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Abstract

A lossy source coding problem is studied in which a sourceoé®c communicates with two
decoders, one with and one without correlated side infdomawith an additional constraint on the
privacy of the side information at the uninformed decodem Tases of this problem arise depending on
the availability of the side information at the encoder. Blaé of all feasible rate-distortion-equivocation
tuples are characterized for both cases. The differenaedeet the informed and uninformed cases and
the advantages of encoder side information for enhancinggyr are highlighted for a binary symmetric

source with erasure side information and Hamming distortio

Index Terms

lossy source coding, information privacy, side informati@quivocation, discriminatory coding,

informed and uninformed encoders, Heegard-Berger praohitampi problem.

I. INTRODUCTION

Information sources often need to be made accessible tapheulegitimate users simulta-

neously, some of whom can have correlated side informathtaimed from other sources or
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from prior interactions. A natural question that ariseshis tcontext is the following: can the
source publish (encode) its data in a discriminatory masaoeh that the uninformed user does
not infer the side information, i.e., it is kept private, Wehproviding utility (fidelity) to both
users? Two possible cases arise in this context dependimdhether the encoder iaformedor
uninformed i.e., it has or does not have access to the correlated didenation, respectively.

This question is addressed from strictly a fidelity viewpdiyn C. Heegard and T. Berger in [1],
henceforth referred to as the Heegard-Berger problemhfouhinformed case and by A. Kaspi
[2], henceforth referred to as the Kaspi problem, for therimfed case wherein they determined
the rate-distortion function for a discrete and memorykmsce pair. Using equivocation as the
privacy metric, we address the question posed above usingailrce network models in [1] and
[2] with an additional constraint on the side informationivacy at the decoder without access
to it, i.e., decoder 1 (see Figl 1).

We prove here that the encoding scheme for the Heegard-Bergjglem achieves the minimal
rate while guaranteeing the maximal equivocation for argsitde distortion pair at the two
decoders when the encoder is uninformed. Informally spegpkihe Heegard-Berger coding
scheme involves a combination of a rate-distortion code antbnditional Wyner-Ziv code
which is revealed to both decoders. Our proof exploits the fhat conditioned on what is
decodable by decoder 1, i.e., the rate-distortion codeattditional information intended for
decoder 2, i.e. the conditional Wyner-Ziv bin index, is agyotically independent of the side
information,Y (see Figl1l). Observing that the generation of the conditigvyner-Ziv bin index
is analogous to the Slepian-Wolf binning scheme, we proieitidlependence property for both
the Slepian-Wolf and the Wyner-Ziv encoding. Next, we praveimilar independence property
for the Heegard-Berger coding scheme, which in turn allowgdcudemonstrate the optimality
of this scheme for the problem studied in this paper.

On the other hand, for the informed encoder case, we preseontldied coding scheme (vis-a-
vis the Kaspi scheme) which achieves the set of all feas#teeequivocation pairs for the desired
fidelity requirements at the two decoders. The Kaspi codutesie exploits the encoder side
informationY” (see Fig[1l) via a combination of a rate-distortion codegnded for decoder 1,
and a conditional rate-distortion code, intended for dec@&] which is then revealed to both the
decoders. However, conditioned on what is decodable byd#ech i.e., the rate-distortion code,

the conditional rate-distortion code does not explicithgere the asymptotic independence of the

July 10, 2018 DRAFT



resulting index with the side informatiori, and therefore, does not simplify the equivocation
computation at decoder 1. To resolve this difficulty, we présa two-step encoding scheme in
which the first step is the same as in the Kaspi problem whithensecond step we first choose
the codeword intended for decodeand then bin it. We prove that the resulting conditional bin
index is asymptotically independent of the side informatio.

The last part of our paper focuses on a specific source modehaay equiprobable source
X with erased side informatiol” (with erasure probability) and Hamming distortion con-
straints. For this source pair, we focus on the rate-disim@quivocation tradeoffs for both the
uninformed and informed cases.

For the uninformed encoder case, we prove that the maximal@cption is independent
of the fidelity requirementD, at decoder2, i.e., the only information leaked about the side
information is a direct consequence of the distortion resuent at decoder. We also explicitly
characterize the rate-distortion-equivocation traddoff this problem over the space of all
achievable distortion pairs. Our results clearly dematstthe optimality of the Heegard-Berger
encoding scheme from both rate and equivocation standpoint

In contrast, for the informed encoder case, we explicitijndestrate the usefulness of encoder
side information. We first prove that the set of distortionrpdor which perfect equivocation
is achievable at decoder 1 is strictly larger than that fer uhinformed case. We prove this by
showing that the informed encoder uses the side informationa a single description which
satisfies the distortion constraints at both the decoderke wsimultaneously achieving perfect
privacy at decoder 1. Furthermore, we also demonstrateatt@#ss to side information leads
to a tradeoff between rate and equivocation. To guarantessiaed equivocation, we show that
the minimal rate required can be strictly larger than the-thstortion function for the original
Kaspi problem.

The problem of source coding with equivocation constralms gained attention recently
[3]-[13]. In contrast to these papers where the focus is oaxa@rnal eavesdropper, we address
the problem of privacy leakage to a legitimate user, i.e.,sgek to understand whether the
encoding at the source can discriminate between legitimsées with and without access to
correlated side information. Furthermore, our resultstenrate-distortion-equivocation tradeoff
for a binary symmetric source with erased side informatarbbth the informed and uninformed

encoder cases allow a clear comparison of the results fasahee models without an additional
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Fig. 1. Source network model.

privacy constraint as studied in [14] and [15].

The paper is organized as follows. In Sectidn Il, we preseatsiystem model. In Sectionllll,
we first prove the asymptotic independence of the bin indektha decoder side information in
the Slepian-Wolf and Wyner-Ziv source coding problems. segjoiently, we establish the rate-
equivocation tradeoff regions for both the uninformed anfbrimed cases. In Sectign ]IV, we
characterize the achievable rate-distortion-equivoodtiadeoff for a specific source paik, Y')
where X is binary andY results from passing through an erasure channel. We conclude in
SectionV.

[l. SYSTEM MODEL

We consider a source network with a single encoder whichrgbseand communicates all
or a part(X™) of a discrete, memoryless bivariate sou(cé™, Y") over a finite rate link to
decodersl and?2 at distortionsD; and D,, respectively, in which decoder has access to™"
and an equivocatiorE aboutY™ is required at decoder. The network is shown in Fid.] 1
where the two cases with and without side information at theoder correspond to the switch
S being in the closed and open positions, respectively. Withbe equivocation constraint at
decoderl, the problems with the switch in open and closed positioresttee Heegard-Berger and

Kaspi problems for which the set of feasibl&, D;, D) tuples are characterized by Heegard
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and Berger [1] and Kaspi [2], respectively. We seek to charae the set of all achievable
(R, D1, Do, E) tuples for both problems.
Formally, let(X,),p (z,y)) denote the bivariate source with random variables X and
Y € ). Furthermore, letX; and X, denote the reconstruction alphabets at decoders 1 and 2,
respectively, and lef; andd, such that
de - X x X = [0,00), k=1,2, 1)

be distortion measures associated with reconstructioX @t decoders 1 and 2, respectively.
Let S take the values 0 and 1 to denote the open and closed switdiopssrespectively. An

(n, M, Dy, Do, E) code for this network consists of an encoder
FrX"x S Y T ={1,....M} 2)
and two decoders,
g1 :{1,...,M} = X, and
g2 {1, M} x Y" — X
The expected distortio® ;, at decodet is given by

Sdi (X, %), k=12, 3)

=1

1

Dy =E-

n

where X; = g, (f (X™)), X, = ¢2 (f (X™),Y™), and the equivocation ratg is given by
1

E:EH(Y"\J), JeJ. 4)

Definition 1: The rate-distortion-equivocation tupl&, D;, D,, F) is achievable for the above
source network if there exists @&n, M, D, +¢, D, +¢, E—¢) code withM < 277+ for n suffi-
ciently large. LetR denote the set of all achievahl&, Dy, D,, F) tuples,R (D,, Dy, E') denote

the minimal achievable rat&, andT" (D;, Ds) denote the maximal achievable equivocatitn

such that
R(Dy,Ds, E) = min R, and (5)
(R,Dl,DQ,E)ER
['(Dy, D) = max E. (6)

(R,D1,D2,E)ERNYR>0
Remark 1:T" (D,, D,) is the maximal privacy achievable abdut at decoder 1 an® (D, D, E)

is the minimal rate required to guarantee a distortion paly, D;) and an equivocatiork.
R (Dy, Dy, I'(Dy, Dy)) is the minimal rate achieving the maximal equivocation fadistortion
pair (Dy, D5) .
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[1l. RELATED OBSERVATIONS

In the context of lossless communications, [16] studiesodlpm of losslessly communicating
a bivariate sourcé X,Y) to a single decoder via two encoders, one with access taXthe
sequences and the other with access toYthesequences. A special case of this problem is one
in which the decoder has perfect access’tofor which a minimal rate ofRx > H(X|Y) is
needed [16] and it this problem (which leads to a corner poirthe Slepian-Wolf region) that
we address below.

On the other hand, [17] studies the problem of lossily comicating a partX of a bivariate
source(X,Y') subject to a fidelity criterion to a single decoder which heseas tay” and proves
that a minimum rate of?(D) > min (/(X;U) — I(Y;U)) where the minimization is over all
distributionsp (u|z) and deterministic functiong such thatX = ¢ (U,Y) andE [d (X, X)} <
D.

In both of the abovementioned problems, the coding indexncomcated is chosen with
knowledge of the decoder side information. In the lemmas fibldow we prove that in both
cases the optimal encoding is such that the coding indexyim@istically independent of the

side informationY™ at the decoder.

A. Slepian-Wolf Coding Coding: Independence of Bin Index &ide Information

Lemma 1:For a bivariate sourceX, Y') where X" is encoded via the encoding functiggy :
X" — Je{l,...,M,;} whileY" is available only at the decoder, we hawe,_,., H (Y"|J)/n =
H(Y),ie,lim, o I (Y™ J)/n—0.

Proof: Let 74 (n,€) denote the set of strongly typical sequences of length. We define

a binary random variablg as follows:

0, (z™y") & T, L €);
u(xn’yn){ ( y)g XY(” ) (7)

1, otherwise.
From the Slepian-Wolf encoding, since a typical sequeritas assigned a bin (index) at
random, we have that

Pr(J=jlX"=2" € Tx (n,¢)) = (8)

1
My
and

Pr(J = jlu=1)=Pr(" ] = jlp=1) € (1 - ) /M;,1/M)) (9)
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where we have used the fact that for a typical Bet7xy (n,€)) > (1 —¢) [18, chap. 2].

The conditional equivocatio#/ (Y"|.J) can be lower bounded as
H(Y"J) > H(Y"|J,p) (10)
=Pr(p=0HY"|J,p=0)+Pr(p=1)HY"Jpn=1)
>Pr(p=1)HY"Jp=1) (11)
= Pr (= 1), Pr (ilu = 1) H (V"] = 1) (12)

where [(10) follows from the fact that conditioning does nutrease entropy, and (11) from the

fact that the entropy is non-negative. The probabilty(y"|j, © = 1) can be written as

Pr(y"[j, p=1)
= Z;Pr (y", " jyp=1) (13a)
= > Pr(@"j,p=1)Pr(y"|a", j,u=1) (13Db)
Pr(a", jlp =1)
= : Pr(y"|x", p=1 (13c)
o Pr(jlp=1) Wit w=1)
’ P n - 1 M
<oy P = DM g,y — 1) (13d)
" MJ
=" Pr (2| = 1) Pr (2", p = 1) (13e)
= 2" Pr(y"|n=1) (13f)
< 9n(H )~ (13g)

where [(13b) follows from[(8) and the fact that® — X — J forms a Markov chain (by
construction), and_(13d) follows from(9). Expandigd(Y™|j, u = 1), we have

H(Y = 1) = p 0710 = ) 1ok g s (14)
> ;p (™[4, = 1) log 2" )= (15)
=n(H(Y)—¢€") ;p (y"[g,p=1) (16)
>n(l—e) (HY)-€") 17
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where [(15) results from the upper bound®n(y"|j, x = 1) in (13d) and[(17) from the fact that
for a typical setPr (7Txy (n,€)) > (1 —€) [18, chap. 2]. Thus, the equivocatidi (Y"|.J) can
be lower bounded as

H(Y"J) 2 Pr(u=1)%,Pr(jlu=1)(1—)n(HY) ) (18)
>n (1= (H(Y) - (19)

where we have used](9) and the fact that for a typicalPsétyy (n,¢)) > (1 — €) [18, chap.
2]. The proof concludes by observing thdt(Y") > H (Y"|J) ande — 0, ¢’ — 0 asn — oo.
[
Remark 2:Lemmall captures the intuition that it suffices to encode tmdy part of X" that

is independent of the decoder side-informatioh
Remark 3:The proof of Lemm&ll does not depend on the precise bound dotdlenumber,
My, of encoding indices, i.e., it holds for all choices &f;. In fact, the bound onl/; is a

consequence of the decoding requirements.

B. Wyner-Ziv Coding: Independence of Bin Index and Siderdmdton

Lemma 2:For a bivariate sourceX, Y') whereX™ is encoded via the encoding functigy  :
A" — Je{l,...,M;} while Y™ is available only at the decoder, we hdie,_,.. H (Y"|J)/n =
H(Y),ie,lim, o, I (Y™ J)/n—0.

Proof: Let T4 (n,€) denote the set of strongly typical sequences of length. We define

a binary random variablg as follows:

n n 07 (un’ yn) g 7;JY (n7 6) )
(" y") = _
1, otherwise.

(20)

From the Wyner-Ziv encoding, for a givett, first a sequence” that is jointly typical withz"
is chosen where the symbols ofu™ are generated independently according#d-) (computed
from pxy (+)). The resulting sequencé® is assigned a bin (index) at random such that we
have

Pr(J =jlU" =u" € Ty (n,€)) = (21)

1
My
and

Pr(J = jlu=1)=SPr(u"J = jlp=1) € (1 - ) /M;,1/M)) (22)
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where we have used the fact that the probability of the typsea 7,y (n,e) > (1 —¢) [18,
chap. 2] and usingl — €) /M; = 27" /M; for a givenn.
The conditional equivocatio®/ (Y™|J) can be lower bounded as
H(Y"|J) > H(Y"|J,p) (23)
=Pr(p=0)H " p=0)+Pr(p=1)HY"Jpu=1)
>Pr(u=1)H(Y"|Jp=1) (24)
= Pr (= 1) 5, Pr (ilu = 1) H (V"] = 1) (25)

where [[10) follows from the fact that conditioning reducesrepy, and[(1i1) from the fact that

the entropy is non-negative. The probabilRy (y"|j, » = 1) can be written as

Pr(y"[j,p=1) (262)
=>_ Pr(y"u"j,p=1) (26b)
=2 Pr("[jp=1)Pry"u", j.p=1) (26¢)
=2 Pr(u"jn=1)Pr(y"ju", p=1) (26d)
Pr(u"|p=1) 1

=y ———————— Pr(y"|ut,p=1 26e

S PrGlu=1) W= (269)
< Pr(u|p=1)2" Pr(y"|u", p=1) (261)
= S Pr(y" = 1)2" (269)
= Pr(y"|u=1)2" (26h)
< 2—n(H(Y)—e”) (26i)

where [264) follows from[(21) and the fact that* — U™ — J forms a Markov chain (by
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construction) and_(26f) follows from (22). Expandidf(Y™|j, u = 1), we have
1

HY"j,p=1) = yan ("1, = Dlog 5=y (27)
> 2p ("= 1)log 2 (H)=) (28)
=n(H(Y)—-¢€) yan (", = 1) (29)
>n(l—e€) (HY)—¢) (30)

where [15) results from the upper bound®n(y"|j, x = 1) in (26i) and [1¥) from the fact that
for a typical setTxy (n,e) > (1 —¢) [18, chap. 2]. Thus, the equivocatidi (Y"|.J) can be

lower bounded as
H(Y"J)>Pr(u=1),Pr(jlu=1)(1—e)n(H(Y)~¢) (31)
>n(l—e¢’ (H(Y)—¢) (32)

where we have used the fact that for a typical &et (n,¢) > (1 — €) [18, chap. 2]. The proof
concludes by observing that (Y") > H (Y"|J) ande¢’ — 0, ¢’ — 0 asn — oc. n
We will now use Lemmak]1 arld 2 to demonstrate the optimalitthefHeegard-Berger and

Kaspi encoding for the uninformed and informed source n®de$pectively.

C. Uninformed Encoder with Side Information Privacy

We first consider the source network in which the encoder amshave side information
and derive the set of all feasible rate-distortion-equatmn (RDE) pairs. The resulting problem
may be viewed as the Heegard-Berger problem with an additjprivacy constraint at decoder
1. Our result demonstrates that the optimal coding schemeeisdme as the Heegard-Berger
problem without a privacy constraint. The proof makes usthefndependence of the Wyner-Ziv
binning index from the side informatioxi” in tightly bounding the achievable equivocation. We
briefly sketch the proof here; the detailed proof can be fomntthe appendix.

1) Rate-Distortion-EquivocatiofR, D;, Dy, E) Tuples:

Definition 2: Let I'y (D1, D2) and Ry (D1, Do, E) be two functions defined as

L'y (D1, D) = PU(%I%%E)H(Y\WQ (33)
Ru(Di Do B)= | min 10X W)+ 1(X: WalWAY) (34)
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11

such that
Ru={(R,D1,D3,FE): Dy >0,Dy>0,0< E<Ty(Dy1,Ds9),R>Ry(Dy,D5,E)} (35)

where the subscriff denotes the uninformed cad®, (D1, D, F) is the set of alp (x, y)p(w1, we|z)
that satisfy [(B) and[{4)Y — X — (W3, W3) is a Markov chain, andW,| = |X| + 2, Ws| =
(JX] + 1)%

Lemma 3:T'y (D4, D,) is a non-decreasing, concave function 6f, D,) (i.e., for all D, > 0,
1=1,2).

Lemmal3 follows from the concavity properties of the (coiudial) entropy function as a
function of the underlying distribution, and therefore,tbé distortion.

Theorem 1:For a bivariate sourcéX,Y') where only X" is available at the source, and’

is available at decoder 2 but not at decoder 1, we have

R =Ry, I'(Dy,Dy) =Ty (Dy,D,), andR(Dy, Dy, E) = Ry (D1, Dy, E). (36)

Proof sketch Converse A lower bound onR (D;, D,, E) is the same as that in [1] and
involves the introduction of two auxiliary variablé$;; = (J,Y*™) and W,; = (X*'V;1,).
Using this definition ofl¥; ;, one can expand the equivocation definition[ih (4) to show tha
['(Dy, Dy) < H(Y|Wh).

Achievable schemd&he achievable scheme begins with a rate-distortion codelécoder 1
by mapping an observed' sequence to one of a setf (X:"1) » sequences, denoted' (j,),
subject to typicality requirements. For this choiceudf(j;), a second code for decoder 2 results
from choosing a conditionally typical sequence out of a §et8*:"21"1) 42 sequences, denoted
by wh (j2|71), and binning the resulting sequence into one2df (X:W2lW)—I(iW2[W1)) ping,
denoted byb (j2), chosen uniformly. The paifji, b (j2)) is revealed to the decoders. We show in
the appendix that this scheme achieves an equivocatiéh(af|17;) asymptotically; the crux of
our proof relies on the fact that the binning indBX.J;) is conditionally independent ¢fX 1)
conditioned onll, i.e., the random variables are related via the Markov cheaiationship
Y — (XW1) = W — B ().

Remark 4:An intuitive way to interpret the equivocation arises frohe tfollowing decom-
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position:

LHYB (k) = CH(Y'|R) (372)
~ LB (R ) (37b)
= LH(Y" IV () (37¢)

_ %] (Y™ B (Jo) |Wi (Jh)) .

The first term in [(37c) is approximately equal I (Y'|17;) while the second term, which in
the limit goes to0, follows from a conditional version of Lemnid 2 and the fadtthh — X —
(W1 W,) — B (J2) forms a Markov chain.

D. Informed Encoder with Side Information Privacy

We now consider the source network in which the encoder hessado the side information
Y™ and derive the set of all feasible rate-distortion-equatmn tuples. The resulting problem
may be viewed as the Kaspi problem with an additional privamystraint about™ at decodetl.
Our results below demonstrate that the Kaspi coding schetrie\aes the set of all rate-distortion-
equivocation tuples. However, for a givéD,, D,, E) pair, the minimal rateR(D;, D,, E) will
in general be different from th&(D,, D,) for the original Kaspi problem.

Our proof includes a two-step achievable scheme involvingibg for the conditional rate-
distortion function for which we show that the bin index isl@pendent of the side information
Y™, Our converse is a minor modification of the converse in [2§ amwolves two auxiliary
random variables. We briefly sketch the proof here; the detaie relegated to the appendix.

1) Rate-Distortion-Equivocatio(R, D,, D, E) Tuples:

Definition 3: Let I';(Dy, Dy) and R; (D1, Ds, E) be two functions defined as

F[ (Dl,DQ) = pl(gali E) H(Y|W1), and (38)
Ri(Dy, Dy, B)= | min  T(XY; W)+ 1(X; Wa| A Y) (39)

such that

Rr={(R,Dy,D3,FE):D; >0,Dy>0,0< E<TI;(Dy,D2),R>R;(Dy,Ds,E)} (40)
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whereP; (Dy, Do, E) is the set of allp (z, y)p(wy, we|z, y) that satisfy [(B) and_{4) angV,| =
X +2, [Wy| = (JX] + 1)°.

Remark 5:The cardinality bounds oiV; and W, can be obtained analogously to the argu-
ments in [1, p. 730].

Lemma 4: R; (D1, Do, E) is a convex function of Dy, D, E).

Theorem 2:For a two-sourcé X, Y) whereX™ is available at the source, and" is available

at the source and at decoder 2 but not at decoder 1, we have

R=R;, I'(D1,Dy)=T7(Dy,D5), andR (D1, Dy, E) = Ry (D1, D5, E). (41)

Proof sketchConverse A lower bound onR (D;, D, E') can be obtained analogously to the
bounds in [2] with the introduction of two auxiliary varigs 17, ; = (J,Y*"!) and W,,; =
(Xi—lYiﬁl). Using this definition ofi; ;, one can expand the equivocation definition[ih (4) to
obtainI'(Dy, D) < H(Y|W7).

Achievable schemd&@he achievable scheme begins with a rate-distortion codelécoder 1
by mapping an observed™, y") sequence to one of a set o/ (XYW 4 sequences, denoted
by w? (j1), subject to typicality requirements. A second rate-digtarcode for decoder 2 results
from mapping(z", y", w}) to one of a set o™ (XY WiiW2) 4;n sequences, denoted y} (5,),
and binning the resulting sequence into on@df(XY WuW2)=I(YWi:W2)) hins denoted by (js),
chosen uniformly. The paifj;, b (j2)) is revealed to the decoders. In the appendix it is shown
that this scheme achieves an equivocatiortidfY’|1V;); the crux of the proof relies on the fact
that the binning indexB (J;) is conditionally independent fX'Y'1#;) conditioned onils.

Remark 6: An intuitive way to interpret the equivocation arises frame same decomposition
as in [3T) where the first term il(37c) is approximately edoall (Y |IW;) while the second
term, which in the limit goes t@, follows from a conditional version of Lemnia 2. Note that,
in contrast to the uninformed case, the distribution herguish that( XY') — (W, W5) — B (J3)

forms a Markov chain.

V. RESULTS FOR ABINARY SOURCE WITH ERASED SIDE INFORMATION
We consider the following pair of correlated sourcésis binary and uniform, and

X, wp.(1-—-
v p. (1—p)
E, w.p.p,
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(0,0) 1/2 1
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Fig. 2. Partition of thg D1, D2) region: uninformed encoder case.

and we consider the Hamming distortion metric, i#z, &) = x & 2 for both decoders and for

both the informed and uninformed cases.

A. Uninformed Case
We are interested in the rate-distortion-equivocatioddddf, given as,
R > I(X;Wy) + I(X; Wo|Y, W), and (42)
E<H(Y|Wh) (43)

where the rate and equivocation computation is over allgandariables1Vy, W,) that satisfy
the Markov chain relationshigl;, W,) — X — Y and for which there exist functions (-) and

fi(-,-,-) satisfying
Eld(X, fi(W1))] < Dy, and (44)

Eld(X, fa(W1, W5, Y))] < Ds. (45)

Let i (a) denote the binary entropy function defined o€ [0, 1]. The (D,, D,) region for this
case is partitioned into four regimes as shown in Fig. 2.
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Fig. 3. lllustration of the rate-equivocation tradeoff for= 0.25.

The rate-distortion-equivocation tradeoff is given addiwk:

;

O; if (D1,D,) € Ly,
R(Dy, Dy = {17 MP2IP)) it (D1, Dy) € Lo,
L= h(Dy); if (D1, D,) € Ls,
\p(l — h(Dy/p)) + (1 —p)(1 — h(Dy)); if (Dy,Ds) € Ly.
and
P(Dy, Dy = 4@V L PIRD): DS 172

h(p) + (1 — p); otherwise

In Figure[3, we have plotte®(D,, D;) andI'(D,, D,) for the cases in whiclD, = p/2 and
Dy =p/8,and D; € [0,1/2].

Remark 7:This example shows that the equivocation does not dependherdistortion
achieved by the decoder 2 which has access to side-infamatj but rather depends only
on the distortion achieved by the uninformed decoder 1.

1) Upper bound ol’(Dy, Dy): For anyD; > 1/2, we use the trivial upper bound

I'(Dy, Do) < HYY|W;) < H(Y) (46)

= h(p) +1-p. (47)
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For anyD; < 1/2, we use the following:

I(Dy, Dy) < H(Y|Wy) (48a)
— H(Y,X|W,) — H(X|Y,W,) (48b)
— H(X|Wy) + H(Y|X) — HX|Y,W,) (48c)
= H(X|Wy) + H(Y|X) — pH(X|W,) (48d)
=H(Y|X)+ (1-pH(X[W) (48e)
= H(Y|X) + (1 — p)H(X Wy, X)) (48f)
< H(Y|X) + (1 - p)H(X|X)) (489)
<HY|X)+(1-pHX®X,) (48h)
= H(Y[X) + (1 - p)h(P(X # X1)) (48i)
< h(p) + (1 = p)h(Dy) (48))

where [(48d) follows from a direct verification that(X|Y,W;) = pH (X |W;) if X is uniform
andY is an erased version of andW; — X — Y forms a Markov chain.

1) Upper bound ol (D, D):

« If (Dy,D5) € L4, we use the lower boun&(D;, Dy) > 0.

If (Dy,Ds) € Lo, we use the lower boun®&(D;, Dy) > R(Vﬁ)Z(DQ [19].
o If (D1, Dy) € L3, we use the lower boun&(D;, Ds) > 1 — h(Dy).

If ( )

A%

. Dy, Dy) € L4, we show that

R(Dy, D3) > p(1 — h(Da/p)) + (1 — p)(1 — h(Dy)). (49)

Consider an arbitrarylV;, W5) such that(1V;, W,) — X — Y is a Markov chain and there

exist functionsf; and f5:
Xl = f1(W1), andXz = fo(W1, Wy, Y),

such that
Pr(X #X,)<D;, j=1,2
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Now consider the following sequence of equalities:

(X Wh) + 1(X; WalY, Wh) = H(X) — H(X|Wh) + H(X[Y, W) — H(X[Y, W, W)

)_
= H(X)— I(X;Y|W)) — HX|Y, Wy, Ws)
= H(X)— HY|W)) + HY|X,W,) — H(X|Y, Wy, Wa)
= H(X)+ H(Y|X) = H(Y|Wy) — H(X|Y,W,,W,).  (50a)

Consider the following term appearing in_(50a):

H(Y|Wy) = H(Y, X|Wy) — H(X|Y, W;) (51a)
= H(Y|X) + H(X|W,) — H(X|Y, W) (51b)
=H(Y[X)+ (1 —-pHX|W) (51c)
= H(Y|X) + (1 - p)H(X|Wy, X)) (51d)
< H(Y|X) 4 (1 —p)H(X|X,) (51e)
<HY|X)+(1-pHX & X)) (51f)
< H(Y[X) + (1 = p)h(Dy). (519)

We also have
Dy > Pr(X # X») (52a)

= Pr(Y = E)Pr(X # X,|Y = E) + Pr(Y # E)Pr(X # X,|Y # E) (52b)

>Pr(Y = E)Pr(X # Xo|Y = E) (52c¢)
=pPr(X £ X,|Y = E) (52d)
which implies that
Pr(X # Xu|Y = E) < Dy _ % (53)
p
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Now consider the following sequence of inequalities for ldmt term in [(50a):

H(X|Y, Wy, W) = H(X|Y, Wy, Wa, X,) (54a)
< H(X[Y, X,) (54b)
= pH(X|Y = E, X5) (54c)
<pH(X & Xo|Y = E) (54d)
= ph(P(X # X5|Y = E)) (54e)
< ph(D/p) (541)

where [54f) follows from[(58). Using (519) and _(54f), we camver bound[(50a), to arrive at
R(D1, Ds) = p(1 — h(D2/p)) + (1 — p)(1 — h(Dn)).

3) Coding Scheme:
o If (Dy,Ds) € Ly, the (R, T") tradeoff is trivial.
. If (D1, Dy) € Ly, we use the following coding scheme:
In this regime, we haveé), > 1/2, hence the encoder seiE; = ¢, and sends only one
descriptionity, = X & N, where N ~ Ber(D,/p) and N is independent ofX. It can be
verified thatl(X; W,|Y) = p(1 — h(D,/p)). Decoder2 estimatesX by X, as follows:
%, = Y, if Y #£E;
Wy, ifY =F.
Therefore the achievable distortion at deco#lés (1 — p)0 + p(Ds/p) = Ds.
. If (D1, Dy) € L3, we use the following coding scheme:
The encoder setd’, = ¢, and sends only one descriptidh = X$®N, whereN ~ Ber(D;)
and N is independent ofX. It can be verified that' (X;W;) = 1 — h(D;). Decoderl
estimatesX as X; = W, which leads to distortion of),. Decoder2 estimatesX by X,

as follows:

. Y; if Y #£FE;
X2 = ?é
Wl; ifY =F.

Therefore the achievable distortion at deco@lés (1 —p)0+ p(D;) = pD;. Hence, as long
as D, > pDq, the fidelity requirement of decoderis satisfied.
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. If (D1, D5) € L4, we use the following coding scheme:
We selectily, = X @ N, andW; = Wy @ Ny, whereN, ~ Ber(Dsy/p), and Ny ~ Ber(a),
wherea = (D, — Dy /p)/(1—2D,/p), and the random variable§, and N, are independent
of each other and are also independentXofAt the uninformed decoder, the estimate is
created asX,; = W, so that the desired distortial, is achieved.

At the decoder with side-informatioH, the estimateX, is created as follows:

%, = Y, if Y #£E;
Wy, ifY =F.
Therefore the achievable distortion at this decodeflis- p)0 + p(Ds/p) = Ds. It is
straightforward to check that the rate required by this sehenatches the stated lower
bound onR(D, Dy), andI'(Dy, Dy) = H(Y|W1) = h(p) + (1 — p)h(D1). This completes

the proof of the achievable part.

B. Informed Encoder
For this case, the rate-distortion-equivocation tradeoffiven as
R>I(X,Y; W)+ I(X;W,|W,,Y), and (55)
E < H(Y|W)) (56)

where the joint distribution of W, W5) with (X,Y) can be arbitrary.
As in the previous section, we partition the space of admliss$iD,, D) distortion pairs. For

simplicity, we denote these partitions as follows:

Gi = {(D1,Dy) : Dy > 1/2, D5 > p/2}, (57)
Gy = {(D1,D,) : Dy > 1/2, D5 < p/2}, (58)
Gs = {(D1, Dy) : Dy > Dy + (1 = p)/2, Dy < p/2}, (59)
Gy = {(D1,Ds) : Dy < 1/2,Dy > Dy}, and (60)
Gs = {(D1,Ds) : Dy < Dy + (1 —p)/2,Dy < Dy }. (61)

These partitions are illustrated in Figure 4.
We provide a partial characterization the optimAl £) tradeoff as a function ofD;, D5). In

particular, we establish the tight characterization( 8f £) pairs for all values of D, D,) with
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Fig. 4. Partition of(D1, D2) region: informed encoder case.

the exception of wheiD,, Dy) € Gs. This characterization reveals the benefit of the encoder

side-information. It shows that in the presence of encou-imformation, there can be several

(R, E') operating points relative to the case in which the encodes @t have side-information.
(@) (D1, Dy) € Gy : In this case thé R, ") region is trivial since both the decoders can satisfy

their distortion constraints which also yields the maximequivocation, i.e., we have
R(Dl, Dg) =0, and (62)
I'(D1, D2) = h(p) +1—p (63)

(b) (Dy, D3) € Gs : In this case, we use the proof as in the uninformed case fopdhé&ion
L+ to show that

R(Dy, Dy) = p(1 = h(D2/p)), and (64)

['(Dy, D) = h(p) + 1 — p. (65)
(¢) (D1, Dy) € G3 : The (R,I") tradeoff for this case is given as follows:

R(Dy, Dy) = p(1 = h(D2/p)), and (66)

I'(Dy, Dy) = h(p) + 1 —p. (67)
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Fig. 5. lllustration ofp(w:|z,y) when Dy > Dy + (1 —p)/2 and D2 € [0,p/2].

This case differs from the uninformed encoder case in thsesé¢hat for the same rate, we
can achieve the maximum equivocation and a non-trivialodisin for decoderl. Since R >
Rxy(Ds) = R}, ,(D,), andT’ < H(Y'), the converse proof is straightforward. The interesting
aspect of this regime is the coding scheme, which utilizesside information at the encoder
in a non-trivial manner. To achieve this tradeoff, we Bét= 0, and send only one description
W, to both the decoders. The conditional distributign, |z, y) that is used to generate thi
codewords is illustrated in Figufé 5 .

Hence the rate for this scheme is given by

R>I(X,Y; W) (68)
— HW,) — HWy|X,Y) (69)
—1— H(W|X,Y) (70)
=1—(1—p) —ph(D:/p) (71)
= p(1 = h(D2/p)), (72)
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and the equivocation is given as

I'=H(Y|W)) (73)
= H(Y) - I(Y; W) (74)
= H(Y) - HW,) + HW,|Y) (75)
=H(Y)—1+H(W,|Y) (76)
—HY) =141 =p)HW|Y = X)+pH(W,|Y # X) (77)
=HY)-14+(1—p)+p (78)
— H(Y). (79)

Decoder2 forms its estimate as follows:
. Y if Y # E;
X2 ==
W1 |f Y = E,
which yields a distortion ofD, at decoder. Decoderl forms its estimate as
Xl == W1

which yields

P(X, £ X) = Dy + (1;’).

Therefore, as long as
(1-p)

D12D2+Tu

this scheme achieves the optini@, I') tradeoff.

We now informally describe the intuition behind this codischeme: since the encoder has
access to side-informatian, it uses the fact that whenever= X, no additional rate is required
to satisfy the requirement of decodzri.e., for(1—p)-fraction of time it is guaranteed to exactly
recover X. However, this yields a distortion gfl — p)/2 at decoderl (since decodeil does
not have access t®). In the remainingp-fraction of time, the encoder describés with a
distortion D, /p, which contributes to a distortion @b, at both the decoders. To summarize,
the net distortion at decoderis D,, whereas the distortion at decodeis lowered from1/2 to
(1—p)/2+ D,. Furthermore, by constructiofl’; is independent of’, i.e., H(Y|W;) = H(Y),

which results in the maximal equivocation at decoder 1.
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(d) (Dy, Ds) € G, : For this case, théR, E) tradeoff is given as the set 9R?, £) pairs
Dy — pa

R>1—(1—-p)h ( ) — ph(a), and (80)

Esh<p>+<1—p>h(D11_§“), (81)

where the parameter belongs to the range € [0, D;/p).

We now describe the coding scheme that achieves this regierseti’; = ¢, and send one
descriptionV; at a ratel(X,Y;W;). The conditional distributiorp(w,|x,y) that is used to
generate théV* codewords is illustrated in Figuté 6. The parameterss) that describe this

distribution are chosen such that
Dy > P(X # W) (82)
> (1=p)B+pa, (83)
so that$ < (D; — pa)/(1 — p). At decoder?, the estimateX, is created as

. Y; if Y #FE;
Xy = 4

Wy, ifY=F,
which yields a distortion opa. Sincea € [0, D, /p], the worst case distortion for decodefor a
fixed D, is p(D;/p) = D;. Hence, as long aB, > D, we can satisfy the fidelity requirements
at both decoders. By direct calculations, it can be shownttieresulting(R, £) tradeoff is as
stated above.

Compared to all the previous cases, the proof of optimalitthe above coding scheme is
non-trivial and is relegated to the appendix.

We remark here that in this regime, the tradeoff between aate privacy can be observed
in a precise manner. First, note that the chaice D, yields the(R, E) operating point as in
the uninformed encoder case. Next, whedecreases fronb, to 0, the equivocation increases,
albeit at the cost of a higher rate. This phenomenon does cmiran the case in which the
encoder does not have side information.

Finally, whena is in the rangg D,, D, /p|, we obtain a lower equivocation by increasing the
rate. This phenomenon appears counterintuitive and caxdaieed as follows: this range of
corresponds to a coding scheme in which we give more weigtitaside-informatiory” when

describingX to decoderl. Such a coding scheme can be regarded as the solution todblepr
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Fig. 6. lllustration ofp(w1|z,y) when Dy < 1/2, Dy > Ds.

in which the encoder is interested in reveali¥igo decoderl, while simultaneously satisfying
the fidelity requirement forX at decoderl. While it is a feasible solution to the problem, it
may not be a desirable coding scheme when the privady at decoder is of primary concern,
and thus, there exists a set of rate-equivocation operaiiigts that one can choose from. In
Figure[7, we show th¢R, E') achievable tradeoff whep = 0.4 and D; = 0.2.

(d) (Dq, Dy) € G5 : For this case, the followingR, F) pairs are achievable:

R>1-(1-ph <D11 :pa) — ph(e), and (84)
E < h(p)+ (1 —ph (Di:;’a), (85)

where « is such thate € [0, Dy/p|. The coding scheme that achieves this tradeoff is similar
to the one used whefD,, D,) € G,, with the exception that the range ofis different. The

guestion of optimality of tradeoff for this regime is stilhresolved.

V. CONCLUDING REMARKS

We have determined the rate-distortion-equivocationoredor a source coding problem with
two decoders, in which only one of the decoders has corcelatde information and it is

desired to keep this side information private from the uminfed decoder. We have studied
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Fig. 7. lllustration of the rate-equivocation tradeoff for= 0.4, D, = 0.2 with an informed encoder.

two cases of this problem depending on the availability dednformation at the encoder. We
have proved that the Heegard-Berger and the Kaspi codingnseh are optimal even with an
additional privacy constraint for the uninformed and th&oimed encoder cases, respectively.
We have illustrated our results for a binary symmetric sewith erasure side information and
Hamming distortion which clearly highlight the differenlbetween the informed and uninformed
cases and the advantages of encoder side information faneimyg privacy. Future work includes

generalization to multiple decoders as well as to contislyodistributed sources.

APPENDIX
A. Proof of Theorerhll

Converse The lower bound onR (D,, D., F) follow directly from the converse for the

Heegard-Berger problem and is omitted here in the interesipace. We now upper bound
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the maximal achievable equivocation as
1

—HY"|J) = fle (vi|y*='J) (86a)
n =17
= ilH (Yi[W7) (86b)
i=17
< Ty (D1, Dy) (86¢)

where [86b) follows from definingV,;, = (J,Y"') (see [1, sec. IV]) and(86c) follows from
the definition ofl"y; (Dy, Ds) in (@3) and its concavity property from Lemrha 3.
Achievability We briefly summarize the Heegard-Berger coding schemée[&]p (wy, ws|x).
First generatel/, = 2"UWiiX)+9) jyn(4) sequencesj; = 1,2,..., M, independently and
identically distributed (i.i.d.) according tp(w,). For everyWW}* (j;) sequence, generafe, =
2nU(WesX|Wi)+e) py/n (4,14,) sequences i.i.d. according io(ws|w, (j1)). Bin the resultingiVy
sequences int® bins (analogously to the Wyner-Ziv binning), chosen at mandvhereS =
nU(X;W2|W)—I(Y;We[Wi)+e) ' and index these bins agj,). Upon observing a source sequente
the encoder searches forl&" (j;) sequence such that™ w? (j1)) € Txw, (n,€) (the choice
of M; ensures that there exists at least one siythNext, the encoder searches forwé (j2|71)
such that(z", w} (j,) ,wy (j2|j1)) € Txwaw, (1, €) (the choice ofM, ensures that there exists at
least one suchi,). The encoder sendg, b (j2)) whereb (j») is the bin index of theuv} (j2|j1)

sequence. Thus, we have tha1;) — W, — B forms a Markov chain and
Pr(B =0b(j2) | (z", wi (j1) ,wy (j2l1)) € Txwyw, (n,€))
= Pr (B =b(j2) |wy (j2[51) € Tw, (n,€)) =1/5. (87)

With 1 as defined in[(7) for the typical sétxyw,w,, and J = (Ji, B(J2)), the achievable

equivocation can be lower bounded as

H (Y, B ()

> (Y"1 B () ) (88a)
_ %H(Y”|W1" (1), B (R, p) (88b)
> Pr(p=1) - H (V"W (), B () p = 1). (880)
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The probabilityPr (y"|w} (41),0(j2) , u = 1) for all jy, jo, andy™ can be written as

Z Pr (yn’j2’xn|w? (]1) >b (]2) y b= 1)

(xnva)
= ( > )Pf (", jalwy (j1) 0 (j2) , = 1) Pr (y"[a", p = 1) (89a)
"Enva
p n - o . _1
_ Z I‘(:L’ y J2, W1 (]1) ) b(]2) |:u ) Pr (y"|:):",u _ 1) (89b)

@igyy  Pr(w? (1), () [p=1)
Pr (xnvj% w? (]1) |:u - 1) /S

a n(; Pr(y"|z", p=1 (89c¢)
(:v%z) Pr (w? (j1) |p=1)/S ("] )
2% % Pr(etplut () p = D Pyt e =1) (89d)
z™,j2
- 2n5'( 3 )Pr (2", jo, y" W] (1), u = 1) (89e)
‘rn7j2

where [[89h) follows from the fact that — X — (17, ;) forms a Markov chain and (89d) is
obtained by expandingr (w? (j1),b(j2) |n = 1) as follows:

Pr(wy (j1),b(j2) [n = 1)

= Pr (uf () e = DS P (0G) k() o ) =) (902)
= Pr (uf () b = )52 (3 () ()= 1) (90b)
> Pr(ut () o = 1) 152 (900
~Pr(ut (i) e = 1) 2 (90d)

where [90b) follows from the fact thal’; — W, — B forms a Markov chain and_(87), while
(90g) follows the fact that for a typical s€t (7w, w, (n,€)) > (1 —€) [18, chap. 2]. Thus, from
(89) we have that

Pr (y"[w} (j1),b (j2) , o = 1) < 2" Pr (y"|w} (j1) , = 1) (91)

< 2 AW =), (92)
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From (88¢) and[(92), we then have

H (Y wy (1), 0 (2) s p = 1) 2 2 Pr (y"w (1), p= 1)n (H (Y|W) =€) (93)

> (1 - ) (H (Y|W3) — ¢ (94)
such that
LH (V7]) 2 Pr(p = 1) %w%m Pr (w} (j1) b (j2) 1 = 1) H (V" () b (ia) = 1)
(95)
> (1— )’ (H (Y|Wy) = €¢") (96)

where we have used the fact that for a typical Bet7yw,w, (n,€)) > (1 —¢€) [18, chap. 2].

The proof concludes by observing thdt(Y") > H (Y"|J) ande — 0, ¢’ — 0 asn — oc.

B. Proof of Theorerhl2

Converse A lower bound onR (Dq, Do, E') can be obtained as follows.

nf > H{J) (97a)
> [(X"Y™;.J) (97h)
= I(X™ J]Y™) +1(Y"; J) (97¢)
- Z:il {I(X; IXTY YY) — I( X XY YY) +1(Y5 LY — 1Y YY)}
= il{f (X JXTY' YY) +1(Y YT} (97d)
_ é (X TYHY) + I(X XY [ JYYY) + 1Y JYY)) (97e)

where [97d) follows from the independence of the pdixs,Y;) for all i = 1,2,...,n. Let
Wi = (J, Y1) and Wy, = (X'Y/,). With these definitions[{97e) can be written as

nR > Y {I(X;Y; Wh,) + I(X; Wo,|Wy Y} (98)
i=1
> > R (D1, Doy, E;) (99)
i=1
ZTLRI (D17D27E) (100)

July 10, 2018 DRAFT



29

where [(99) follows from Definition]3 wittD, ;, D, ;, and E; defined as

Dy, =E [d (Xm 914 (le))] (101a)
Dy; =E[d (szgé,i (Wi, Wi, Vi) ], and (101b)
E; = H(Y;|Wh,), (101c)

and [100) follows from the convexity aR;(D;, D., E) and the definitions oD, k =1,2, in
(3) and the concavity off (Y'|IV), and hence, ofe. We upper bound the maximal achievable
equivocation as

1

H (V")) = i%ﬂ (Vi[YL)) (102a)
=1
= ilH (Yi[W3) (102b)
i=17
_ylg (102¢)
i=1T
< i%r (Dy, D) (102d)
=1
<TI';(Dy, Do) (102e)

where [102b) follows from the definition &%, ;, (102¢) and[(102d) follow from_(38) in Definition
and from Lemmal3.

Achievability Fix p (wy,ws|z,y). First generateM; = 2"0WVuXY)+e) "y (4)) sequences,
J1 = 1,2,..., M, iid. according top (w;) (obtained fromp (w;,ws|z,y)). GenerateM, =
2nU (W2 XYWi)+e) 1/n (4,) sequences i.i.d. accordingtidw,) (obtained fronp (wy, ws|z,y)). Bin
the resultingV;* sequences intd bins (analogously to the Wyner-Ziv binning), chosen at cand
where § = 2nUXYWiWo)=I(W1Y3W2)+6) - and index these bins &gj,). Upon observing a source
sequencgz™,y"), the encoder searches forl&] (j;) sequence such that",y", w} (j1)) €
Txyw, (n,€) (the choice ofM; ensures that there exists at least one syghNext, the encoder
searches for al (j,) such that(z™, y™, w} (j1), w5 (j2)) € Txyw,w, (n,€) (the choice of)M,
ensures that there exists at least one sigghThe encoder sendg, b (j2)) whereb (js) is the

bin index of thew?} (j,) sequence at a ratB = I(XY; W) + I(X; W3|[W1Y) + €. Thus, we
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have

Pr(B =0(j2) [ (=", 5" wi (1), w5 (j2)) € Txymiws (0, €))

=Pr(B =0(j2) [w3 (j2) € Tw, (n,€)) =1/5. (103)
where [[10B) is the result of the code construction whichdgeh Markov chain relationship
(XYW;)— W, — B. With 1 as defined in[(7) for the typical s&kyw,w,, andJ = (Ji, B (J2)),

the achievable equivocation can be lower bounded as

H (Y B ()

> L (Y"1 B () ) (104a)
_ % HY" W (1), B (), 1) (104b)
> Pr(n=1) - H (V"W (1), B(J),p = 1). (1040)

The probabilityPr (y"|w} (41),0(j2) , u = 1) for all jy, jo, andy™ can be written as

Z Pr (yn7wg|w? (]1) ) b(]2) = 1)

= ;Pr (w3 wi (j1) ;b (j2) , 0 = 1) Pr (y"[w (j1) , w3, p = 1) (105a)
where [105a) follows from the fact theX'Y' /) — W, — B forms a Markov chain. The probability
Pr (ws|wy (71),b(j2) , . = 1) can be rewritten as
Pr (wy, wi (j1),b () lp=1)
Pr(w? (j1), 0 (j2) | = 1)
Pr(wy, wi (j1) |p=1) /|S]

— dhut WA (106)
> Pr(wg, wi (i) [w=1) /9]
= Pr(wfluf (1), 1 =1). (107)
Substituting [(1017) in[(A0%aRr (y"|w} (j1),b(j2),n = 1) can be written as

> Pr(wglwy (1), 0= 1) Pr(y"[wf (1), wg, p = 1)
=2 Pr(y", wylwi (1), n=1) (108a)
= Pr(y"|wy (1), p=1) (108b)
S 2—n(H(Y‘W1)—6) (108C)
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where we have used the fact that for a typical Bet7yw,w, (n,€)) > (1 —¢€) [18, chap. 2].
From (104t) and(108c), we then have

H (" ()b ) 1 = 1) = 3 Pr (57 uf ) e = 1) log oo (109)
> S (g (1) o= )n (H (VIW) — (109)
>0 (1— ) (H (Y[W3) = ) (1090)

where in [109b) we have used the fact that for a typicalBBetlyw,w, (n,€)) > (1 —¢€) [18,
chap. 2]. Thus, we have

SO ZPr(u=1) 1 53 P ()b () e = 1) H 077 1) b Gi) e = 1)
(110)
> (1= " (H(V[W) - ) (1)

where we have used the fact that for a typical Bet7yw,w, (n,€)) > (1 —¢€) [18, chap. 2].
The proof concludes by observing th&t(Y ") > H (Y"|J) ande — 0 asn — oo.

C. Converse Proof for regiog,

We start by a simple lower bound on the rate

R>I(X,)Y;Wh) + I(X; Wy, Y)

> I(X,Y; X;) (112)
and an upper bound oh
I'< HY|W)
= H(Y|Wy, X1)
< H(Y|Xy)
= H(Y) - I(Y; X)) (113)

We will now use the distortion constraint of decodealone to simultaneously lower bound the

rate and upper bound the equivocation. Consider an anpiffd¥(i,|x,y) (and denote this as
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distributionP;) given as:
pM(0]0,0) =a, pP(0]1,1) =b
pM (010, E) = ¢, pP(0]1, E) =d.

For this distribution, we have

E%X%XQ:(U@kl—mﬂ—a+®+mﬂ—c+dﬂ (114)
H(X,\)=h (% (1 —p)(a+b)+p(c+d)]) (115)
1ﬂX¢ayy:“;phmw+h@n+§m@y+mw) (116)
H%y) = & ; D) (h(a) + h(b)) + ph (C ; d) . (117)

These four quantities characterize the bound§ inl(112)[&b#) (exactly and also the achievable
distortion.

Now consider a new distributiof,, with conditional probabilities as follows:
p@0[0,0)=1-b, p@0[1,1)=1—a
p2000,B)=1-d, p?OL,E) =1-c
It is straightforward to verify that the distortion, ratedarquivocation terms are the same for

both P, andP,. Next, define a new distributiof’; as follows:

2O (3], ) = p (@1 ]z,y)  wp. 1/2,
p@ (1|2, y)  w.p.1/2.

We now note thal (X,Y; X;) is convex inp(i:|z,y) and H(Y|X,) = H(Y) — I(Y; X;) is
concave inp(z|y). By Jensen’s inequality, this implies that the distribotiB; defined above
uses a rate that is at most as large and leads to an equivothtibis at least as large when
compared to both the distributiorid andP,. Hence, it suffices to consider input distributions

of the formp® (#|z,y), which can be explicitly written as

p®(0]0,0)=1-5, p®(0[1,1) =2

p(3)(0|0’ E) =1- Q, p(3)(0|1’ E) = Q.
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To satisfy the distortion constraint, we also have

Dy > (1 —p)B+ pa

which leads to5 = (D; — pa)/(1 — p). Now, also note that for a fixed, this scheme yields a

distortion of pa: at the decode®. Furthermore, since the range efc [0, D, /p|, we note that

the worst case distortion for decoder(for a fixed D) is pD,/p = D;. This implies that as

long as

Dy > Dy

this region yields the stated tradeoff for the region
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