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Errata and Corrections

Corrections to “Compressive MUSIC: Revisiting
the Link Between Compressive Sensing and

Array Signal Processing”

Jong Min Kim, Member, IEEE, and
Jong Chul Ye, Senior Member, IEEE

Abstract—There are a few corrections for the above titled paper (IEEE
Trans. Inf. Theory, vol. 58, no. 1, pp. 278–301, Jan. 2012). They are pre-
sented here.

I. MAIN RESULTS

The SNR analysis of the generalized MUSIC step in [1] was based
on the following inequality:

(I.1)

for any and then the right-hand side of (I.1) was then
upper bounded by

where

However, the bound (I.1) does not hold in general, so we need to
modify the corresponding parts in [1]. While a corrected version of
(I.1) was derived in [2], using (9) of [3], and the projection update
formula (see the first equation in Section VII.B of [2]), we can derive
the following bound that is also useful for our analysis:

(I.2)

for provided that , where

Here, we can see that for any . Then, using
(I.2) instead of (I.1), we have the following result.
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Theorem 1.1: For a , if we have
, then we can find remaining indices of supp with the gen-

eralized MUSIC criterion if

for some , and

By the similar reasoning as above, we can modify the performance
analysis of the S-OMP which will be given in the followings. Note that
the SNR conditions in the following theorems can be easily obtained
by constraining the sampling lower bound positive.

Theorem 1.2: For , suppose that
for a , and the following conditions hold:

a) is a fixed finite number.
b)

c) we have

then we can find a correct index of at the th step
of subspace S-OMP.
Theorem 1.3: For , suppose that
for a , and the following conditions hold.

a) is proportionally increasing with respect to so that
exist.

b)

c) we have

for some , where
is the probability measure with support
satisfies , and

is a probability measure with
support . Here, is an increasing function such that

and . Then, we can find a correct
index of at the th step of subspace S-OMP.
Remark 1.1: In another approach, can be lower

bounded by the restricted isometry property constant (RIP) of , i.e.,
, and . Specifically, we have
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Then, we have the inequality

(I.3)

where

Then, by using , we have the similar results. Note that this expression
has more direct dependence on unknown .

II. ALTERNATIVE CORRECTION

As mentioned above, we can also modify the corresponding parts in
[1] by using the corrected version of (I.1) which was given in [2]. The
corrected version of (I.1) was given by the following proposition.

Proposition 2.1 ([2, Proposition 7.6]): Assume that
satisfies with support and the nonzero rows of is in
general position. Here, we let and be a proper
subset of . If sensing matrix satisfies , then

Now, we let
(II.1)

Then, by using above proposition, we have the following result.
Theorem 2.2: For , suppose that
for a , the following conditions hold:

for some , and for or

For the sufficient condition for partial support recovery using sub-
space S-OMP, we have the following theorems.

Theorem 2.3: For , suppose that
for a and the following conditions hold:

a) is a fixed finite number.
b) Assume that we have

If we have

then we can find correct indices of by applying
subspace S-OMP.
Theorem 2.4: For , suppose that
for a , and the following conditions hold:

a) is proportionally increasing with respect to so that
exist.

b) Assume that we have

Then, if we have

for some , where
is the probability measure with support
satisfies , and

is a probability measure with
support . Here, is an increasing function such that

and . Then, we can find
correct indices of by applying subspace S-OMP.

III. COMPARISON OF THE TWO BOUNDS

In this section, we are interested in comparing the implication of
two bounds: (I.2) and that of Proposition 7.6 in [2]. As can be seen in
Section II, the results using the bounds in Proposition 7.6 in [2] are
simpler than those of using (I.2). More specifically, the in (II.1) is
only dependent on the condition number of partial matrix , whereas
the in (I.2) depends on both and , or and due to (I.3).
Hence, the new bounds (I.2) and (I.3) may not be practical to compute
because we do not know and a priori.
However, the new bound (I.2) provides a novel error correction

scheme as described in [3], as the SNR condition (10) in [3] becomes
more relaxed thanks to the inclusion of a correct index.
However, we admit that this argument is not rigorous since the SNR

requirement in (10) of [3] is just a sufficient condition for successful
recovery, and neither the tightness of the sufficient condition nor a
corresponding necessary condition has been shown. Moreover, the
strict increase of with is not guaranteed when the
newly found atom is orthogonal to the singular vector corresponding

. However, such sequential subspace estimation
was empirically shown useful to improve the noise robustness in a
subspace-based sequential joint sparse recovery algorithm [3], so we
believe that the new bound (I.2) described in this correction is useful
in its own right.
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