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Abstract—To quantify the randomness of Markov trajectories
with fixed initial and final states, Ekroot and Cover proposed
a closed-form expression for the entropy of trajectories ofan
irreducible finite state Markov chain. Numerous applications,
including the study of random walks on graphs, require the
computation of the entropy of Markov trajectories conditional
on a set of intermediate states. However, the expression okEot
and Cover does not allow for computing this quantity. In this
paper, we propose a method to compute the entropy of conditial
Markov trajectories through a transformation of the origin al
Markov chain into a Markov chain that exhibits the desired
conditional distribution of trajectories. Moreover, we express the
entropy of Markov trajectories—a global quantity—as a linear
combination of local entropies associated with the Markov chain

and destination vertices. Consequently, the predictahbdf
her/his route is captured by the entropy of Markov trajaesor
between these two states. Now, if we obtain side information
stating that the traveller went (or has to go) through a set
of intermediate vertices, quantifying the evolution of /hés
route predictability requires the computation of the tcégey
entropy conditional on the set of known intermediate states
The conditional entropy is also a way to quantify the informa
tional value of the intermediate states revealed. For el@mp
if the entropy conditional on the set of known intermediate
states is zero, then this set reveals the whole trajectotleof
traveller.

states. In our work, we propose a method to compute the entropy

Index Terms—Entropy, Markov chains, Markov trajectories.  of Markov trajectories conditional on a set of intermediate
UANTIFYING the randomness of Markov trajectoriesstates. The method is based on a transformation of the atigin

Q has applications in graph theoryl [1] and in statisticdflarkov chain so that the transformed Markov chain exhibits
physics [2], as well as in the study of random walks othe desired conditional distribution of trajectories. Weoa
graphs [[3], [4]. The need to quantify the randomness @frive an expression that enables us to compute the entropy
Markov trajectories first arose when Lloyd and Pagéls [®f Markov trajectories, under conditions weaker than those
defined a measure of complexity for the macroscopic statesassumed in_[5]. Moreover, this expression links the entraipy
physical systems. They examine some intuitive propertias t Markov trajectories to the local entropies at the Markovigha
a measure of complexity should have and propose a universi@tes.
measure callediepth. They suggest that the depth of a state
should depend on the complexity of the process by which
that state arose, and prove that it must be proportional to

the Shannon entropy of the set of trajectories leading tb tha Let {X;} be a finite state ireducible and aperiodic Markov

state. Subsequently, Ekroot and Cover [5] studied the co 1ain (MC) with transition probability matrix> whose ele-
putational aspect of the depth measure. In order to quanti " oo
ents are the transition probabilities

the number of bits of randomness in a Markov trajectory,
they propose a closed-form expression for the entropy of
trajectories of an irreducible finite state Markov chaineirh
expression does not allow, however, for computing the @gtro
of Markov trajectories conditional on the realisation of a
set of intermediate states. Computing the conditionalogytr ~ This MC admits a stationary distributiol, which is the
of Markov trajectories turns out to be very challenging yéthique solution ofIl = IIP. The entropy rateH (X) is
useful in numerous domains, including the study of mobilitg Mmeasure of the average entropy growth of a sequence
predictability and its dependence on location side infdioma 9enerated by the proce$s(;} and is defined as

Consider a scenario where we are interested in quantifying
the predictability of route-choice behaviour. We can model
the mobility of a traveller as a weighted random walk on a
graph whose vertices represent locations and edges rapreger the particular case of an irreducible and aperiodic MC,
possible transitions [6]. We can therefore model a route ast limit above is equal ta [7, p. 77]
sample path or trajectory in a Markov chain. If we suppose
that we know where the traveller starts and ends her/higrout
the randomness of the route she/he would follow is repre-
sented by the distribution of trajectories between the c®ur

where P; denotes thei™ row of P and whereH (P;.) =
) _ " : — > . Pi;log(P;;) is thelocal entropy of statei. Note that,

land. Copyright (c) 2013 IEEE. Personal use of this matdsgbermitted. J .
However, permission to use this material for any other psegomust be throthOUt this paper, we use/Cp as a shorthand for the
obtained from the IEEE by sending a request to pubs-pemmis@ieee.org. Markov chain whose transition probability matrix 1.

I. THE MODEL

Pmnwn+1 = p(Xn+1 = xn-l—l'Xn — xn)

=p(Xnt1 = Tnt1|Xn = 2ny ..., X1 = 27).

1
lim —H(Xl,Xg, ceey Xn)

n—oo n

H(X) =

H(X) = Y 1@ H(P)
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A. The Entropy of Markov Trajectories 0.5

We follow the setting of([5] closely. We define random

trajectory 7,4 of a MC as a path with initial state, final e e
state d, and no intermediate staté, i.e., the trajectory is
terminated as soon as it reaches statdJsing the Markov 1
property, we express the probability of a particular tregec e
tsq = sxq...xpd given thatX; = s as e °

0.5

p(tsd) = Psmgngmg ce Pmkd-
Fig. 1. An irreducible, 5-state, Markov chain annotatedhvifie transition
Let 7,4 be the set of all trajectories that start at statand probabilities.
end as soon as they reach stdteAs the MC defined by the

matrix P is finite and irreducible, we have ) ) ) )
Using the results of 5], we obtain the matrix of trajectory

S plta)=1  foralls,d. entropies
tsa€Tsa 3.56 3.69 1.74 3.18 1.56
. . 2 569 37 259 0
So the discrete random variable,; has as support the set - 3 384 474 299 1

Tsd, With the probability mass functiop(tsq). Subsequently,
we usep(tsq) as a shorthand fop(T,q = t54). We can now
express the entropy of the random trajectdty as

2 569 3.7 259 O
2 569 3.74 259 1.78

The zero elements of the matriX correspond to deterministic

Hyy = H(Tsq) = — Z p(tsq)logp(tsa)- trajectories such a%,s;, which is equal to the pathB5 with
ten€Toa probability 1 since no other path allows a walk to go frdm
to 5. The entropy of the random trajectoffyi5 is 1.56 bits.
We define the matrix of trajectory entropiés where H;; =  Now imagine that we have an additional piece of information

H(T;;). Ekroot and Cover [5] provide a general closed-formgtating that the trajectory,; goes through staté. Intuitively,
expression for the matriX/ of an irreducible, aperiodic and\ye would be tempted to argue that the entrdipy, of the

finite state MC. trajectoryT} 5 conditional on going through stateis equal to
The entropyH 4, of a trajectory froms to d given that it f,, + H,s, but this additivity property does not hold. Indeed,
goes through: is defined by the conditional entropy, s, is zero because the trajectory
T15, conditional on the intermediate state 4, can only be equal
Hgpy = H(Tsa|Tsa € Tgy) to the pathl 345, whereas, = 3.18 bits, henceH 4+ Hys =
= Z p(tsa|Tsa € Tog) logp(tsalTsa € Toq), 3.18+0=3.18 # H15|4 bits. .
= In the next section, we study the entropy of Markov trajec-

(1) tories conditional ommuitiple intermediate states and derive a
general expression for this entropy.
whereTy; is the set of all trajectories iff,q with an interme-
diate stateu II. THE ENTROPY OFCONDITIONAL MARKOV
TRAJECTORIES

Let a,,q denote the probability that the random trajectory

: . - Tsq goes through the state at least once:
The major challenge is to compute efficiently the entropySd g g

H,q),- Even the costly approach of computing all the terms asud = P(Tsa € TH).
of the sum [{) is not always possible because the S¢}
has an infinite number of members in the case where,
removing stated, the transition graph of the MC is not a

DAG. It is important to emphasize that the entropi, statesu andd absorbing (a statéis absorbing if and only if

Irz:(;);r:]h\e;a?igtl;?erzsf tLTaen':i? n(?,\(l)rz?csl/a}rslaﬁd ?:)Vigrﬁnﬁizibﬁi = 1) and compute the probability to be absorbed by state
9 Y Y P given that the trajectory has started at state

the entropy ofl’,; conditional on the realization of a dependent . ; - .
Py Ol sa P Our first step towards computing, ., is to express it as a

random variable. . " ;
unction of quantities that are much simpler to compute. The

In Flgu_re[:_L we show an example of a finite-state _wreQuubIsea is to relate the entropy of a trajectory conditional on a
and aperiodic MC. Note that the presence of cycles implias tg&

: . ; ) iven state to its entropy conditional oot going through that
the set of trajectories between some pair of states mighd h Py going 9

o T N . _state. Therefore, we define the entrofdy,; of a trajectory
infinite cardinality (714 = oo for example). Therefore, in from s to d given that it doesiot go throughu to be

addition to being complex, the naive approach of enumegatin
all trajectories is not always possible. Hyqg = H(Tsa|Tsa & Ty)-

T ={tsa € Tsa i tsa=5...u...d}.

ale'r}is is also equal to the probability that a walk reaches the
s?ateu before the state/, given that it started at. In order
to computea,,q, the technique from [8],[9] is to make the
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Using the chain rule for entropy, we can derive the followingntropy H (Ts4|Tsq € T.5), which we denote by g, .. .,
equation which relatesl |, t0 Hsq, Hoq)q and agua: can be written as a joint sub-trajectory entropy

Hsd = asustd\u + (1 - asud)Hsd|ﬂ + h(asud) (2) Hsd|u1...ul = H(Tsm 5 Tu1u27 cee 7Tuld|Tsd S ;,j)

for all u, whereh(asuq) is the entropy of a Bernoulli random Applying the chain rule for entropy, we obtain successively
variable with success probability;,, .

Proof: First, we define the indicator variableby Hgjuy ..y = H(Tsuy s Tuyugs - - s Twgd Tsa € To)
, = H(Tsu,|Tsa € Ty
r= b a7, +§{(Tl| TT dzz T
~ |0 otherwise wiuztsuri Lod € Jod
Using the chain rule for entropy, we express the joint entrop '
H(T.q, 1) in two different ways, + H(Twd|Tsuys - Tuy s Tsa € Toq)-
H(Tyq,I) = H(I)+ H(Tsq|I) The Markovian nature of the process generating the trajgcto
— H(Tya) + H(I|Tsa) = H(Tsa), Tsq implies that each of the sub-tra_jecto.r'[*ebkukﬂ is ind_e-
pendent of the preceding ones, given its starting paint
becausel is a deterministic function of’,;. So the entropy Since the sequenceu = sujus...w; defines the starting
of the random trajector{’s; can be expressed as point of each sub-trajectory, we can therefore write that
H(TSd) = H(I) + H(TSdl‘[) H(Tukuk+1 |Tsu17 e 7Tuk,1uk;Tsd S S’l(li,)
=H(I) + H(Ts|l = 1)p(I = 1) = H(Tuupsi | Tsa € Ta)- 4)
+ H(TulI = 0)p(I = 01 . Using [4), the expression for the conditional entropy beesm
= + H(Tsa|Tsa € Toq)p(Tsa € Tgq)

= H(I)
+ H(To|Tog & T p(Toq & T4). Hygjuy ooy = H(Tsu, | Tsa € Tig)
i H +H Tu u Ts S 7;u
Sinceasuqs = p(Tsa € TY) = p(I = 1), we obtain (Tusua| Tsa € Ted)

H(Tsd) = asudH(Tsd|Tsd € 372)

" + H(Tw,a|Tsa € T).
+(1 - asud)H(Tsd|Tsd ¢ sd) + h(sud)- ( ld| ¢ d)
Note that for each trajector{’,, ., ,, the only restriction
imposed by the evenfT,; € 7%} is that the final statel

5 C
As we know from [[3], [8], [9] how to computé, an_d cannot be an intermediate state of any of the fitshjectories
sud, if we are able to computél,;, we can usel(2) to find
T ooy Ty, _u,- As a result,

H,q),,. However, generalizing(2) to trajectories conditional on®’ = "2’

passing throughmultiple intermediate states turns out to be H — H(T. |T T

e . . sduy..up — ( su1| suq ¢ su])
difficult, hence we propose an approach that circumvenss thi d
problem. As we will see, the difficulty of our approach also + H (T wo | Turus & Tiyuo)

boils down to computing the entropy of a trajectory condiib
on not going through a given state.

First, we define7%, the set of all trajectories iffyq that + H(Tua)
exhibit the sequence of intermediate states= ujus . .. uy, =1
i.e. = ZHukuk+1|J+Huld7
k=0
Tt ={tsa € Ted i tsa=8...u1...u2...u;...d}. whereug = s -
For an arbitrary sequence of states= wujus...u;, sat-  NOw, if we are able to comput#,, ,,, . 4, We can use(3)

isfying p(T.q € T%) > 0, we prove the following lemma. t0 deriveH (Tsq|Tsa € 7). The following lemma shows how
the conditional entropy?,,, ,,, . , |4 can be obtained by a simple

modification of the MC.

Lemma 1: We consider a MC whose transition probability matrixits
-1 ands, u andd three distinct states such that,, = p(Tsq €

H(Tsq|Tsqa € Toy) = ZHukuk+1|g—|— Hy,a, (3) T4) < 1. Let P be the transition matrix of the same MC

k=0 but where both states andd are made absorbing, and whose

whereuy = s entries are thus
Proof: First, givenT,q € 7%, the random trajector{s, 0 !f l =u,d andz. # j,’

can be expressed as a sequence of random sub-trajectories Pij =41 if i =u,dandi = j, (5)

(Tsurs Tuqugs - - - s Tuy_yuys Tuya). Therefore, the conditional P;; otherwise



Next, we define a second matri’, obtained by a transfor-
mation of the matrixP

1—0jud S .
pr_ ) Tana i 1 diua # 1 (6)
Y P otherwise

Lemma 2: (i) The matrix P’ is stochastic andii) If T7,

IEEE TRANSACTIONS ON INFORMATION THEORY

If tsq ¢ T, we have

’ _ pl ’ ’
p (tﬁd) - Psmgpmgmg ot xgd
amgd D awgd D add D
= Poyo—Prpzy .. —Prya
Asd Agod Agp.d
Qdd & 5 5
- Pszgngzg ---szda (9)
Qsd

but aqq = 1 as the probability to be absorbed by state

is a random trajectory defined on the MC whose transitiqjiven that we have started at this same staté, isloreover,

probability matrix isP’ then

H(Tslesd ¢ s?i) = H( sld)-

Proof: (i) The matrix P is the transition probability
matrix of a MC where the states and d are absorbing. We
can therefore introduce the vectors of absorption protigbil
ay = (A1, 020, .-, 0ny) ANd ag = (a14,024;- - -, 0nd)

wherea;, anda,;; are, respectively, the probability of being

absorbed byu and d, given that the trajectory starts at
These vectors are eigenvectorsidfassociated with the unit
eigenvaluel[B, p. 227]

Pa, = a., Pag = aq. (7
Moreover asM C 5 has only two absorbing statesandd, for
all 7, a;, = 1 — a;q. Recall that for all;, a;q = ai, hence
(€) can be written as

Note that all transitions leading to statein M/ C'5 will have
zero probability inM Cp:. In fact, consider a statesuch that
P, > 0 anda;g > 0. In the new matrixP’, the probability
of transition fromi to v will be P!, = ayqP;./aiq , which
is zero because,,; = 0. Proving thatP’ is stochastic is now
straightforward: First, the entries @ are positive; Second,

%R; if aiq # 0,
Py otherwise

we know from [B) thatP;; = P;;, for all i # u, d. As we have
supposed that the trajectory; does not admit either or d as

intermediate state$., Prous - - - Peyd = Pswy Prows - - - Prpd-
Rewriting [9) yields
1
p/(tsd) - _P512Pz213 . szd
Asd
_ p(tsd)
1—agy
p tsd -
= (fxa) = p(tsa|Tsa & Toq)- (10)

1- p(TSd € s?i)

Combining [8) and[(10), we have therefore proven, for all
tsqa € Taeq, that

pl(tsd) = p(tsd|Tsd ¢ 7;?1)

Consequently, if the random varialilé, describes the trajec-
tory betweens andd in MCp/, (I1) implies that

H(Tslesd ¢ s?i) = H( sld)-

(11)

]
For the particular case whese= d, we still can use Lemnig 2
to express the conditional entrogy, ;. We modify the MC
by removing the incoming transitions efand creating a new
states’ that will inherit them. The conditional entropl/, |
in the original MC is equal td7,|; in the modified one and,
sinces # s, we can use Lemnid 2 to express it.
Building on Lemmd1l and Lemnid 2, we can now state the

they are properly normalized and sum up to one. Indeed, if wi@ain result of this paper: a general expression for the pytro

consider a staté such thata;q = 0, we have thagj Pi’j
>, P;; = 1 whereas ifa;q # 0, we have that

NAEDD
J J
1 _
- St
J

_ 1
—(Pag)i = —aja =1
Qid Qid

a;d
J PZ]
QAid

because offq).

of Markov trajectories conditional on multiple intermetgia
states.

Theorem 1: Let P be the transition probability matrix of
a finite Markov chain andsud = su;...u;d a sequence
of states such thap(Tsq € 7.%) > 0. Then, we have the
following equality

-1
H(Tsa|Tsa € Tyq) = ZH(
k=0

T/

ukuk+1) + H(Tuld)a (12)

whereug = s, andT”

Uk Uk+1

is a random trajectory defined on

(i) Let p andp’ be the probability measures defined, respethe Markov chain whose transition probability matd is

tively, for MCp and MCp: on the same sample spagg;.
Any trajectory from the sef,4 has the form,y = szo...xxd.
If tsq € 7;?1,

p/ (tsd) =0 (8)

since we have constructet/ C'r such that all transitions
leading to state. have zero probability.

defined as follows

0 if i =ugs1,d andi # j,
(PL)i; = 1 if i = wgr1,d andi = j,
k/v) — P'Lj |f 7 # Uk+1, d andaiduk+1 = 1’
l1—ajqu i y
ko‘jT:jjplj if ¢ # Uk+1, d andaiduk+1 <L

(13)
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For any states # d, the trajectory entropyH,; can be

Proof: The matrix P] is obtained fromP using [13), expressed as

which is equivalent to applying successivdly (5) aid (6) rehe H,y = Z((I —Qu) Y H(PL), (14)
the starting, intermediate and ending states are, respBgti jzd
ug, d andugy1. Therefore, using Lemnid 2, we have

H(Tvikuk+1 ) = H(Tukuk+1 |Tukuk+1 ¢ ukuk+1 )
for all 0 < k <[ — 1. Consequently, we can write that

where H(P,.) is the local entropy of staté.

Proof: First, observe that the matri, is a sub-matrix
of P corresponding to all states except stdtand that we
use @y to derive the entropy of all trajectories ending dat

H(T}, ) + H(Tua) Applying the chain rule for entropy, we express the entropy o
:Ol a trajectory as the entropy of the first step plus the conttio

! entropy of the rest of the trajectory given this first step
H(Tukuk+1 |Tukuk+1 ¢ ukuk+1 ) + H(Tuzd)’

[u

x>

k=0 Hy=H(P.)+ > PuyHia.
whereuo = s. Using Lemmadl, we finally obtain k#d
We expand this equality further by recursively expanding th
Z H(T, . y) + H(Twa) = H(Tsal Tsa € T)- entropy Hq as follows

|
Now that we have derived a general expression for the Hag = H(Ps) + ZPSk H(Py.) + Z Prwr Hira

entropy of Markov trajectories conditional on multipletets kd ki#d
we introduce, in the next section, a method that allows us to = H(Ps.)+ ZPskH(Pk.)
compute this expression. k#d
[1l. ENTROPY COMPUTATION +};P5kl;ipkk'1{k/d
The closed-form expression for the entropy of Markov
trajectories proposed by Ekroot and Cover [5] is valid offly i =H(Ps) + Z Py H (Pr.) + Z Pok Z Prwr
the Markov chain studied is irreducible. However, the Marko k7d k#d  K#d
chainM Cp: obtained fromM Cp after the transformationgl(5) H(P Z P H(Por)
and [8) is not necessarily irreducible: all transitionsdieg ) 2 Kk ki)

to stateu have zero probability, which implies that possibly
many states do not admit any path leadingdtoTherefore, — H(P,)+ Z (i(
we need an expression for the entropy of Markov trajectories *
that is valid under milder conditions. In order to identihese -
conditions, we study the properties 81 Cp.. Let S be the _ i
set of all states iM/Cp, and letS; and S, be two subsets N Z (Z(Qd M) H(P), (15)
that partitionS in the following manner

with Qdo =1.

S1={i€S:aa>0} S={i€S:aa=0} Observe that the matrig, describes the Markov chain as
The setS; is closed as no one-step transition is possible frolang as it does not reach statke Moreover, the matrix)
any state inS; to any state irS,. In fact, ifi € S; andj € S;,  has a finite number of states and there is a path with positive
() yields thatP/; = Pjja;q/aiq = 0. Clearly, all trajectories probability from each state to state As a consequence, the
leading to stated are composed of states belongingde. Markov process will enter staté with probability 1, i.e
Now, we propose a closed-form expression for the entropy lofn,, .. Q4" = O (zero matrix). In addition, since
Markov trajectories that is valid under the weaker conditio 9 1 n
that the destination statecan be reached from any other state (I =QaI+Qa+Qa" +...+Qa" ") =1-Qud",
of the MC. Moreover, we prove that the trajectory entropy cafe can easily verify that
be expressed as a weighted sum of local entropies. We also
provide an intuitive interpretation of the weights. Z Qa' = (I —Qq)~". (16)

d )sk) H(Py.)

kd

k#d \i=0

Lemma 3: Let P be the transition probability matrix of a
finite state MC such that there exists a path with positivieeplacing [(IB) in[(15), we have
probability from any state to a given stateLet @, be a sub-

— —1
matrix of P obtained by removing thé" row and column of Hgq = Z((I = Qa)” sk H (Pr)-
k#£d
Qd : "
P = : We have shown that the entropy of a family of trajectories
e Pdd can be expressed as a weighted sum of the states’ local
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entropies. The weights are given by the matiix- Q,)~*. In N\

the Markovian literature, the matrif —Q ) ! is referred to as e

the fundamental matrix[[8][9]. In fact, th@k)" element of

the fundamental matrix (defined with respect to the destinat

stated) can be seen as the expected number of visits to the

state k before hitting the statel, given that we started at

states. As a result, the entropy of the random trajectdty

is the sum over the chain states of the expected number of

visits to each state multiplied by its local entropy. Thisais

remarkable observation since it links a global quantityiclvh

is the trajectory entropy, to the local entropy at each state
Recall that in the example shown in Figure 1, we found

that the entropy of the trajectof#; 5 is equal tol.56 bits. We 1

can retrieve this result by computing the fundamental matri

with respect to staté. The (ij)" element of this matrix is

equal to the expected number of visits to stateefore hitting , _ o "

. A . Fig. 2. A Markov chain annotated with the transition proliis. The
states, given that we started at staIeMuItlpIymg the first dashed lines between states 4 and 2 representrthequiprobable paths
row of the fundamental matrixl, 0.625,0.75,0.375) by the leading from state 4 to state 2. We chod$e< e < landm > 1to
column vector of local entropie&).81,0,1,0) yields H;5 = 9uarantee thaf715| > 0 and thatp(T15 € 7% > 0.

1 x0.814+0.75 x 1 = 1.56 bits.

-
3

—_——————

Conditioning on a set of states. In this paper, we focused
A. Algorithm on computing the entropy of Markov trajectories conditiona

The foIIowmg algorlthm defines the set of steps to compuﬂan asequence of states. A natural extension is the computation

the entropy of Markov trajectories conditional on a set gt this entropy conditional on a@on ordered set of states.
intermediate states: Finding a general expression for this conditional entropy

appears very hard and there is no simple relation linking it t

Input: Matrix of transition probability P, source state theentropy conditionalon a sequence. We provide an example
s, destination stated, sequence of intermedigte SNOWN in Figuré R, that illustrates an interesting and oernt
statesu = wuy...u intuitive result about conditioning on a set of states. |tnte_ly,

output: H.g),, we vy(_)uld expect that the entropy o_f a random trajectory

1 up s conditional on a sequence of states is always less than the
2 for k=0tol—1 do entropy of the same trajectory conditional on the set fortmed

3 ComputeP, from P using [13) _thes_e states. However, this is not true. We take_the MC shown
4 ComputeH( UWHI) from P! using Lemm4D in Figure[2 as an example an_d we compute_,_ using TheQem 1,
5 H i< H(T . ) {Lemma2 the entropy of the random_ trajecto@g) conditional on going

6 end 1{:6?"“‘ Rk through the sequence of intermediate stdfeQ)

" IC;omputeHuld frolrn; using Ler:lmf{BL Hys130 = Hig5 + H3o5 + Hos

8: = emm

o: reil(?run1 ?—jideIiZO st ¥ Fud { i = h(ep) + logm + Hss, a7)

whereh(ey) is the entropy of a Bernoulli random variable with
success probabilityy. To compute the entropy of the random
trajectoryTy5 conditional on going through the set of states
{2, 3}, we apply the chain rule for entropy and express the

tropy of a trajectory as the entropy of the first two steps
f us the conditional entropy of the rest of the trajectoryegi
hese first two steps

The worst-case running time for the algorithm@xiN3)
where N is the number of states a¥/Cp, and!( the length
of the sequence of intermediate states This complexity
is dominated by the cost of computing the inverse of t
matrix (I — Q4), which is needed to compute the entrop
H,q in (4). However, since we need only thé row of the
matrix (I — Q4) to compute the trajectory entropy/,, we €0€1 €0€1
can solve a system of—potentially sparse—linear equations His\(2,3y = h <1 (1 61)> 1—co(l—e)
Moreover, many iterative methods |10, p. 508] take advantag 1— e
of the structure of the matrix representing the system efdin + mﬂ%-
equations in order to solve them efficiently.

Coming back to the example shown in Figlte 1, we use tfnce Hys = logm + Has = logm + H3s, we have that
algorithm above to compute the conditional entrapys s = coer coer
1 bit. We leave no ambiguity about the trajectdfys when — His(23; = h <1 S )) + =) log(m)
we condition on both state3 and 2 and find thatH 53 » = 0 ! €0 “

Hy35 + H3o5 + Has = 0 bits. + Hss. (18)

Hys
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