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Abstract—To quantify the randomness of Markov trajectories
with fixed initial and final states, Ekroot and Cover proposed
a closed-form expression for the entropy of trajectories ofan
irreducible finite state Markov chain. Numerous applications,
including the study of random walks on graphs, require the
computation of the entropy of Markov trajectories conditional
on a set of intermediate states. However, the expression of Ekroot
and Cover does not allow for computing this quantity. In this
paper, we propose a method to compute the entropy of conditional
Markov trajectories through a transformation of the origin al
Markov chain into a Markov chain that exhibits the desired
conditional distribution of trajectories. Moreover, we express the
entropy of Markov trajectories—a global quantity—as a linear
combination of local entropies associated with the Markov chain
states.

Index Terms—Entropy, Markov chains, Markov trajectories.

QUANTIFYING the randomness of Markov trajectories
has applications in graph theory [1] and in statistical

physics [2], as well as in the study of random walks on
graphs [3], [4]. The need to quantify the randomness of
Markov trajectories first arose when Lloyd and Pagels [2]
defined a measure of complexity for the macroscopic states of
physical systems. They examine some intuitive properties that
a measure of complexity should have and propose a universal
measure calleddepth. They suggest that the depth of a state
should depend on the complexity of the process by which
that state arose, and prove that it must be proportional to
the Shannon entropy of the set of trajectories leading to that
state. Subsequently, Ekroot and Cover [5] studied the com-
putational aspect of the depth measure. In order to quantify
the number of bits of randomness in a Markov trajectory,
they propose a closed-form expression for the entropy of
trajectories of an irreducible finite state Markov chain. Their
expression does not allow, however, for computing the entropy
of Markov trajectories conditional on the realisation of a
set of intermediate states. Computing the conditional entropy
of Markov trajectories turns out to be very challenging yet
useful in numerous domains, including the study of mobility
predictability and its dependence on location side information.

Consider a scenario where we are interested in quantifying
the predictability of route-choice behaviour. We can model
the mobility of a traveller as a weighted random walk on a
graph whose vertices represent locations and edges represent
possible transitions [6]. We can therefore model a route as a
sample path or trajectory in a Markov chain. If we suppose
that we know where the traveller starts and ends her/his route,
the randomness of the route she/he would follow is repre-
sented by the distribution of trajectories between the source

The authors are with the School of IC, EPFL, Lausanne CH-1015, Switzer-
land. Copyright (c) 2013 IEEE. Personal use of this materialis permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

and destination vertices. Consequently, the predictability of
her/his route is captured by the entropy of Markov trajectories
between these two states. Now, if we obtain side information
stating that the traveller went (or has to go) through a set
of intermediate vertices, quantifying the evolution of her/his
route predictability requires the computation of the trajectory
entropy conditional on the set of known intermediate states.
The conditional entropy is also a way to quantify the informa-
tional value of the intermediate states revealed. For example,
if the entropy conditional on the set of known intermediate
states is zero, then this set reveals the whole trajectory ofthe
traveller.

In our work, we propose a method to compute the entropy
of Markov trajectories conditional on a set of intermediate
states. The method is based on a transformation of the original
Markov chain so that the transformed Markov chain exhibits
the desired conditional distribution of trajectories. We also
derive an expression that enables us to compute the entropy
of Markov trajectories, under conditions weaker than those
assumed in [5]. Moreover, this expression links the entropyof
Markov trajectories to the local entropies at the Markov chain
states.

I. THE MODEL

Let {Xi} be a finite state irreducible and aperiodic Markov
chain (MC) with transition probability matrixP whose ele-
ments are the transition probabilities

Pxnxn+1
= p(Xn+1 = xn+1|Xn = xn)

= p(Xn+1 = xn+1|Xn = xn, . . . , X1 = x1).

This MC admits a stationary distributionΠ, which is the
unique solution ofΠ = ΠP. The entropy rateH(X) is
a measure of the average entropy growth of a sequence
generated by the process{Xi} and is defined as

H(X) = lim
n→∞

1

n
H(X1, X2, ..., Xn).

For the particular case of an irreducible and aperiodic MC,
the limit above is equal to [7, p. 77]

H(X) =
∑

i

Π(i)H(Pi·),

where Pi. denotes theith row of P and whereH(Pi·) =
−
∑

j Pij log(Pij) is the local entropy of statei. Note that,
throughout this paper, we useMCP as a shorthand for the
Markov chain whose transition probability matrix isP .

http://arxiv.org/abs/1212.2831v2
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A. The Entropy of Markov Trajectories

We follow the setting of [5] closely. We define arandom
trajectory Tsd of a MC as a path with initial states, final
state d, and no intermediate stated, i.e., the trajectory is
terminated as soon as it reaches stated. Using the Markov
property, we express the probability of a particular trajectory
tsd = sx2...xkd given thatX1 = s as

p(tsd) = Psx2
Px2x3

. . . Pxkd.

Let Tsd be the set of all trajectories that start at states and
end as soon as they reach stated. As the MC defined by the
matrix P is finite and irreducible, we have

∑

tsd∈Tsd

p(tsd) = 1 for all s, d.

So the discrete random variableTsd has as support the set
Tsd, with the probability mass functionp(tsd). Subsequently,
we usep(tsd) as a shorthand forp(Tsd = tsd). We can now
express the entropy of the random trajectoryTsd as

Hsd ≡ H(Tsd) = −
∑

tsd∈Tsd

p(tsd) log p(tsd).

We define the matrix of trajectory entropiesH whereHij =
H(Tij). Ekroot and Cover [5] provide a general closed-form
expression for the matrixH of an irreducible, aperiodic and
finite state MC.

The entropyHsd|u of a trajectory froms to d given that it
goes throughu is defined by

Hsd|u ≡ H(Tsd|Tsd ∈ T
u
sd)

= −
∑

tsd∈T u
sd

p(tsd|Tsd ∈ T
u
sd) log p(tsd|Tsd ∈ T

u
sd),

(1)

whereT u
sd is the set of all trajectories inTsd with an interme-

diate stateu

T u
sd = {tsd ∈ Tsd : tsd = s . . . u . . . d}.

The major challenge is to compute efficiently the entropy
Hsd|u. Even the costly approach of computing all the terms
of the sum (1) is not always possible because the setT u

sd

has an infinite number of members in the case where, after
removing stated, the transition graph of the MC is not a
DAG. It is important to emphasize that the entropyHsd|u

is not the entropy of the random variableTsd given another
random variable—a quantity which is easy to compute—but
the entropy ofTsd conditional on the realization of a dependent
random variable.

In Figure 1, we show an example of a finite-state irreducible
and aperiodic MC. Note that the presence of cycles implies that
the set of trajectories between some pair of states might have
infinite cardinality (|T14| = ∞ for example). Therefore, in
addition to being complex, the naive approach of enumerating
all trajectories is not always possible.

Fig. 1. An irreducible, 5-state, Markov chain annotated with the transition
probabilities.

Using the results of [5], we obtain the matrix of trajectory
entropies

H =













3.56 3.69 1.74 3.18 1.56
2 5.69 3.74 2.59 0
3 3.84 4.74 2.29 1
2 5.69 3.74 2.59 0
2 5.69 3.74 2.59 1.78













.

The zero elements of the matrixH correspond to deterministic
trajectories such asT25, which is equal to the path25 with
probability 1 since no other path allows a walk to go from2
to 5. The entropy of the random trajectoryT15 is 1.56 bits.
Now imagine that we have an additional piece of information
stating that the trajectoryT15 goes through state4. Intuitively,
we would be tempted to argue that the entropyH15|4 of the
trajectoryT15 conditional on going through state4 is equal to
H14+H45, but this additivity property does not hold. Indeed,
the conditional entropyH15|4 is zero because the trajectory
T15, conditional on the intermediate state 4, can only be equal
to the path1345, whereasH14 = 3.18 bits, henceH14+H45 =
3.18 + 0 = 3.18 6= H15|4 bits.

In the next section, we study the entropy of Markov trajec-
tories conditional onmultiple intermediate states and derive a
general expression for this entropy.

II. T HE ENTROPY OFCONDITIONAL MARKOV

TRAJECTORIES

Let αsud denote the probability that the random trajectory
Tsd goes through the stateu at least once:

αsud = p(Tsd ∈ T
u
sd).

This is also equal to the probability that a walk reaches the
stateu before the stated, given that it started ats. In order
to computeαsud, the technique from [8], [9] is to make the
statesu andd absorbing (a statei is absorbing if and only if
Pii = 1) and compute the probability to be absorbed by state
u given that the trajectory has started at states.

Our first step towards computingHsd|u is to express it as a
function of quantities that are much simpler to compute. The
idea is to relate the entropy of a trajectory conditional on a
given state to its entropy conditional onnot going through that
state. Therefore, we define the entropyHsd|ū of a trajectory
from s to d given that it doesnot go throughu to be

Hsd|ū ≡ H(Tsd|Tsd /∈ T u
sd).
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Using the chain rule for entropy, we can derive the following
equation which relatesHsd|u to Hsd, Hsd|ū andαsud:

Hsd = αsudHsd|u + (1− αsud)Hsd|ū + h(αsud) (2)

for all u, whereh(αsud) is the entropy of a Bernoulli random
variable with success probabilityαsud.

Proof: First, we define the indicator variableI by

I =

{

1 if Tsd ∈ T
u
sd,

0 otherwise.

Using the chain rule for entropy, we express the joint entropy
H(Tsd, I) in two different ways,

H(Tsd, I) = H(I) +H(Tsd|I)

= H(Tsd) +H(I|Tsd) = H(Tsd),

becauseI is a deterministic function ofTsd. So the entropy
of the random trajectoryTsd can be expressed as

H(Tsd) = H(I) +H(Tsd|I)

= H(I) +H(Tsd|I = 1)p(I = 1)

+H(Tsd|I = 0)p(I = 0)

= H(I) +H(Tsd|Tsd ∈ T
u
sd)p(Tsd ∈ T

u
sd)

+H(Tsd|Tsd /∈ T u
sd)p(Tsd /∈ T u

sd).

Sinceαsud = p(Tsd ∈ T
u
sd) = p(I = 1), we obtain

H(Tsd) = αsudH(Tsd|Tsd ∈ T
u
sd)

+ (1 − αsud)H(Tsd|Tsd /∈ T u
sd) + h(αsud).

As we know from [5], [8], [9] how to computeHsd and
αsud, if we are able to computeHsd|ū, we can use (2) to find
Hsd|u. However, generalizing (2) to trajectories conditional on
passing throughmultiple intermediate states turns out to be
difficult, hence we propose an approach that circumvents this
problem. As we will see, the difficulty of our approach also
boils down to computing the entropy of a trajectory conditional
on not going through a given state.

First, we defineT u

sd, the set of all trajectories inTsd that
exhibit the sequence of intermediate statesu = u1u2 . . . ul,
i.e.

T u

sd = {tsd ∈ Tsd : tsd = s . . . u1 . . . u2 . . . ul . . . d}.

For an arbitrary sequence of statesu = u1u2 . . . ul, sat-
isfying p(Tsd ∈ T

u

sd) > 0, we prove the following lemma.

Lemma 1:

H(Tsd|Tsd ∈ T
u

sd) =
l−1
∑

k=0

Hukuk+1|d̄
+Huld, (3)

whereu0 = s.

Proof: First, givenTsd ∈ T
u

sd, the random trajectoryTsd

can be expressed as a sequence of random sub-trajectories
(Tsu1

, Tu1u2
, . . . , Tul−1ul

, Tuld). Therefore, the conditional

entropyH(Tsd|Tsd ∈ T
u

sd), which we denote byHsd|u1...ul
,

can be written as a joint sub-trajectory entropy

Hsd|u1...ul
= H(Tsu1

, Tu1u2
, . . . , Tuld|Tsd ∈ T

u

sd).

Applying the chain rule for entropy, we obtain successively

Hsd|u1...ul
= H(Tsu1

, Tu1u2
, . . . , Tuld|Tsd ∈ T

u

sd)

= H(Tsu1
|Tsd ∈ T

u

sd)

+H(Tu1u2
|Tsu1

;Tsd ∈ T
u

sd)

...

+H(Tuld|Tsu1
, . . . , Tul−1ul

;Tsd ∈ T
u

sd).

The Markovian nature of the process generating the trajectory
Tsd implies that each of the sub-trajectoriesTukuk+1

is inde-
pendent of the preceding ones, given its starting pointuk.
Since the sequencesu = su1u2 . . . ul defines the starting
point of each sub-trajectory, we can therefore write that

H(Tukuk+1
|Tsu1

, . . . , Tuk−1uk
;Tsd ∈ T

u

sd)

= H(Tukuk+1
|Tsd ∈ T

u

sd). (4)

Using (4), the expression for the conditional entropy becomes

Hsd|u1...ul
= H(Tsu1

|Tsd ∈ T
u

sd)

+H(Tu1u2
|Tsd ∈ T

u

sd)

...

+H(Tuld|Tsd ∈ T
u

sd).

Note that for each trajectoryTukuk+1
, the only restriction

imposed by the event{Tsd ∈ T
u

sd} is that the final stated
cannot be an intermediate state of any of the firstl trajectories
Tsu1

, Tu1u2
, . . . , Tul−1ul

. As a result,

Hsd|u1...ul
= H(Tsu1

|Tsu1
/∈ T d

su1
)

+H(Tu1u2
|Tu1u2

/∈ T d
u1u2

)

...

+H(Tuld)

=
l−1
∑

k=0

Hukuk+1|d̄
+Huld,

whereu0 = s

Now, if we are able to computeHukuk+1|d̄, we can use (3)
to deriveH(Tsd|Tsd ∈ T

u

sd). The following lemma shows how
the conditional entropyHukuk+1|d̄ can be obtained by a simple
modification of the MC.
We consider a MC whose transition probability matrix isP ,
ands, u andd three distinct states such thatαsud = p(Tsd ∈
T u
sd) < 1. Let P̄ be the transition matrix of the same MC

but where both statesu andd are made absorbing, and whose
entries are thus

P̄ij =











0 if i = u, d and i 6= j,

1 if i = u, d and i = j,

Pij otherwise.

(5)
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Next, we define a second matrixP ′, obtained by a transfor-
mation of the matrixP̄

P ′
ij =

{

1−αjud

1−αiud
P̄ij if αiud 6= 1,

P̄ij otherwise.
(6)

Lemma 2: (i) The matrixP ′ is stochastic and(ii) If T ′
sd

is a random trajectory defined on the MC whose transition
probability matrix isP ′ then

H(Tsd|Tsd /∈ T u
sd) = H(T ′

sd).

Proof: (i) The matrix P̄ is the transition probability
matrix of a MC where the statesu andd are absorbing. We
can therefore introduce the vectors of absorption probability
au = (a1u, a2u, . . . , anu) and ad = (a1d, a2d, . . . , and)
whereaiu and aid are, respectively, the probability of being
absorbed byu and d, given that the trajectory starts ati.
These vectors are eigenvectors ofP̄ associated with the unit
eigenvalue [8, p. 227]

P̄au = au P̄ad = ad. (7)

Moreover asMCP̄ has only two absorbing statesu andd, for
all i, aiu = 1 − aid. Recall that for alli, αiud = aiu hence
(6) can be written as

P ′
ij =

{

ajd

aid
P̄ij if aid 6= 0,

P̄ij otherwise.

Note that all transitions leading to stateu in MCP̄ will have
zero probability inMCP ′ . In fact, consider a statei such that
P̄iu > 0 and aid > 0. In the new matrixP ′, the probability
of transition fromi to u will be P ′

iu = audP̄iu/aid , which
is zero becauseaud = 0. Proving thatP ′ is stochastic is now
straightforward: First, the entries ofP ′ are positive; Second,
they are properly normalized and sum up to one. Indeed, if we
consider a statei such thataid = 0, we have that

∑

j P
′
ij =

∑

j P̄ij = 1 whereas ifaid 6= 0, we have that

∑

j

P ′
ij =

∑

j

ajd
aid

P̄ij

=
1

aid

∑

j

P̄ijajd

=
1

aid
(P̄ad)i =

1

aid
aid = 1

because of (7).
(ii) Let p andp′ be the probability measures defined, respec-

tively, for MCP andMCP ′ on the same sample spaceTsd.
Any trajectory from the setTsd has the formtsd = sx2...xkd.

If tsd ∈ T
u
sd,

p′(tsd) = 0 (8)

since we have constructedMCP ′ such that all transitions
leading to stateu have zero probability.

If tsd /∈ T u
sd, we have

p′(tsd) = P ′
sx2

P ′
x2x3

. . . P ′
xkd

=
ax2d

asd
P̄sx2

ax3d

ax2d

P̄x2x3
. . .

add
axkd

P̄xkd

=
add
asd

P̄sx2
P̄x2x3

. . . P̄xkd, (9)

but add = 1 as the probability to be absorbed by stated,
given that we have started at this same state, is1. Moreover,
we know from (5) thatPij = P̄ij , for all i 6= u, d. As we have
supposed that the trajectorytsd does not admit eitheru or d as
intermediate states,̄Psx2

P̄x2x3
. . . P̄xkd = Psx2

Px2x3
. . . Pxkd.

Rewriting (9) yields

p′(tsd) =
1

asd
Psx2

Px2x3
. . . Pxkd

=
p(tsd)

1− asu

=
p(tsd)

1− p(Tsd ∈ T u
sd)

= p(tsd|Tsd /∈ T u
sd). (10)

Combining (8) and (10), we have therefore proven, for all
tsd ∈ Tsd, that

p′(tsd) = p(tsd|Tsd /∈ T u
sd). (11)

Consequently, if the random variableT ′
sd describes the trajec-

tory betweens andd in MCP ′ , (11) implies that

H(Tsd|Tsd /∈ T u
sd) = H(T ′

sd).

For the particular case wheres = d, we still can use Lemma 2
to express the conditional entropyHss|ū: We modify the MC
by removing the incoming transitions ofs and creating a new
states′ that will inherit them. The conditional entropyHss|ū

in the original MC is equal toHss′|ū in the modified one and,
sinces 6= s′, we can use Lemma 2 to express it.

Building on Lemma 1 and Lemma 2, we can now state the
main result of this paper: a general expression for the entropy
of Markov trajectories conditional on multiple intermediate
states.

Theorem 1: Let P be the transition probability matrix of
a finite Markov chain andsud = su1 . . . uld a sequence
of states such thatp(Tsd ∈ T

u

sd) > 0. Then, we have the
following equality

H(Tsd|Tsd ∈ T
u

sd) =

l−1
∑

k=0

H(T ′
ukuk+1

) +H(Tuld), (12)

whereu0 = s, andT ′
ukuk+1

is a random trajectory defined on
the Markov chain whose transition probability matrixP ′

k is
defined as follows

(P ′
k)ij =























0 if i = uk+1, d and i 6= j,

1 if i = uk+1, d and i = j,

Pij if i 6= uk+1, d andαiduk+1
= 1,

1−αjduk+1

1−αiduk+1

Pij if i 6= uk+1, d andαiduk+1
< 1.

(13)
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Proof: The matrix P ′
k is obtained fromP using (13),

which is equivalent to applying successively (5) and (6) where
the starting, intermediate and ending states are, respectively,
uk, d anduk+1. Therefore, using Lemma 2, we have

H(T ′
ukuk+1

) = H(Tukuk+1
|Tukuk+1

/∈ T d
ukuk+1

)

for all 0 ≤ k ≤ l − 1. Consequently, we can write that
l−1
∑

k=0

H(T ′
ukuk+1

) +H(Tuld)

=
l−1
∑

k=0

H(Tukuk+1
|Tukuk+1

/∈ T d
ukuk+1

) +H(Tuld),

whereu0 = s. Using Lemma 1, we finally obtain
l−1
∑

k=0

H(T ′
ukuk+1

) +H(Tuld) = H(Tsd|Tsd ∈ T
u

sd).

Now that we have derived a general expression for the
entropy of Markov trajectories conditional on multiple states,
we introduce, in the next section, a method that allows us to
compute this expression.

III. E NTROPY COMPUTATION

The closed-form expression for the entropy of Markov
trajectories proposed by Ekroot and Cover [5] is valid only if
the Markov chain studied is irreducible. However, the Markov
chainMCP ′ obtained fromMCP after the transformations (5)
and (6) is not necessarily irreducible: all transitions leading
to stateu have zero probability, which implies that possibly
many states do not admit any path leading tod. Therefore,
we need an expression for the entropy of Markov trajectories
that is valid under milder conditions. In order to identify these
conditions, we study the properties ofMCP ′ . Let S be the
set of all states inMCP ′ and letS1 andS2 be two subsets
that partitionS in the following manner

S1 = {i ∈ S : aid > 0} S2 = {i ∈ S : aid = 0}.

The setS1 is closed as no one-step transition is possible from
any state inS1 to any state inS2. In fact, if i ∈ S1 andj ∈ S2,
(6) yields thatP ′

ij = P̄ijajd/aid = 0. Clearly, all trajectories
leading to stated are composed of states belonging toS1.
Now, we propose a closed-form expression for the entropy of
Markov trajectories that is valid under the weaker condition
that the destination stated can be reached from any other state
of the MC. Moreover, we prove that the trajectory entropy can
be expressed as a weighted sum of local entropies. We also
provide an intuitive interpretation of the weights.

Lemma 3: Let P be the transition probability matrix of a
finite state MC such that there exists a path with positive
probability from any state to a given stated. Let Qd be a sub-
matrix of P obtained by removing thedth row and column of
P .

P =





Qd
P1d...

Pd1 · · · Pdd

.





For any states 6= d, the trajectory entropyHsd can be
expressed as

Hsd =
∑

k 6=d

((I −Qd)
−1)skH(Pk·), (14)

whereH(Pk·) is the local entropy of statek.

Proof: First, observe that the matrixQd is a sub-matrix
of P corresponding to all states except stated and that we
useQd to derive the entropy of all trajectories ending atd.
Applying the chain rule for entropy, we express the entropy of
a trajectory as the entropy of the first step plus the conditional
entropy of the rest of the trajectory given this first step

Hsd = H(Ps·) +
∑

k 6=d

PskHkd.

We expand this equality further by recursively expanding the
entropyHkd as follows

Hsd = H(Ps·) +
∑

k 6=d

Psk



H(Pk·) +
∑

k′ 6=d

Pkk′Hk′d





= H(Ps·) +
∑

k 6=d

PskH(Pk·)

+
∑

k 6=d

Psk

∑

k′ 6=d

Pkk′Hk′d

= H(Ps·) +
∑

k 6=d

PskH(Pk·) +
∑

k 6=d

Psk

∑

k′ 6=d

Pkk′

·

(

H(Pk′·) +
∑

k′′ 6=d

Pk′k′′

(

H(Pk′′·) + . . .

))

= H(Ps·) +
∑

k 6=d

(

∞
∑

i=1

(Qd
i)sk

)

H(Pk·)

=
∑

k 6=d

(

∞
∑

i=0

(Qd
i)sk

)

H(Pk·), (15)

with Qd
0 = I.

Observe that the matrixQd describes the Markov chain as
long as it does not reach stated. Moreover, the matrixQd

has a finite number of states and there is a path with positive
probability from each state to stated. As a consequence, the
Markov process will enter stated with probability 1, i.e.,
limn→∞ Qd

n = O (zero matrix). In addition, since

(I −Qd)(I +Qd +Qd
2 + . . .+Qd

n−1) = I −Qd
n,

we can easily verify that
∞
∑

i=0

Qd
i = (I −Qd)

−1. (16)

Replacing (16) in (15), we have

Hsd =
∑

k 6=d

((I −Qd)
−1)skH(Pk·).

We have shown that the entropy of a family of trajectories
can be expressed as a weighted sum of the states’ local
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entropies. The weights are given by the matrix(I−Qd)
−1. In

the Markovian literature, the matrix(I−Qd)
−1 is referred to as

the fundamental matrix [8], [9]. In fact, the(sk)th element of
the fundamental matrix (defined with respect to the destination
stated) can be seen as the expected number of visits to the
state k before hitting the stated, given that we started at
states. As a result, the entropy of the random trajectoryTsd

is the sum over the chain states of the expected number of
visits to each state multiplied by its local entropy. This isa
remarkable observation since it links a global quantity, which
is the trajectory entropy, to the local entropy at each state.

Recall that in the example shown in Figure 1, we found
that the entropy of the trajectoryT15 is equal to1.56 bits. We
can retrieve this result by computing the fundamental matrix
with respect to state5. The (ij)th element of this matrix is
equal to the expected number of visits to statej before hitting
state5, given that we started at statei. Multiplying the first
row of the fundamental matrix(1, 0.625, 0.75, 0.375) by the
column vector of local entropies(0.81, 0, 1, 0) yields H15 =
1× 0.81 + 0.75× 1 = 1.56 bits.

A. Algorithm

The following algorithm defines the set of steps to compute
the entropy of Markov trajectories conditional on a set of
intermediate states:

Input: Matrix of transition probability P , source state
s, destination stated, sequence of intermediate
statesu = u1 . . . ul

Output: Hsd|u1...ul

1: u0 ← s
2: for k = 0 to l − 1 do
3: ComputeP ′

k from P using (13)
4: ComputeH(T ′

ukuk+1
) from P ′

k using Lemma 3
5: Hukuk+1|d̄

← H(T ′
ukuk+1

) {Lemma 2}
6: end for
7: ComputeHuld from P using Lemma 3
8: Hsd|u1...ul

=
∑l−1

k=0
Hukuk+1|d̄ +Huld {Lemma 1}

9: return Hsd|u1...ul

The worst-case running time for the algorithm isO(lN3)
whereN is the number of states ofMCP , and l the length
of the sequence of intermediate statesu. This complexity
is dominated by the cost of computing the inverse of the
matrix (I − Qd), which is needed to compute the entropy
Hsd in (14). However, since we need only thesth row of the
matrix (I − Qd) to compute the trajectory entropyHsd, we
can solve a system of—potentially sparse—linear equations.
Moreover, many iterative methods [10, p. 508] take advantage
of the structure of the matrix representing the system of linear
equations in order to solve them efficiently.

Coming back to the example shown in Figure 1, we use the
algorithm above to compute the conditional entropyH15|3 =
1 bit. We leave no ambiguity about the trajectoryT15 when
we condition on both states3 and 2 and find thatH15|3,2 =
H13|5̄ +H32|5̄ +H25 = 0 bits.

Fig. 2. A Markov chain annotated with the transition probabilities. The
dashed lines between states 4 and 2 represent them equiprobable paths
leading from state 4 to state 2. We choose0 < ǫ1 < 1 and m ≥ 1 to
guarantee that|T15| > 0 and thatp(T15 ∈ T 3,2

15
) > 0.

Conditioning on a set of states: In this paper, we focused
on computing the entropy of Markov trajectories conditional
on asequence of states. A natural extension is the computation
of this entropy conditional on anon ordered set of states.
Finding a general expression for this conditional entropy
appears very hard and there is no simple relation linking it to
the entropy conditional on a sequence. We provide an example,
shown in Figure 2, that illustrates an interesting and counter-
intuitive result about conditioning on a set of states. Intuitively,
we would expect that the entropy of a random trajectory
conditional on a sequence of states is always less than the
entropy of the same trajectory conditional on the set formedby
these states. However, this is not true. We take the MC shown
in Figure 2 as an example and we compute, using Theorem 1,
the entropy of the random trajectoryT15 conditional on going
through the sequence of intermediate states(3, 2)

H15|32 = H13|5̄ +H32|5̄ +H25

= h(ǫ0) + logm+H35, (17)

whereh(ǫ0) is the entropy of a Bernoulli random variable with
success probabilityǫ0. To compute the entropy of the random
trajectoryT15 conditional on going through the set of states
{2, 3}, we apply the chain rule for entropy and express the
entropy of a trajectory as the entropy of the first two steps
plus the conditional entropy of the rest of the trajectory given
these first two steps

H15|{2,3} = h

(

ǫ0ǫ1
1− ǫ0(1− ǫ1)

)

+
ǫ0ǫ1

1− ǫ0(1− ǫ1)
H45

+
1− ǫ0

1− ǫ0(1− ǫ1)
H35.

SinceH45 = logm+H25 = logm+H35, we have that

H15|{2,3} = h

(

ǫ0ǫ1
1− ǫ0(1− ǫ1)

)

+
ǫ0ǫ1

1− ǫ0(1− ǫ1)
log(m)

+H35. (18)
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Using (17) and (18), we can write

H15|32 −H15|{2,3} = h(ǫ0)− h

(

ǫ0ǫ1
1− ǫ0(1− ǫ1)

)

+
1− ǫ0

1− ǫ0(1 − ǫ1)
logm.

This difference can therefore be lower bounded by

H15|32 −H15|{2,3} ≥ −1 +
1− ǫ0

1− ǫ0(1 − ǫ1)
logm.

As a consequence, iflogm > 1 + ǫ0ǫ1/1− ǫ0, the entropy
of the random trajectoryT15 conditional on going through the
sequence(3, 2) is strictly greater than the entropy of the same
trajectory conditional on going through the set of states{2, 3}.
The reason is that conditioning on the sequence(3, 2) implies
that the random trajectoryT15 is composed of a random sub-
trajectoryT42 whose entropy can be made arbitrary large by
increasing the parameterm. More generally, this example
illustrates the absence of a simple relation between the entropy
of random trajectories conditional on a sequence of states
and the entropy of the same trajectory conditional on the set
formed by these same states.

IV. CONCLUSION

In this paper, we address the problem of computing the
entropy of conditional Markov trajectories. We propose a
method based on a transformation of the original Markov chain
into a Markov chain that yields the desired conditional entropy.
We also derive an expression that allows us to compute the
entropy of Markov trajectories, under conditions weaker than
those assumed in [5]. Furthermore, this expression links the
entropy of Markov trajectories—a global quantity—to the
local entropy of states.

These results have applications in various fields including
mobility privacy of the users of online services. In fact, using
our framework, we are able to quantify the predictability of
a user’s mobility and its evolution with locations updates:We
represent a location as a state of a Markov chain. A sequence
of visited locations is therefore a Markovian trajectory, and
location-updates amount to conditioning this trajectory on a
set of intermediate states. In this setting, we can quantify
the evolution of the user’s mobility predictability as she/he
discloses some of the locations she/he visited by computing
the entropy of conditional Markov trajectories. Consequently,
users are empowered with an objective technique to protect
their privacy: they are able to anticipate the evolution of their
mobility predictability as they reveal a subset of the locations
they visited.
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