, ǫ′′ → 0 asn → ∞.

Remark 2:Lemma 1 captures the intuition that it suffices to encode onlythat part ofXn that

is independent of the decoder side-informationY n.

Remark 3:The proof of Lemma 1 does not depend on the precise bound on thetotal number,

MJ , of encoding indices, i.e., it holds for all choices ofMJ . In fact, the bound onMJ is a

consequence of the decoding requirements.

B. Wyner-Ziv Coding: Independence of Bin Index and Side Information

Lemma 2:For a bivariate source(X, Y ) whereXn is encoded via the encoding functionfWZ :

X n → J ∈ {1, . . . ,MJ} whileY n is available only at the decoder, we havelimn→∞ H (Y n|J)/n =

H (Y ) , i.e., limn→∞ I (Y n; J)/n → 0.

Proof: Let TA (n, ǫ) denote the set of strongly typicalA sequences of lengthn. We define

a binary random variableµ as follows:

µ (un, yn) =







0, (un, yn) 6∈ TUY (n, ǫ) ;

1, otherwise.
(20)

From the Wyner-Ziv encoding, for a givenxn, first a sequenceun that is jointly typical withxn

is chosen where then symbols ofun are generated independently according topU (·) (computed

from pXU (·)). The resulting sequenceun is assigned a bin (index)j at random such that we

have

Pr (J = j|Un = un ∈ TU (n, ǫ)) =
1

MJ

(21)

and

Pr (J = j|µ = 1) =
∑

un

Pr (un, J = j|µ = 1) ∈ ((1− ǫ) /Mj, 1/MJ) (22)

July 10, 2018 DRAFT
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where we have used the fact that the probability of the typical set TUY (n, ǫ) ≥ (1− ǫ) [18,

chap. 2] and using(1− ǫ) /Mj = 2−nǫ′/Mj for a givenn.

The conditional equivocationH (Y n|J) can be lower bounded as

H (Y n|J) ≥ H (Y n|J, µ) (23)

= Pr (µ = 0)H (Y n|J, µ = 0) + Pr (µ = 1)H (Y n|J, µ = 1)

≥ Pr (µ = 1)H (Y n|J, µ = 1) (24)

= Pr (µ = 1)
∑

j Pr (j|µ = 1)H (Y n|j, µ = 1) (25)

where (10) follows from the fact that conditioning reduces entropy, and (11) from the fact that

the entropy is non-negative. The probabilityPr (yn|j, µ = 1) can be written as

Pr (yn|j, µ = 1) (26a)

=
∑

un

Pr (yn, un|j, µ = 1) (26b)

=
∑

un

Pr (un|j, µ = 1)Pr (yn|un, j, µ = 1) (26c)

=
∑

un

Pr (un|j, µ = 1)Pr (yn|un, µ = 1) (26d)

=
∑

un

Pr (un|µ = 1)

Pr (j|µ = 1)

1

MJ

Pr (yn|un, µ = 1) (26e)

≤
∑

un

Pr (un|µ = 1) 2nǫ
′

Pr (yn|un, µ = 1) (26f)

=
∑

un

Pr (yn, un|µ = 1) 2nǫ
′

(26g)

= Pr (yn|µ = 1) 2nǫ
′

(26h)

≤ 2−n(H(Y )−ǫ′′) (26i)

where (26d) follows from (21) and the fact thatY n − Un − J forms a Markov chain (by

July 10, 2018 DRAFT
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construction) and (26f) follows from (22). ExpandingH (Y n|j, µ = 1), we have

H (Y n|j, µ = 1) =
∑

yn
p (yn|j, µ = 1) log

1

Pr (yn|j, µ = 1)
(27)

≥
∑

yn
p (yn|j, µ = 1) log 2n(H(Y )−ǫ′) (28)

= n (H(Y )− ǫ′)
∑

yn
p (yn|j, µ = 1) (29)

≥ n (1− ǫ) (H(Y )− ǫ′) (30)

where (15) results from the upper bound onPr (yn|j, µ = 1) in (26i) and (17) from the fact that

for a typical setTXY (n, ǫ) ≥ (1− ǫ) [18, chap. 2]. Thus, the equivocationH (Y n|J) can be

lower bounded as

H (Y n|J) ≥ Pr (µ = 1)
∑

j Pr (j|µ = 1) (1− ǫ)n (H (Y )− ǫ′) (31)

≥ n (1− ǫ)3 (H (Y )− ǫ′) (32)

where we have used the fact that for a typical setTUY (n, ǫ) ≥ (1− ǫ) [18, chap. 2]. The proof

concludes by observing thatH (Y n) ≥ H (Y n|J) and ǫ′ → 0, ǫ′′ → 0 asn → ∞.

We will now use Lemmas 1 and 2 to demonstrate the optimality ofthe Heegard-Berger and

Kaspi encoding for the uninformed and informed source models respectively.

C. Uninformed Encoder with Side Information Privacy

We first consider the source network in which the encoder doesnot have side information

and derive the set of all feasible rate-distortion-equivocation (RDE) pairs. The resulting problem

may be viewed as the Heegard-Berger problem with an additional privacy constraint at decoder

1. Our result demonstrates that the optimal coding scheme is the same as the Heegard-Berger

problem without a privacy constraint. The proof makes use ofthe independence of the Wyner-Ziv

binning index from the side informationY n in tightly bounding the achievable equivocation. We

briefly sketch the proof here; the detailed proof can be foundin the appendix.

1) Rate-Distortion-Equivocation(R,D1, D2, E) Tuples:

Definition 2: Let ΓU(D1, D2) andRU (D1, D2, E) be two functions defined as

ΓU (D1, D2) ≡ max
PU (D1,D2,E)

H(Y |W1) (33)

RU (D1, D2, E) ≡ min
PU (D1,D2,E)

I(X ;W1) + I(X ;W2|W1Y ) (34)

July 10, 2018 DRAFT
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such that

RU ≡ {(R,D1, D2, E) : D1 ≥ 0, D2 ≥ 0, 0 ≤ E ≤ ΓU (D1, D2) , R ≥ RU (D1, D2, E)} (35)

where the subscriptU denotes the uninformed case,PU (D1, D2, E) is the set of allp (x, y)p(w1, w2|x)

that satisfy (3) and (4),Y − X − (W1,W2) is a Markov chain, and|W1| = |X | + 2, |W2| =

(|X |+ 1)2.

Lemma 3:ΓU (D1, D2) is a non-decreasing, concave function of(D1, D2) (i.e., for allDl ≥ 0,

l = 1, 2).

Lemma 3 follows from the concavity properties of the (conditional) entropy function as a

function of the underlying distribution, and therefore, ofthe distortion.

Theorem 1:For a bivariate source(X, Y ) where onlyXn is available at the source, andY n

is available at decoder 2 but not at decoder 1, we have

R = RU , Γ (D1, D2) = ΓU (D1, D2) , andR (D1, D2, E) = RU (D1, D2, E) . (36)

Proof sketch: Converse: A lower bound onR (D1, D2, E) is the same as that in [1] and

involves the introduction of two auxiliary variablesW1,i ≡ (J, Y i−1) andW2,i ≡
(

X i−1Y n
i+1

)

.

Using this definition ofW1,i, one can expand the equivocation definition in (4) to show that

Γ(D1, D2) ≤ H(Y |W1).

Achievable scheme: The achievable scheme begins with a rate-distortion code for decoder 1

by mapping an observedxn sequence to one of a set of2nI(X;W1) wn
1 sequences, denotedwn

1 (j1),

subject to typicality requirements. For this choice ofwn
1 (j1), a second code for decoder 2 results

from choosing a conditionally typical sequence out of a set of 2nI(X;W2|W1) wn
2 sequences, denoted

by wn
2 (j2|j1), and binning the resulting sequence into one of2n(I(X1;W2|W1)−I(Y ;W2|W1)) bins,

denoted byb (j2), chosen uniformly. The pair(j1, b (j2)) is revealed to the decoders. We show in

the appendix that this scheme achieves an equivocation ofH (Y |W1) asymptotically; the crux of

our proof relies on the fact that the binning indexB (J2) is conditionally independent of(XW1)

conditioned onW2, i.e., the random variables are related via the Markov chainrelationship

Y − (XW1)−W2 −B (J2).

Remark 4:An intuitive way to interpret the equivocation arises from the following decom-
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position:

1

n
H(Y n|J1, B (J1, J2)) =

1

n
H(Y n|J1) (37a)

−
1

n
I (Y n;B (J2) |J1) (37b)

=
1

n
H(Y n|W n

1 (J1)) (37c)

−
1

n
I (Y n;B (J2) |W

n
1 (J1)) .

The first term in (37c) is approximately equal toH (Y |W1) while the second term, which in

the limit goes to0, follows from a conditional version of Lemma 2 and the fact that Y −X −

(W1W2)− B (J2) forms a Markov chain.

D. Informed Encoder with Side Information Privacy

We now consider the source network in which the encoder has access to the side information

Y n and derive the set of all feasible rate-distortion-equivocation tuples. The resulting problem

may be viewed as the Kaspi problem with an additional privacyconstraint aboutY n at decoder1.

Our results below demonstrate that the Kaspi coding scheme achieves the set of all rate-distortion-

equivocation tuples. However, for a given(D1, D2, E) pair, the minimal rateR(D1, D2, E) will

in general be different from theR(D1, D2) for the original Kaspi problem.

Our proof includes a two-step achievable scheme involving binning for the conditional rate-

distortion function for which we show that the bin index is independent of the side information

Y n. Our converse is a minor modification of the converse in [2] and involves two auxiliary

random variables. We briefly sketch the proof here; the details are relegated to the appendix.

1) Rate-Distortion-Equivocation(R,D1, D2, E) Tuples:

Definition 3: Let ΓI(D1, D2) andRI (D1, D2, E) be two functions defined as

ΓI (D1, D2) ≡ max
PI (D1,D2,E)

H(Y |W1), and (38)

RI (D1, D2, E) ≡ min
PI (D1,D2,E)

I(XY ;W1) + I(X ;W2|W1Y ) (39)

such that

RI ≡ {(R,D1, D2, E) : D1 ≥ 0, D2 ≥ 0, 0 ≤ E ≤ ΓI (D1, D2) , R ≥ RI (D1, D2, E)} (40)

July 10, 2018 DRAFT
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wherePI (D1, D2, E) is the set of allp (x, y)p(w1, w2|x, y) that satisfy (3) and (4) and|W1| =

|X |+ 2, |W2| = (|X |+ 1)2.

Remark 5:The cardinality bounds onW1 andW2 can be obtained analogously to the argu-

ments in [1, p. 730].

Lemma 4:RI (D1, D2, E) is a convex function of(D1, D2, E).

Theorem 2:For a two-source(X, Y ) whereXn is available at the source, andY n is available

at the source and at decoder 2 but not at decoder 1, we have

R = RI , Γ (D1, D2) = ΓI (D1, D2) , andR (D1, D2, E) = RI (D1, D2, E) . (41)

Proof sketch: Converse: A lower bound onR (D1, D2, E) can be obtained analogously to the

bounds in [2] with the introduction of two auxiliary variables W1,i ≡ (J, Y i−1) and W2,i ≡
(

X i−1Y n
i+1

)

. Using this definition ofW1,i, one can expand the equivocation definition in (4) to

obtainΓ(D1, D2) ≤ H(Y |W1).

Achievable scheme: The achievable scheme begins with a rate-distortion code for decoder 1

by mapping an observed(xn, yn) sequence to one of a set of2nI(XY ;W1) wn
1 sequences, denoted

by wn
1 (j1), subject to typicality requirements. A second rate-distortion code for decoder 2 results

from mapping(xn, yn, wn
1 ) to one of a set of2nI(XYW1;W2) wn

2 sequences, denoted bywn
2 (j2),

and binning the resulting sequence into one of2n(I(XYW1;W2)−I(Y W1;W2)) bins, denoted byb (j2),

chosen uniformly. The pair(j1, b (j2)) is revealed to the decoders. In the appendix it is shown

that this scheme achieves an equivocation ofH (Y |W1); the crux of the proof relies on the fact

that the binning indexB (J2) is conditionally independent of(XYW1) conditioned onW2.

Remark 6:An intuitive way to interpret the equivocation arises from the same decomposition

as in (37) where the first term in (37c) is approximately equalto H (Y |W1) while the second

term, which in the limit goes to0, follows from a conditional version of Lemma 2. Note that,

in contrast to the uninformed case, the distribution here issuch that(XY )− (W1W2)−B (J2)

forms a Markov chain.

IV. RESULTS FOR ABINARY SOURCE WITH ERASED SIDE INFORMATION

We consider the following pair of correlated sources.X is binary and uniform, and

Y =







X, w.p. (1− p)

E, w.p. p,

July 10, 2018 DRAFT



14

L3

1/2

L1

p/2

(0, 0)

D1

D2

L4

D2
=

pD
1

1

1

L2

Fig. 2. Partition of the(D1, D2) region: uninformed encoder case.

and we consider the Hamming distortion metric, i.e.,d(x, x̂) = x⊕ x̂ for both decoders and for

both the informed and uninformed cases.

A. Uninformed Case

We are interested in the rate-distortion-equivocation tradeoff, given as,

R ≥ I(X ;W1) + I(X ;W2|Y,W1), and (42)

E ≤ H(Y |W1) (43)

where the rate and equivocation computation is over all random variables(W1,W2) that satisfy

the Markov chain relationship(W1,W2)−X − Y and for which there exist functionsf1 (·) and

f1 (·, ·, ·) satisfying

E[d(X, f1(W1))] ≤ D1, and (44)

E[d(X, f2(W1,W2, Y ))] ≤ D2. (45)

Let h (a) denote the binary entropy function defined fora ∈ [0, 1]. The (D1, D2) region for this

case is partitioned into four regimes as shown in Fig. 2.
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Fig. 3. Illustration of the rate-equivocation tradeoff forp = 0.25.

The rate-distortion-equivocation tradeoff is given as follows:

R(D1, D2) =







































0; if (D1, D2) ∈ L1,

p(1− h(D2/p)); if (D1, D2) ∈ L2,

1− h(D1); if (D1, D2) ∈ L3,

p(1− h(D2/p)) + (1− p)(1− h(D1)); if (D1, D2) ∈ L4.

and

Γ(D1, D2) =











h(p) + (1− p)h(D1); if D1 ≤ 1/2,

h(p) + (1− p); otherwise.

In Figure 3, we have plottedR(D1, D2) andΓ(D1, D2) for the cases in whichD2 = p/2 and

D2 = p/8, andD1 ∈ [0, 1/2].

Remark 7:This example shows that the equivocation does not depend on the distortion

achieved by the decoder 2 which has access to side-information Y , but rather depends only

on the distortion achieved by the uninformed decoder 1.

1) Upper bound onΓ(D1, D2): For anyD1 ≥ 1/2, we use the trivial upper bound

Γ(D1, D2) ≤ H(Y |W1) ≤ H(Y ) (46)

= h(p) + 1− p. (47)
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For anyD1 ≤ 1/2, we use the following:

Γ(D1, D2) ≤ H(Y |W1) (48a)

= H(Y,X|W1)−H(X|Y,W1) (48b)

= H(X|W1) +H(Y |X)−H(X|Y,W1) (48c)

= H(X|W1) +H(Y |X)− pH(X|W1) (48d)

= H(Y |X) + (1− p)H(X|W1) (48e)

= H(Y |X) + (1− p)H(X|W1, X̂1) (48f)

≤ H(Y |X) + (1− p)H(X|X̂1) (48g)

≤ H(Y |X) + (1− p)H(X ⊕ X̂1) (48h)

= H(Y |X) + (1− p)h(P (X 6= X̂1)) (48i)

≤ h(p) + (1− p)h(D1) (48j)

where (48d) follows from a direct verification thatH(X|Y,W1) = pH (X|W1) if X is uniform

andY is an erased version ofX andW1 −X − Y forms a Markov chain.

1) Upper bound onΓ(D1, D2):

• If (D1, D2) ∈ L1, we use the lower boundR(D1, D2) ≥ 0.

• If (D1, D2) ∈ L2, we use the lower boundR(D1, D2) ≥ R
(Y )
WZ(D2) [19].

• If (D1, D2) ∈ L3, we use the lower boundR(D1, D2) ≥ 1− h(D1).

• If (D1, D2) ∈ L4, we show that

R(D1, D2) ≥ p(1− h(D2/p)) + (1− p)(1− h(D1)). (49)

Consider an arbitrary(W1,W2) such that(W1,W2) → X → Y is a Markov chain and there

exist functionsf1 andf2:

X̂1 = f1(W1), and X̂2 = f2(W1,W2, Y ),

such that

Pr(X 6= X̂j) ≤ Dj , j = 1, 2.
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Now consider the following sequence of equalities:

I(X ;W1) + I(X ;W2|Y,W1) = H(X)−H(X|W1) +H(X|Y,W1)−H(X|Y,W1,W2)

= H(X)− I(X ; Y |W1)−H(X|Y,W1,W2)

= H(X)−H(Y |W1) +H(Y |X,W1)−H(X|Y,W1,W2)

= H(X) +H(Y |X)−H(Y |W1)−H(X|Y,W1,W2). (50a)

Consider the following term appearing in (50a):

H(Y |W1) = H(Y,X|W1)−H(X|Y,W1) (51a)

= H(Y |X) +H(X|W1)−H(X|Y,W1) (51b)

= H(Y |X) + (1− p)H(X|W1) (51c)

= H(Y |X) + (1− p)H(X|W1, X̂1) (51d)

≤ H(Y |X) + (1− p)H(X|X̂1) (51e)

≤ H(Y |X) + (1− p)H(X ⊕ X̂1) (51f)

≤ H(Y |X) + (1− p)h(D1). (51g)

We also have

D2 ≥ Pr(X 6= X̂2) (52a)

= Pr(Y = E) Pr(X 6= X̂2|Y = E) + Pr(Y 6= E) Pr(X 6= X̂2|Y 6= E) (52b)

≥ Pr(Y = E) Pr(X 6= X̂2|Y = E) (52c)

= pPr(X 6= X̂2|Y = E) (52d)

which implies that

Pr(X 6= X̂2|Y = E) ≤
D2

p
≤

1

2
. (53)
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Now consider the following sequence of inequalities for thelast term in (50a):

H(X|Y,W1,W2) = H(X|Y,W1,W2, X̂2) (54a)

≤ H(X|Y, X̂2) (54b)

= pH(X|Y = E, X̂2) (54c)

≤ pH(X ⊕ X̂2|Y = E) (54d)

= ph(P (X 6= X̂2|Y = E)) (54e)

≤ ph(D2/p) (54f)

where (54f) follows from (53). Using (51g) and (54f), we can lower bound (50a), to arrive at

R(D1, D2) ≥ p(1− h(D2/p)) + (1− p)(1− h(D1)).

3) Coding Scheme:

• If (D1, D2) ∈ L1, the (R,Γ) tradeoff is trivial.

• If (D1, D2) ∈ L2, we use the following coding scheme:

In this regime, we haveD1 ≥ 1/2, hence the encoder setsW1 = φ, and sends only one

descriptionW2 = X ⊕ N , whereN ∼ Ber(D2/p) andN is independent ofX. It can be

verified thatI(X ;W2|Y ) = p(1− h(D2/p)). Decoder2 estimatesX by X̂2 as follows:

X̂2 =











Y ; if Y 6= E;

W2; if Y = E.

Therefore the achievable distortion at decoder2 is (1− p)0 + p(D2/p) = D2.

• If (D1, D2) ∈ L3, we use the following coding scheme:

The encoder setsW2 = φ, and sends only one descriptionW1 = X⊕N , whereN ∼ Ber(D1)

and N is independent ofX. It can be verified thatI(X ;W1) = 1 − h(D1). Decoder1

estimatesX as X̂1 = W1 which leads to distortion ofD1. Decoder2 estimatesX by X̂2

as follows:

X̂2 =











Y ; if Y 6= E;

W1; if Y = E.

Therefore the achievable distortion at decoder2 is (1−p)0+ p(D1) = pD1. Hence, as long

asD2 ≥ pD1, the fidelity requirement of decoder2 is satisfied.
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• If (D1, D2) ∈ L4, we use the following coding scheme:

We selectW2 = X⊕N2, andW1 = W2⊕N1, whereN2 ∼ Ber(D2/p), andN1 ∼ Ber(α),

whereα = (D1−D2/p)/(1−2D2/p), and the random variablesN1 andN2 are independent

of each other and are also independent ofX. At the uninformed decoder, the estimate is

created asX̂1 = W1, so that the desired distortionD1 is achieved.

At the decoder with side-informationY , the estimateX̂2 is created as follows:

X̂2 =











Y ; if Y 6= E;

W2; if Y = E.

Therefore the achievable distortion at this decoder is(1 − p)0 + p(D2/p) = D2. It is

straightforward to check that the rate required by this scheme matches the stated lower

bound onR(D1, D2), andΓ(D1, D2) = H(Y |W1) = h(p) + (1− p)h(D1). This completes

the proof of the achievable part.

B. Informed Encoder

For this case, the rate-distortion-equivocation tradeoffis given as

R ≥ I(X, Y ;W1) + I(X ;W2|W1, Y ), and (55)

E ≤ H(Y |W1) (56)

where the joint distribution of(W1,W2) with (X, Y ) can be arbitrary.

As in the previous section, we partition the space of admissible (D1, D2) distortion pairs. For

simplicity, we denote these partitions as follows:

G1 = {(D1, D2) : D1 ≥ 1/2, D2 ≥ p/2}, (57)

G2 = {(D1, D2) : D1 ≥ 1/2, D2 ≤ p/2}, (58)

G3 = {(D1, D2) : D1 ≥ D2 + (1− p)/2, D2 ≤ p/2}, (59)

G4 = {(D1, D2) : D1 ≤ 1/2, D2 ≥ D1}, and (60)

G5 = {(D1, D2) : D1 ≤ D2 + (1− p)/2, D2 ≤ D1}. (61)

These partitions are illustrated in Figure 4.

We provide a partial characterization the optimal(R,E) tradeoff as a function of(D1, D2). In

particular, we establish the tight characterization of(R,E) pairs for all values of(D1, D2) with
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Fig. 4. Partition of(D1, D2) region: informed encoder case.

the exception of when(D1, D2) ∈ G5. This characterization reveals the benefit of the encoder

side-information. It shows that in the presence of encoder side-information, there can be several

(R,E) operating points relative to the case in which the encoder does not have side-information.

(a) (D1, D2) ∈ G1 : In this case the(R,Γ) region is trivial since both the decoders can satisfy

their distortion constraints which also yields the maximumequivocation, i.e., we have

R(D1, D2) = 0, and (62)

Γ(D1, D2) = h(p) + 1− p (63)

(b) (D1, D2) ∈ G2 : In this case, we use the proof as in the uninformed case for thepartition

L2 to show that

R(D1, D2) = p(1− h(D2/p)), and (64)

Γ(D1, D2) = h(p) + 1− p. (65)

(c) (D1, D2) ∈ G3 : The (R,Γ) tradeoff for this case is given as follows:

R(D1, D2) = p(1− h(D2/p)), and (66)

Γ(D1, D2) = h(p) + 1− p. (67)
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Fig. 5. Illustration ofp(w1|x, y) whenD1 ≥ D2 + (1− p)/2 andD2 ∈ [0, p/2].

This case differs from the uninformed encoder case in the sense that for the same rate, we

can achieve the maximum equivocation and a non-trivial distortion for decoder1. SinceR ≥

RX|Y (D2) = RY
WZ(D2), andΓ ≤ H(Y ), the converse proof is straightforward. The interesting

aspect of this regime is the coding scheme, which utilizes the side information at the encoder

in a non-trivial manner. To achieve this tradeoff, we setW2 = 0, and send only one description

W1 to both the decoders. The conditional distributionp(w1|x, y) that is used to generate theW n
1

codewords is illustrated in Figure 5 .

Hence the rate for this scheme is given by

R ≥ I(X, Y ;W1) (68)

= H(W1)−H(W1|X, Y ) (69)

= 1−H(W1|X, Y ) (70)

= 1− (1− p)− ph(D2/p) (71)

= p(1− h(D2/p)), (72)
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and the equivocation is given as

Γ = H(Y |W1) (73)

= H(Y )− I(Y ;W1) (74)

= H(Y )−H(W1) +H(W1|Y ) (75)

= H(Y )− 1 +H(W1|Y ) (76)

= H(Y )− 1 + (1− p)H(W1|Y = X) + pH(W1|Y 6= X) (77)

= H(Y )− 1 + (1− p) + p (78)

= H(Y ). (79)

Decoder2 forms its estimate as follows:

X̂2 =











Y if Y 6= E;

W1 if Y = E,

which yields a distortion ofD2 at decoder2. Decoder1 forms its estimate as

X̂1 = W1

which yields

P(X̂1 6= X) = D2 +
(1− p)

2
.

Therefore, as long as

D1 ≥ D2 +
(1− p)

2
,

this scheme achieves the optimal(R,Γ) tradeoff.

We now informally describe the intuition behind this codingscheme: since the encoder has

access to side-informationY , it uses the fact that wheneverY = X, no additional rate is required

to satisfy the requirement of decoder2, i.e., for(1−p)-fraction of time it is guaranteed to exactly

recoverX. However, this yields a distortion of(1 − p)/2 at decoder1 (since decoder1 does

not have access toY ). In the remainingp-fraction of time, the encoder describesX with a

distortionD2/p, which contributes to a distortion ofD2 at both the decoders. To summarize,

the net distortion at decoder2 is D2, whereas the distortion at decoder1 is lowered from1/2 to

(1−p)/2+D2. Furthermore, by construction,W1 is independent ofY , i.e.,H(Y |W1) = H(Y ),

which results in the maximal equivocation at decoder 1.
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(d) (D1, D2) ∈ G4 : For this case, the(R,E) tradeoff is given as the set of(R,E) pairs

R ≥ 1− (1− p)h

(

D1 − pα

1− p

)

− ph(α), and (80)

E ≤ h(p) + (1− p)h

(

D1 − pα

1− p

)

, (81)

where the parameterα belongs to the rangeα ∈ [0, D1/p].

We now describe the coding scheme that achieves this region:we setW2 = φ, and send one

descriptionW1 at a rateI(X, Y ;W1). The conditional distributionp(w1|x, y) that is used to

generate theW n
1 codewords is illustrated in Figure 6. The parameters(α, β) that describe this

distribution are chosen such that

D1 ≥ P(X 6= W1) (82)

≥ (1− p)β + pα, (83)

so thatβ ≤ (D1 − pα)/(1− p). At decoder2, the estimateX̂2 is created as

X̂2 =











Y ; if Y 6= E;

W1; if Y = E,

which yields a distortion ofpα. Sinceα ∈ [0, D1/p], the worst case distortion for decoder2 for a

fixed D1 is p(D1/p) = D1. Hence, as long asD2 ≥ D1, we can satisfy the fidelity requirements

at both decoders. By direct calculations, it can be shown that the resulting(R,E) tradeoff is as

stated above.

Compared to all the previous cases, the proof of optimality of the above coding scheme is

non-trivial and is relegated to the appendix.

We remark here that in this regime, the tradeoff between rateand privacy can be observed

in a precise manner. First, note that the choiceα = D1 yields the(R,E) operating point as in

the uninformed encoder case. Next, whenα decreases fromD1 to 0, the equivocation increases,

albeit at the cost of a higher rate. This phenomenon does not occur in the case in which the

encoder does not have side information.

Finally, whenα is in the range(D1, D1/p], we obtain a lower equivocation by increasing the

rate. This phenomenon appears counterintuitive and can be explained as follows: this range ofα

corresponds to a coding scheme in which we give more weight tothe side-informationY when

describingX to decoder1. Such a coding scheme can be regarded as the solution to the problem
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Fig. 6. Illustration ofp(w1|x, y) whenD1 ≤ 1/2, D2 ≥ D1.

in which the encoder is interested in revealingY to decoder1, while simultaneously satisfying

the fidelity requirement forX at decoder1. While it is a feasible solution to the problem, it

may not be a desirable coding scheme when the privacy ofY at decoder is of primary concern,

and thus, there exists a set of rate-equivocation operatingpoints that one can choose from. In

Figure 7, we show the(R,E) achievable tradeoff whenp = 0.4 andD1 = 0.2.

(d) (D1, D2) ∈ G5 : For this case, the following(R,E) pairs are achievable:

R ≥ 1− (1− p)h

(

D1 − pα

1− p

)

− ph(α), and (84)

E ≤ h(p) + (1− p)h

(

D1 − pα

1− p

)

, (85)

whereα is such thatα ∈ [0, D2/p]. The coding scheme that achieves this tradeoff is similar

to the one used when(D1, D2) ∈ G4, with the exception that the range ofα is different. The

question of optimality of tradeoff for this regime is still unresolved.

V. CONCLUDING REMARKS

We have determined the rate-distortion-equivocation region for a source coding problem with

two decoders, in which only one of the decoders has correlated side information and it is

desired to keep this side information private from the uninformed decoder. We have studied
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Fig. 7. Illustration of the rate-equivocation tradeoff forp = 0.4, D1 = 0.2 with an informed encoder.

two cases of this problem depending on the availability of side information at the encoder. We

have proved that the Heegard-Berger and the Kaspi coding schemes are optimal even with an

additional privacy constraint for the uninformed and the informed encoder cases, respectively.

We have illustrated our results for a binary symmetric source with erasure side information and

Hamming distortion which clearly highlight the differencebetween the informed and uninformed

cases and the advantages of encoder side information for enhancing privacy. Future work includes

generalization to multiple decoders as well as to continuously distributed sources.

APPENDIX

A. Proof of Theorem 1

Converse: The lower bound onR (D1, D2, E) follow directly from the converse for the

Heegard-Berger problem and is omitted here in the interest of space. We now upper bound
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the maximal achievable equivocation as

1

n
H (Y n|J) =

n
∑

i=1

1

n
H

(

Yi|Y
i−1J

)

(86a)

=
n
∑

i=1

1

n
H (Yi|Wi) (86b)

≤ ΓU (D1, D2) (86c)

where (86b) follows from definingW1,i ≡ (J, Y i−1) (see [1, sec. IV]) and (86c) follows from

the definition ofΓU (D1, D2) in (33) and its concavity property from Lemma 3.

Achievability: We briefly summarize the Heegard-Berger coding scheme [1].Fix p (w1, w2|x).

First generateM1 = 2n(I(W1;X)+ǫ), W n
1 (j1) sequences,j1 = 1, 2, . . . ,M1, independently and

identically distributed (i.i.d.) according top (w1). For everyW n
1 (j1) sequence, generateM2 =

2n(I(W2;X|W1)+ǫ) W n
2 (j2|j1) sequences i.i.d. according top (w2|w1 (j1)). Bin the resultingW n

2

sequences intoS bins (analogously to the Wyner-Ziv binning), chosen at random whereS =

2n(I(X;W2|W1)−I(Y ;W2|W1)+ǫ), and index these bins asb (j2). Upon observing a source sequencexn,

the encoder searches for aW n
1 (j1) sequence such that(xn, wn

1 (j1)) ∈ TXW1
(n, ǫ) (the choice

of M1 ensures that there exists at least one suchj1). Next, the encoder searches for awn
2 (j2|j1)

such that(xn, wn
1 (j1) , w

n
2 (j2|j1)) ∈ TXW1W2

(n, ǫ) (the choice ofM2 ensures that there exists at

least one suchj2). The encoder sends(j1, b (j2)) whereb (j2) is the bin index of thewn
2 (j2|j1)

sequence. Thus, we have that(XW1)−W2 − B forms a Markov chain and

Pr (B = b (j2) | (x
n, wn

1 (j1) , w
n
2 (j2|j1)) ∈ TXW1W2

(n, ǫ))

= Pr (B = b (j2) |w
n
2 (j2|j1) ∈ TW2

(n, ǫ)) = 1/S. (87)

With µ as defined in (7) for the typical setTXYW1W2
, and J ≡ (J1, B (J2)), the achievable

equivocation can be lower bounded as

1

n
H (Y n|J1, B (J2))

≥
1

n
H (Y n|J1, B (J2) , µ) (88a)

=
1

n
H (Y n|W n

1 (J1) , B (J2) , µ) (88b)

≥ Pr (µ = 1)
1

n
H (Y n|W n

1 (J1) , B (J2) , µ = 1) . (88c)
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The probabilityPr (yn|wn
1 (j1) , b (j2) , µ = 1) for all j1, j2, andyn can be written as

∑

(xn,j2)

Pr (yn, j2, x
n|wn

1 (j1) , b (j2) , µ = 1)

=
∑

(xn,j2)

Pr (xn, j2|w
n
1 (j1) , b (j2) , µ = 1)Pr (yn|xn, µ = 1) (89a)

=
∑

(xn,j2)

Pr (xn, j2, w
n
1 (j1) , b (j2) |µ = 1)

Pr (wn
1 (j1) , b (j2) |µ = 1)

Pr (yn|xn, µ = 1) (89b)

=
∑

(xn,j2)

Pr (xn, j2, w
n
1 (j1) |µ = 1) /S

Pr (wn
1 (j1) |µ = 1) /S

Pr (yn|xn, µ = 1) (89c)

≤ 2nǫ
′ ∑

(xn,j2)

Pr (xn, j2|w
n
1 (j1) , µ = 1)Pr (yn|xn, µ = 1) (89d)

= 2nǫ
′ ∑

(xn,j2)

Pr (xn, j2, y
n|wn

1 (j1) , µ = 1) (89e)

= 2nǫ
′

Pr (yn|wn
1 (j1) , µ = 1) (89f)

where (89a) follows from the fact thatY −X − (W1,W2) forms a Markov chain and (89d) is

obtained by expandingPr (wn
1 (j1) , b (j2) |µ = 1) as follows:

Pr (wn
1 (j1) , b (j2) |µ = 1)

= Pr (wn
1 (j1) |µ = 1)

∑

wn

2

Pr (b (j2) , w
n
2 (j1) |w

n
1 (j1) , µ = 1) (90a)

= Pr (wn
1 (j1) |µ = 1)

∑

wn

2

Pr (wn
2 (j1) |w

n
1 (j1) , µ = 1)

1

S
(90b)

≥ Pr (wn
1 (j1) |µ = 1)

(1− ǫ)

S
(90c)

= Pr (wn
1 (j1) |µ = 1)

2−nǫ′

S
(90d)

where (90b) follows from the fact thatW1 − W2 − B forms a Markov chain and (87), while

(90c) follows the fact that for a typical setPr (TW1W2
(n, ǫ)) ≥ (1− ǫ) [18, chap. 2]. Thus, from

(89) we have that

Pr (yn|wn
1 (j1) , b (j2) , µ = 1) ≤ 2nǫ

′

Pr (yn|wn
1 (j1) , µ = 1) (91)

≤ 2−n(H(Y |W1)−ǫ′′). (92)

July 10, 2018 DRAFT



28

From (88c) and (92), we then have

H (Y n|wn
1 (j1) , b (j2) , µ = 1) ≥

∑

yn
Pr (yn|wn

1 (j1) , µ = 1)n (H (Y |W1)− ǫ′′) (93)

≥ n (1− ǫ) (H (Y |W1)− ǫ′′) (94)

such that

1

n
H (Y n|J) ≥ Pr (µ = 1)

1

n

∑

wn

1
,b(j2)

Pr (wn
1 (j1) , b (j2) |µ = 1)H (Y n|wn

1 (j1) , b (j2) , µ = 1)

(95)

≥ (1− ǫ)3 (H (Y |W1)− ǫ′′) (96)

where we have used the fact that for a typical setPr (TY W1W2
(n, ǫ)) ≥ (1− ǫ) [18, chap. 2].

The proof concludes by observing thatH (Y n) ≥ H (Y n|J) and ǫ → 0, ǫ′′ → 0 asn → ∞.

B. Proof of Theorem 2

Converse: A lower bound onR (D1, D2, E) can be obtained as follows.

nR ≥ H(J) (97a)

≥ I(XnY n; J) (97b)

= I(Xn; J |Y n) + I(Y n; J) (97c)

=
n
∑

i=1

{

I(Xi; JX
i−1Y −1Y n

i+1|Yi)− I(Xi;X
i−1Y −1Y n

i+1|Yi) +I(Yi; J, Y
i−1)− I(Yi; Y

i−1)
}

=
n
∑

i=1

{

I(Xi; JX
i−1Y i−1Y n

i+1|Yi) +I(Yi; JY
i−1)

}

(97d)

=
n
∑

i=1

{

I(Xi; JY
i−1|Yi) + I(Xi;X

i−1Y n
i+1|JY

i−1Yi) + I(Yi; JY
i−1)

}

(97e)

where (97d) follows from the independence of the pairs(Xi, Yi) for all i = 1, 2, . . . , n. Let

W1,i ≡ (J, Y i−1) andW2,i ≡
(

X i−1Y n
i+1

)

. With these definitions, (97e) can be written as

nR ≥
n
∑

i=1

{I(XiYi;W1,i) + I(Xi;W2,i|W1,iYi} (98)

≥
n
∑

i=1

RI (D1,i, D2,i, Ei) (99)

≥ nRI (D1, D2, E) (100)
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where (99) follows from Definition 3 withD1,i, D2,i, andEi defined as

D1,i ≡ E
[

d
(

Xi, g
′
1,i (W1,i)

)]

(101a)

D2,i ≡ E
[

d
(

Xi, g
′
2,i (W2,i,W1,i, Yi)

)]

, and (101b)

Ei ≡ H(Yi|W1,i), (101c)

and (100) follows from the convexity ofRI(D1, D2, E) and the definitions ofDk, k = 1, 2, in

(3) and the concavity ofH (Y |W ), and hence, ofE. We upper bound the maximal achievable

equivocation as

1

n
H (Y n|J) =

n
∑

i=1

1

n
H

(

Yi|Y
i−1J

)

(102a)

=
n
∑

i=1

1

n
H (Yi|Wi) (102b)

=
n
∑

i=1

1

n
Ei (102c)

≤
n
∑

i=1

1

n
Γ (D1i, D2i) (102d)

≤ ΓI (D1, D2) (102e)

where (102b) follows from the definition ofW1,i, (102c) and (102d) follow from (38) in Definition

3 and from Lemma 3.

Achievability: Fix p (w1, w2|x, y). First generateM1 = 2n(I(W1;XY )+ǫ), W n
1 (j1) sequences,

j1 = 1, 2, . . . ,M1, i.i.d. according top (w1) (obtained fromp (w1, w2|x, y)). GenerateM2 =

2n(I(W2;XYW1)+ǫ) W n
2 (j2) sequences i.i.d. according top (w2) (obtained fromp (w1, w2|x, y)). Bin

the resultingW n
2 sequences intoS bins (analogously to the Wyner-Ziv binning), chosen at random

whereS = 2n(I(XYW1;W2)−I(W1Y ;W2)+ǫ), and index these bins asb (j2). Upon observing a source

sequence(xn, yn) , the encoder searches for aW n
1 (j1) sequence such that(xn, yn, wn

1 (j1)) ∈

TXYW1
(n, ǫ) (the choice ofM1 ensures that there exists at least one suchj1). Next, the encoder

searches for awn
2 (j2) such that(xn, yn, wn

1 (j1) , w
n
2 (j2)) ∈ TXYW1W2

(n, ǫ) (the choice ofM2

ensures that there exists at least one suchj2). The encoder sends(j1, b (j2)) whereb (j2) is the

bin index of thewn
2 (j2) sequence at a rateR = I(XY ;W1) + I(X ;W2|W1Y ) + ǫ. Thus, we
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have

Pr (B = b (j2) | (x
n, yn, wn

1 (j1) , w
n
2 (j2)) ∈ TXYW1W2

(n, ǫ))

= Pr (B = b (j2) |w
n
2 (j2) ∈ TW2

(n, ǫ)) = 1/S. (103)

where (103) is the result of the code construction which yields a Markov chain relationship

(XYW1)−W2−B. With µ as defined in (7) for the typical setTXYW1W2
, andJ ≡ (J1, B (J2)),

the achievable equivocation can be lower bounded as

1

n
H (Y n|J1, B (J2))

≥
1

n
H (Y n|J1, B (J2) , µ) (104a)

=
1

n
H (Y n|W n

1 (J1) , B (J2) , µ) (104b)

≥ Pr (µ = 1)
1

n
H (Y n|W n

1 (J1) , B (J2) , µ = 1) . (104c)

The probabilityPr (yn|wn
1 (j1) , b (j2) , µ = 1) for all j1, j2, andyn can be written as

∑

wn

2

Pr (yn, wn
2 |w

n
1 (j1) , b (j2) , µ = 1)

=
∑

wn

2

Pr (wn
2 |w

n
1 (j1) , b (j2) , µ = 1)Pr (yn|wn

1 (j1) , w
n
2 , µ = 1) (105a)

where (105a) follows from the fact that(XYW1)−W2−B forms a Markov chain. The probability

Pr (w2|w1 (j1) , b (j2) , µ = 1) can be rewritten as

Pr (wn
2 , w

n
1 (j1) , b (j2) |µ = 1)

Pr (wn
1 (j1) , b (j2) |µ = 1)

=
Pr (wn

2 , w
n
1 (j1) |µ = 1) / |S|

∑

w2

Pr (wn
2 , w

n
1 (j1) |µ = 1) / |S|

(106)

= Pr (wn
2 |w

n
1 (j1) , µ = 1) . (107)

Substituting (107) in (105a),Pr (yn|wn
1 (j1) , b (j2) , µ = 1) can be written as

∑

wn

2

Pr (wn
2 |w

n
1 (j1) , µ = 1)Pr (yn|wn

1 (j1) , w
n
2 , µ = 1)

=
∑

wn

2

Pr (yn, wn
2 |w

n
1 (j1) , µ = 1) (108a)

= Pr (yn|wn
1 (j1) , µ = 1) (108b)

≤ 2−n(H(Y |W1)−ǫ) (108c)
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where we have used the fact that for a typical setPr (TY W1W2
(n, ǫ)) ≥ (1− ǫ) [18, chap. 2].

From (104c) and (108c), we then have

H (Y n|wn
1 (j1) , b (j2) , µ = 1) =

∑

yn
Pr (yn|wn

1 (j1) , µ = 1) log
1

Pr (yn|wn
1 (j1) , µ = 1)

(109a)

≥
∑

yn
Pr (yn|wn

1 (j1) , µ = 1)n (H (Y |W1)− ǫ) (109b)

≥ n (1− ǫ) (H (Y |W1)− ǫ) (109c)

where in (109b) we have used the fact that for a typical setPr (TYW1W2
(n, ǫ)) ≥ (1− ǫ) [18,

chap. 2]. Thus, we have

1

n
H (Y n|J) ≥ Pr (µ = 1)

1

n

∑

wn

1
,b(j2)

Pr (wn
1 (j1) , b (j2) |µ = 1)H (Y n|wn

1 (j1) , b (j2) , µ = 1)

(110)

≥ (1− ǫ)3 (H (Y |W1)− ǫ) (111)

where we have used the fact that for a typical setPr (TY W1W2
(n, ǫ)) ≥ (1− ǫ) [18, chap. 2].

The proof concludes by observing thatH (Y n) ≥ H (Y n|J) and ǫ → 0 asn → ∞.

C. Converse Proof for regionG4

We start by a simple lower bound on the rate

R ≥ I(X, Y ;W1) + I(X ;W2|W1, Y )

≥ I(X, Y ; X̂1) (112)

and an upper bound onΓ

Γ ≤ H(Y |W1)

= H(Y |W1, X̂1)

≤ H(Y |X̂1)

= H(Y )− I(Y ; X̂1). (113)

We will now use the distortion constraint of decoder1 alone to simultaneously lower bound the

rate and upper bound the equivocation. Consider an arbitrary p(1)(x̂1|x, y) (and denote this as
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distributionP1) given as:

p(1)(0|0, 0) = a, p(1)(0|1, 1) = b

p(1)(0|0, E) = c, p(1)(0|1, E) = d.

For this distribution, we have

P(X 6= X̂1) = (1/2)
[

(1− p)(1− a+ b) + p(1− c+ d)
]

(114)

H(X̂1) = h

(

1

2

[

(1− p)(a+ b) + p(c+ d)
]

)

(115)

H(X̂1|X, Y ) =
(1− p)

2
(h(a) + h(b)) +

p

2
(h(c) + h(d)) (116)

H(X̂1|Y ) =
(1− p)

2
(h(a) + h(b)) + ph

(

c+ d

2

)

. (117)

These four quantities characterize the bounds in (112) and (113) exactly and also the achievable

distortion.

Now consider a new distributionP2, with conditional probabilities as follows:

p(2)(0|0, 0) = 1− b, p(2)(0|1, 1) = 1− a

p(2)(0|0, E) = 1− d, p(2)(0|1, E) = 1− c.

It is straightforward to verify that the distortion, rate and equivocation terms are the same for

bothP1 andP2. Next, define a new distributionP3 as follows:

p(3)(x̂1|x, y) =











p(1)(x̂1|x, y) w.p. 1/2,

p(2)(x̂1|x, y) w.p. 1/2.

We now note thatI(X, Y ; X̂1) is convex inp(x̂1|x, y) andH(Y |X̂1) = H(Y )− I(Y ; X̂1) is

concave inp(x̂1|y). By Jensen’s inequality, this implies that the distribution P3 defined above

uses a rate that is at most as large and leads to an equivocation that is at least as large when

compared to both the distributionsP1 andP2. Hence, it suffices to consider input distributions

of the formp(3)(x̂1|x, y), which can be explicitly written as

p(3)(0|0, 0) = 1− β, p(3)(0|1, 1) = β

p(3)(0|0, E) = 1− α, p(3)(0|1, E) = α.
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To satisfy the distortion constraint, we also have

D1 ≥ (1− p)β + pα

which leads toβ = (D1 − pα)/(1− p). Now, also note that for a fixedα, this scheme yields a

distortion ofpα at the decoder2. Furthermore, since the range ofα ∈ [0, D1/p], we note that

the worst case distortion for decoder2 (for a fixedD1) is pD1/p = D1. This implies that as

long as

D2 ≥ D1

this region yields the stated tradeoff for the regionG4.
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