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Abstract—A new property which relies on the linear program-
ming (LP) decoder, the approximate maximum-likelihood certifi-
cate (AMLC), is introduced. When using the belief propagation
decoder, this property is a measure of how close the decoded
codeword is to the LP solution. Using upper bounding techniques,
it is demonstrated that the conditional frame error probability
given that the AMLC holds is, with some degree of confidence,
below a threshold. In channels with low noise, this threshold is
several orders of magnitude lower than the simulated frame error
rate, and our bound holds with very high degree of confidence.
In contrast, showing this error performance by simulation would
require very long Monte Carlo runs. When the AMLC holds, our
approach thus provides the decoder with extraerror detection
capability, which is especially important in applicationsrequiring
high data integrity.

I. I NTRODUCTION

Linear programming (LP) decoding has emerged in recent
years as a potential candidate algorithm for approximating
maximum-likelihood (ML) decoding. One reason for this is
that it has been shown [1] that the LP decoding algorithm has
the ML certificateproperty, i.e., that if the decoder outputs a
valid codeword, it is guaranteed to be the ML codeword.

Since the discovery of LP decoding, several papers have
been written on the subject of improving the performance
of the decoder, e.g., by using integer programming or mixed
integer linear programming [1], [2], adding constraints tothe
Tanner graph [3] and guessing facets of the polytope [4].
Moreover, the issue of decoding complexity has been ad-
dressed [5], [6], [7], as the complexity of linear programming
techniques is in general polynomial but not linear in the block
lengthN . Vontobel and Koetter [5] have proposed an iterative,
Gauss-Seidel-type algorithm for approximate LP decoding.
Based on their general approach, a linear-complexity (O(N))
iterative approximate decoder [8] was suggested.

This low-complexity LP decoder was recently put to use
in a framework [9] aimed at harnessing the LP decoder for
tasks other than decoding. In this context, an algorithm with
complexity O(N2) was proposed which produces a lower
bound on the minimum distance of a specific code. Another
use is an algorithm of the same complexity for finding a tight
lower bound on the fractional distance.

In this paper we propose a new application for using the
LP decoder by introducing a new concept, theapproximate
ML certificate (AMLC), a tool which can improve the error
detection capability of the belief propagation (BP) decoder.

This research was supported by the Israel Science Foundation, grant no.
772/09.

We show that if the BP decoder output satisfies the AMLC
property (in particular, it is a codeword), then there is a
high degree of certainty that it is the correct codeword. It
is demonstrated that, when applying this technique within the
error floor region, the frame error rate implied by the AMLC
is several orders of magnitude lower than the average rate (the
average rate in the error floor region was previously studied
by Richardson [10]); ascertaining this improved reliability
directly using Monte Carlo simulation would require very long
simulation runs. This makes the AMLC especially useful in
applications where a high level of data integrity is required.

The LP decoder is a central component in the evaluation
of the AMLC, as is the aforementionedO(N2) algorithm for
obtaining a lower bound on the minimum distance. Another
component used in our analysis is the generalized second
version of the Duman-Salehi bound, as derived by Sason and
Shamai [11]; this bound is an upper bound on the ML decoding
probability. A slightly modified version of this bound is used
for our purposes.

This paper is organized as follows. Section II provides some
background material, related primarily to the LP decoder.
In section III, we prove our main result concerning the
approximate ML certificate. In Section IV numerical examples
are provided, and the paper is concluded in Section V.

II. PRELIMINARIES

Consider an LDPC codeC described by a Tanner graph
with N variable nodes andM check nodes. A codeword
c ∈ C is transmitted over a discrete memoryless binary-input,
output-symmetric (MBIOS) channel described by a probability
transition functionQ(y | c), wherec is the transmitted code-
bit and y is the channel output (we will also use the vector
notationQ(y | c) wherey is the channel output vector andc
is the transmitted codeword, the meaning will be clear from
the context). Following the notation in [1], letI andJ be the
sets of variable and constraint nodes, respectively, such that
|I| = N and |J | = M . Define the setNi to be the set of
neighbors of variable nodei ∈ I. Similarly, Nj is the set of
neighbors of check nodej ∈ J . Denote byCj the constituent
binary single parity check code corresponding to nodej ∈ J .
Let 0 ∈ C denote the all-zero codeword.

The LP decoder [1] solves the following optimization prob-
lem.

(λ,λω)
∆

= argmin
(c,ω)

P(c) (1)
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(i.e.,λ is the optimalc-vector andλω is the optimalω-vector)
subject to

wj,g ≥ 0 ∀j ∈ J , g ∈ Cj (2)
∑

g∈Cj

wj,g = 1 ∀j ∈ J (3)

ci =
∑

g∈Cj , gi=1

wj,g ∀j ∈ J , i ∈ Nj (4)

where the vectorω is defined by

ω
∆

= {wj,g}j∈J , g∈Cj

and where
P(c)

∆

=
∑

i∈I

ciγi (5)

and

γi
∆

= log
Q(yi | 0)

Q(yi | 1)

is the log-likelihood ratio (LLR). All logarithms are natural.
An important observation is that the LP decoder has the ML

certificate [1] in the sense that if the solutionλ is integer (in
fact an integerλω implies thatλ is also integer by (4)) then
it is the ML decision.

III. T HE APPROXIMATE ML CERTIFICATE PROPERTY

Let the binary LDPC codeC be selected uniformly from an
ensemble of LDPC codesC0 (e.g., the ensemble of all(c, d)-
regular codes) and assumeC hasM codewords. Letcm ∈
C,m ∈ {1, . . . ,M} be the codeword selected for transmission
over a MBIOS channel, and suppose that the channel output
vector isy. The received vectory is decoded by a standard
belief propagation (BP) decoder, which outputs an estimateĉ

which may or may not be a valid codeword. LetP(λ) be the
optimal value of the LP problem. By the fact thatcm is a
codeword and hence feasible in the LP we have

P (λ) ≤ P(cm) (6)

Now suppose that for someδ > 0

P(ĉ)− P(λ) ≤ δ (7)

and that the decoder outputĉ is a valid codeword. We call
this event theapproximate ML certificateand the constantδ
the proximity gap. Formally, the AMLC happens if and only
if

ĉ ∈ AMLC(δ) (8)

where

AMLC(δ) = {ĉ : ĉ ∈ C , P(ĉ)− P(λ) ≤ δ} (9)

When δ = 0 the AMLC coincides with the standard ML
certificate of [1], since in this case the codewordĉ is the ML
solution. By (6)-(7) we conclude that

P(ĉ)− P(cm) ≤ δ (10)

Now, consider the transmission of a code chosen at random
from C0. The transmitted codewordcm is also selected at
random from the chosen code. If the AMLC holds, then the

word error probability given thatcm was transmitted can be
upper bounded as

Pr

(

ĉ 6= cm

∣

∣

∣

∣

ĉ ∈ AMLC(δ)
cm trans.

)

≤ Pr

(

∃c ∈ C
c 6= cm

: P(c) ≤ P(cm) + δ

∣

∣

∣

∣

ĉ ∈ AMLC(δ)
cm trans.

)

≤

Pr

(

∃c ∈ C
c 6= cm

: P(c) ≤ P(cm) + δ | cm trans.

)

Pr (ĉ ∈ AMLC(δ) | cm trans.)

=

Pr

(

∃c ∈ C
c 6= cm

: log
(

Q(y | cm)
Q(y | c)

)

≤ δ | cm trans.

)

Pr (ĉ ∈ AMLC(δ) | cm trans.)
(11)

where in the first inequality we used (10), and in the equality
we used the fact thatP(c) = log Q(y | 0)

Q(y | c) and P(cm) =

log Q(y | 0)
Q(y | cm) . Note that in (11), the numerator depends on the

channel probability transition function and the code chosen,
while the denominator depends on the channel, the code,
and also on the decoding algorithm. We can further upper
bound the expression (11) by upper-bounding the numerator
and lower-bounding the denominator. In the process of doing
so, we eliminate the dependence on the transmitted message
m.

A. A lower bound on the denominator

Consider the denominator in (11). The following lemma
asserts its independence of the transmitted codeword.

Lemma 1:Consider the vectorλ which is output by the LP
decoder. Also assume thatcm is the transmitted codeword and
that the BP decoder is used. Then the expression

Pr (ĉ ∈ AMLC(δ) | cm trans.) (12)

is independent ofm, and in particular it can be assumed in
(12) that the all-zero codeword is transmitted.

Proof: See Appendix A.
To get a lower bound on (12), one could run Monte Carlo

simulations. Consider a series of experiments conducted to
estimateη

∆

= Pr (ĉ ∈ AMLC(δ) | 0 trans.). In each experi-
ment we draw a code at random fromC0, transmit the all-
zero codeword over the noisy channel and decode. Suppose
that we runL experiments and find that̂c ∈ AMLC(δ) in L1

experiments. Let

L1 =
L
∑

i=1

Xi

where if in thei’th experiment̂c ∈ AMLC(δ), thenXi = 1;
otherwiseXi = 0. If the channel is low-noise then we would
expect to haveL1 = L(1−ǫ) with smallǫ, and in particular we
would expect to haveǫ < 0.5, which (for largeL) would imply
η > 0.5. Sinceη is a deterministic but unknown parameter,
we cannot claim thatη > 0.5, even if ǫ is small; rather, this
situation falls under the framework of non-bayesian hypothesis
testing, so the series of experiments does allow us to say
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something aboutη with some degree of confidence. Consider
the hypothesis

H0 : η ≤ 0.5 (13)

For ǫ < 0.5, the following inequality holds

Pr(L1 ≥ (1− ǫ)L |H0 valid) < 2−L
(

L

ǫL

)

· (ǫL+ 1) (14)

since the RHS is an upper bound on the tail of a binomial
distribution. Now suppose that in a Monte Carlo simulation
we getL1 = L(1− ǫ) with ǫ < 0.5. By (14) we observe that
if ǫ is very small, then the RHS of (14) is very low, and thus we
can rejectH0 with a high degree of confidence. Conversely, if
in our simulationǫ is close to0.5, we cannot rejectH0 with
high confidence.

Define

ξ(L, ǫ)
∆

= 1− 2−L
(

L

ǫL

)

· (ǫL+ 1) (15)

Given the Monte Carlo result discussed above, one may
conclude that

Pr (ĉ 6= cm | ĉ ∈ AMLC(δ) , cm trans.)

≤ 2Pr

(

∃c ∈ C
c 6= cm

: log

(

Q(y | cm)

Q(y | c)

)

≤ δ | cm trans.

)

(16)

which reflects the assertionη > 0.5. This assertion holds with
confidence levelξ(L, ǫ). Note that for fixedǫ, the likelihood
that the bound (16) does not hold decays exponentially with
L.

The standard approach to estimating the frame error rate
performance is to use a Monte Carlo simulation. The result is
a confidence interval on the actual error rate. In our method
we also use a Monte Carlo simulation. However, in the
following we derive an analytic bound on the RHS of (16)
which, combined with the simulation, enables us to obtain
extremely large confidence levels for very small frame error
rates whenever the AMLC holds.

B. An upper bound on the numerator

Consider now the RHS of (16) (disregarding the constant
2). Recalling thatC is chosen at random fromC0, one may
write

Pr

(

∃c ∈ C
c 6= cm

:
Q(y | c)

Q(y | cm)
eδ ≥ 1 | cm trans.

)

=
∑

Ci∈C0

Pr

(

∃c ∈ C
c 6= cm

:
Q(y | c)

Q(y | cm)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
cm trans.

)

· Pr (C = Ci | cm trans.)
(17)

Clearly,Pr (C = Ci | cm trans.) = Pr (C = Ci) as the selec-
tion of the message is independent of the selection of the
code. In addition, we have the following result regarding the
independence of the inner expression in the sum (17) onm.

Lemma 2:The expression

Pr

(

∃c ∈ C
c 6= cm

:
Q(y | c)

Q(y | cm)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
cm trans.

)

(18)

appearing within the sum (17) is independent ofm.
Proof: See Appendix B.

Due to Lemma 2, we can assume without loss of generality
that the all-zero codeword0 is transmitted and rewrite (17) as

Pr

(

∃c ∈ C
c 6= 0

:
Q(y | c)

Q(y | 0)
eδ ≥ 1 | 0 trans.

)

=
∑

Ci∈C0

Pr

(

∃c ∈ C
c 6= 0

:
Q(y | c)

Q(y | 0)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
0 trans.

)

· Pr (C = Ci)
(19)

Sason and Shamai [11] have proposed a tight upper bound
on the ML decoding error probability using the generalized
second version of the Duman-Salehi bound, referred to as the
DS2 bound. Using a slightly modified version of this bound,
we can find an upper bound on

Pr

(

∃c ∈ C
c 6= 0

:
Q(y | c)

Q(y | 0)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
0 trans.

)

To this end, one may write

Pr

(

∃c ∈ C
c 6= 0

:
Q(y | c)

Q(y | 0)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
0 trans.

)

≤
∑

y

Q(y|0)









∑

c6=0
c∈Ci

(

Q(y|c)

Q(y|0)
eδ
)λ









ρ

=
∑

y

Ψ0
N (y)Ψ0

N (y)−1Q(y|0)









∑

c6=0
c∈Ci

(

Q(y|c)

Q(y|0)
eδ
)λ









ρ

=
∑

y

Ψ0
N (y)









Ψ0
N(y)

− 1

ρQ(y|0)
1

ρ

∑

c6=0
c∈Ci

(

Q(y|c)

Q(y|0)
eδ
)λ









ρ

(20)

where the expression on the second line, which holds for all
λ, ρ ≥ 0, is an adaptation of the 1965 Gallager bound [12] to
our purposes, andΨ0

N(y) is a probability measure ony called
a tilting measure[11], which is allowed in general to depend
on the transmitted codeword. By invoking Jensen’s inequality
in (20), we get

Pr

(

∃c ∈ C
c 6= 0

:
Q(y | c)

Q(y | 0)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
0 trans.

)

≤









∑

c6=0
c∈Ci

∑

y

Q(y|0)
1

ρΨ0
N(y)

1− 1

ρ

(

Q(y|c)

Q(y|0)
eδ
)λ









ρ

(21)

which holds forλ ≥ 0, 0 ≤ ρ ≤ 1. Now let us restrict our
discussion to tilting measures which do not depend on the
transmitted codeword and which also decompose asN -fold
products of the same single-letter measure, i.e.,

Ψ0
N(y) =

N
∏

i=1

ψ(yi)
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Also recall that the channel is memoryless and thus also
decomposes as anN -fold product. Using this in (21) yields

Pr

(

∃c ∈ C
c 6= 0

:
Q(y | c)

Q(y | 0)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
0 trans.

)

≤ eδρλ





N
∑

h=1

Ah

(

∑

y

ψ(y)1−
1

ρQ(y|0)
1

ρ

)N−h

·

(

∑

y

ψ(y)1−
1

ρQ(y|0)
1−λρ

ρ Q(y|1)λ

)h




ρ

(22)

whereAh is the distance spectrum of the codeCi. Now we
partition the codeCi into constant Hamming weight subcodes
whereCi,h contains all words inCi of weight h (note that in
general these subcodes are nonlinear). By applying a union
bound over the subcodes on the LHS of (22) we get

Pr

(

∃c ∈ C
c 6= 0

:
Q(y | c)

Q(y | 0)
eδ ≥ 1|C = Ci , 0 trans.

)

≤
N
∑

h=1

Pr

(

∃c ∈ Ci,h :
Q(y | c)

Q(y | 0)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
0 trans.

)

∆

=

N
∑

h=1

P1(h)

(23)

where by (22)

P1(h) ≤e
δρλ(Ah)

ρ





(

∑

y

ψ(y)1−
1

ρQ(y|0)
1

ρ

)N−h

·

(

∑

y

ψ(y)1−
1

ρQ(y|0)
1−λρ

ρ Q(y|1)λ

)h




ρ (24)

Let Ah and P1(h) denote the averages of the distance dis-
tribution Ah and P1(h), respectively, taken over the en-
semble C0. By Jensen’s inequality (applied as[(Ah)ρ] ≤
[

Ah
]ρ
, 0 ≤ ρ ≤ 1) we have

P1(h) ≤e
δρλ(Ah)

ρ





(

∑

y

ψ(y)1−
1

ρQ(y|0)
1

ρ

)N−h

·

(

∑

y

ψ(y)1−
1

ρQ(y|0)
1−λρ

ρ Q(y|1)λ

)h




ρ (25)

The overall bound is given by

Pr (ĉ 6= cm | ĉ ∈ AMLC(δ) , cm trans.) ≤ 2

N
∑

h=1

P1(h)

(26)
whereP1(h) is given by (25). This upper bound only depends
on the average distance spectrum, which is known for many
code ensembles and in particular for LDPC codes. Now, we
can optimize the bound (25) overλ ≥ 0 , 0 ≤ ρ ≤ 1 and
the tilting measureψ(·). This optimization is performed for
every value ofh separately. Some additional technical details
regarding this optimization are provided in Appendix C.

C. Application of the AMLC to expurgated LDPC ensembles

In this subsection we consider the application of the upper
bound on the error probability given the AMLC to expurgated
ensembles of LDPC codes. The expurgated ensembleCγ is
obtained from the original ensembleC0 by removing all codes
with minimum distanceγ or less. The reason for dealing
with this ensemble rather thanC0 is that the decoding error
probability overC0 is dominated [13], [14] by a small set of
“bad” codes with small minimum distance; we will show that
if we can avoid these “bad” codes, then the occurrence of the
AMLC implies very low error rates.

Let Aγh denote the average distance spectrum overCγ . It
was shown [14] that ifγ > 0 is selected small enough, then
with probability 1 − o(1), a randomly-selected code fromC0

is also in Cγ ; this implies that for large enoughN , so that
less than half the codes are expurgated, the following bound
holds:

Aγh ≤

{

2Ah, h > γ
0, h ≤ γ

(27)

When using the DS2 bound we can plugAγh instead ofAh in
(25). In practice, when applying the Monte Carlo procedure
outlined in Section III-A, we draw codes at random fromC0

and thus we need to test whether these codes are also inCγ . To
do this, we use the procedure described in [9, Section 5] which
obtains a lower boundLB(C1) on the minimum distance of
the randomly-drawn codeC1. If LB(C1) > γ, thenC1 ∈ Cγ .
Note, however, that the converse is not necessarily true, i.e.,
we could haveC1 ∈ Cγ but with LB(C1) ≤ γ. Define the
ensemble

C̃γ = {C ∈ C0 : LB(C) > γ} (28)

then clearlyC̃γ ⊆ Cγ . Let Ãγh be the average distance spectrum

overC̃γ . We will obtain an upper bound oñAγh which is similar
to (27) using a Monte Carlo approach, similar to the argument
made in Section III-A. Suppose we runL experiments. In each
experiment we randomly pick a codeC ∈ C0 and calculate
LB(C). Now suppose that inL2 = L(1− ǫ2) experiments we
obtain thatLB(C) > γ, andǫ2 < 0.5 is small. From this set
of experiments, we conclude as we did in Section III-A that

Ãγh ≤

{

2Ah, h > γ
0, h ≤ γ

(29)

with high confidence level.
Consider the following procedure for obtaining a bound on

the confidence level of (25)-(26) wheñAγh (upper-bounded in
(29)) is used as the distance spectrum. The confidence level
output by this algorithm is a combination of the confidence
level associated withη ≥ 0.5 (see Section III-A) and the
statement (29). That is, the null hypothesis in this case is

H0 : {η ≤ 0.5 or Pr(LB(C) > γ) ≤ 0.5} (30)

Algorithm 1: Given an ensemble of codesC0, a channel
probability distributionQ(·|·) and number of trialsL, do:

1) Initialize: SetE = 0.
2) Loop L times:

• Pick a codeC uniformly from C0.



5

• CalculateLB(C).
• If LB(C) ≤ γ, E ← E + 1 and skip to next loop

iteration.
• Transmit the all-zero codeword through the channel.
• Decode using the BP decoder and the LP decoder.
• If the BP decoder output̂c is not a codeword, or if

P(ĉ)− P(λ) > δ, setE ← E + 1

3) Output confidence level of bound:Define ǫ
∆

= E/L.
If ǫ < 0.5, output ξ(L, ǫ) defined in (15). Otherwise,
output “error”.

Algorithm 1 is introduced for the purpose of jointly assess-
ing the possibility of rejecting the hypothesis (13), and the
validity of (29) as an upper bound on the distance spectrum
using the same confidence level-based Monte Carlo based
method from Section III-A. The algorithm counts the number
of failed attemptsE out of L experiments, where a failure
consists of either having a codeC not pass the testLB(C) > γ,
or, having passed this test, getting a BP decoder output which
does not satisfy the AMLC. The algorithm is correct because
if the null hypothesis (30) holds, then in any single experiment
we would have a probability of failure at least0.5. If the total
number of failuresE is small (i.e., less than half the total
number of experiments) then the confidence level, following
the derivation in Section III-A, is output. On the other hand,
if E ≥ 0.5L, the result is deemed unreliable.

D. Statement of Main Result

The analysis in this section leads to the following result.
Theorem 1:Consider the transmission of a codeword from

an LDPC code drawn at random from the ensembleC0 over
an MBIOS channel. Fix the proximity gapδ > 0 and the
expurgation depthγ > 0. Then the probability of frame
error with BP decoding given that the AMLC (8)-(9) holds is
upper-bounded by (25)-(26). This bound holds with confidence
level ξ(L, ǫ) which can be obtained using theL Monte Carlo
experiments, as detailed in Algorithm 1.

IV. N UMERICAL RESULTS AND DISCUSSION

Figure 1 shows a comparison between the frame error rate
(FER) obtained by a simulation of the BP decoder over the
binary symmetric channel (BSC) and the DS2 bound (26),
calculated for various values ofδ. In this example, we consider
the ensembleC0 of (3,4)-regular LDPC codes with block
lengthN = 1000. For the calculation of the DS2 bound and
the distance spectrum we useγ = 20 as the expurgation depth.

We conducted two experiments to determine the confidence
level of the bound, using Algorithm 1. In the first experiment,
150 randomly-generated codes were tested over a BSC with
crossover probabilityp = 0.14. In the second experiment,
600 randomly-generated codes were tested over a BSC with
p = 0.1. In both experiments, all the codes belonged to
the ensembleCγ . The results of the first experiment are
summarized in Table I. These results indicate that in this
case, the null hypothesis (30) can be rejected with very high
confidence level even forδ = 0. Consequently, the conditional
frame error probability given that the the AMLC holds for
δ = 0, is (with very high confidence) lower than3 · 10−5,
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Fig. 1. A comparison between simulated frame error rate of the BP decoder
and the DS2 bound (26), assuming the AMLC, for the (3,4)-regular LDPC
ensemble and various values ofδ.

δ ǫ 1− ξ(L, ǫ)
0 0.1667 7.13 · 10−31

5 0.0733 4.95 · 10−37

10 0.02 1.6 · 10−42

20 0 7 · 10−46

TABLE I
CONFIDENCE LEVEL BOUNDS FOR DIFFERENT VALUES OFδ

which is about1000 times lower than the simulated frame
error rate atp = 0.14. In the second experiment, both the BP
and LP decoders succeeded in decoding all transmissions, and
thus in Algorithm 1 we getǫ = 0. This puts the confidence
level of all the DS2 bound curves in Figure 1 at an extremely
high level of

ξ(600, 0) = 1− 2−600 (31)

In this case, the conditional frame error probability given
that the AMLC holds is more than7 orders of magnitude
smaller than the simulated frame error rate (the difference
between the BP curve and theδ = 0 curve forp = 0.1). The
confidence level in this case is also much higher than in the
first experiment. Due to the high confidence levels observed in
the first experiment withp = 0.14, the confidence level result
of the second experiment withp = 0.1 is not surprising, and
in general we expect the confidence level to increase as the
channel noise level decreases.

The strength of this result is that it demonstrates that the LP
decoder can provide the BP decoder with extra error detection
capability. This capability is especially useful in applications
where a codeword should be rejected unless it is decoded
correctly, and rejection should occur with high probability
(as in data applications requiring high reliability). Achieving
codeword reliability results of this order via simple Monte
Carlo simulation would require very long simulation runs. In
fact, our technique for upper bounding the frame error rate
given that the AMLC property holds, has a common feature
with the importance sampling method, since both attempt
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to alleviate the computational burden associated with simple
Monte Carlo simulation. We also note that in both experiments
described above, the AMLC was satisfied in a large percentage
of the trials, implying that it is not only capable of increasing
the reliability of the decoder output, but it also does so very
frequently. Using the AMLC provides an alternative to external
error-detection codes, such as cyclic redundancy checks, which
cause some coding rate loss. This comes at the expense of extra
processing, in the shape of an LP decoder at the receiver. We
note that this decoder can be implemented in linear time [8].
There is also a one-time task of computing the confidence
level, which can be performed off-line. The computational
complexity of calculating the lower bound [9] on the minimum
distanceLB(C) is quadratic in the block length. Thus the task
of obtaining a confidence level using Algorithm 1 is performed
with complexityO(N2L), whereL is the number of simulated
blocks. We also note the following points.

• It is possible to tune the AMLC result to obtain different
error rates and confidence levels by varying the value of
the proximity gapδ and the expurgation depthγ. Higher
values ofδ will produce higher values of the DS2 bound
(this is evident from Figure 1), but on the other hand will
increase the confidence level (as can be seen in Table I),
as the requirement (7) becomes more lax. Higher values
of γ will yield lower values of the DS2 bound. This,
however, comes at the expense of a lower confidence level
because while running Algorithm 1 more codes will be
rejected as having low minimum distance.

• One may observe that in the example above, the AMLC
result is applied to arandom selection of a code from an
ensemble. In many applications, it would be desirable to
apply the AMLC result to a specific code rather than an
ensemble. The difficulty is that whileensemble averages
of distance spectra are typically known or can be easily
upper-bounded, for specific codes this is not the case
in general. Naturally, if one obtains for a specific code
the exact distance spectrum (or an upper bound), it is
straightforward to plug it in the DS2 bound (25)-(26).
Another alternative is to use known concentration results
[15] for the distance spectrum which enable one to give
upper bounds on the distance spectrum of a specific code,
which themselves hold with some confidence level. This
confidence level can be integrated with our confidence
boundξ(L, ǫ). The result would be a looser bound (as
compared to (25)-(26)) which applies with confidence
level worse thanξ(L, ǫ), but it would apply to specific
codes.

• Application of the AMLC result is not restricted to the
BP decoder. The result extends trivially to any decoder
which satisfies the symmetry condition (32). In particular,
this condition is fulfilled by standard message-passing
algorithms, e.g., min-sum, Gallager-A, Gallager-B.

• In a more general context, the AMLC result can be
applied to any LP formulation. In particular, the LP
program proposed by Feldman [16] for general Turbo
codes can be used to achieve better error detection under

standard iterative decoding schemes1. The same goes for
nonbinary LDPC codes when represented using the LP
formulation proposed by Flanaganet al. [17].

Finally, it may be observed that our bound can be improved
by any method which tightens the LP relaxation, e.g., the
check node merging technique [9], lifting methods [1], and
others. By using any of these methods, we can obtain a
vectorλ such thatP(λ) is larger than that obtained by the
standard LP decoder, essentially because the optimization(1)
is performed over a smaller domain. The result is that for any
BP-decoded codeword̂c, we can use a smaller value ofδ in
the AMLC (9), which gives an exponential improvement in
the DS2 bound, as can be clearly seen in (25)-(26).

V. CONCLUSION

A new property, the approximate maximum-likelihood cer-
tificate, is introduced. This property of a BP-decoded code-
word enables to increase its reliability, i.e., to increasethe
error detection capability. This is achieved for LDPC codes
using tools related to linear programming decoding, including
a recently-proposed algorithm for finding a lower bound on the
minimum distance of a specific code which serves to improve
the result. By applying the AMLC in the error floor region, it
was demonstrated that the property can imply a frame error
rate several orders of magnitude lower than a simulated error
rate. While the increased frame error detection capabilityonly
holds with a certain confidence level, it was shown that this
level is extremely high in the error floor region.

APPENDIX A
PROOF OFLEMMA 1

Consider first the BP decoder. From the symmetry of the
BP algorithm over MBIOS channels [18], we know that

ĉi((−1)
cm · y) =

{

ĉi(y), cm,i = 0
1− ĉi(y), cm,i = 1

(32)

where(−1)cm is a vector of±1 corresponding to the code-
wordcm, the multiplication(−1)cm ·y is componentwise, and
ĉi (resp.cm,i) is thei’th bit of ĉ (resp.cm). Now consider the
LP decoder, which is used to produce the vectorλ. Fix ǫ > 0.
The vectorλ = {λi}i∈I satisfies the symmetry condition (see
[1],[8, Lemma 6])

λi((−1)
cm · y) =

{

λi(y), cm,i = 0
1− λi(y), cm,i = 1

(33)

1For standard parallel concatenated Turbo codes, no expurgation is needed
because all codes in the ensemble do not have codewords of very low weight.
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Now,

Pr (ĉ ∈ AMLC(δ) | cm trans.)

= Pr (P (ĉ)− P (λ) ≤ δ, ĉ ∈ C | cm trans.)

= Pr

(

∑

i∈I

log

(

Q(yi|0)

Q(yi|1)

)

(ĉi(y)

−λi(y)) ≤ δ, ĉ ∈ C | cm trans.

)

= Pr

(

∑

i∈I

log

(

Q(yi|0)

Q(yi|1)

)

(−1)cm,i (ĉi((−1)
cm · y)

−λi((−1)
cm · y)) ≤ δ, ĉ ∈ C | 0 trans.

)

= Pr

(

∑

i∈I

log

(

Q(yi|0)

Q(yi|1)

)

(ĉi(y) − λi(y)) ≤ δ,

ĉ ∈ C | 0 trans.

)

= Pr (P(ĉ)− P(λ) ≤ δ, ĉ ∈ C | 0 trans.)

= Pr (ĉ ∈ AMLC(δ) | 0 trans.)

where

• the first inequality is by the definition (9).
• in the second equality we use the definition (5) and stress

the dependence ony.
• in the third equality we use the symmetry of the channel

as well as the symmetry of the BP decoder (32).
• in the fourth equality we use the symmetry of the LP and

BP decoders ((32),(33)).
• in the fifth equality we again use the definition (5).
• the final equality is again by the definition (9).

The above series of equalities hold for allm. This proves the
claim.

APPENDIX B
PROOF OF LEMMA 2

For any two codewordsc1 andc2, define the sets

A1(c1, c2)
∆

= {i : (c1)i = 0 , (c2)i = 1}

A2(c1, c2)
∆

= {i : (c1)i = 1 , (c2)i = 0} (34)

where(c)i is the i’th bit of codewordc. We now have

Pr

(

∃c ∈ C
c 6= cm

:
Q(y | c)

Q(y | cm)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
cm trans.

)

= Pr





∃c ∈ C
c 6= cm

:
∏

i∈A1(c,cm)

Q(yi | 0)

Q(yi | 1)

·
∏

i∈A2(c,cm)

Q(yi | 1)

Q(yi | 0)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
cm trans.





= Pr





∃c ∈ C
c 6= cm

:
∏

i∈A1(c,cm)

Q(−yi | 0)

Q(−yi | 1)

·
∏

i∈A2(c,cm)

Q(yi | 1)

Q(yi | 0)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
0 trans.





= Pr





∃c ∈ C
c 6= cm

:
∏

i∈A1(c,cm)∪A2(c,cm)

Q(yi | 1)

Q(yi | 0)

·eδ ≥ 1

∣

∣

∣

∣

C = Ci
0 trans.

)

= Pr

(

∃c′ ∈ C
c′ 6= 0

:
Q(y | c′)

Q(y | 0)
eδ ≥ 1

∣

∣

∣

∣

C = Ci
0 trans.

)

(35)

where

• the first equality is due to the definition (34) of the sets
A1 andA2.

• the second equality is due to the same definitions ofA1

andA2 as well as the symmetry of the channel (Q(y|x) =
Q(−y|1− x)).

• the third equality is due to the symmetry of the channel.
• the final equality, which is the desired result, is due to

the linearity of the code.

APPENDIX C
OPTIMIZATION OF THE DS2 BOUND

Consider the DS2 bound (25) for fixedh. Let β
∆

= h
N

. First,
rewrite the bound in exponential form as

P1(h) ≤ e
−NEDS2(δ,β,ρ,λ,ψ(·))

EDS2(δ, β, ρ, λ, ψ(·))
∆

= −
δ

N
ρλ−

ρ

N
ln
(

Ah
)

− ρ(1− β) ln

(

∑

y

ψ(y)1−
1

ρQ(y|0)
1

ρ

)

− ρβ ln

(

∑

y

ψ(y)1−
1

ρQ(y|0)
1−λρ

ρ Q(y|1)λ

)

Assuming fixed values of β and δ, the exponent
EDS2(δ, β, ρ, λ, ψ(·)) should be maximized over

λ ≥ 0, 0 ≤ ρ ≤ 1,

{

ψ(y) :
∑

y

ψ(y) = 1

}

(36)

For fixed values ofλ andρ, we use calculus of variations to
find the optimum tilting measureψ; this analysis yields the
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optimality condition

ψ(y)−
1

ρ

(

(1− β)(1 − 1
ρ
)g1(y)

∑

y ψ(y)
1− 1

ρ g1(y)

+
β(1− 1

ρ
)g2(y)

∑

y ψ(y)
1− 1

ρ g2(y)

)

+ µ = 0 (37)

whereµ is a Lagrange multiplier and

g1(y)
∆

=Q(y|0)
1

ρ g2(y)
∆

=Q(y|0)
1

ρ

(

Q(y|1)

Q(y|0)

)λ

The solution to (37) is given in the following implicit form

ψ(y) = ζ (g1(y) + κg2(y))
ρ
= ζQ(y|0)

[

1 + κ

(

Q(y|1)

Q(y|0)

)λ
]ρ

where

κ =
β

1− β

∑

y Q(y|0)

(

1 + κ
(

Q(y|1)
Q(y|0)

)λ
)ρ−1

∑

yQ(y|0)
(

Q(y|1)
Q(y|0)

)λ
(

1 + κ
(

Q(y|1)
Q(y|0)

)λ
)ρ−1

(38)
The appropriate normalizing constantζ is given by

ζ =

[

∑

y

Q(y|0)

(

1 + κ

(

Q(y|1)

Q(y|0)

)λ
)ρ]−1

(39)

To find the optimized tilting measure, we solve (38) numeri-
cally, and determineζ by (39). The optimal values ofλ and
ρ are then found numerically.
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