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First-Passage Time and Large-Deviation Analysis
for Erasure Channels with Memory
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Abstract—This article considers the performance of digital
communication systems transmitting messages over finite-state
erasure channels with memory. Information bits are protected
from channel erasures using error-correcting codes; successful
receptions of codewords are acknowledged at the source through
instantaneous feedback. The primary focus of this researchis
on delay-sensitive applications, codes with finite block lengths
and, necessarily, non-vanishing probabilities of decoding failure.
The contribution of this article is twofold. A methodology to
compute the distribution of the time required to empty a buffer
is introduced. Based on this distribution, the mean hitting
time to an empty queue and delay-violation probabilities for
specific thresholds can be computed explicitly. The proposed
techniques apply to situations where the transmit buffer contains
a predetermined number of information bits at the onset of the
data transfer. Furthermore, as additional performance criteria,
large deviation principles are obtained for the empirical mean
service time and the average packet-transmission time associated
with the communication process. This rigorous framework yields
a pragmatic methodology to select code rate and block lengthfor
the communication unit as functions of the service requirements.
Examples motivated by practical systems are provided to further
illustrate the applicability of these techniques.

Index Terms—Block codes, Communication systems, Data
communication, Markov processes, Queueing analysis.

I. I NTRODUCTION

Contemporary communication systems must be designed to
accommodate the various applications that compose today’s
digital landscape. In particular, mobile devices must meet
the heterogeneous needs of various data flows in terms of
delay tolerance and bandwidth requirements. On the Internet
backbone, congestion is often prevented by over-provisioning.
The large throughput and low latency of parallel optical lines
provide a pragmatic solution that offers adequate network
performance. This approach, combined with localized content
distribution networks and edge throttling, is key in supporting
delay-sensitive traffic over the Internet core. Unfortunately,
a similar strategy cannot be applied to connect untethered
devices, as wireless physical resources are limited and costly.
The narrow usable spectrum and the broadcast nature of
wireless environments limit the effective bandwidth of wireless
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access networks and, hence, demand the efficient management
of available resources.

In this article, we develop a mathematical framework that
enables the optimal allocation of link resources for wireless
systems in the context of delay-sensitive communication.
Distinguishing features of the proposed methodology include
the joint treatment of finite-state channels with memory and
queueing behavior at the transmitter. The focus is on the
first-passage time to an empty queue, and the methodology
implicitly provides a distribution for the time it would take an
additional packet to reach the head of the queue. This view
is not only important for resource allocation and performance
evaluation, it offers a foundation for choosing among possible
routes and distinct interfaces. From an abstract perspective, we
introduce a formulation where time-dependencies in channel
states and decoding failures are captured meticulously. In
contrast to block-fading models, this formulation allows the
seamless optimization of parameters such as code rate and
block length. This is instrumental in better understanding
how these parameters affect the overall performance of delay-
sensitive wireless connections.

Several contributions on the interplay between decisions
at the physical layer and overall performance at the link
layer can be found in the literature [1], [2], [3], [4]. Notable
approaches include the outage capacity [5], [6], a probabilistic
performance criterion based on the marginal distribution of
channel blocks; the effective capacity [7], [8] which captures
the decay rate in buffer occupancy at the transmitter; and
finite block-length analyses of wireless connections [9], [10].
Physical resources can be optimized to reduce average delay
by carefully selecting advantageous modulation schemes and
coding strategies [11], [12]. Multi-objective problem formu-
lations have also been explored. For instance, the optimal
tradeoff between power and delay has received attention in
the past [13]. The joint treatment of queueing and error-control
coding has been examined by simultaneously considering the
effective capacity of a link and the error exponent of a code
family [14], [15]. Markov models have been successfully
employed in the queueing analysis of communication links
with automatic repeat request [16], [17]. Finally, powerful
asymptotic techniques based on large deviations and heavy
traffic limits have been developed to handle real-time traffic
over unreliable links [18], [19].

This study differs from previous contributions in that it
relates queueing behavior, error control coding and channel
evolution without resorting to asymptotically long coding
delays or rough approximations. Decoding performance at the
receiver captures channel correlation within a block, while
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the queueing aspect of the problem is key in understanding
the impact of time-dependencies among successive decoding
attempts. Together, they provide an accurate assessment of
overall system performance and lead to novel guidelines about
efficient designs.

Furthermore, by focusing on the first-passage time to an
empty queue [20], we are able to bypass the search for repre-
sentative arrival processes. Rather, resource managementcan
be performed adaptively based on current system conditions.
Having a distribution for the hitting time to an empty buffer
enables the computation of several pertinent performance
criteria such as the probability of violating a completion
deadline, the mean first-passage time to an empty queue, and
Chernoff bounds. The proposed methodology is closely related
to generating functions [21] and it works well for reasonably
small initial buffer sizes, which are typical of communication
systems subject to stringent delay restrictions. On the other
hand, under large buffers, this technique becomes somewhat
cumbersome. In this latter case, analyzing the large deviations
governing the evolution of the system offers a promising
new direction to derive meaningful guidelines for resource
allocation and the selection of system parameters. Indeed,the
concentration of empirical measures can be used to gracefully
adjust delay-sensitivity to the needs of real-time data flows
by selecting the deviation threshold, i.e., the argument ofthe
rate function [22]. Once a threshold is set, system parameters
can be optimized according to this objective function and the
resulting performance can be predicted accurately.

Throughout, we assume the availability of reliable acknowl-
edgements using periodic feedback. We also assume that
the transmitter and receiver share a common randomness,
which permits the utilization of random binary codes. The
remainder of this article is organized as follows. Section II
presents the channel model and the random coding scheme.
The queueing aspect of the problem is developed in Section III.
A large deviations perspective on the mean transmission time
and the average service rate is offered in Section IV. The
findings are supplemented by a discussion of pertinent criteria
for performance evaluation, along with numerical examples.
Concluding remarks and possible avenues of future research
are exposed in Section VII.

II. SYSTEM MODEL

One physical aspect of wireless communication that we
are particularly interested in is channel memory. From a
queueing perspective, it is well known that correlation over
time can drastically alter the stationary distribution of a
queueing system [23], [24]. In a similar manner, channel
memory can have a strong impact on overall performance,
as it induces time-dependencies in the service process at
the transmitter. This phenomenon is especially important for
delay-sensitive applications that require the reliable, ordered
delivery of data streams. A prime model class in dealing with
such dependencies is composed of finite-state channels with
memory [25], [26], [27]. System models derived from this
class of channels are typically mathematically tractable,and
they offer a natural mechanism to account for correlation over

time. Moreover, insights acquired by studying erasure channels
can often be translated to error channels or, at least, provide
partial intuition about promising solutions for the latter, more
challenging scenarios.

This article revolves around a communication paradigm
where information bits flow from a source to a destination.
The transmitter is assumed to possess a message of a certain
length at the onset of the data transfer, and forward error
correction is employed to shield content from potential symbol
erasures. At the beginning of a transmission, the leading
information bits stored at the source are grouped into a
segment, and redundancy is added to this message using
block encoding. The resulting codeword is then sent over a
finite-state erasure channel with memory. Contingent upon
the channel realization, the destination can either retrieve the
data contained in the transmitted codeword or it declares a
decoding failure. Successful transmissions are acknowledged
and the corresponding bits are then discarded from the source
buffer. Otherwise, the leading information bits remain in the
queue. We emphasize that, in this framework, the original data
sequence is guaranteed to be transferred unaltered. However,
the completion time of the queue-emptying process is a
random variable that depends on the coding/decoding strategy
adopted and on the realization of the channel.

A. Channel Abstraction

As indicated above, we capture channel stochasticity and its
impact on the communication link using a finite-state Markov
process. Several pertinent communication scenarios can be
modeled in this manner [28], [29], [30]. At a particular time
instant, we assume that the channel can be in one ofk states
taking value inC = {1, 2, . . . , k}. State transitions over time
form a Markov chain. We denote the corresponding transition
probability matrix by

B =











b11 b12 · · · b1k
b21 b22 · · · b2k
...

...
. . .

...
bk1 bk2 · · · bkk











.

Entry bij in matrix B represents the conditional probability
that, starting from statei, the channel transitions to statej.
As such,B is a right stochastic matrix. When in statei,
the transmitted symbol is erased with probabilityεi and,
consequently, it is received correctly with probability1 − εi.
For notational convenience, we impose a quality ordering
on the channel states, i.e.,εi ≥ εj wheneveri < j. We
represent the state of the channel at time instantn by Cn.
We note that{Cn} is a first-order Markov process. A diagram
illustrating the operation of the communication link for a two-
state channel appears in Fig. 1.

Assumption 1:Throughout, we hypothesize that the chain
governing the finite-state channel is irreducible and aperiodic.
We also assume that this Markov channel is non-trivial in that
there exists a statei ∈ C such thatεi < 1.

As we shall see, these conditions guarantee the existence of
a random coding scheme for which the transmission process
terminates in finite time, almost surely. These transmission
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Fig. 1. Communication at the bit level takes place over a finite-state erasure
channel with memory. While in statei, the probability of a bit erasure isεi.
The evolution of the channel over time forms a Markov process.

schemes are the only ones of interest for our purpose. In that
sense, Assumption 1 is introduced to prevent difficulties that
arise from idiosyncratic, irrelevant scenarios.

B. Coding Scheme

The envisioned system employs forward error correction to
counteract possible channel erasures. A codeword transmission
attempt is initiated by selecting the leadingK bits from
the source buffer. Redundancy is then added to this data
segment through the encoding process. A random coding
scheme is adopted as a mathematically convenient abstraction
to realistic implementations [1], [31]. To create each codeword
transmission, a random binary parity check matrix of size
(N −K)×N is generated. Every entry is selected uniformly
over the binary alphabet, independently from other elements.
The resulting codebook corresponds to the nullspace of this
matrix. Such a coding scheme ensures that successful decoding
of different codewords are conditionally independent given
the channel states at the respective transmission times. This
will greatly simplify the ensuing analysis. We assume that
maximum-likelihood decoding is performed at the receiver.

We emphasize that this mode of operation requires shared
randomness at the source and the destination. Interestingly,
this coding scheme is known to perform well for large block
lengths; and it supports flexible rates of communication, any
rate of the formK/N where 0 ≤ K ≤ N is admissible.
These random codes have the additional property that the
average probability of decoding failure depends only on the
number of erasures caused by the channel and not on the
specific locations of these erasures. Provided thate erasures
have occurred during transmission, the probability of decoding
failure can be evaluated explicitly,

Pf(N −K, e) = 1−

e−1
∏

l=0

(

1− 2l−(N−K)
)

. (1)

A proof for this statement is based on the equivalence between
the linear independence of thee erased columns in the parity
check matrix and the event of a successful decoding [31].
Throughout this article,Pf(p, e) denotes

Pf(p, e) =

{

1−
∏e−1

l=0

(

1− 2l−p
)

if e ≤ p

1 if p < e ≤ N
(2)

which is the average probability of decoding failure under
maximum likelihood of a codebook generated by using a
random binary parity check matrix of sizep × N , for any
N ≥ p, whene erasures have occurred.

C. Distribution of Erasures

From the discussion above, we gather that the number
of erasures suffered by a codeword plays a critical role in
determining overall system performance, as it dictates the
probability of decoding failure. This random variable thus
warrants due attention. LetE denote the number of erasures
occurring in a given packet transmission. Since the probability
of decoding failure of a codeword depends only on the number
of erasures, it suffices to consider probabilities of the form
Pr(E = e, CN+1 = j|C1 = i) to characterize the evolution of
the system. Note thatC1 andCN+1 correspond to the channel
state transitions across the first codeword transmission. We
can describe this distribution in a compact form using matrix
generating functions. Define matrixBx by

Bx =











b11(1− ε1 + ε1x) · · · b1k(1− ε1 + ε1x)
b21(1− ε2 + ε2x) · · · b2k(1− ε2 + ε2x)

...
. . .

...
bk1(1− εk + εkx) · · · bkk(1 − εk + εkx)











.

Throughout this article,JxnK denotes the linear operator that
maps a polynomial inℜ[x] to the coefficient ofxn. Fore ∈ N0

and i, j ∈ C, one can show that [21]

Pr(E = e, CN+1 = j|C1 = i) = JxeK
[

B
N
x

]

i,j
(3)

where, in this case,E denotes the number of erasures over
an interval of lengthN . The probability that Markov process
{Cn} coincides with a specific sequence of states is equal to
the probability of a certain path through the matching trellis.
Moreover, at each point in time, the probability of observing an
erasure only depends on the current state. Consequently, taking
the N th power of matrixBx is an efficient way to compute
the aggregate conditional probability of observing exactly e
erasures, given an initial probability distribution and anend
state. In other words,BN

x offers a way to simultaneously sum
all the relevant paths through the trellis. It is also possible
to compute such probabilities through nested sums [32], but
the ensuing equations rapidly become cumbersome for large
values ofN and Markov chains with sizable state spaces.

Given initial statei and for a fixed final statej, we can
apply the total probability theorem to compute the probability
of decoding failure,

N
∑

e=0

Pf(N −K, e) Pr (E = e, CN+1 = j|C1 = i) . (4)

These conditional probabilities, along with the progression
of the channel states, underlie the evolution of the queueing
system.

Remark 1:As a side note, it is instructive to point out that,
under Assumption 1, there exist values forN andK such that
the probability of decoding success as a function ofC1 is not
uniformly zero. In particular, ifi is a channel state such that
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εi < 1, then for large enoughN andN −K, the probability
of decoding failure in (4) will be less than one. Random codes
for which the conditional probability of decoding success is
not uniformly zero are termed non-trivial.

III. QUEUEING MODEL

This section describes the queueing behavior of our system.
First, we assume that the number of information bits present
at the source at the beginning of the communication process
is fixed and equal toℓ. Given a code rate and block length,
the source takes the leadingK data bits and encodes the
resulting segment into a codeword of lengthN using the
scheme described in the preceding section. This codeword
is then sent to the destination throughN consecutive uses
of the erasure channel. A service opportunity occurs every
time the random code and channel realization jointly permit
reliable decoding. We emphasize, again, that the destination is
assumed to possess the ability to acknowledge the successful
reception of codewords through instantaneous feedback. As
such, the selected information bits remain in the transmit
queue until a corresponding codeword is decoded faithfully
at the destination. This data segment is immediately discarded
from the buffer upon successful decoding of a packet.

In its simplest form, this scheme represents a variation
of automatic repeat request (ARQ). We note that this mode
of operation is somewhat naı̈ve in that the information con-
tained in failed decoding attempts is disregarded. A more
astute implementation will seek to leverage past failures by
performing joint decoding over all the observed messages
pertaining to the current data segment. Incremental redundancy
and hybrid automatic repeat request are valuable techniques
that can improve performance [33], [34], [35]. In this article,
we discuss both ARQ and its hybrid variant, where partial
information from failed transmission attempts is incorporated
in the decoding process. Still, we focus largely on the rudi-
mentary scheme because it admits a simpler, more elegant
characterization while preserving the natural tradeoff between
error protection and payload content. Overall, the proposed
methodology yields pertinent results that help improve our
understanding of delay-sensitive systems.

Our primary interest lies in the distribution of the time
elapsed until the message originally contained in the source
buffer becomes wholly available at the destination. To capture
this quantity adequately, we need to examine the evolution of
the queue. The length of the queue can be expressed in terms
of the number of data segments awaiting transmission. If a
queue initially containsℓ information bits, then it will require
the successful reception ofm = ⌈ℓ/K⌉ codewords until the
last segment gets processed. The number of segments in the
transmit buffer therefore becomes a measure of residual work
until our objective is met, and it is intrinsically linked tothe
state of our communication system.

Codewords denotes the block of transmitted bits during
the time instantssN + 1, . . . , (s + 1)N , wheres ≥ 0. These
codewords include both decoding successes and failures. For
N fixed, we denote the size of the queue at the onset of
codewords by Qs. We note that the state of the bit-erasure

channel at the same time instant isCsN+1. Thus at the onset of
the first codeword transmission (s = 0), the size of the queue
is Q0 and the state of the bit-erasure channel isC1. The rapid
succession of symbols in the bit-erasure channel compared to
events taking place in the queue produces the mismatch in
indexing betweenQs and CsN+1. Indeed, queue transitions
are only possible at the completions of decoding attempts,
which only occur after everyN symbol transmissions. The
resulting stochastic process{Qs} is a hidden Markov process,
as it is determined partly by the evolution of the unobserved
channel process{Cn}. While {Qs} alone does not possess the
Markov property, it is possible to create an augmented process
containingQs with this desirable attribute. The particulars
of the procedure depend on whether one is considering the
standard ARQ framework or its hybrid variant. We treat these
two instances separately.

A. Automatic Repeat Request

As the title suggests, this section focuses exclusively on the
scenario where the source and the destination employ ARQ
to overcome channel erasures and, thereby, achieve reliable
data transmission. In particular, the information contained in
past decoding attempts is disregarded by the decoder when
receiving the latest codeword. To build a suitable model, we
consider the random vectorUs = (CsN+1, Qs) composed
of channel state and queue length. We wish to show that
this vector contains all the relevant information to track the
evolution of the system.

Theorem 1:The aggregate process{Us}s≥0 possesses the
Markov property. That is, conditioned onUt = (i, q), the
stochastic process{Us+t}s≥0 is independent ofU0, . . . , Ut−1.

Proof: See Appendix A.
Using the total probability theorem, we can write the

transition probabilities of{Us} as follows,

Pr (Us+1 = (j, qs+1)|Us = (i, qs))

=

N
∑

e=0

Pr (Qs+1 = qs+1|E = e,Qs = qs)×

Pr
(

E = e, C(s+1)N+1 = j|CsN+1 = i
)

(5)

wherei, j ∈ C. For a non-empty queue, the first part of each
summand corresponds to one of three possible cases,

Pr (Qs+1 = qs+1|E = e,Qs = qs)

=











Pf(N −K, e), qs+1 = qs

1− Pf(N −K, e), qs+1 = qs − 1

0, otherwise.

The probability of decoding failurePf(·, ·) appears in (1),
while the conditional distribution of erasures within a block
is given in (3). Thus, we have already developed the tools
necessary to efficiently compute the value of every transition
probability in (5). The evolution of the queueing system and
its admissible transitions are depicted graphically in Fig. 2.
The states{(·, q)} are collectively referred to as theqth level
of the queue. The first-passage time to an empty buffer is
therefore equivalent to the hitting time to level zero. Due to
the repetitive structure of this augmented system, the hitting
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2, 1
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Fig. 2. This figure illustrates the progression of the queueing system for
a service process that is governed by a two-state Markov erasure channel.
System states, which are composed of queue lengths and channel states, are
represented by circles. Admissible transitions are markedby the arrows.

time to a lower level will play a key role in finding a tractable
solution to the problem at hand.

An additional quantity of interest in the analysis of delay-
sensitive systems is the mean service rate. To compute this
quantity, it is convenient to analyze the service process{Ds},
where Ds indicates the potential of a successful decoding
event at times, s ≥ 0. That is,Ds = 1 when a message can
(or could) be decoded faithfully at the destination; andDs = 0
otherwise. In words, the sequence{Ds} indicates time instants
at which blocks of information can be transferred successfully
to the destination. As in the case of the queueing abstraction,
the stochastic process{Ds} forms a hidden Markov process
which can be lifted to an augmented Markov process. Let
Vs =

(

C(s+1)N+1, Ds

)

denote a random vector composed of
the state of the erasure channel at the onset of blocks + 1,
together with the indicator of a service opportunity during
block s. As in Theorem 1, one can show that the stochastic
process{Vs} forms a Markov chain.

We note that the transition probabilities of{Ds} are closely
related to those of{Qs}. Since there are no arrivals in our
framework, the evolution of these processes are governed by

Qs+1 = (Qs −Ds)
+
.

For convenience, we establish a succinct notation for the
transition probabilities of our two augmented processes,

κij = Pr(Us+1 = (j, q)|Us = (i, q))

= Pr(Vs+1 = (j, 0)|Vs = (i, d))

µij = Pr(Us+1 = (j, q − 1)|Us = (i, q))

= Pr(Vs+1 = (j, 1)|Vs = (i, d))

(6)

where q ∈ N, i, j ∈ C and d ∈ {0, 1}. These common
definitions draw further attention to the close connection
between{Us} and{Vs}.

In view of Remark 1 and for non-trivial codes, there exists
i ∈ C such thatµij > 0. This implies that the states associated
with an empty buffer form the only closed communicating
class and, as such, the remaining states are transient [20].Since
the number of states in the augmented chain is finite, this
structure ensures that the task of emptying the transmit buffer
is carried out in finite time, almost surely.

The symmetric decomposition of the queueing system into
levels suggests an approach based on the quasi-birth-death

structure of the chain. Suppose that the buffer contains exactly
m data segments at time zero, i.e.,Q0 = m. We can define
the hitting time from levelm to level q of the chain as

Hq = inf{s ≥ 0|Qs = q}, (7)

where0 ≤ q < m. That is,Hq designates the time instant at
which the process{Us} first enters theqth level of the queue.
We emphasize that, under the mild assumptions discussed
above,Hq is almost surely finite. For consistency, we also
defineHm = 0. Noting thatQs is a non-increasing process,
we can write the sojourn time at levelq as

Tq = Hq−1 −Hq,

where0 < q ≤ m. That is, random variableTq denotes the
amount of time{Us} stays at levelq before leaving for the
subsequent lower level.

We are especially interested inH0, the first-passage time
to an empty queue. Taking advantage of the structure of the
augmented Markov chain, we can fragmentH0 into a sum of
elementary components. Specifically, the hitting timeH0 is
equal to the sum of the sojourn timesT1, . . . , Tm, i.e.,

H0 =
m
∑

q=1

Tq.

The sojourn timesTq andTq−1 are coupled through the chan-
nel stateCNHq−1+1 and hence are not independent. However,
since the codebooks over different codeword transmissionsare
independent, the sojourn timesT1, . . . , Tm are conditionally
independent given the channel states

{

CNHq+1

}m

q=0
. The

sojourn timesT1, . . . , Tm are also conditionally identically
distributed. That is,

Pr
(

Tq = t, CNHq−1+1 = j|CNHq+1 = i
)

is independent ofq. A powerful means to compute the dis-
tribution of H0 is to employ generating functions extended
to matrices [21], exploiting the conditional independenceand
the identical distribution among the sojourn times{Tq}. This
more intricate version of the generating function is necessary
to keep track of the channel state entered after each downward
queue transition. This method is described below.

Consider a reduced Markov chain composed of states
{(i, 0), (i, 1)}ki=1, as shown in Fig. 3 for a Gilbert-Elliott
channel. This reduced Markov chain represents one downward
queue transition of the original system. Under proper state
ordering, we can write the transition probability matrix for
the reduced subsystem as

P =

[

I 0

M K

]

, (8)

where we have implicitly defined matrices

M =











µ11 · · · µ1k

µ21 · · · µ2k

...
. . .

...
µk1 · · · µkk











K =











κ11 · · · κ1k

κ21 · · · κ2k

...
. . .

...
κk1 · · · κkk











.

We emphasize thatP is a stochastic matrix. As a consequence
of the Perron-Frobenius theorem, we know that the spectral
radius associated withP is one [36].
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Fig. 3. This reduced Markov diagram represents one of the quasi-birth-death
subcomponents of the queueing system. Starting from any distribution over
these four states, it is possible to characterize the sojourn time T spent at
level one. This is a key step in deriving the first-passage time to an empty
buffer.

Define sojourn timeT as the time spent at queue-level1 of
the reduced Markov chain. Mimicking our original notation,
let Qs denote the level of the queue (either1 or 0) at the
onset of codewords and letUs = (CsN+1, Qs). Suppose the
reduced Markov chain starts at queue-level1, i.e. Q0 = 1,
then

T = inf {s ≥ 0|Qs = 0} .

The random variables{Tq}
m
q=1 and T have identical condi-

tional distributions. That is, for any1 ≤ q ≤ m,

Pr (T = t, CNT+1 = j|C1 = i)

= Pr
(

Tq = t, CNHq−1+1 = j|CNHq+1 = i
)

.

The distributions of the sojourn timesT1, . . . , Tm are im-
portant for determining the distribution ofH0. Thus, the above
relation betweenT1, . . . , Tm andT implies that the distribu-
tion of T is critical. Generating functions are an elegant way
to characterize such distributions. Define matrix generating
functionGT (z) entrywise by

[GT (z)]ij = E
[

zT1{CNT+1=j}|C1 = i
]

(9)

where1{·} is the standard set indicator function.
Lemma 1:For the reduced subsystem associated with (8),

the matrix generating functionGT (z) is equal to

GT (z) = (I−Kz)
−1

Mz. (10)

Proof: The matrix generating functionGT (z) can be
obtained by treating the entries ofP as real polynomials inz,
with

Pz =

[

I 0

Mz Kz

]

.

Consider the two states(i, 1) and(j, l), wherel = 0 or l = 1.
Their indices in the ordering associated withP arek + i and
lk+ j, respectively. Recall thatJztK denotes the operator that
maps a polynomial inz to the coefficient ofzt. Suppose that,
at time zero, the reduced system starts in state(i, 1). After s
transmissions, the reduced system will be in state(j, 1) only
when all thes transmissions result in decoding failures. Thus

Pr (Us = (j, 1)|U0 = (i, 1)) = [Ks]i,j . (11)

Similarly, the probability that the reduced system is in state
(j, 0) afters transmissions and having spent exactlyt steps in
queue-level1, where1 ≤ t ≤ s, is given by

k
∑

h=1

Pr (Us = (j, 0), Ut = (j, 0), Ut−1 = (h, 1)|U0 = (i, 1)) .

Since the reduced system does not transition to a different state
after reaching queue-level0 (see Fig. 3), this can be reduced
to

k
∑

h=1

Pr (Us = (j, 0), Ut = (j, 0), Ut−1 = (h, 1)|U0 = (i, 1))

=

k
∑

h=1

Pr (Ut = (j, 0), Ut−1 = (h, 1)|U0 = (i, 1))

=
[

K
t−1

M
]

i,j
. (12)

Combining (11) and (12), the joint probability that the reduced
system is in state(j, l) at time s > 0 and has spent exactly
t steps at queue-level1, where1 ≤ t ≤ s, can be expressed
compactly as

Pr(Ss = t, Us = (j, l)|U0 = (i, 1)) = JztK [Ps
z]k+i,lk+j ,

whereSs represents the total time spent at queue-level1 over
the interval from zero to instants. SinceT is a discrete random
variable that is finite almost surely,

[GT (z)]ij = E
[

zT1{CNT+1=j}|C1 = i
]

= lim
s→∞

s
∑

t=0

Pr (T = t, CNt+1 = j|C1 = i) zt

= lim
s→∞

s
∑

t=0

Pr (Ss = t, Us=(j, 0)|U0=(i, 1)) zt

= lim
s→∞

s
∑

t=0

(

JztK [Ps
z]k+i,j

)

zt

= lim
s→∞

[Ps
z ]k+i,j .

Therefore the generating matrixGT (z) can be obtained as

GT (z) = lim
s→∞

[

0 I
]

P
s
z

[

I

0

]

= lim
s→∞

[

0 I
]

[

I 0
∑s

t=1 K
t−1

Mzt M
szs

] [

I

0

]

= lim
s→∞

s
∑

t=1

K
t−1

Mzt

= (I−Kz)−1
Mz.

The above equation holds for all|z| < ̺(K)−1, where̺(·)
denotes the spectral radius of its matrix argument.

B. Hybrid Automatic Repeat Request

Hybrid ARQ is a mechanism that seeks to incorporate the
partial information contained in failed transmissions into the
subsequent decoding attempts of the same data segment. In
this sense, it differs significantly from ARQ only when the
initial decoding of a data segment fails. For finite-state erasure
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channels with memory, the evolution of a hybrid ARQ system
can be characterized completely, although in a somewhat
cumbersome manner. To implement hybrid ARQ with random
codes, we must modify our coding strategy slightly.

Herein, we focus on hybrid schemes with finite depths. That
is, the transmitter-receiver pair has a predetermined number
of tries to successfully transmit a data segment. Our favored
implementation relies on puncturing random codes. In a way
analogous to our previous approach, we generate a codebook
by creating a random binary parity check matrix of size
(aN − K) × aN , wherea is the depth of the hybrid ARQ
scheme. Again, the entries are selected uniformly from the
binary alphabet and the codebook is equal to the nullspace of
this matrix. The hybrid ARQ scheme progresses as follows.
First, an information segment is mapped to a codeword of
length aN . During the initial transmission, the leadingN
symbols of this codeword are sent over the erasure channel.
Upon completion of this phase, the destination tries to recover
the original data segment. When decoding fails, the nextN
symbols are sent and the aggregate message is run through a
maximum-likelihood decoder. This process continues, commu-
nicatingN symbols at a time, until the message is successfully
decoded at the destination or the total number of attempts
reaches its limit.

Since untransmitted symbols can be classified as erasures
for the purpose of decoding, we can leverage (2) in assessing
the probabilities of decoding failure at the destination. That
is, whens codeword chunks are present at the destination, out
of which a total ofe symbols are erased, the probability of
decoding failure can be written as

Pf(aN −K, e+ (a− s)N)

= 1−

e+(a−s)N−1
∏

i=0

(

1− 2i−(aN−K)
)

.
(13)

Comparing this expression fors = 1 and a > 1 to (1), we
gather that the probability of decoding failure after receiving
one chunk of lengthN for the hybrid ARQ scheme differs
from the probability of failure in standard ARQ. Indeed,
there is a slight penalty for the initial transmission resulting
from using a random code tailored to hybrid ARQ. The
following proposition establishes a uniform bound on the loss
in performance associated with the hybrid scheme.

Proposition 1: Suppose thatp and e are fixed, positive
integers. The function ofn defined by

Pf(p+ n, e+ n) =

{

1−
∏n+e−1

l=0

(

1− 2l−p−n
)

if e ≤ p

1 if e > p

is monotone increasing. Furthermore, the difference between
this function andPf(p, e) is uniformly bounded,

Pf(p+ n, e+ n)− Pf(p, e) ≤ 2−p.

Proof: See Appendix B.
The probability of decoding failure for the initial transmis-

sion of the hybrid ARQ scheme isPf(aN−K, e+(a−1)N),
and it is Pf(N − K, e) for the standard ARQ scheme when
the codeword sufferse erasures. As an immediate consequence
of Proposition 1, we know that the penalty incurred in using

hybrid ARQ in terms of probability of decoding failure at the
first attempt is

Pf(aN −K, e+ (a− 1)N)− Pf(N −K, e) ≤ 2−(N−K),

which remains very small for typical scenarios. This brings
credibility to employing a punctured random code in our
analysis.

Using random codes over erasure channels leads to some
highly desirable properties for the hybrid ARQ problem. These
properties are, in turn, instrumental in finding expressions for
the probabilities of success at intermediate decoding attempts.
Suppose that a codebook is generated using a(aN−K)×aN
parity check matrix. For this specific code, if decoding fails
given the firstsN received symbols (including erasures), then
it will necessarily be impossible to decode the message using
the leading(s−1)N received symbols. This nesting is in stark
contrast to error channels.

We employP (s)
f (j|i) andP (s)

s (j|i) to denote the conditional
probability of decoding failure and first reliable decoding
success at attempts, respectively, with final statej and given
initial statei. The conditional probabilities of decoding failure
are equal to

P
(s)
f (j|i) =

sN
∑

e=0

Pf(aN −K, e+ (a− s)N)×

Pr (EsN = e, CsN+1 = j|C1 = i) .

Above,EsN represents the number of erasures over the dis-
crete interval[1, sN ]. Given the probabilities of failure events,
the conditional probabilities of success can be evaluated in a
recursive fashion. Since decoding failure and decoding success
at attempt one are complementary events, we have

Pr(CN+1 = j|C1 = i) = P
(1)
f (j|i) + P (1)

s (j|i).

Thus, the probability of a success at time one with final statej
given initial statei, can be written as

P (1)
s (j|i) = Pr(CN+1 = j|C1 = i)− P

(1)
f (j|i).

We note that this equation is the complement of (4), with a
convenient new notation and appropriate parameters.

Similarly, consider the first two attempts in a hybrid ARQ
scheme. Three disjoint events can occur: decoding failure at
attempt two, decoding success for the first time at attempt two,
decoding success at attempt one after which the channel enters
some statel. Summing over all intermediate statesl,

Pr(C2N+1 = j|C1 = i) = P
(2)
f (j|i) + P (2)

s (j|i)

+
∑

l∈C

P (1)
s (l|i) Pr(C2N+1 = j|CN+1 = l).

Consequently, the conditional probability of being able to
decode for the first time at attempt two with final statej and
under initial statei is

P (2)
s (j|i) = Pr(C2N+1 = j|C1 = i)− P

(2)
f (j|i)

−
∑

l∈C

P (1)
s (l|i) Pr(C2N+1 = j|CN+1 = l).
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Extending this procedure, we can compute the probability of
a decoding success at attempts with final statej, given initial
statei,

P (s)
s (j|i) = Pr (CsN+1 = j|C1 = i)− P

(s)
f (j|i)

−

s−1
∑

r=1

∑

l∈C

P (r)
s (l|i) Pr (CsN+1 = j|CrN+1 = l) .

This methodology provides a recursive and efficient way to
compute the probabilities that, under hybrid ARQ, a system
takes exactlys coded chunks to decode the original message.
As in Section III-A, we intend to compute the matrix gen-
erating function ofT , the time spent in the first level of the
reduced Markov chain.

Consider the aforementioned hybrid ARQ scheme with
depth equal toa. When there is a decoding failure at attempt
a, the hybrid ARQ system has a few potential options. The
system can discard previously received symbols altogetherand
start the process anew. Alternatively, the transmitter canre-
encode the data segment and the information in previously
received symbols can be used as side information during the
decoding process. No matter what the exact strategy is, the
queue occupancy of a hybrid ARQ system can always be lower
and upper bounded.

• Lower bound: In this mode, the decoding of a message
always succeeds by theath attempt. We call this the
optimistic system. LetŤ denote the time spent in the
first level of the reduced Markov chain associated with
this system.

• Upper bound: In this mode, whenever decoding fails at
the ath attempt, previously received symbols are dis-
carded altogether and the process starts anew. We call
this the pessimistic view. Let̂T denote the time spent in
the first level of the reduced Markov chain of this system.

In essence,Ť and T̂ are Markov times that provide lower
and upper bounds onT , the true stopping time of the hybrid
ARQ decoding process. These strategies jointly produce a
near complete characterization of the behavior of hybrid ARQ
systems. We turn to the specifics of the proposed approaches
below.

As mentioned above, an optimistic bound (lower bound) on
T can be derived using

P̂ (a)
s (j|i) = Pr (CaN+1 = j|C1 = i)

−
a−1
∑

r=1

∑

l∈C

P (r)
s (l|i) Pr (CaN+1 = j|CrN+1 = l) ,

instead ofP (a)
s (j|i), by assuming that the decoding always

succeeds by theath attempt. This bound holds irrespective of
how the system handles failures at attempta. We define the
optimistic matrix generating functionGŤ (z) = Gmin {T,a}(z)
entrywise by

[GŤ (z)]ij =

a−1
∑

r=1

P (r)
s (j|i)zr + P̂ (a)

s (j|i)za.

The pessimistic matrix generating functionGT̂ (z) can be
derived in two steps. First, consider the matrix generating

function

[GT̃ (z)]ij =

a
∑

r=1

P (r)
s (j|i)zr

Then, under the assumption that information is discarded when
the a decoding attempts have failed, we get

GT̂ (z) =

∞
∑

t=0

zat
(

P
(a)
f

)t

GT̃ (z) =
(

I− zaP
(a)
f

)−1

GT̃ (z).

Above, the matrixP(a)
f is defined entrywise as

[

P
(a)
f

]

ij
= P

(a)
f (j|i).

We will return to these bounds and their application in
Section VI.

C. Hitting Time to an Empty Buffer

We can build upon the matrix generating function ofT
to obtain the distribution ofH0. The basic insights behind
this characterization are that the sojourn time at any levelis
finite almost surely and generating matrices can account for
conditional independence.

Theorem 2:The ordinary generating function ofH0, the
first-passage time to an empty queue, is given by

GH0(z) = E
[

zHq
]

= π0 (GT (z))
m







1
...
1






(14)

whereπ0 is the channel state probability vector at time zero.
Proof: This expression forGH0(z) can be obtained from

an application of mathematical induction, which proceeds
backward in time. The first step consists in showing that the
hypothesis holds for the base case, the sojourn time at levelm,

[π0GTm
(z)]j =

k
∑

i=1

[GTm
(z)]ij Pr(C1 = i)

=

k
∑

i=1

E
[

zTm1{CNTm+1=j}

∣

∣C1 = i
]

Pr(C1 = i)

= E
[

zTm1{CNTm+1=j}

]

= E
[

zHm−11{CNHm−1+1=j}

]

where we have used the fact thatHm−1 = Tm. Thus, we
gather that

JztK [π0GTm
(z)]j = Pr

(

Hm−1 = t, CNHm−1+1 = j
)

.

We continue with the inductive step in a similar manner.
Suppose that the hypothesis is true for a certain integerq where
0 < q < m; that is,

[

π0GHq
(z)
]

j
= E

[

zHq1{CNHq+1=j}

]

=
[

π0GTm
(z) · · ·GTq+1 (z)

]

j
.
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Then, we can write

E
[

zHq−11{CNHq−1+1=j}

]

= E
[

zHq+Tq1{CNHq−1+1=j}

]

=

k
∑

i=1

E
[

zHq+Tq1{CNHq−1+1=j}

∣

∣

∣CNHq+1 = i
]

×

Pr(CNHq+1 = i)

=
k
∑

i=1

E
[

zHq1{CNHq+1=i}

]

×

E
[

zTq1{CNHq−1+1=j}

∣

∣

∣CNHq+1 = i
]

=
k
∑

i=1

[

π0GTm
(z) · · ·GTq+1(z)

]

i

[

GTq
(z)
]

ij

=
[

π0GTm
(z) · · ·GTq

(z)
]

j
=
[

π0GHq−1(z)
]

j
.

That is, the hypothesis is also true forq− 1. We note that the
third equality follows from the conditional independence of
our quasi-birth-death Markov process. In our problem, we have
GTq

(z) = GT (z) for all q ∈ {1, . . . ,m}. Since this expres-
sion holds for anyπ0, we conclude thatGH0(z) = (GT (z))

m

and, as a consequence,

JztK [π0 (GT (z))
m]j = Pr (H0 = t, CNH0+1 = j) .

Summing over all the possible end states, we recover the
expression forGH0(z) given in (14).
To differentiate among possible initial conditions, it will
become useful to write the first-passage time to an empty
queue with an initial buffer size ofm segments asH(m)

0 .

IV. L ARGE DEVIATION ANALYSIS

As seen in the previous section, it is possible to evaluate
the exact distribution ofH(m)

0 . This facilitates the selection
of parameters to optimize overall performance. However, this
process becomes cumbersome for large buffer sizes. In such
circumstances, analyzing the large deviations governing the
system offers a new direction to derive meaningful guidelines
for resource allocation and parameter tuning. Below, we study
two types of aberrations under the ARQ scheme: deviations
in the average transmission time and the mean service rate.
We note that, although large deviations can be studied under
hybrid ARQ, this latter scenario is somewhat tedious and
it offers limited additional insights. Hence we restrict our
attention to the ARQ scheme. We begin with the average
transmission time; that is, the normalized first-passage time
to an empty queue.

A. Normalized First-Passage Time

Again, suppose that the transmit buffer contains exactlym
segments at the onset of the communication process. We are
interested in the large deviations associated with the sequence
of random variables specified by

Ym =
1

m
H

(m)
0 =

1

m

m
∑

q=1

Tq m = 1, 2, . . .

The logarithmic moment generating function forYm is

Λm(λ) = log E
[

eλYm
]

= logE
[

eλH
(m)
0 /m

]

= logG
(m)
H0

(

eλ/m
)

.

The existence of limits of properly scaled logarithmic moment
generating functions suggests that{Ym} may satisfy a large
deviation principle [22]. In particular, consider the following
asymptotic regime

Λ(λ) = lim
m→∞

1

m
Λm(mλ) = lim

m→∞

1

m
logG

(m)
H0

(

eλ
)

= lim
m→∞

1

m
log
(

π0

(

GT

(

eλ
))m

1

)

.
(15)

A few observations concerningΛ(λ) are in order. In view of
Lemma 1 and forz = eλ,

GT

(

eλ
)

=

(

∞
∑

t=0

K
tetλ

)

Meλ

is a non-negative matrix over the extended real numbers. In
fact, this matrix possesses additional properties which are
summarized below. Again, let̺(·) denote the spectral radius
of its matrix argument.

Lemma 2: If T is finite almost surely, the matrix generator
GT

(

eλ
)

exists as a non-negative real matrix if and only if
λ < − log ̺(K). In particular, whenλ ≥ − log ̺(K), one or
more entries ofGT (e

λ) will be infinite.
Proof: See Appendix C.

Another important quantity is the spectral radius ofK,
which is related to the support ofGT

(

eλ
)

as seen in
Lemma 2.

Corollary 1: If T is finite almost surely, then̺(K) < 1.
Proof: See Appendix D.

Under Assumption 1 and for any non-trivial coding scheme,
T is finite almost surely, thus the hypotheses of Lemma 2
and Corollary 1 are satisfied. A sufficient condition to ensure
the existence of a large deviation principle for the average
transmission time is that the Markov process{Ut} sampled at
departure events{Hq} is irreducible. This guarantees that the
states of the corresponding jump chain form a unique recurrent
class. Formally, we postulate the following condition.

Assumption 2:The matrix(I−K)−1
M is irreducible.

We note that, strictly speaking, this is not a necessary
condition. Having a unique communicating class and, possibly,
transient states in the jump chain will also work. However,
this more encompassing setting leads to extra bookkeeping,
which unnecessarily clouds some of the underlying concepts.
Furthermore, all the practical systems we wish to study fulfill
the requirements of Assumption 2. As such, we take it for
granted from this point forward. Under this assumption, the
matrix GT

(

eλ
)

is irreducible for anyλ < − log ̺(K) and,
hence, the Perron-Frobenius theorem applies [36], [22]. This
leads to the following result.

Proposition 2: Under Assumption 2, the limiting moment
generating function defined in (15) exists as an extended real
number for everyλ ∈ R, with

Λ(λ) =

{

̺
(

(

I−Keλ
)−1

Meλ
)

λ < − log ̺(K)

∞ otherwise.
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Proof: See Appendix E.
Using matrix norms, it can be shown thatGT

(

eλ
)

is
differentiable entrywise over the intervalλ < − log ̺(K).
SinceΛ(λ) is an isolated root of the characteristic function
of matrix GT

(

eλ
)

, we deduce that it is positive, finite and
differentiable with respect toλ (see, e.g., [37, Th. 11.5.1], [22,
p. 75]). Corollary 1 asserts that̺(K) < 1, which implies that
Λ(0) is finite. In view of the discussion above, we conclude
that the origin is in the interior of{λ ∈ R : Λ(λ) < ∞}.
Consequently,Λ(λ) is essentially smooth and the Gärtner-Ellis
theorem applies [22], thereby establishing the desired result.

Theorem 3:Suppose
{

Ym = 1
m

∑m
q=1 Tq

}

is the empirical
mean sojourn time per level. For everyx ∈ R, consider the
Fenchel-Legendre transform

Λ∗(x) = sup
λ∈R

{

λx − log ̺
(

GT

(

eλ
))}

. (16)

The empirical meanYm satisfies the large deviation principle
with the convex, good rate functionΛ∗(·). That is, for any set
Γ ⊆ R and any initial statec ∈ C,

− inf
x∈Γo

Λ∗(x) ≤ lim inf
m→∞

1

m
log Pr(Ym ∈ Γ)

≤ lim sup
m→∞

1

m
log Pr(Ym ∈ Γ) ≤ − inf

x∈Γ̄
Λ∗(x),

whereΓo and Γ̄ denote the interior and closure of the setΓ,
respectively.

Example 1:For the Gilbert-Elliott channel shown in Fig. 1,
it is possible to obtain a closed-form expression for the spectral
radius ofGT

(

eλ
)

. Specifically, we can write the characteristic
polynomial ofGT

(

eλ
)

as

det
(

γI−GT

(

eλ
))

= det
(

γI−
(

I−Keλ
)−1

Meλ
)

=
det
(

γI− γKeλ −Meλ
)

det (I−Keλ)
.

We note that the numerator is a quadratic equation inγ and the
denominator is a constant. It is therefore possible to find para-
metric expressions for the two roots ofdet

(

γI−GT

(

eλ
))

.
Taking the maximum of the absolute values of these two roots
yields an explicit, albeit convoluted, expression for the spectral
radius ofGT

(

eλ
)

. As such,Λ∗(·) can be obtained efficiently.

B. Empirical Mean Service

We turn to the second type of aberrations we wish to study:
deviations in the empirical mean service rate,

Zs =
1

s

s
∑

t=1

Dt.

We note that{Ds} is not a Markov process. However,Ds

is a (trivial) deterministic function ofVs = (C(s+1)N+1, Ds).
Since{Vs} is a Markov process, we can apply general results
on the large deviation principle of additive functionals of
Markov chains. To leverage these results, we first impose an
ordering on the state spaceV = C×{0, 1}. Recall that|C| = k;
a natural ordering for this state space is to associate integer
v = (dk+i) with state(i, d). Using this ordering, the transition

probability matrixΠ for the augmented process{Vs} is given
by

[Π]v1,v2 = π(v1, v2), v1, v2 ∈ {1, . . . , 2k}

where π(v1, v2) is the probability of jumping to statev2,
conditioned on starting fromv1.

Assumption 3:The matrixΠ is irreducible.
This assumption is similar in spirit to Assumption 2. Yet

the large deviation principle on the empirical service can be
derived under weaker conditions. In particular, it sufficesto
show thatK +M is irreducible, a requirement that is easily
met. We stress thatK + M is equal toBN , and the latter
matrix is itself irreducible by Assumption 1.

Theorem 4 ([22]): Let {Vs} be a finite-state Markov chain
possessing an irreducible transition matrixΠ. For everyx ∈
R, define

I(x) = sup
λ∈R

{λx− log ̺ (Πλ)} (17)

whereΠλ is a nonnegative matrix whose elements are

πλ (v1, v2) = π(v1, v2)e
λd2 v1, v2 ∈ {1, . . . , 2k}.

Then, the empirical meanZs satisfies the large deviation
principle with the convex good rate functionI(·). Explicitly,
for any setΓ ⊆ R, and any initial statev ∈ V ,

− inf
x∈Γo

I(x) ≤ lim inf
s→∞

1

s
logP π

v (Zs ∈ Γ)

≤ lim sup
s→∞

1

s
logP π

v (Zs ∈ Γ) ≤ − inf
x∈Γ̄

I(x)

whereP π
v denotes the Markov probability measure induced

by transition probabilityΠ and initial statev ∈ V , i.e.,

P π
v (V1 = v1, . . . , Vs = vs) = π(v, v1)

s−1
∏

t=1

π(vt, vt+1).

Expressions for the transition probabilities used in this
theorem appear in (6). We note that

Pr (Vs+1 = (j, d2)|Vs = (i, d1))

= Pr
(

Vs+1 = (j, d2)|C(s+1)N+1 = i
)

;

this induces a repetitive structure in matrixΠ. The nonnegative
matrix Πλ associated with everyλ ∈ R can then be written
explicitly as

Πλ =





















κ11 · · · κ1k µ11e
λ · · · µ1ke

λ

...
. . .

...
...

. . .
...

κk1 · · · κkk µk1e
λ · · · µkke

λ

κ11 · · · κ1k µ11e
λ · · · µ1ke

λ

...
. . .

...
...

. . .
...

κk1 · · · κkk µk1e
λ · · · µkke

λ





















. (18)

We can rewriteΠλ by taking advantage of its block structure,

Πλ =

[

K Meλ

K Meλ

]

.

The pertinent eigenvalues are the roots of the characteristic
polynomial ofΠλ. Using properties of matrix determinant and
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the commutative properties of some of the blocks, we can
express this polynomial as

det (γI−Πλ) = det
(

(γI−Meλ)(γI−K)−MKeλ
)

= det
(

(γI−K)(γI−Meλ)−KMeλ
)

= det
(

γ2
I− γK− γMeλ

)

.

Collectively, Theorem 4 and the matrix defined in (18)
provide an algorithmic workflow for the computation of the
good rate function associated with the empirical means{Zs}.
We follow this discussion with an example based on a two-
state channel with memory.

Example 2:Once again, consider a Gilbert-Elliott erasure
channel with C = {1, 2}. An advantage in studying this
rudimentary model is that it admits a simple, closed-form
characterization. The dimension of the state space in this case
is |V| = 4. Using the commutative block structure discussed
above, the determinant of(γI−Πλ) reduces to

det (γI−Πλ) = det
(

γ2
I− γK− γMeλ

)

= γ2 det

([

γ − κ11 − µ11e
λ −κ12 − µ12e

λ

−κ21 − µ21e
λ γ − κ22 − µ22e

λ

])

.

By inspection, we see that the spectral radius ofΠλ is the
largest root of the quadratic equation

γ2 − γ(κ11 + κ22 + (µ11 + µ22)e
λ)

+ (κ11 + µ11e
λ)(κ22 + µ22e

λ)

− (κ12 + µ12e
λ)(κ21 + µ21e

λ) = 0.

For fixed parameters, this dominating root can be computed
using the celebrated quadratic formula. We will revisit this
example in Section VI.

C. Relation betweenΛ∗(·) and I(·)

The two rate functions introduced above,Λ∗(·) and I(·),
characterize the large deviation principles for the mean trans-
mission time and average service rate, respectively. Sincethe
processes{Tq} and{Ds} are closely related, one can presume
that their governing rate functions are somehow linked. A key
insight in understanding this relation is to realize that the
following events are equivalent: for any positive integersm
andn,

{T1 + · · ·+ Tm > n} = {D1 + · · ·+Dn < m}. (19)

In words, the first event occurs whenever more thann attempts
are required to successfully deliverm packets, while the
second event states that fewer thanm packet transmissions
have been successful within the firstn attempts. Using this
relationship and scaling arguments, one can establish our
next proposition which substantiates the existence of a strong
connection between the two rate functions.

Proposition 3: If the rate functionsΛ∗(·) andI(·) are finite
in the open intervals(1,∞) and(0, 1), respectively, then they
satisfy

I(x) = xΛ∗

(

1

x

)

for x ∈ (0, 1).
Proof: See Appendix F.

V. PERFORMANCEEVALUATION

Thus far, we have devoted much attention to developing a
thorough understanding ofH0 and, in particular, its generating
function. In this section, we apply the results of Theorem 2
and we derive a number of pertinent performance criteria with
practical significance.

First, recall thatJztKGH0 (z) = Pr(H0 = t). Accordingly,
the probability that the queue fails to drain withinτ time units
is equal to

Pr(H0 > τ) = 1−

⌊τ⌋
∑

t=0

JztKGH0 (z).

Moreover, the average time required to empty the queue is
obtained by differentiating the moment generating function of
H0 and then taking the limit asz approaches one,

E [H0] = lim
z↑1

d

dz
GH0(z).

Alternatively, using Chernoff inequalities, it is possible
to upper bound the probability of a deviation event in a
computationally efficient manner. The equation

Pr(H0 > τ) ≤ e−λτE
[

eλH0
]

= e−λτGH0

(

eλ
)

holds for anyλ > 0. The optimal bound derived from this col-
lection of inequalities is sometimes expressed in logarithmic
form,

log Pr(H0 > τ) ≤ − sup
λ>0

{

λτ − log
(

GH0

(

eλ
))}

.

The large deviation principle onH0 derived in Section IV
confirms that, under mild conditions, this latter bound is
asymptotically tight.

It may be instructive to stress thatH0, the first-passage
time introduced in (7), is defined in terms of codeword
transmission attempts. That is,H0 represents the cumulative
number of codewords sent by the source until the queue
empties out completely. Such a metric poses no issue when
comparing systems of identical block lengths. However, when
assessing the performance of candidate implementations with
different block lengths, a more careful interpretation of the
results becomes necessary. This subtlety arises because ofthe
mismatch in indexing between the evolution of the queue and
the number of channel uses. For a fair evaluation of potential
candidates, hitting times should be scaled to portray their
evolution according to a common clock, that of the channel
process.

Define random variablẽH0 by

H̃0 = NH0,

where N designates the block length associated with the
underlying implementation. Then,̃H0 denotes the number
of channel uses necessary to empty out the queue, and it
can therefore be employed to provide a uniform measure
of performance. While it is straightforward to extend our
performance criteria tõH0 through the relation

Pr(H0 > τ) = Pr
(

H̃0 >
τ

N

)

,
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it is essential to apply this transformation when comparing
systems with different block lengths.

A similar scaling is needed when comparing the large
deviations of systems with different parameters. A proper
scaling for the fair comparison of mean sojourn times can
be expressed in terms of channel uses per information bit,

Ỹℓ =
1

ℓ
NH

(⌈ℓ/K⌉)
0 .

This leads to the following asymptotic regime

lim
ℓ→∞

1

ℓ
log Pr

(

Ỹℓ > τ
)

=
1

K
lim
ℓ→∞

1

⌈ℓ/K⌉
log Pr

(

1

⌈ℓ/K⌉
H

(⌈ℓ/K⌉)
0 >

K

N
τ

)

=
1

K
lim

m→∞

1

m
log Pr

(

1

m
H

(m)
0 >

K

N
τ

)

= −
1

K
Λ∗

(

K

N
τ

)

where τ > E
[

Ỹ∞

]

. Likewise, to account for discrepancies
in design parameters, the empirical mean service can be
expressed in terms of decoded bits per channel use,

Z̃n =
1

n

⌊n/N⌋
∑

t=1

KDt.

The ensuing asymptotic regime becomes

lim
n→∞

1

n
log Pr

(

Z̃n < η
)

=
1

N
lim

n→∞

1

⌊n/N⌋
log Pr





1

⌊n/N⌋

⌊n/N⌋
∑

t=1

Dt <
N

K
η





=
1

N
lim
s→∞

1

s
log Pr

(

1

s

s
∑

t=1

Dt <
N

K
η

)

= −
1

N
I

(

N

K
η

)

whereη < E
[

Z̃∞

]

. Collectively, these various modifications
enables the comparison of competing implementations with
different values forK andN .

Another concern that comes into play when optimizing over
block length is the impact of the initial state of the system.
If the number of bits at the source is fixed at time zero, the
scope of the optimal solution may be very narrow. This is a
situation akin to over-fitting in statistical modeling. To provide
a more robust characterization with widely applicable results
and guidelines, it may be beneficial to assume that the number
of bits in the queue at the onset of the transmission process
is random, with a prescribed representative distribution.In
our numerical study, we circumvent some of these difficulties
by assuming that the block length is fixed and the initial
queue length is random. The specifics of our investigation are
detailed below.

VI. N UMERICAL ANALYSIS

In this section, we apply the methodology developed above
to an illustrative example. Physical parameters are selected
to resemble an implementation of the global system for
mobile communications (GSM). Specifically, the block length
is fixed atN = 114. The information content per codeword,
K, is a parameter to be optimized. We model the wireless
connection as a Gilbert-Elliott erasure channel, and we denote
its transition probability matrix as

B =

[

b11 b12
b21 b22

]

.

For simplicity, we assume thatε1 = 1 and ε2 = 0. The
probability of a bit erasure is set at twenty percent, which
entails

b21
b12 + b21

= 0.2.

For this elementary model, channel memory can be expressed
unambiguously through the decay factor(1−b12−b21), which
is determined by the spectrum of the matrix. A decay factor
equal to zero is equivalent to a memoryless channel, while
correlation increases as(1−b12−b21) approaches one. Except
where specified otherwise, we employ a decay factor equal to
0.9 in our numerical results.

We assume thatL, the number of information bits contained
at the source at time zero, is a random variable possessing a
Gamma distribution with mean2000 and standard deviation
100. Randomizing the number of bits at the source partly
alleviates the idiosyncratic effects associated with partitioning
the queue content into segments ofK bits. For a source buffer
with ℓ information bits, the number of segments to be delivered
is ⌈ℓ/K⌉ and, as such, a one-bit variation inℓ can result in
having an additional message to send. Imposing a random
distribution on the number of information bits at the source
leads to a probability distribution onM = ⌈L/K⌉. This, in
turn, yields smoother results.

Figures 4 and 5 present the mean and variance of the first-
passage times for the ARQ and hybrid ARQ schemes as
functions of the number of information bits per codeword.
Varying the code rate affects both the expected value of
the first-passage time and its variance. A low code rate
offers more protection against erasures and, accordingly,the
resulting distribution of the hitting time to an empty queue
is very narrow. Increasing the code rate initially reduces the
mean first-passage time, as every successful decoding attempt
reveals more information bits. However, a higher code rate also
raises the probability of decoding failure. Eventually, asthe
code rate is pushed further, decoding failures start to hamper
the draining process and the mean first-passage time grows
due to excessive repetition requests. This effect is much more
pronounced for standard ARQ.

The penalty in using a high code rate is less severe for the
hybrid ARQ scheme because the failure recovery mechanism,
which is based on incremental redundancy, adapts gracefully to
channel conditions in this latter case. For instance, whenK is
very close toN , decoding under standard ARQ will fail nearly
every time. Contrastingly, the effective code rate drops rapidly
with decoding failures under hybrid ARQ. The robust profile
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Fig. 4. This figure shows mean first-passage times as functions of K. The
block length employed in all cases isN = 114. The underlying Gilbert-Elliott
channel produces erasures with probability0.20, and it possesses a dominant
decay factor of(1 − b12 − b21) = 0.9. The expected number of bits at the
source at time zero is2000. The upper and lower bounds for the hybrid ARQ
scheme with a depth ofa = 3 are indistinguishable.

of hybrid ARQ is a key property that underlies the popularity
of this paradigm in practical systems. In the current example,
the upper and lower bounds derived forE[H0] under the hybrid
ARQ scheme are essentially indistinguishable, hinting at the
fact that decoding failures are nearly nonexistent once three
blocks are received.
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Fig. 5. This figure displays variances of the first-passage times to an empty
queue as functions ofK. The parameters used in this numerical study are the
same as those featured in Fig. 4. The variance for the hybrid ARQ scheme is
calculated with the upper bound̂T .

Perhaps not too surprisingly, our numerical investigation
suggests that the optimal code rate is somewhat impervious to
initial queue conditions. To examine the effects of the initial
queue length, we employ the channel parameters described
above and we modify the distribution onL. For Gamma
distributions with meansE[L] ∈ {500, 1000, 2000, 3000} and
standard deviation100, the optimal value ofK in terms of
mean first-passage time is consistently equal to73 for standard

ARQ and it remains fixed at81 for the hybrid variant.
Using the methodology established thus far, it is possible to

consider additional performance criteria. For instance, we can
analyze the crossings of the cumulative distribution function,

hp = min
t
{t|Pr(H0 ≤ t) ≥ p}.

Fig. 6 plots the number of transmission attempts associated
with threshold valuesp ∈ {0.45, 0.95}. We observe that
the optimal value ofK decreases slightly when the crossing
thresholdp approaches one. In other words, when focusing
on worst-case behavior, the system tends to favor a more
conservative setting with extra protection against erasures.
This phenomenon offers another perspective on the tradeoff
between expected behavior and its variations.
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Fig. 6. The crossings of the cumulative distribution function FH0
(·) offer

conservative figures of merit for the operation of the queueing system. In this
example, the lines correspond to thresholdsp ∈ {0.45, 0.95}.

Next, we turn to the large deviations techniques developed
in Section IV. As a reference, we consider a voice stream
application. In GSM, each speech frame of length 20 ms is
encoded into a data segment of length 228. The underlying
physical layer has the ability to transmit one symbol every
40 µs. If we approximate the maximum delay tolerance for
one-way voice traffic to be 40 ms [38, p. 70], then this requires
228 bits to be transmitted within roughly1000 channel uses.
This constraint, in turn, necessitates a nominal rate on theorder
of 0.23 bits per channel use for link reliability. We adopt this
figure as a rough estimate for the needs of a voice stream in
our numerical study.

The maximum throughput that can be supported over the
Gilbert-Elliott channel in our example is slightly above 0.5 bits
per channel use. Recall that thresholdη represents a minimum
target requirement on the number of information bits per
channel use that can be successfully decoded at the destination,
in an asymptotic regime. Whenη < 0.5, there exist values of
K for which the rate function1

N I
(

N
K η
)

is strictly positive;
this can be seen in Fig. 7. These curves can be used to
characterize the tension between quantization and failures to
deliver media properly. A high-quality stream, with a large
η, will offer an enhanced viewer experience when transmitted
adequately, but will necessarily be more prone to interruptions
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Fig. 7. This figure plots good rate functions governing largedeviations in
the empirical mean service as functions ofK, the number of information bits
per codeword. Given throughput thresholdη, the optimal value ofK is the
argument corresponding to the apex of the function.

and failures, as exposed through the rate functions. A low-
bandwidth, low-quality stream on the other hand offers a better
delivery profile with a smaller probability of failure. However,
the quality of the playback may not be satisfactory to the end
user. A proper selection of parameters for an adequate overall
user experience can be made through the rate functions of
Fig. 7.

Onceη is picked, the corresponding curve displays perfor-
mance as a function ofK. For low code rates, the maximum
achievable throughput is less than the service requirementand
hence the rate function governing large deviations is zero.
At high code rates, performance is limited by the rise in the
probability of decoding failure. The system must then find the
right balance between the frequency of failures and the payoff
of a decoding success in terms of information bits. The optimal
value ofK for a specific thresholdη is given by the apex of
its curve,

K∗
Z(η) = arg max

K

1

N
I

(

N

K
η

)

.

It is interesting to note how conservative the optimal code rate
becomes when the target service requirement is reduced.

The second type of rate functions introduced in Section IV
characterizes large deviations in the mean sojourn times, as
shown in Fig. 8. These curves can be employed to tradeoff
playback quality and buffering times for streaming media.
More specifically,τ represents a limitation on the average
number of channel uses employed to transmit one bit of
information. Of course, when a high-quality rendering is
selected, the system must deliver a larger amount of data
within the buffering window and, hence, the probability of
delay violation becomes greater. In this case, the optimal value
of K becomes

K∗
Y (τ) = arg max

K

1

K
Λ∗

(

K

N
τ

)

.

The behavior of the system in terms of average sojourn time
is closely related to the empirical mean service, holding a
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Fig. 8. This figure shows good rate functions governing largedeviations in
the mean sojourn time as functions ofK. The optimum code rate depends
heavily on the deviation threshold of the mean sojourn time.

reciprocal relation. We emphasize that the optimal code rates
are equal, namelyK∗

Z(η) = K∗
Y (τ) wheneverτ = η−1. This

is due to the relation betweenI(·) and Λ∗(·) described in
Section IV-C.

The last aspect of this system we wish to explore is the
potential impact of channel memory and correlation among
successive channel uses. As before, we keep the probability
of a bit erasure at twenty percent. However, we vary the
decay factor of the channel,(1 − b12 − b21), from zero to
one. Once again, we assess performance using the mean
first-passage time to an empty queue. When the channel is
memoryless, the optimal value forK is 81. As correlation
increases, more protection against erasures is beneficial and
the optimal value ofK decreases moderately. This enables the
system to compensate for short sequences of erasures. Still, as
correlation strengthens, it becomes difficult to correct longer
strings of erasures. When this happens, the penalty of a smaller
payoff produced by a low rate code begins to dominate. In
other words, attempting to recover every packet starts to be
ineffective. Rather, the code rate must be selected to transmit
more information bits when the channel is favorable. As
(1−b12−b21) approaches one, the optimal value ofK/N tends
to one as well. In the limit, the channel behaves much like a
packet erasure model: send as many bits as possible when
the channel is good and ask for retransmissions whenever the
message is corrupted. The data points that provide a basis for
these findings are summarized in Table I.

TABLE I
OPTIMAL NUMBER OF INFORMATION BITS PER CODEWORD AS A

FUNCTION OF CHANNEL MEMORY FACTOR1− b12 − b21 .

Channel Optimal Value Mean First-Passage Crossing
Memory of K Time E[H0] h0.95

ARQ HARQ ARQ HARQ ARQ HARQ
0 81 81 26.92 25.90 30 30

0.5 77 78 28.87 27.79 32 32
0.9 73 81 34.65 32.03 40 38
0.95 77 96 36.68 31.75 44 38
0.98 95 107 35.21 28.62 45 36
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VII. C ONCLUSIONS

This article presents a methodology for the analysis and
the design of digital communication systems that operate over
channels with memory. The proposed approach is based on the
time elapsed between the onset of the communication process
and its termination. Results also extend to the asymptotic
decay rates of mean service and mean sojourn time. Emphasis
is on the selection of code rate for protection against erasures.
We provide a simple mathematical characterization of the first-
passage time to an empty queue and the large deviations on
the mean service and mean transmission time, along with a
computationally efficient means to compare the performance
of various implementation candidates.

The properties of coded systems are explored through a
numerical study. Optimal code rates appear robust to initial
buffer conditions at the transmitter. That is, the number of
information bits to be sent from the source to the destination
does not significantly affect the optimal operating point ofthe
encoder. Optimal operation is achieved with very similarK
values for mean first-passage times and various crossings of
the cumulative distribution function.

For both mean service rate and mean sojourn time, it seems
that the optimal operating point of a system in terms of code
rate selection depends heavily on the needs of the underlying
traffic. In particular, delay-adverse applications may perform
better with coarse quantization and low-rate codes. On the
other hand, delay tolerant applications may be able to use a
higher rate on the same physical channel. This phenomenon
is closely related to the concept of effective capacity.

Lastly, the optimal code rate depends heavily on channel
memory. This suggest that, for systems with fixed block
lengths, the channel parameters should be estimated and fed
back to the encoder for optimal operation. This naturally
leads to adaptive strategies and possibly state-aware encoding
schemes at the source.

APPENDIX A
PROOF OFTHEOREM 1

We begin this proof by introducing a convenient notation
for abstract sequences. Let{as} be a discrete-time sequence
and assume thatr and t are two integers withr < t. We use
atr to denote the subsequencear, ar+1, . . . , at.

Supposeut = (it, qt) ∈ C × N0 for every t ≥ 0. Since
{Us}s≥0 is a discrete-time stochastic process whose elements
take on values in a finite set, it suffices to show that

Pr (Us+1 = us+1|U
s
0 = us

0) = Pr (Us+1 = us+1|Us = us)

in order to prove that this process is Markov. In general, the
probability on the left hand side can be expressed as

Pr
(

C(s+1)N+1 = is+1|U
s
0 = us

0

)

×

Pr
(

Qs+1 = qs+1|U
s
0 = us

0, C(s+1)N+1 = is+1

)

.

We know that the state of the channel at the onset of codeword
s + 1, labeledC(s+1)N+1, is conditionally independent of

the subsequenceQs
0 and the channel statesC(s−1)N+1

1 , given

CsN+1. Thus, we get

Pr
(

C(s+1)N+1 = is+1|U
s
0 = us

0

)

= Pr
(

C(s+1)N+1 = is+1|CsN+1 = is
)

.

The length of the queueQs+1 at time s + 1 is either Qs

or Qs − 1, depending on whether a codeword is successfully
decoded at times. For a non-empty queue, this depends solely
on the generated codebook and the channel realizations during
the transmission cycle of the codewords. As such, we can
write

Pr
(

Qs+1 = qs+1|U
s
0 = us

0, C(s+1)N+1 = is+1

)

= Pr
(

Qs+1 = qs+1|Us = us, C(s+1)N+1 = is+1

)

.

Collecting these two results, we conclude that{Us} possesses
the Markov property.

APPENDIX B
PROOF OFPROPOSITION1

Notice that the proposition is trivially true whene > p. The
only case of interest then corresponds toe ≤ p. We observe
that, through a change in indexing, we can write

n+e−1
∏

l=0

(

1− 2l−p−n
)

=

e−1
∏

l=−n

(

1− 2l−p
)

.

As such, we readily see thatPf(p+n, e+n) is monotonically
increasing inn. The difference between this function and
Pf(p, e) is obtained as follows,

Pf(p+ n, e+ n)− Pf(p, e)

=

e−1
∏

l=0

(

1− 2l−p
)

−

n+e−1
∏

l=0

(

1− 2l−n−p
)

=

n+e−1
∏

l=n

(

1− 2l−n−p
)

−

n+e−1
∏

l=0

(

1− 2l−n−p
)

=

n+e−1
∏

l=n

(

1− 2l−n−p
)

(

1−

n−1
∏

l=0

(

1− 2l−n−p
)

)

≤ 1−
n−1
∏

l=0

(

1− 2l−n−p
)

(a)

≤
n−1
∑

l=0

2l−n−p

=

n−1
∑

l=0

2−l−1−p ≤

∞
∑

l=0

2−l−1−p = 2−p.

Step(a) follows from ann-variable version of the inequality
1 − (1 − p1)(1 − p2) ≤ p1 + p2 where0 ≤ p1, p2 ≤ 1. This
concludes the demonstration.

APPENDIX C
PROOF OFLEMMA 2

When λ < − log ̺(K), the spectral radius of the matrix
Keλ is strictly less than one and, consequently, the matrix
I−Keλ is invertible. The finiteness ofGT

(

eλ
)

immediately
follows. We then turn to the alternate case, which we prove
by contradiction.

Assume that, for someλ ≥ − log ̺(K), matrix GT

(

eλ
)

exists over the non-negative real numbers. Note that this



16

condition implies̺(K) > 0. For convenience, we wish to
work with the irreducible normal form ofK [36]. That is,
there exists a permutation matrixP such that

K̃ = P
T
KP =











Ψ1 Φ12 · · · Φ1h

0 Ψ2 · · · Φ2h

...
...

. . .
...

0 0 · · · Ψh











in which eachΨi is either irreducible or a zero matrix. Of
course, this reordering also affectsM,

M̃ = P
T
MP.

However, this transformation does not alter the spectrum of
K or M. We note that all the states corresponding to an
irreducibleΨi belong to a same communicating class, which
we denote byCi. Looking at the block triangular structure
of K̃, we gather that the eigenvalues ofK̃ correspond to the
union of the eigenvalues ofΨ1, . . . ,Ψh. Thus, there exists an
integerj such that̺ (Ψj) = ̺(K).

Since matrixΨj is non-negative and irreducible, the Perron-
Frobenius theorem applies and there exists an eigenvectorv,
with positive components, such that

vΨj = ̺(Ψj)v = ̺(K)v.

Without loss of generality, we can assume thatv is normalized
to one. Letw be a probability distribution with weightv over
the states associated withΨj and zero elsewhere, i.e.,

w =
[

0 · · · 0 v 0 · · · 0
]

.

Becausev is an eigenvector ofΨj , we have

w

(

K̃eλ
)t

=
[

0 · · · 0
(

̺(K)eλ
)t
v ∗ · · · ∗

]

and, correspondingly,

w

∞
∑

t=0

K̃
tetλ =

∞
∑

t=0

wK̃
tetλ

=
[

0 · · · 0
∑∞

t=0

(

̺(K)eλ
)t
v ∗ · · · ∗

]

.

We note that the multiplicative factor
∑∞

t=0

(

̺(K)eλ
)t

is
a divergent sum that increases to infinity. In fact, all the
components ofw

∑∞
t=0 K̃

tetλ corresponding to states that
are accessible fromCj must also diverge [36]. Since by
assumption the elements of

G̃T

(

eλ
)

=

(

∞
∑

t=0

K̃
tetλ

)

M̃eλ

remain finite, we conclude that any state accessible fromCj
must lie in the nullspace of̃M. This necessarily means that
wG̃T

(

eλ
)

= 0 and, consequently,wG̃T (1) = 0 because
K̃ and M̃ are non-negative matrices. In other words, we
have created a valid probability distributionw for which
wG̃T (1) = 0. Equivalently, in the original domain, we can
rewrite this equation aswP

T
GT (1) = 0. But this equation

violates our assumption thatT is finite almost surely. We then
conclude, by contradiction, that not all entries ofGT

(

eλ
)

are
finite whenλ ≥ − log ̺(K).

APPENDIX D
PROOF OFCOROLLARY 1

As a straightforward application of Lemma 2, we can show
that ̺(K) < 1. By design, we know thatT is finite almost
surely. Then, from the definition of the matrix generating
functionGT (z) in (9), we gather that

[GT (1)]ij = E
[

1{CNT+1=j}|C1 = i
]

= Pr (CNT+1 = j|C1 = i) .

That is,GT (1) is a right stochastic matrix.
Since K is a substochastic matrix, we already have the

relation ̺(K) ≤ 1. We wish to show that, in the current
framework, this inequality is strict. Suppose that̺(K) = 1.
Lemma 2 states that, ifλ = − log ̺(K) = 0, then not all
entries ofGT

(

e0
)

= GT (1) can be finite. In particular,GT (1)
cannot be a right stochastic matrix. This leads to an obvious
contradiction, which indicates that̺(K) < 1, as desired.

APPENDIX E
PROOF OFPROPOSITION2

For the first part of this proof, we assume thatλ <
− log ̺(K). The spectral radius ofKeλ is then strictly less
than one and, as such,

(

I−Keλ
)

is invertible. This implies
that the matrix

GT

(

eλ
)

=

(

∞
∑

t=0

K
tetλ

)

Meλ =
(

I−Keλ
)−1

Meλ

is well-defined over the real numbers. Under Assumption 2, we
know thatGT (1) is an irreducible matrix. This readily implies
that GT

(

eλ
)

is also irreducible. We can therefore apply the
Perron-Frobenius theorem [22, Th. 3.1.1], whose asymptotic
properties lead directly toΛ(λ).

For the second case, we suppose thatλ ≥ − log ̺(K). By
Lemma 2, we know that at least one entry ofGT

(

eλ
)

is
equal to infinity. We can use the irreducibility of this matrix
to argue that each row in

(

GT

(

eλ
))k

has at least one entry
that is infinite. Sinceπ0 is a probability distribution,

E
[

eλ(T1+···+Tk)
]

= π0

(

GT

(

eλ
))k

1 = ∞.

For anym > k, we have

Λm(mλ) = log E
[

emλYm
]

= logE
[

eλ(T1+···+Tm)
]

≥ log E
[

eλ(T1+···+Tk)
]

= ∞.

Consequently, wheneverλ ≥ − log ̺(K), we get

Λ(λ) = lim
m→∞

1

m
Λm(mλ) = ∞,

as desired.

APPENDIX F
PROOF OFPROPOSITION3

For the sake of completeness, we offer a brief proof for
Proposition 3. As an initial step for this demonstration, we



17

establish a few key properties. The processes{Ym} and{Zs}
converge almost surely, i.e.,

Ym =
1

m

m
∑

q=1

Tq
a.s.
−−→ T̄

Zs =
1

s

s
∑

t=1

Dt
a.s.
−−→ D̄,

where T̄ are D̄ are constants. Moreover,̄T and D̄ have a
reciprocal relation, i.e.,̄T = 1/D̄.

Recall that process
{

Vs =
(

C(s+1)N+1, Ds

)}

is a finite-
state Markov chain with irreducible transition probability
matrix Π. Also, Ds = f(Vs) is a (trivial) bounded function.
Then, by the ergodic theorem for Markov chains [20], we have

Pr

(

lim
s→∞

1

s

s
∑

t=1

Dt = D̄

)

= 1.

Let Ω1 be the subset ofΩ defined by

Ω1 =

{

ω :
1

s

s
∑

t=1

Dt(ω) → D̄

}

.

Clearly, for anyω ∈ Ω1, we necessarily have

N(s, ω) =

s
∑

t=1

Dt(ω) → ∞.

Consider the empirical average defined by

1

m

m
∑

q=1

Tq. (20)

We wish to show that this sequence converges almost surely
to 1/D̄ asm increases to infinity. For anyω ∈ Ω1, we have

N(s,ω)
∑

q=1

Tq(ω) ≤ s ≤

N(s,ω)+1
∑

q=1

Tq(ω).

As such, we get the inequality

1

N(s, ω)

N(s,ω)
∑

q=1

Tq(ω) ≤
s

N(s, ω)
→

1

D̄
.

In a similar fashion, we obtain

1

N(s, ω) + 1

N(s,ω)+1
∑

q=1

Tq(ω) ≥
s

N(s, ω) + 1

=
N(s, ω)

N(s, ω) + 1

s

N(s, ω)
→

1

D̄
.

It follows that, for anyω ∈ Ω1, we get

1

N(s, ω)

N(s,ω)
∑

q=1

Tq(ω) →
1

D̄
. (21)

To complete the proof, we must connect this result to our
original sequence (20). We emphasize that, for anyω ∈ Ω1 and
for anym ∈ N, there existss such thatN(s, ω) = m because
N(s, ω) increases by at most one at every step. It follows that
(20) is a subsequence of convergent sequence (21). They must

then share the same limit. Collecting these results, we gather
that

Pr

(

lim
m→∞

1

m

m
∑

q=1

Tq =
1

D̄

)

= 1.

As a side note, it is possible to show that

D̄ = EπD
[Dt] = πDM1

T̄ = EπT
[Tq] = πT

[

lim
λ↑0

d

dλ
GT

(

eλ
)

]

1,

where d
dλGT (e

λ) denotes the entrywise derivative. Above,πD

andπT represent the invariant distributions of the channel and
the stochastic matrixGT (1), respectively.

Our strategy to finish this proof is to establish the claimed
result for rational numbers, and then invoke continuity to get a
full characterization. From our hypotheses, we know that the
rate functionsΛ∗(·) and I(·) are finite in the open intervals
(1,∞) and (0, 1), respectively. We note that these functions
are also convex over these intervals and, hence, continuous.
Let r = p/q, wherep, q ∈ N, be a rational number less than
one. Recall thatI(·) is convex and, therefore, continuous over
(0, 1). Then, for everyǫ > 0, there existsδ > 0 such that

− I(r) − ǫ ≤ lim inf
n→∞

1

np
log Pr (Znp ∈ (r − δ, r + δ))

≤ lim sup
n→∞

1

np
log Pr (Znp ∈ (r − δ, r + δ)) ≤ −I(r) + ǫ.

Taking the limit asδ → 0, we get

lim
δ→0

lim inf
n→∞

1

np
log Pr (Znp ∈ (r − δ, r + δ))

= lim
δ→0

lim sup
n→∞

1

np
log Pr (Znp ∈ (r − δ, r + δ)) = −I(r).

A similar argument applies to{Ym}. Noting that q/p ∈
(1,∞), we gather thatΛ∗(·) is continuous in a neighborhood
of 1/r. Then, for everyǫ > 0, there existsδ > 0 such that

−Λ∗

(

1

r

)

− ǫ

≤ lim inf
n→∞

1

nq
log Pr

(

Ynq ∈

(

1

r
− δ,

1

r
+ δ

))

≤ lim sup
n→∞

1

nq
log Pr

(

Ynq ∈

(

1

r
− δ,

1

r
+ δ

))

≤ −Λ∗

(

1

r

)

+ ǫ.

As before, this implies that

lim
δ→0

lim inf
n→∞

1

nq
log Pr

(

Ynq ∈

(

1

r
− δ,

1

r
+ δ

))

= lim
δ→0

lim sup
n→∞

1

nq
log Pr

(

Ynq ∈

(

1

r
− δ,

1

r
+ δ

))

= −Λ∗

(

1

r

)

.

We stress that the rate functionsΛ∗(·) and I(·) vanish atT̄
andD̄, respectively.

At this point, we need to consider two separate cases. First,
supposer < D̄. We know thatI(·) is a non-increasing function
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over interval
[

0, D̄
)

(see, e.g., [22, Lemma 2.2.5]). Also, in an
analogous manner, rate functionΛ∗(·) is non-decreasing over
(

T̄ ,∞
)

. Leveraging (19), we can write

Pr

(

T1 + · · ·+ Tpn

pn
>

q

p

)

= Pr

(

D1 + · · ·+Dqn

qn
<

p

q

)

.

By letting n go to infinity, we obtain

inf
x∈[ 1r ,∞)

rΛ∗(x) = inf
x∈(0,r]

I(x).

Using the monotonic properties of these rate functions over
the prescribed intervals, we get

rΛ∗

(

1

r

)

= inf
x∈[ 1r ,∞)

rΛ∗(x) = inf
x∈(0,r]

I(x) = I(r),

as desired.
For the second case, assumer > D̄. Under this constraint,

the monotonic properties of the rate functions are reversed.
That is, I(·) is non-decreasing over

(

D̄, 1
)

and Λ∗(·) is
non-increasing over

(

0, T̄
)

. Using these relations and the set
equalities

Pr

(

T1 + · · ·+ Tpn

pn
<

q

p

)

= Pr

(

D1 + · · ·+Dqn

qn
>

p

q

)

,

we can write

rΛ∗

(

1

r

)

= inf
x∈(0, 1r ]

rΛ∗(x) = inf
x∈[r,∞)

I(x) = I(r).

Collecting these results, we deduce thatI(x) = xΛ∗
(

1
x

)

wheneverx ∈ Q ∩ (0, 1). Since the rational numbers are
dense in(0, 1) and the two rate functions are continuous, this
equality must also hold for any real number in(0, 1).
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