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At Low SNR, Asymmetric Quantizers are Better
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Abstract—We study the capacity of the discrete-time Gaussian
channel when its output is quantized with a 1-bit quantizer.
We focus on the low signal-to-noise ratio (SNR) regime, where
communication at very low spectral efficiencies takes place. In
this regime, a symmetric threshold quantizer is known to reduce
channel capacity by a factor of , i.e., to cause an asymptotic
power loss of approximately 2 dB. Here, it is shown that this power
loss can be avoided by using asymmetric threshold quantizers
and asymmetric signaling constellations. To avoid this power loss,
flash-signaling input distributions are essential. Consequently,
1-bit output quantization of the Gaussian channel reduces spec-
tral efficiency. Threshold quantizers are not only asymptotically
optimal: at every fixed SNR, a threshold quantizer maximizes
capacity among all 1-bit output quantizers. The picture changes
on the Rayleigh-fading channel. In the noncoherent case, a 1-bit
output quantizer causes an unavoidable low-SNR asymptotic
power loss. In the coherent case, however, this power loss is
avoidable provided that we allow the quantizer to depend on the
fading level.

Index Terms—Capacity per unit energy, channel capacity,
Gaussian channel, low signal-to-noise ratio (SNR), quantization.

I. INTRODUCTION

W E study the effect on channel capacity of quantizing
the output of the discrete-time average-power-limited

Gaussian channel using a 1-bit quantizer. This problem arises in
communication systems where the receiver uses digital signal
processing techniques, which require that the analog received
signal be quantized using an analog-to-digital converter (ADC).
For ADCs with high resolution, the effects of quantization are
negligible. However, high-resolution ADCs may not be prac-
tical when the bandwidth of the communication system is large
and the sampling rate high [1]. In such scenarios, low-resolution
ADCs must be used. The capacity of the discrete-time Gaussian
channel with 1-bit output quantization indicates what commu-
nication rates can be achieved when the receiver employs a
low-resolution ADC.
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We focus on the low-signal-to-noise-ratio (SNR) regime,
where communication at low spectral efficiencies takes place,
as in spread-spectrum and ultrawideband communications.
In this regime, a symmetric threshold quantizer1 reduces the
capacity by a factor of , corresponding to a 2 dB power
loss [2]. Hence, the rule of thumb that “hard decisions cause
a 2 dB power loss.” Here, we demonstrate that if we allow
for asymmetric threshold quantizers with corresponding asym-
metric signal constellations, then the two decibels can be fully
recovered.
This result shows that a threshold (but not necessarily sym-

metric) quantizer is asymptotically optimal as the SNR tends to
zero. We further show that this is not only true asymptotically:
for any fixed SNR, a threshold quantizer is optimal among all
1-bit output quantizers.
While quantizing the output of the Gaussian channel with a

1-bit quantizer does not cause a loss with respect to the low-SNR
asymptotic capacity, it does cause a significant loss with respect
to the spectral efficiency. Indeed, as we show, the low-SNR
asymptotic capacity of the quantized Gaussian channel can only
be achieved by flash-signaling input distributions [3, Def. 2].
For the Gaussian channel (even without output quantization),
such input distributions result in poor spectral efficiency [3, Th.
16]: Gaussian inputs or (at low SNR) binary antipodal inputs
yield much higher spectral efficiencies [3, Th. 11]. Since output
quantization cannot increase the spectral efficiency, it follows
that flash signaling results in poor spectral efficiency also on the
quantized Gaussian channel. Thus, at low SNR, the Gaussian
channel with optimal 1-bit output quantization has poor spec-
tral efficiency.
It should be noted that the discrete-time channel model that

we consider implicitly assumes that the channel output is sam-
pled at Nyquist rate. While sampling the output at Nyquist rate
incurs no loss in capacity for the additive white Gaussian noise
(AWGN) channel [4], [5], it is not necessarily optimal (with re-
spect to capacity) when the channel output is first quantized
using a 1-bit quantizer. In fact, when a symmetric threshold
quantizer is employed, sampling the output above the Nyquist
rate increases the low-SNR asymptotic capacity [6], [7] and it
increases the capacity in the noiseless case [8], [9].
The rest of this paper is organized as follows. Section II

introduces the channel model and defines the capacity as well
as the capacity per unit energy. Section III presents the paper’s
main results. Section IV demonstrates that the capacity per unit
energy can be achieved by pulse-position modulation (PPM).
Section V discusses the implications of our results on the
spectral efficiency. Section VI studies the effect on the capacity
per unit energy of quantizing the output of the Rayleigh-fading

1A threshold quantizer produces 1 if its input is above a threshold, and it
produces 0 if it is not. A symmetric threshold quantizer is a threshold quantizer
whose threshold is zero.
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Fig. 1. System model.

channel using a 1-bit quantizer. Sections VII–X contain the
proofs of our results: Section VII contains the proofs concerning
channel capacity, Section VIII contains the proofs concerning
the capacity per unit energy, Section IX contains the proofs con-
cerning peak-power-limited channels, and Section X contains
the proofs concerning Rayleigh-fading channels. Section XI
concludes this paper with a summary and a discussion.

II. CHANNEL MODEL AND CAPACITY

We consider the discrete-time communication system de-
picted in Fig. 1. A message , which is uniformly distributed
over the set , is mapped by an encoder to the
length- real sequence of channel inputs.
(Here, denotes the set of real numbers.) The channel corrupts
this sequence by adding white Gaussian noise to produce the
unquantized output sequence

(1)

where is a sequence of independent and identically
distributed (i.i.d.) Gaussian random variables of zero mean and
variance . (Here, denotes the set of integers.) The unquan-
tized output sequence is then quantized using a quantizer that is
specified by a Borel subset of the reals: it produces 1 if is
in and produces 0 if it is not. Denoting the time- quantizer
output by ,

if ,
if .

While we only consider deterministic quantizers, it should be
noted that our results continue to hold if we allow for random-
ized quantization rules, i.e., if the quantizer produces ac-
cording to some probability distribution with binary . In
view of the direct relationship between the set and the quan-
tizer it defines, we shall sometimes abuse notation and refer to
as the quantizer. An example of a 1-bit quantizer is the threshold
quantizer, which corresponds to the set

(2)

The decoder observes the quantizer’s outputs
and guesses which message was transmitted.
We impose an average-power constraint on the transmitted

sequence: for every realization of the message , the sequence
must satisfy

(3)

for some positive constant , which we call the maximal al-
lowed average power.
For a fixed quantizer and maximal allowed average power
, the capacity is [5], [10]

(4)

where the supremum is over all distributions of under
which the second moment of does not exceed . Here, and
throughout the paper, we omit the time indices where they are
immaterial. We say that a rate (in nats per channel use) is
achievable using power and 1-bit quantization if for every

, there exists an encoder satisfying (3) and

(5)

as well as a 1-bit quantizer and a decoder such that the prob-
ability of error tends to zero as tends to in-
finity. Here, denotes the natural logarithm function. The
capacity is the supremum of all achievable rates and is
given by

(6)

(7)

where the first supremum is over all quantization regions ,
and the second supremum is over all quantization regions and
over all distributions of satisfying .
Following [11], we define the capacity per unit energy of

the quantizer as follows: We say that a rate per unit energy
(in nats per energy) is achievable with the quantizer

if for every , there exists an encoder satisfying

(8)

and
(9)

together with a decoder such that the probability of error
tends to zero as tends to infinity. The capacity

per unit energy is the supremum of all achievable rates
per unit energy with the quantizer and is given by [11, Th. 2]

(10)

(11)

where the second equation follows because, for every , the
capacity is a concave function of .
The definition of capacity per unit energy using a 1-bit quan-

tizer is analogous: We say that a rate per unit energy (in
nats per energy) is achievable using a 1-bit quantizer if for every

, there exists an encoder satisfying (8) and

(12)
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as well as a 1-bit quantizer and a decoder such that the prob-
ability of error tends to zero as tends to in-
finity. The capacity per unit energy is the supremum of all
achievable rates per unit energy.
Extending the proof of Theorem 2 in [11] to account for the

additional maximization over all possible quantizers, we obtain

(13)

which, by (6), can be expressed as

(14)

Exchanging the order of the suprema and applying (10) yields

(15)

(16)

where the last step follows from [3, Th. 3]. Here, denotes
relative entropy

if

otherwise
(17)

(where indicates that is absolutely continuous with
respect to ), and denotes the output distribution cor-
responding to the input . In our case, since the output of the
quantizer is binary,

(18)

It follows from (6) and (11) that

(19)

which, together with (13) and (15), yields

(20)

Thus, the capacity per unit energy is equal to the slope at zero
of the capacity-versus-power curve.
By the Data Processing Inequality [10, Th. 2.8.1], is

upper-bounded by the capacity of the unquantized channel [4]

(21)

Consequently, by (11) and (15),

(22)

A ubiquitous quantizer is the symmetric threshold quantizer,
for which . For this quantizer, the capacity

is given by [2, eq. (3.4.18)], [12, Th. 2]

(23)

where denotes the binary entropy function

(24)

(where we define ) and denotes the -function

(25)

The capacity can be achieved by transmitting and
equiprobably.

From (23), the capacity per unit energy for a sym-
metric threshold quantizer is [2, eq. (3.4.20)]

(26)

This is a factor of smaller than the capacity per unit en-
ergy of the Gaussian channel without output quanti-
zation. Thus, quantizing the channel output using a symmetric
threshold quantizer causes a loss of roughly 2 dB.
It is tempting to attribute this loss to the fact that the quan-

tizer forces the decoder to perform only hard-decision decoding.
However, as we shall see, the loss of 2 dB is not a consequence
of the hard-decision decoder but of the suboptimal quantizer. In
fact, with an asymmetric threshold quantizer, the loss vanishes
(see Theorem 2).

III. MAIN RESULTS

Our main results are presented in the following two sections.
Section III-A presents the results on channel capacity. We show
that the capacity-achieving input distribution is discrete with at
most three mass points and that threshold quantizers achieve
capacity (see Theorem 1). Furthermore, we provide an expres-
sion for the capacity when the average-power constraint (3) is
replaced by a peak-power constraint (see Proposition 1).
Section III-B presents the results on capacity per unit energy.

We show that asymmetric threshold quantizers and asymmetric
signal constellations can achieve the capacity per unit energy
of the Gaussian channel (see Theorem 2), thus demonstrating
that quantizing the output of the Gaussian channel with a 1-bit
quantizer does not cause an asymptotic power loss. We further
demonstrate that, in order to achieve this capacity per unit en-
ergy, flash-signaling input distributions [3, Def. 2] are required
(see Theorem 3). Finally, we show that if the average-power
constraint (3) is replaced by a peak-power constraint, then quan-
tizing the output of the Gaussian channel with a 1-bit quantizer
necessarily causes a 2 dB power loss (see Proposition 2).

A. Channel Capacity

Theorem 1 (Optimal Input Distribution and Quantizer):
1) For any given maximal allowed average power and any
Borel set , the supremum in (4) defining is
achieved by some input distribution that is concentrated
on at most three points.

2) For any given maximal allowed average power , the
supremum in (7) is achieved by some threshold quantizer
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(where depends on and ) and by a zero-mean,
variance- , input distribution that is concentrated on at
most three points.
Proof: See Section VII.

The result that the capacity-achieving input distribution is
concentrated on at most three mass points is consistent with [12,
Th. 1], which shows that if the quantization regions of a -bit
quantizer partition the real line into intervals, then the ca-
pacity-achieving input distribution is concentrated on at most

points.
Proposition 1: If the average-power constraint (3) is replaced

by the peak-power constraint

(27)

then the capacity of the channel presented in Section II is given
by

(28)

where

(29)

The capacity can be achieved by a binary input distribution with
mass points at and and by some threshold quantizer
with threshold .

Proof: See Section IX-A.
Numerical evaluation of (28) suggests that, for every max-

imal allowed peak power , themaximum is attained for .
In this case, would specialize to the capacity of the av-
erage-power-limited Gaussian channel with symmetric output
quantization (23).

B. Capacity Per Unit Energy

Theorem 2 : The capacity per unit energy
of the channel presented in Section II is

(30)

Proof: See Section VIII-A.
Thus, if we allow for asymmetric threshold quantizers and

asymmetric signal constellations, then quantizing the output of
the average-power-limited Gaussian channel with an optimal
1-bit quantizer does not cause a loss with respect to the capacity
per unit energy.
Considering the symmetry of the probability density func-

tion (PDF) of the Gaussian noise, it is perhaps surprising that
an asymmetric quantizer yields a larger rate per unit energy
than a symmetric one. However, the input distribution achieving
(30) is asymmetric (see below). Hence, the PDF of the unquan-
tized channel output is asymmetric, so it seems plausible that
the capacity per unit energy is achieved by some asymmetric
quantizer. In fact, even if the PDF of the unquantized channel

output were symmetric, this would not necessarily imply that
the optimal quantizer is symmetric: There are examples in the
source-coding literature of symmetric PDFs for which the op-
timal 1-bit quantizer with respect to the mean squared error is
asymmetric (see, e.g., [13, Ex. 5.2, pp. 64-65]).
Theorem 2 is proved by analyzing (16) with a judicious

choice of and . In Section IV, we provide an alternative
proof by presenting a PPM scheme that achieves the capacity
per unit energy (30). For this scheme, the error probability can
be analyzed directly using the union bound and an upper bound
on the -function: there is no need to resort to conventional
methods used to prove coding theorems such as the method
of types, information-spectrum methods, or random coding
exponents.
The capacity per unit energy (30) can be achieved by binary

on–off keying, i.e., by binary inputs of probability mass function

(31)

where the nonzero mass point tends to infinity as tends
to zero. The distribution of such inputs belongs to the class of
flash-signaling input distributions, which was defined by Verdú
[3, Def. 2] as follows.
Definition 1 (Flash Signaling): A family of distributions of
parametrized by is said to be flash signaling if it satisfies

and for every positive

(32)

Here, denotes the indicator function: it is equal
to one if the statement between the curly brackets is true and is
equal to zero otherwise.
Flash signaling is described in [3] as “the mixture of a proba-

bility distribution that asymptotically concentrates its mass at
0 and a probability distribution that migrates to infinity; the
weight of the latter vanishes sufficiently fast to satisfy the van-
ishing power constraint.” The next theorem shows that flash sig-
naling is necessary to achieve (30).
Theorem 3 (Flash Signaling is Required to Achieve ):

Every family of distributions of parametrized by that sat-
isfies and

(33)

must be flash signaling.
Proof: See Section VIII-B.

It is easy to show that for flash-signaling input distributions,
threshold quantizers with a bounded threshold give rise to zero
rate per unit energy. We thus have the following corollary.
Corollary 1 (The Thresholds Must be Unbounded): If (33)

holds for some family of threshold quantizers (parametrized by
the average power), then the thresholds must be unbounded in
the average power.

Proof: See Section VIII-C.
Intuitively, the power loss in quantizing the output of the

Gaussian channel with a 1-bit quantizer can be avoided by using
flash-signaling input distributions and asymmetric threshold
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quantizers because for such input distributions and quantizers,
the probability that the quantizer causes an error vanishes as
the SNR tends to zero. Indeed, by using binary on–off keying
(31) and threshold quantizers (2), and by cleverly choosing the
rate at which and grow as decreases, we can make the
probabilities and vanish
as tends to zero. This suggests that the loss caused by the
quantizer disappears with decreasing . Note, however, that the
same argument would also apply to the averaged-power-lim-
ited, noncoherent, Rayleigh-fading channel (see Section VI),
but for this channel, quantizing the output with a 1-bit quantizer
does cause a loss with respect to the capacity per unit energy
(see Theorem 5).
As mentioned in Section II, the capacity per unit energy is

equal to the slope at zero of the capacity-versus-power curve.
Thus, Theorem 2 demonstrates that the first derivative of
at is equal to . Theorem 3 implies that the second
derivative of at is .
Corollary 2 :

(34)

Proof: By the Data Processing Inequality, for every family
of distributions of parametrized by ,

(35)

To achieve , it is necessary to use flash signaling (see The-
orem 3). And for all flash-signaling input distributions, the right-
hand side (RHS) of (35) is (see [3, Th. 16]). Consequently,
so is its left-hand side (LHS).
Note that, for the Gaussian channel, the first and second

derivatives of the capacity are [4]

(36)

where “G” stands for “Gaussian”. Thus, while quantizing the
output of the Gaussian channel with a 1-bit quantizer does not
cause a loss with respect to the first derivative of the capacity-
versus-power curve, it causes a substantial loss in terms of the
second derivative. The implications on the spectral efficiency
are discussed in Section V.
Proposition 2: If the average-power constraint (3) is replaced

by the peak-power constraint

(37)

then the slope at zero of the capacity-versus-power curve is

(38)

Proof: See Section IX-B.
As was shown by Shannon [4], the capacity of the peak-

power-limited unquantized Gaussian channel satisfies

(39)

Thus, in contrast to the average-power-limited case, quantizing
the output of the peak-power-limited Gaussian channel with a
1-bit quantizer does cause a 2-dB power loss.

IV. PULSE-POSITION MODULATION

We next demonstrate that the capacity per unit energy (30)
can be achieved using a PPM scheme—no random-coding argu-
ments are needed. For such a scheme, the encoder produces the

channel inputs for each mes-
sage in , where

if ,
if ,

(40)

and where . For a fixed rate per unit energy

we have

(41)

Note that, while the rate per unit energy is fixed, the rate of this
scheme is and tends to zero as tends to infinity.
We employ a threshold quantizer (2) with the threshold

chosen so that for an arbitrary , the probability that
the quantizer produces 0 given that is equal to . Thus,

(42)

which yields

(43a)

(43b)

In (42), denotes the inverse -function.
The decoder guesses “ ” provided that and

that for all . If for more than one , or
if for all , then the decoder declares an
error.
Suppose that message was transmitted. Then, the

probability of an error is upper-bounded by

(44)

where the second step follows from the Union Bound; the third
step follows from (43a); and the fourth step follows because the
channel is memoryless which implies that
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does not depend on . Since the RHS of (44) does not depend
on , it follows that also the probability of error

is upper-bounded by (44).
The first term on the RHS of (44) can be evaluated using (43b)

and (41):

(45)

We continue by showing that if

then, for every fixed , the RHS of (45) tends to zero
as tends to infinity. Indeed,

(46)

where the first step follows by upper-bounding
and by substituting

and the second step follows from the inequality [14, Prop.
19.4.2]

(47)

The RHS of (46) is zero for .
Combining (46) with (44), we obtain that if ,

then the probability of error tends to as —and hence, by
(41), also —tends to infinity. Since can be chosen arbitrarily
small, the probability of error can be made arbitrarily small, thus
proving that the capacity per unit energy (30) is achievable with
the above PPM scheme.
The fact that PPM achieves the capacity per unit energy of

the Gaussian channel with a threshold quantizer follows also
from the analysis of the probability of error for block orthog-
onal signals shown in [15, pp. 342–346]. The threshold
introduced to bound the RHS of (5.97 d) in [15] can be identi-
fied as the threshold of the quantizer.

V. SPECTRAL EFFICIENCY

The discrete-time channel presented in Section II is closely
related to the continuous-time AWGN channel with 1-bit output
quantization. Indeed, suppose that the input to the latter channel
is bandlimited to Hz and that its average power is limited by
, and suppose that the Gaussian noise is of double-sided power

spectral density . Then, the discrete-time channel (1) with
noise variance

(48)

results from sampling the AWGN channel’s output at the
Nyquist rate . The capacity (in bits per second) of the
AWGN channel with Nyquist sampling and 1-bit output quan-
tization is given by

(49)

where is the capacity (7) of the discrete-time channel
in nats per channel use. Note, however, that when the channel
output is quantized, sampling at the Nyquist rate need not be
optimal with respect to capacity: see, e.g., [6]–[9] for scenarios
where sampling the quantizer’s output above the Nyquist rate
provides capacity gains. Consequently, is, in gen-
eral, a lower bound on the capacity of the AWGN channel with
1-bit output quantization.
The energy per information bit when communicating with

power at rate is defined as

(50)

which, by (48) and (49), is equal to

(51)

The spectral efficiency (in bits per second per hertz) is
defined as

(52)

which, by (49), is

(53)

In (52) and (53), is the solution to (50), namely,

(54)

See [3] for a more thorough discussion of spectral efficiency.
(Note that, in contrast to (1), the channel considered in [3] is
complex-valued. Therefore, the expressions for and

differ by a factor of two.)
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The minimum required for reliable communication is
determined by taking the infimum over of the RHS of (51).
By (13), this yields [3, eq. (35)]

(55)

Furthermore, the slope of at
in bits per second per hertz per 3 dB is given by [3, Th. 9]2

(56)

By (30) and (34), we have for the average-power-limited
Gaussian channel with 1-bit output quantization

(57)

which yields

(58a)

(58b)

In comparison, for the unquantized Gaussian channel (36)

(59)

and for the Gaussian channel with symmetric 1-bit output quan-
tization (23)

(60)

This yields

(61a)

(61b)

and

(62a)

(62b)

Comparing (62a) with (61a), we see once more that quantizing
the output of the Gaussian channel with a symmetric threshold
quantizer causes a power loss of roughly 2 dB. We further see
that with an asymmetric threshold quantizer, we can recover the

2Again, the channel considered in [3] is complex-valued and the expressions
for and , therefore, differ by a factor of two. Nevertheless, since
the capacity of the complex-valued channel is twice the capacity of the real-
valued channel, it follows that the numerical values of and are
the same as in [3].

Fig. 2. Spectral efficiency versus energy per information bit. (Top) Spectral ef-
ficiencies of the Gaussian channel with and without 1-bit output quantization.
(Bottom) Spectral efficiencies for the optimal 1-bit quantizer and for the sym-
metric threshold quantizer.

loss in terms of , but there is still a substantial loss
in terms of spectral efficiency. Indeed, for the Gaussian channel
with 1-bit output quantization, the wideband slope is zero,
whereas for the unquantized Gaussian channel it is 2 bits per
second per Hz per 3 dB.
The above spectral efficiencies are shown in Fig. 2. The

top subfigure shows the spectral efficiencies of the Gaussian
channel with and without 1-bit output quantization. The bottom
subfigure compares the spectral efficiency for the optimal
1-bit quantizer with the spectral efficiency for the
symmetric threshold quantizer. We observe that, even though
the minimum energy per information bit is the same with and
without 1-bit output quantization,3 the corresponding spectral
efficiencies differ substantially for all . We further

3For numerical reasons, the spectral efficiency of the Gaussian channel with
1-bit output quantization can only be shown for above .
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observe that for spectral efficiencies above 0.02 bits/s/Hz, a
symmetric threshold quantizer is nearly optimal.
We conclude that, for communication systems that operate at

very low spectral efficiencies, asymmetric quantizers are bene-
ficial, although for most practical scenarios, the potential power
gain is significantly smaller than 2 dB. For example, at a spec-
tral efficiency of 0.001 bits/s/Hz, allowing for asymmetric quan-
tizers with corresponding asymmetric signal constellations pro-
vides a power gain of roughly 0.1 dB.

VI. ONE-BIT QUANTIZERS FOR FADING CHANNELS

For the average-power-limited (real-valued) Gaussian
channel, we have demonstrated that by allowing for asym-
metric threshold quantizers with corresponding asymmetric
signal constellations, one can achieve the capacity per unit
energy of the unquantized channel. The same holds for the
average-power-limited complex-valued Gaussian channel [16]:
using binary on–off keying (31) and a radial quantizer (which
produces 1 if the magnitude of the channel output is above
some threshold and produces 0 otherwise), one can achieve
the capacity per unit energy of the unquantized channel by
judiciously choosing the threshold and the nonzero mass point
as functions of the SNR.
In this section, we briefly discuss the effect of 1-bit quanti-

zation on the capacity per unit energy of the discrete-time, av-
erage-power-limited, Rayleigh-fading channel. This channel’s
unquantized output is given by

(63)

where and are independent se-
quences of i.i.d., zero-mean, circularly symmetric, complex
Gaussian random variables, the former with unit variance and
the latter with variance . We say that the channel is coherent
if the receiver is cognizant of the realization of
and that it is noncoherent if the receiver is only cognizant of
the statistics of . The unquantized output is
quantized using a 1-bit quantizer that is specified by a Borel
subset of the complex field : it produces 1 if is in , and
it produces 0 if it is not. The capacities and are
defined as in Section II but with the average-power constraint
(3) replaced by

(64)

Likewise, the capacities per unit energy and are
defined as in Section II but with the energy constraint (8) re-
placed by

(65)

A. Coherent Fading Channels

Using the same arguments as in Section II, it can be shown
that, for a fixed quantizer , we have for the coherent channel
[11, Th. 3], [3]

(66)

where denotes conditional relative entropy

(67)

denotes the distribution of the fading , and
denotes the distribution of conditioned on .4

It can be further shown that

(68)

By the Data Processing Inequality, the capacity per unit en-
ergy is upper-bounded by that of the unquantized channel [3],
[17]

(69)

We next show that, by choosing the 1-bit quantizer as a function
of and the SNR, this upper bound can be achieved.
Theorem 4 (Coherent Case): The capacity per unit energy of

the coherent Rayleigh-fading channel is given by

(70)

It is achieved by a family of radial quantizers parametrized by
with thresholds that are proportional to .
Proof: See Section X-A.

The assumption that the fading is Gaussian is not essential.
In fact, Theorem 4 holds for every fading distribution having
unit variance.

B. Noncoherent Fading Channels

Using the same arguments as in Section II, it can be shown
that in the noncoherent case

(71)

and

(72)

4This can be shown along the lines of the proof of Theorem 3 in [11] but with
themutual information replaced by the conditionalmutual information

. That the RHS of (66) is an upper bound on follows then
immediately from [11, eq. (15)]. Showing that this holds with equality requires
swapping the order of taking the limit as tends to zero and of computing the
expectation over the fading.
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Since the capacity per unit energy of the unquantized Rayleigh-
fading channel equals irrespective of whether the channel
is coherent or not [3], [17], it follows from the Data Processing
Inequality that (69) holds also in the noncoherent case.
The capacity per unit energy (70) of the coherent channel

with 1-bit output quantization is achieved using binary on–off
keying where the nonzero mass point tends to infinity as the
SNR tends to zero. This result might mislead one to think that
(70) also holds in the noncoherent case. Indeed, in the absence of
a quantizer, binary on–off keying with diverging nonzero mass
point achieves the capacity per unit energy irrespective
of whether the receiver is cognizant of the fading realization
or not [3], [17]. It might, therefore, seem plausible that also in
the noncoherent case, quantizing the channel output with a 1-bit
quantizer would cause no loss in the capacity per unit energy.
But this is not the case:
Theorem 5 (Noncoherent Case): For the noncoherent

Rayleigh-fading channel with 1-bit output quantization

(73)

Proof: See Section X-B.
The case where the real and imaginary parts of the fading

channel’s output are quantized separately using a 1-bit quantizer
for each was studied, e.g., in [18]–[22]. However, in [18]–[21],
only symmetric threshold quantizers are considered.

VII. PROOF OF THEOREM 1

We prove Theorem 1 in five steps.
1) We first show that for any given maximal allowed average
power and any Borel set , the supremum in (4) defining

is achieved by some input distribution that is con-
centrated on at most three points (Section VII-A).

2) We next show that for every three-mass-point input distri-
bution, the supremum over all quantizers can be replaced
with the supremum over all threshold quantizers and all
quantizers whose quantization region consists of a finite
interval (see Section VII-B).

3) We continue by showing that the supremum in (7) defining
is achieved (see Section VII-C).

4) We then show that threshold quantizers are optimal by
demonstrating that quantization regions consisting of a fi-
nite interval are suboptimal (see Section VII-D).

5) We finally show that the capacity-achieving input distribu-
tion must be centered and must satisfy the average-power
constraint with equality (see Section VII-E).

A. Input Distributions Consisting of Three Mass Points

Generalizing the proof of Theorem 1 in [12] to arbitrary quan-
tizers, we prove that for every fixed quantizer and maximal
allowed average power , the capacity is achieved by
an input distribution consisting of three (or fewer) mass points.
To this end, we first argue that we can introduce an additional
peak-power constraint without reducing capacity, provided that
we allow the maximal allowed peak power to tend to infinity.

Thus, we show that , which is defined in (4) without a
peak-power constraint, can also be expressed as

(74)

where denotes the channel law corresponding to the quan-
tization region , and denotes the mutual informa-
tion of a channel with law when its input is distributed ac-
cording to . Clearly, the RHS of (74) cannot exceed its LHS,
because imposing an additional peak-power constraint cannot
increase capacity. It remains to prove that the LHS cannot ex-
ceed the RHS.
By Fano’s Inequality [10, Th. 2.11.1] and the Data Processing

Inequality, we have that, for every blocklength , every encoder
of rate that satisfies the

average-power constraint, and every quantization region , the
probability of error is lower-bounded by [10, Sec. 8.9]

(75)

Let be the largest magnitude of the symbols that the encoder
can produce

(76)

so

(77)

With this notation, we have for every blocklength and every
quantizer ,

(78)

where the first inequality follows from (77) and by the concavity
of

Thus, the RHS of (75) is bounded away from zero whenever
exceeds the RHS of (78), and the inequality

(79)

is established. Since the inner supremum on the RHS of (79)
is monotonically nondecreasing in , we can replace the outer
supremum by a limit and thus establish (74).
Introducing a peak-power constraint in (74) allows us next to

establish the existence of a capacity-achieving input distribution
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of three mass points using Dubins’s Theorem as follows. Recall
that by (74)

(80)

where denotes the capacity of the memoryless
channel with the input taking values
in the interval and with the binary output :

(81)

Proceeding along the lines of [23, Sec. II-C] but accounting for
the additional average-power constraint, it can be shown that

is achieved by an input distribution consisting of three
mass points. Indeed, since is concave, it is con-
tinuous, so there exists some such that

(82)

The input distribution achieving must be concentrated
on the interval and additionally satisfy

(83)

The arguments in [23, Sec. II-C] thus go through with the set
in [23, Sec. II-C] replaced by the set of input distributions that
induce the given output distribution and that additionally lie on
the hyperplane (83).
Having established that under an additional peak-power con-

straint capacity is achieved by a three-mass-point input distri-
bution, we now study what happens to these three mass points
as the allowed peak power tends to infinity. We thus study how
the three mass points at locations

with corresponding masses

behave as tends to infinity.
By possibly considering a subsequence of peak powers, we

can assume that, as tends to infinity, converges to some
whose components are on the extended real

line . Likewise, we can assume that converges to
some probability vector . Since the input distributions must
satisfy the average-power constraint, if any of the components
of is , then the corresponding component of must be
zero. By Lemma 1 (Appendix I), for every the
probability converges to

whenever is finite, so the continuity of

demonstrates that [which equals
by (74)] equals the mutual information corresponding to

provided that in computing the latter the mass points
of zero mass are ignored. Since the mass points at are of
zero mass (by the average-power constraint), those are ignored,
and we conclude that is achieved by (at most) three
finitemass point. For sufficiently large (exceeding the largest
of these mass points), the peak-power constraint is inactive.

B. Quantizers for Three-Mass-Point Input Distributions

Having established that for any quantizer , the capacity
is achieved by a three-mass-point input distribution,

we now fix some arbitrary three-mass-point input distribu-
tion5 concentrated at and study the quantizer
that maximizes the mutual information corre-
sponding to it. (Without loss of generality, we assume that

, , and .) We will show that when is
a three-mass-point input distribution, we have

(84)

where the quantizer is defined as

(85)

with

(86a)

(86b)

(86c)

(86d)

(Here, denotes the empty set.) Needless to say, the case
and the forms (86c) and (86d) yield zero mutual information

and are thus uninteresting.
Define

(87)

as the set of possible channel laws that different quantizers can
induce for the inputs , and let denote the closure
of the convex hull of . With this notation

(88)

where the second step follows because . Recall that an
extreme point of is a channel in that cannot be written as
a convex combination of two different channels in . By the
Krein–Milman Theorem [24, Cor. 18.5.1], every channel law

can be written as a convex combination of extreme
points of . Since mutual information is convex in the channel
law (when the input distribution is held fixed) [10, Th. 2.7.4], it

5Every two-mass-point distribution can be viewed as a three-mass-point dis-
tribution with one of the masses being zero.
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follows that on the RHS of (88), we can replace the supremum
over the set with the supremum over its extreme points.
We next show that the extreme points of correspond to

quantizers of the form (85). Once we show this, it will follow
that (88) holds with equality, because these extreme points of
are in fact in . This will prove (84).6

To prove that the extreme points of are indeed the channel
laws corresponding to quantizers of the form (85), we consider
the support function of [24, Sec. 13]

(89)

for . Since is the closure of all convex
combinations of the elements of [24, Th. 2.3], the support
function of is the same as that of and

(90)

where

(91)

We rewrite (90) as

(92)

where

(93)

The integral on the RHS of (92) is maximized when is the
set

(94)

The structure of depends on the zeros of , which we
study next.
Our study of the zeros of depends on the signs of

and on how many of them are zero. The case where
are all zero is trivial, because in this case,

is zero irrespective of . We will see that in all other cases,
the set that achieves is unique up to Lebesgue measure
zero. If exactly two ’s, say and , are zero, then the set
that achieves is either or , depending on whether is
positive or negative. We next consider the case where exactly
one of the ’s, say , is zero. In this case

(95)

which is either positive (if and ), negative (if
and ), or has a zero at

(96)

6Note that is the set of possible channel laws that different quantizers
can induce for the inputs , provided that we allow for randomized
quantization rules. It thus follows that (84) continues to hold if on the LHS,
instead of maximizing over all deterministic quantizers , we maximize over
all probability distributions with binary.

(if and have opposite signs). Consequently, if exactly one
of the ’s is zero, then the set that achieves is either the
entire real line, the empty set, or a ray, i.e., of the form
or , where is the RHS of (96).
We finally turn to the case where all the ’s are nonzero. If

they are all of equal sign, then has no zeros and the set
that maximizes is either the entire real line or the empty
set, depending on whether the ’s are all positive or all negative.
It remains to study the case where the ’s are nonzero but not
of equal sign. Changing the sign of all the ’s is tantamount to
multiplying by and, therefore, does not change the lo-
cations of the zeros, so we can assume without loss of generality
that one of the ’s, say , is positive and that the remaining two

are negative. In this case

(97)

where

(98)

Note that the zeros of are the same as the zeros of .
Further note that is a nonzero analytic function whose
second derivative

(99)

is strictly negative. Consequently, —and hence also
—can have at most two zeros. (If it had three or more,

then by Rolle’s Theorem, its derivative would have at least two
zeros, and its second derivative would therefore have a zero in
contradiction to (99).) If has at most one zero, then the
set achieving is either the entire real line, the empty
set, or a ray. If it has two zeros, then comprises two disjoint
rays or else a finite interval—either way, or its complement
is a finite interval.
We next show that for every , the quantization region

achieving is unique up to sets of Lebesgue measure zero.
Let be the quantization region that achieves , and
let be any other quantization region. Then

(100)

where the second step follows because for every ,
we have ; and the last step follows because for every

, we have . (Here, denotes the comple-
ment of the set .) Furthermore, since the zeros of are iso-
lated, it is nonzero almost everywhere, so the inequalities hold
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with equality if, and only if, and have
both Lebesgue measure zero.
Because quantizers that differ on a set of Lebesgue measure

zero induce identical channel laws, the uniqueness (up to sets
of Lebesgue measure zero) of the set achieving (for

) implies that for every , the tuple
that achieves is unique.
We next note that, by [24, Th. 13.1], every

satisfying

must be an interior point of . Since an interior point cannot
be an extreme point, it follows that every extreme point of a
compact convex set achieves the supremum defining at
some . Furthermore, since for a given the sup-
port function is achieved uniquely by a channel law that is
induced by a quantizer of the form (85) or their complement,
it follows that the extreme points of are all achieved by
quantizers of this form or their complement. Recalling that mu-
tual information is maximized over (for a given input dis-
tribution) at an extreme point, and noting that the mutual in-
formation corresponding to the quantizer is the same as that
corresponding to its complement, we conclude that—for any
fixed three-mass-point input distribution—the supremum over
all quantizers can be replaced with the supremum over all quan-
tizers of the form (85), thus proving (84).

C. Supremum Defining is Achieved

Having established that to each quantizer, the optimal input
distribution is of three mass points, and having established that
to each three-mass-point input distribution, the optimal quan-
tizer is of the form (85), we conclude that we can express
of (7) as

(101)

where denotes the three-mass-point distribution of
masses

and locations

and where denotes the channel law corre-
sponding to the quantizer and to the mass points ,

:

(102)

We next show that this supremum is achieved.
By the definition of the supremum, there exists a sequence

(where denotes the set of posi-
tive integers) such that

(103)

By taking a subsequence (if needed), we may assume without
loss of generality that converges to some , that con-
verges to some (whose components may be ) and that

and converge to and , both of which may be
. From the continuity of the cumulative distribution func-

tion of the normal distribution, it follows that, whenever is
finite,

(104)

where we recall that is a centered Gaussian random variable
of positive variance .
Since the mass corresponding to nonfinite locations is

zero (by the average-power constraint), and since converges
to , (104) and the continuity of the binary entropy function
allow us to infer that

(105)

provided that in computing the mutual information on the LHS
of (106) themass points of zeromass are ignored. This combines
with (103) to imply that

(106)

Noting that the mass points at are of zero mass and there-
fore ignored, we conclude that is achieved by an input
distribution of (at most) three finite mass points and by a quan-
tizer of the form (85).

D. Threshold Quantizer is Optimal

Having established that is achieved by a three-mass-
point input distribution and a quantizer of the form (85), we
now prove that is in fact achieved by a three-mass-point
input distribution and a threshold quantizer, i.e., a quantizer of
the form (86b). Clearly, and cannot be both nonfinite, as
this would result in zero mutual information, whereas is
strictly positive whenever is positive7

(107)

For the same reason, we can assume, without loss of optimality,
that . Since (86a) is the complement of a set of the form
(86b)—which gives rise to the same mutual information—it re-
mains to rule out the case where and are both finite.

7This can be verified by noting that a symmetric threshold quantizer and
an equiprobable input distribution yield positive mutual information for
every positive ; cf. (23).
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We shall prove this by contradiction. We shall assume that
the quantization region for some finite is
optimal and derive a contradiction to optimality. Assume then
that and are both finite with . Define

(108)

Let be the mass points of the capacity-achieving input distri-
bution, and let be the corresponding probabilities. Note that
there is no loss in optimality in assuming that is nonnegative

(109)

because if is negative, then we can consider the input
[whose second moment is identical to that of ] and the
quantizer [whose midpoint is of opposite sign
to that of ] which give rise to the same mutual infor-
mation as the input and the quantizer .
Assume that the mass points are ordered, i.e.,
. Since the locations of mass points of zero mass have no

effect on the mutual information, there is no loss in optimality in
assuming that the probability of the largest mass point satisfies

. Furthermore, since would imply that
, in contradiction to (107).

We continue by noting that the symmetry of the normal dis-
tribution implies that

(110)

Indeed, defining (so and
), we have

(111)

where we made the substitution . Furthermore,
since ,

(112)

As we next argue, (110) and (112) imply that there is no loss in
optimality in assuming that

(113)

Indeed, suppose . Then, can be written as , for
some . However, gives rise to the same
channel law (110) but has a smaller cost (112). Thus, for every

, we can find a satisfying the power constraint
that achieves the same rate.
We next show that (113) leads to a contradiction by consid-

ering a perturbation of the quantizer. For every , define
the perturbed quantization region

(114)

and denote the channel law corresponding to and by
:

(115)

for . We will contradict the optimality of the input
and the quantizer by showing that for

satisfying (113), we can find a sufficiently large exceeding
such that

(116)

To show this, we use (115) to express the mutual information
on the LHS of (116) as

(117)

where

(118a)

(118b)

A Taylor series expansion of around yields

(119)

for and some remainder satisfying

(120)

With this, we obtain

(121)
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where

(122)

Since the LHS of (115) is strictly smaller than 1 so is its RHS
and it follows upon averaging over that for every and
every

(123)

Furthermore, is strictly positive since
for . Using (120), it thus follows

that

(124)

where the second step follows because , which
implies that

and where the last step follows because and
both tend to zero as tends to infinity. Along the same

lines, it can be shown that for

(125)

It thus follows from (122), (124), (125), and the Triangle In-
equality that

(126)

We further have by [14, Prop. 19.4.2] that for

(127)

We thus obtain from (118b), (121), (126), and (127) that

(128)

where the inequality follows from the assumption and
by noting that

is strictly increasing on (see Appendix II), which to-
gether with implies that

(129)

Consequently, for a sufficiently large , is
strictly larger than , contradicting the as-
sumption that with finite achieves .

E. Centered, Variance- Input Distribution

We have shown that the supremum in (7) is achieved by some
input distribution that is concentrated on at most three points and
by some threshold quantizer:

(130)

where is the location of the mass points, is their
corresponding probabilities, is the threshold of the quantizer,
and is the resulting channel law. We next show that
the input distribution must be centered and must satisfy
the average-power constraint with equality:

(131a)

(131b)

To show this, we note that, for a fixed threshold quantizer ,
the capacity as a function of themaximal allowed average power
is a concave nondecreasing function that is strictly smaller than
1 bit per channel use, and that tends to 1 bit per channel use as the
maximal allowed average power tends to infinity. Consequently,
this capacity-cost function must be strictly increasing and the
second moment of must therefore be . By noting that
the capacity is achieved by some threshold quantizer, this ar-
gument also proves that must be strictly increasing in .
This further implies that must be centered because oth-
erwise we could shift and by the mean and thus reduce
the second moment without changing the mutual information.
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VIII. PROOFS: CAPACITY PER UNIT ENERGY

A. Proof of Theorem 2

We will lower-bound the RHS of (16) by restricting the
supremum to threshold quantizers (2) and thus demonstrate that

(132)

Together with the upper bound (22), this will prove Theorem 2.
To prove (132), we first note that a threshold quantizer in-

duces the channel

(133)

and . By (16),
we thus obtain

(134)

We now change variables by defining and by
replacing the supremum over with the supremum over

. This latter supremum we lower-bound by taking to
infinity while holding fixed. This yields for the last two terms
on the RHS of (134)

(135)

and

(136)

We use the upper bound on the -function (47) to lower-bound
the first term on the RHS of (134) as

(137)

Combining (135)–(137) with (134) yields

(138)

from which we obtain (132) by letting tend to infinity. This
proves Theorem 2.
Note that (16) is achieved by binary on–off keying [11]. By

showing that (16) is lower-bounded by as we take to
infinity, we thus implicitly show that is achieved by binary
on–off keying where the nonzero mass point tends to infinity as
tends to zero.

B. Proof of Theorem 3

We first argue that in order to prove Theorem 3, it suffices to
show that for every fixed

(139)

Suppose then that this strict inequality holds for every .
Consider a family of quantizers and input distributions parame-
trized by with . By [11, eq. (15)], it follows that
for every

(140)

where the last step follows because the capacity per unit energy
can be achieved by binary on–off keying where the nonzero
mass point tends to infinity (see Section VII-A), so

(141)

Taking the limit as tends to zero on both sides of (140) yields

(142)
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where denotes the limit inferior. Here, the last step follows
from (139) and from the average-power constraint

(143)

Since the inequality in (139) is strict for every , it follows
from (143) that the last line in (142) can hold with equality only
if for every

(144)

Thus, if (139) holds, then every family of distributions of
satisfying that achieves

(145)

must be flash signaling, thus proving Theorem 3.
Having established that in order to prove Theorem 3, it suf-

fices to show that (139) holds for every , we now proceed
to do so. We first note that, for every , the supremum in
(139) over all quantizers can be replaced with the supremum
over all threshold quantizers. Indeed, let

(146)

denote the set of possible conditional probability distributions
that different quantizers can induce. Ap-

plying the methods of Section VII-B, it can be shown that the
extreme points of correspond to threshold quantizers. (Re-
call that denotes the closure of the convex hull of .) Indeed,
for binary inputs, the support function is given by (92) with

, , and . The quantization region that
achieves the supremum in (92) consists of the set of for
which in (95) is nonnegative. Since has at most one
zero, it follows that consists of at most two regions, i.e.,
it is a threshold quantizer. Using that the relative entropy on the
LHS of (139) is convex in [10, Th. 2.7.2],
it follows by the same arguments as in Section VII-B that, for
every , is maximized by some
threshold quantizer.
We next note that we can assume, without loss of optimality,

that the threshold of the quantizer is nonnegative. Conse-
quently, the supremum over on the LHS of (139) can be re-
placed by a supremum over threshold quantizers of nonnegative
thresholds . Indeed, for ,

(147)

and consequently,

(148)

Thus, to every pair corresponds another pair
achieving the same relative entropy. Since and have the

samemagnitude, this implies that both pairs give rise to the same
value for

Hence, we can assume without loss of generality that .
We continue by defining the random variable as

(149)

Note that, for , the quantizer’s output can be expressed
as . It thus follows from the Data Processing
Inequality for Relative Entropy [10, Sec. 2.9] that

(150)

irrespective of the threshold . Here, the last equality
should be viewed as the definition of . By applying the
Log-Sum Inequality [10, Th. 2.7.1] to , we obtain

(151)

with equality if, and only if,

(152)

Since (152) holds only for , this yields

(153)

Note that (153) and (151) give an upper bound on the relative
entropy that does not depend on the threshold. By combining
(150) and (153), and recalling that for every the relative
entropy in (139) is maximized by some threshold quantizer, we
obtain

(154)
Since the function is continuous on and,
as shown in Appendix III, satisfies

(155)

we obtain (139) by maximizing (154) over . This proves
Theorem 3.



KOCH AND LAPIDOTH: AT LOW SNR, ASYMMETRIC QUANTIZERS ARE BETTER 5437

C. Proof of Corollary 1

To prove Corollary 1, we need to show that for every
and every threshold quantizer with threshold ,

(156)

By (154), we have that for every and every

(157)

where is continuous on and satisfies
(155). To conclude the proof of the corollary, it thus remains to
show that for every

(158)

where denotes the limit superior. This can be done by noting
that for

(159)

where the second step follows because ,
and , , and where the last step follows
because is monotonically decreasing in and
because . Computing the limiting ratio of the RHS
of (159) to as tends to infinity yields for every

(160)

thus establishing (158). This proves Corollary 1.

IX. PROOFS: PEAK-POWER-LIMITED CHANNELS

A. Proof of Proposition 1

The peak-power-limited Gaussian channel with 1-bit output
quantization is a memoryless channel with a continuous input
taking values in and a binary output. It thus fol-
lows from Dubins’s Theorem that, for every quantization region
, the capacity-achieving input distribution is discrete with two

mass points [23, Sec. II-C]. We shall denote these two mass
points by and .

We next argue that threshold quantizers are optimal. Let
denote the set of all possible channel laws, i.e.,

(161)

Applying the methods of Section VII-B to binary channel in-
puts, it can be shown that the extreme points of correspond
to threshold quantizers (2) or complements thereof. (For more
details, see also Section VIII-B.) By the same arguments as in
Section VII-B, it follows that for every binary random vari-
able , the mutual information is maximized by some
threshold quantizer.
The capacity of the peak-power-limited Gaussian channel

with 1-bit output quantization is thus given by

(162)

where denotes the two-mass-point distribution with
masses

and locations

and where denotes the channel law corresponding to
the threshold quantizer (2) and to the mass points :

(163)

Following the steps in Section VII-C, it can be further shown
that the supremum on the RHS of (162) is achieved.
In the following, we demonstrate that there is no loss

in optimality in assuming that the mass points of the ca-
pacity-achieving input distribution are located at and

. Indeed, suppose that the optimal mass points are located at

(164)

Then, it follows from the strict monotonicity of the -function
that

(165)

Since does not depend on , this implies that for
every and , the channel law can be written as
a convex combination of and , where

and . By the convexity ofmutual informa-
tion in the channel law, and by noting that ,
it follows that

(166)

for every and satisfying (164). Thus,
achieves the capacity. By repeating the same arguments for ,
we obtain that the mass points of the capacity-achieving input
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distribution are located at and . It follows that the
capacity can be expressed as

(167)

where denotes the capacity of the binary asymmetric
channel with crossover probabilities

(168a)

(168b)

For every , the capacity of the binary asymmetric channel
can be computed as

(169)

where

(170)

Combining (169), (168a), and (168b) with (167) yields

(171)

where

(172)

Proposition 1 follows then by noting that the RHS of (171) is
symmetric in , so the maximization in (171) can be re-
stricted to without reducing (171).

B. Proof of Proposition 2

It was shown in the previous section that the capacity is
achieved with a threshold quantizer and a binary input distribu-
tion having mass points at and . Thus, the capacity
can be expressed as

(173)

for some probabilities and satisfying
. To simplify notation, we have introduced

and we have made the dependence of and on
implicit.
Expanding as a Taylor series around , we ob-

tain for the first term on the RHS of (173)

(174)

where

(175)

for some . Expanding the
-function as a Taylor series around yields

(176)

where

(177)

for some . Note that

(178)

so satisfies

(179)
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Combining (176) with (174), we obtain for the first term on the
RHS of (173)

(180)

where

(181)

Taylor series expansions for the last two terms on the RHS
of (173) follow directly from (180) by setting to 1 and to 0.
Thus, by applying (180) to (173), and by using that ,
we obtain

(182)

As shown in Appendix IV,

(183a)

(183b)

Using (183a), (183b), and the Triangle Inequality, (182) can thus
be upper-bounded by

(184)

where . Consequently, dividing (184) by
and computing the limit as tends to zero, yields

(185)

where the second inequality holds with equality for
.
It remains to show that the maximum on the RHS of (185) is

attained for . To this end, we argue that the function

(186)

is monotonically decreasing in . Indeed, the first deriva-
tive of is given by

(187)

where

(188)

for . For , we lower-bound the -function as [14,
Prop. 19.4.2]

(189)

to obtain

(190)

For , it can be shown numerically that ; see
Fig. 3.
It thus follows that , and hence, by

(187), , . Consequently,

(191)

which together with (185) yields

(192)

Noting that the RHS of (192) is achieved for
and a symmetric threshold quantizer [cf. (26)], this proves

Proposition 2.
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Fig. 3. Function for .

X. PROOFS: FADING CHANNELS

A. Proof of Theorem 4

We will lower-bound the RHS of (68) by restricting the
supremum to radial quantizers

(193)

and thus demonstrate that

(194)

Together with the upper bound (69), this will prove Theorem 4.
To prove (194), note that, conditioned on ,

the squared magnitude of has a noncentral chi-square
distribution with two degrees of freedom and noncentrality pa-
rameter [25, p. 8]. Consequently, a radial quantizer
induces the channel [25, Sec. 2-E]

(195)

for , , and , where denotes the
first-order Marcum -function [25, eq. (2.20)]. For , this
becomes

(196)

for and . This yields

(197a)

(197b)

where (197b) follows because the second term in (197a)
is nonnegative, and because the binary entropy function is
upper-bounded by .
By applying (197b) to (68), we obtain

(198)

We lower-bound the supremum on the RHS of (198) by
choosing for some fixed and by taking
to infinity. We then lower-bound the first-order Marcum
-function using [25, Sec. C-2, eq. (C.24)]

(199)

for . This yields

(200)

where the second step follows because
for every and . This establishes (194) because
is of unit variance and can be arbitrarily close to 1.

B. Proof of Theorem 5

By the Data Processing Inequality for Relative Entropy, the
relative entropy on the RHS of (72) is upper-bounded by the
relative entropy corresponding to the unquantized channel, i.e.,
[3, eq. (64)]

(201)

Consequently, the capacity per unit energy (72) is strictly
smaller than unless the supremum on the RHS of (72) is
approached as tends to infinity. It thus remains to show that

(202)

To this end, we first note that, for every , the supremum in
(202) over all quantizers can be replaced with the supremum
over all radial quantizers (193). Indeed, for every quantization
region satisfying
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the relative entropy

(203)

is a convex function of . Thus, for every
, the RHS of (203) is maximized for the quantization

region that minimizes (or maximizes)
while holding fixed. By the
Neyman–Pearson Lemma [26], such a quantization region has
the form

(204)

(or the complement thereof), where denotes the condi-
tional density of , conditioned on , and where is
such that . (Note that for every

, there exists such a since, for the channel model
(63), is a continuous, strictly increasing
function of ) The likelihood ratio on the RHS of (204) is
given by

(205)

so (204) is a radial quantizer with threshold

(206)

Thus, for every , the RHS of (203) is maximized
by a radial quantizer whose threshold is a function of .
This implies that, for every nonzero , the relative entropy

is maximized by a radial quantizer. Such
a quantizer induces the channel

(207)

for and . Consequently,

(208)

where the second step follows because and
, and the third step

follows because , .
The first term on the RHS of (208) is maximized for

, which yields

(209)

The RHS of (208) is thus upper-bounded by

(210)

Dividing both sides of (210) by , and computing the limit as
tends to infinity, yields

(211)

This proves Theorem 5.

XI. SUMMARY AND CONCLUSION

It is well known that quantizing the output of the discrete-
time, average-power-limited, Gaussian channel using a sym-
metric threshold quantizer reduces the capacity per unit energy
by a factor of , a loss which translates to a power loss of ap-
proximately 2 dB. We have shown that this loss can be avoided
by using asymmetric threshold quantizers with corresponding
asymmetric signal constellations. Moreover, the capacity per
unit energy can be achieved by a PPM scheme. For this scheme,
the error probability can be analyzed directly using the Union
Bound and the standard upper bound on the -function (47).
There is no need to resort to conventional methods used to prove
coding theorems such as the method of types, information-spec-
trum methods, or random coding exponents.
The above results demonstrate that the 2-dB power loss

incurred on the Gaussian channel with symmetric 1-bit output
quantization is not due to the hard decisions but due to the
suboptimal quantizer. In fact, if we employ an asymmetric
threshold quantizer, and if we use asymmetric signal constel-
lations, then hard-decision decoding achieves the capacity per
unit energy of the Gaussian channel.
The above results also demonstrate that a threshold quantizer

is asymptotically optimal as the SNR tends to zero. This is not
only true asymptotically: for every fixed SNR, we have shown
that, among all 1-bit quantizers, a threshold quantizer is optimal.
We have also shown that the capacity per unit energy can only

be achieved by flash-signaling input distributions. Since such
signaling leads to poor spectral efficiencies, a significant loss
in spectral efficiency is unavoidable. Thus, while 1-bit output
quantization does not reduce the capacity per unit energy, it does
reduce the spectral efficiency.
For Rayleigh-fading channels, we have shown that, in the

coherent case, a 1-bit quantizer does not reduce the capacity
per unit energy, provided that we allow the quantizer to depend
on the fading level. This is no longer true in the noncoherent
case: here all 1-bit output quantizers reduce the capacity per unit
energy.
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APPENDIX I

Lemma 1: Let be a Borel subset of the reals, and let
the sequence of real numbers converge to . Let be a
zero-mean Gaussian random variable of positive variance .
Then

(212)

Proof: Let denote the density of a zero-mean, vari-
ance- Gaussian random variable, so

Since is continuous, and since the sequence converges
to , it follows that the sequence of densities
converges to . The result follows then by noting
that, for every ,

(213)

and from Scheffe’s Theorem [27, Th. 16.12].
From Lemma 1, we conclude that

is continuous. Since it also bounded, it follows that
is continuous in the input distribution under the weak topology.
Since the binary entropy function is a continuous bounded func-
tion, this implies that is continuous in the input distri-
bution. By the same lemma, it follows that also the mapping

is continuous and bounded, so
is also continuous in the input distribution. We thus

have the following lemma.
Lemma 2: For every fixed quantizer , the functionals
, , and are continuous in the input dis-

tribution under the weak topology.
For proving the existence of a capacity-achieving input dis-

tribution, we need a compactness result:
Lemma 3: Let be fixed. Every sequence of proba-

bility measures on the interval of second moment not
exceeding has a subsequence that converges weakly to a prob-
ability distribution on the interval of second moment
not exceeding .

Proof: By Prokhorov’s Theorem, every sequence of prob-
ability measures on has a subsequence that converges
weakly to some probability measure on . The second
moment of this limiting probability measure cannot exceed
because the function is a continuous bounded function
on the interval .
Note that Lemma 3 continues to hold for sequences of proba-

bility measures on of second moment not exceeding , albeit
with a slightly different proof. Thus, the amplitude constraint
is not essential.
It follows from Lemmas 1–3 that the supremum in (81)

defining is achieved.

APPENDIX II

We show that, for , the function
is strictly increasing. To this end, we note that

(214)

and take the derivative with respect to . (Recall that
and .) This yields

(215)

thus proving the claim.

APPENDIX III

To show that

(216)

we write as

(217)

and compute the limiting ratio of each term on the RHS of (217)
to as tends to zero. For the first two terms, we have

(218)

and

(219)

To evaluate the last term on the RHS of (217), we express
as a Taylor series around zero

(220)



KOCH AND LAPIDOTH: AT LOW SNR, ASYMMETRIC QUANTIZERS ARE BETTER 5443

With this, we obtain

(221)

where the second step follows because

(222)

Consequently,

(223)

The claim follows by combining (218)–(223) with (217).

APPENDIX IV

A. Proof of (183a)

To prove (183a), namely

we fix some and analyze the cases and
separately. Sincewe are interested in the limit as tends to zero,
there is no loss in generality in assuming that .
If , then in (175) is bounded by

(224)

which, by the assumption , implies that is bounded
away from 0 and 1:

(225)

Consequently, combining (176) with (175) and using the Tri-
angle Inequality yields for

(226)

Here, the second step follows by upper-bounding
and ; and the third step follows from (179) and
(225) and by upper-bounding . Since the
RHS of (226) does not depend on , this yields

(227)

For , we first upper-bound (177) as

(228)

where the first step follows by upper-bounding and
, and the second

step follows because and , so . Combining
(228) with (175) yields for

(229)

where the first step follows from the Triangle Inequality; the
second step follows from (228) and because
and , and the last step follows because

for .
We next note that, since and , we

have

(230)
and

(231)

where the second step follows from [14, Prop. 19.4.2]. Conse-
quently, using (230) and (231), the RHS of (229) can be upper-
bounded by

(232)
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Since the function

is bounded in , this yields

(233)

Combining (227) and (223) proves (183a).
B. Proof of (183b)
To prove (183b), namely

we fix some and analyze the cases and
separately. Without loss of generality, we assume that .
If , then we have

(234)

which yields for every and every

(235)

Here, the second step follows from (234), from the upper bound
, , and from the Triangle In-

equality; and the third step follows from (179) and because
. Consequently,

(236)

If , then we have [14, Prop. 19.4.2]

(237)

and, by (228),

(238)

We thus obtain for

(239)

where the second step follows from (237) and from the Tri-
angle Inequality; the third step follows from (238) and because

; the fourth step follows by upper-bounding
; and the last step

follows because and , so .
Since the function

is bounded in , this yields

(240)

Combining (236) and (240) proves (183b).
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