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Abstract—A new property which relies on the linear program- We show that if the BP decoder output satisfies the AMLC
ming (LP) decoder, the approximate maximum-likelihood certifi- property (in particular, it is a codeword), then there is a

cate (AMLC), is introduced. When using the belief propagation  high gegree of certainty that it is the correct codeword. It
decoder, this property is a measure of how close the decoded.

codeword is to the LP solution. Using upper bounding techniges, is demonstrated that, when applying this technique withen t

it is demonstrated that the conditional frame error probability ~ €rror floor region, the frame error rate implied by the AMLC
given that the AMLC holds is, with some degree of confidence, is several orders of magnitude lower than the average ttae (t
below a threshold. In channels with low noise, this threshal is  average rate in the error floor region was previously studied
several orders of magnitude Iqwer than _the simulated frameleor by Richardson[[10]); ascertaining this improved reliapili
rate, and our bound holds with very high degree of confidence. directl ina M y te Carlo simulati Id ;

In contrast, showing this error performance by simulation would .lrec y.usmg on e. ario simuiation wou rqulre vernép .
require very long Monte Carlo runs. When the AMLC holds, our ~ Simulation runs. This makes the AMLC especially useful in

approach thus provides the decoder with extraerror detection applications where a high level of data integrity is reqgire

capability, which is especially important in applicationsrequiring The LP decoder is a central component in the evaluation
high data integrity. of the AMLC, as is the aforementione@( N'?) algorithm for
obtaining a lower bound on the minimum distance. Another
I. INTRODUCTION component used in our analysis is the generalized second

v%rsion of the Duman-Salehi bound, as derived by Sason and

Linear progratlmrplrllg (LZ).dd?COdlmg .R?s e;merged n rect_e amail[11]; this bound is an upper bound on the ML decoding
years as a potential candidate algonthm for approximal obability. A slightly modified version of this bound is use
maximume-likelihood (ML) decoding. One reason for this i or OUr PUrPoSes

that it has been showhl[1] that the LP decoding algorithm has

o . . This paper is organized as follows. Secfidn Il provides some
the ML certificateproperty, i.e., that if the decoder outputs %ackgrcl?ur?d mate?ial related primarily to thep LP decoder
valid codeword, it is guaranteed to be the ML codeword. ' '

In_section[dll, we prove our main result concerning the

Since _the discovery Of. LP dec_odlng,_ several papers haé\/egproximate ML certificate. In SectionllV numerical exangple
been written on the subject of improving the performanc : . .

T ; . are provided, and the paper is concluded in Sediibn V.

of the decoder, e.g., by using integer programming or mixed
integer linear programming [1].[2], adding constraintstie
Tanner graph[]3] and guessing facets of the polytdge [4]. [l. PRELIMINARIES

Moreover, the issue of decoding complexity has been ad-

dressed([5],[[6],[V], as the complexity of linear programi with N variable nodes and/ check nodes. A codeword

techniques is in general polynomial but not linear in thecklo c € C is transmitted over a discrete memoryless binary-input
length N. Vontobel and Koetter [5] have proposed an iterative y y-Input,

Gauss-Seidel-type algorithm for approximate LP decodindutput-symmetrlc (MBIOS) channel described by a probibili

. X Fansition function@(y | ¢), wherec is the transmitted code-
:?::aii(\j/(:z th?é;igﬁgtee rzlei%%':rag]]’Vsagnssr'cggg(;e GYN) bit and y is the channel output (we will also use the vector
PP - 99 ) notation@(y | ¢) wherey is the channel output vector ard

This low-complexity LP decoder was recently put to USE the transmitted codeword, the meaning will be clear from

in a framework [[9] aimed at harnessing the LP decoder f re context). Following the notation iAl[1], I&tand 7 be the
tasks other than decoding. In this context, an algorithnfn Wisets of varif;lble and constraint nodes r'es velyv. soah
. 2 . , respectively, soah t
complexity O(N*) was proposed which produces a IoweLII — N and|J| — M. Define the setV; to be the set of
r K3

bound on the minimum distance of a specific code. Anoth ighbors of variable nodee 7. Similarly, A'; is the set of

, : . S . ne
use is an algorithm of the same complexity for finding a tlghr{ . , ‘ .
lower bound on the fractional distance. neighbors of check nodge 7. Denote byC; the constituent

In this paper we propose a new application for using tk%gaéyesgl%leen%?g%ghj::_l;ecr(())dsozoer\:veosrgondlng to npde.

LP decoder by introducing a new concept, tygproximate : : Lo
ML certificate (AMLC), a tool which can improve the error ler;l;he LP decodet |1] solves the following optimization prob-

detection capability of the belief propagation (BP) decode

Consider an LDPC cod€ described by a Tanner graph

This research was supported by the Israel Science Foundaiant no. (A Aw) 2 argmin P(c) (1)
772/09. (c,w)
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(i.e., A is the optimalk-vector and\, is the optimalu-vector) word error probability given that,, was transmitted can be

subject to upper bounded as
wig>0 VieJ,geC @
Swg=1 VeJ @) P (eyecm ¢ € AMLC () )
c,, trans.
g€C;
. _ deeC ¢ € AMLC(0)
ci = Z wjg VjieJ,i€N; 4 =Pr ( c#cp P(e) < Plem) +0 ¢ trans. )
8€C; . 9i=1 deceC
where the vectow is defined by Pr ( ctcm P(c) <P(em) +94 |cm trans.)
wi {w) ¢} e, gec, - . Prc(é € AMLC () | ¢y, trans,)
c e Cm
and where Pr< cte : log (%) <dé|cm trans)
2 . = i
P(e) = Z G () Pr(¢ € AMLC(9) | ¢, trans)
€T (11)
and
N Q(yi | 0) where in the first inequality we used {10), and in the equality
R Oty 1) we used the fact thaP(c) = log 2% and P(c,) =

is the log-likelihood ratio (LLR). All logarithms are nalr  log QQ(g,y‘ |C(:3)- Note that in[(Il), the numerator depends on the
An important observation is that the LP decoder has the Mihannel probability transition function and the code chose
certificate [1] in the sense that if the solutidnis integer (in while the denominator depends on the channel, the code,

fact an integet\,, implies that is also integer by[{4)) then and also on the decoding algorithm. We can further upper

it is the ML decision. bound the expression (l11) by upper-bounding the numerator
and lower-bounding the denominator. In the process of doing
I1l. THE APPROXIMATE ML CERTIFICATE PROPERTY so, we eliminate the dependence on the transmitted message

Let the binary LDPC cod€ be selected uniformly from an i
ensemble of LDPC code®’ (e.g., the ensemble of alt, d)-
regular codes) and assundehas M codewords. Leic,, € A. A lower bound on the denominator

C,m € {1,..., M} be the codeword selected for transmission Consider the denominator ifi{11). The following lemma

over a .MBlOS Cha”r?e" and suppose that the channel OUtRULe s its independence of the transmitted codeword.
vector isy. The received vectoy is decoded by a standard Lemma 1: Consider the vectok which is output by the LP

bel_ief propagation (BP) decode_r, which outputs an eStirﬁatedecoder. Also assume tha, is the transmitted codeword and
Wh'.Ch may or may not be a valid codeword. [B{A) be. the that the BP decoder is used. Then the expression
optimal value of the LP problem. By the fact that, is a

codeword and hence feasible in the LP we have Pr (e € AMLC(6) | c,, trans) (12)
P(X) < P(cm) (6) is independent ofn, and in particular it can be assumed in
Now suppose that for somg> 0 (12) that the all-zero copleword is transmitted.
) Proof: See AppendikA. [ |
P(e) —P(A) <6 (7) To get a lower bound ori (12), one could run Monte Carlo

simulations. Consider a series of experiments conducted to
estimaten = Pr(¢ € AMLC(6) | 0 trans). In each experi-
ment we draw a code at random froff, transmit the all-

and that the decoder outpdtis a valid codeword. We call
this event theapproximate ML certificatend the constani
the proximity gap Formally, the AMLC happens if and only

if zero codeword over the noisy channel and decode. Suppose
& € AMLC (9) 8) that we runZ experiments and find th& e AMLC (§) in Ly
experiments. Let
where L
Li=Y_X;
AMLC(§)={¢ : ceC, P(¢e) —P(A) <4} 9) p

When § = 0 the AMLC coincides with the standard ML where if in thei'th experimentc € AMLC (¢), thenX; = 1;
certificate of [1], since in this case the codewarés the ML  otherwiseX; = 0. If the channel is low-noise then we would
solution. By [6){T) we conclude that expect to have.; = L(1—e) with smalle, and in particular we
P(&) — P(cy) < 6 (10) would expgct to h_ave< 0.5, vv_hl_ch_ (for largeL) would imply

n > 0.5. Sincen is a deterministic but unknown parameter,
Now, consider the transmission of a code chosen at randara cannot claim thay > 0.5, even ife is small; rather, this
from C°. The transmitted codeword,, is also selected at situation falls under the framework of non-bayesian hypsih
random from the chosen code. If the AMLC holds, then thesting, so the series of experiments does allow us to say



something aboui with some degree of confidence. Considesppearing within the suni (1L7) is independentaf
the hypothesis Proof: See AppendixB. [ |
Hy : n<05 (13) Due to LemmdR, we can assume without loss of generality
that the all-zero codewor@ is transmitted and rewrité (L7) as

For e < 0.5, the following inequality holds
Pr< JeeC  Qylc)

e>110 trans>

Pr(L; > (1 —¢)L | Hy valid) < 27 % ( L) (eL+1) (14) c70 " Q(y|0)
el JceC Qlylc) 5 C=¢
since the RHS is an upper bound on the tail of a binomial ~ Z Pr< c#0 " Qy|0)° Z 1‘ 0 trans. >
distribution. Now suppose that in a Monte Carlo simulation cieco
we getL; = L(1 — €) with € < 0.5. By (14) we observe that Pr(C=0)
if € is very small, then the RHS df(IL4) is very low, and thus we (19)

can rejectH,, with a high degree of confidence. Conversely, ifason and Shamdi [11] have proposed a tight upper bound
in our simulatione is close to0.5, we cannot rejectl, with  on the ML decoding error probability using the generalized

high confidence. second version of the Duman-Salehi bound, referred to as the
Define DS2 bound. Using a slightly modified version of this bound,
N (L we can find an upper bound on
&(Lye)=1-27 ( ) -(eL+1) (15)
Given the Monte Carlo result discussed above, one may c#0 " Q(ylo)  ~ | Otrans.
conclude that To this end, one may write

Pr (& # ¢, | € € AMLC(9) , c,, trans) deeCc  Qyle) s ‘ c=c )

Pr( : e
= 2P ( E;ECSL : log (%) <4 |cm trans) c70 " Qy|0) 0 trans.

(16) Qule) 5\

| | o L SYan | X (2vae)
which reflects the assertiop> 0.5. This assertion holds with 5 oZ0 Q(y|0)
confidence levek(L,¢). Note that for fixede, the likelihood cee;
that the bound[{16) does not hold decays exponentially with N P
L. c

The standard approach to estimating the frame error rate — Z\P?V(y)q}?\f(y) 'Q(yl0) Z (gg,’:g)) 66)
performance is to use a Monte Carlo simulation. The resultis ¥ fgé&
a confidence interval on the actual error rate. In our method p
we also use a Monte Carlo simulation. However, in the ) . Q(yle) A
following we derive an analytic bound on the RHS bfl(16) = Zﬁl?v(y) T (y) 7 Q(y|0)* Z < o 5>
which, combined with the simulation, enables us to obtain y c#0 @y10)
extremely large confidence levels for very small frame error oG (20)

rates whenever the AMLC holds. . ) .
where the expression on the second line, which holds for all

A, p > 0, is an adaptation of the 1965 Gallager bound [12] to

B. An upper bound on the numerator our purposes, an@%; (y) is a probability measure on called
Consider now the RHS of (16) (disregarding the constagttilting measure[11], which is allowed in general to depend

2). Recalling thatC is chosen at random frord’, one may on the transmitted codeword. By invoking Jensen’s ineyali

write in (20), we get
PO Qe 2| e vans) (50 o102 o wanm.)
m m C y - .
dcel Qlylc) s C=¢ P
:ZPY(C7&C e > ) A
—~ m  Qylem) Cm trans. 1 ~1 (Q(ylc)
ciec < Q(y|0)7 ¥ (y) 7 ( ‘5)
Pr(C=¢; | c,, trans) o %C:q zy: 10} ¥n(y) Qyl0)°

(21)
(_:Iearly, Pr(C=0C | Cm t_rans) =Pr(€=C) as the_selec hich holds forA > 0, 0 < p < 1. Now let us restrict our
tion of the message is independent of the selection of the . o .
" . . IScussion to tilting measures which do not depend on the
code. In addition, we have the following result regarding thtr

independence of the inner expression in the dum (17)0n ansmitted codeword a_md which also decomposé\famld
. . products of the same single-letter measure, i.e.,
Lemma 2:The expression

N
JceC  Qylc) C=¢; 0 _ i
P“"( cten Qe = e trans_) (18) v (y) J:Wy)




Also recall that the channel is memoryless and thus al§b Application of the AMLC to expurgated LDPC ensembles

decomposes as aN-fold product. Using this in[(21) yields |, this subsection we consider the application of the upper
Jeel Qlylc) s C=0C bound on the error probability given the AMLC to expurgated
Pr( c£0 0y | 0)6 = ’ 0 trans. ) ensembles of LDPC codes. The expurgated enseibles

N N—h obtained from the original ensemit& by removing all codes
SoA -1 1 with minimum distancey or less. The reason for dealing
<€’ [Z An (Zw(y) PQ(y|0)p> (22) with this ensemble rather thatf is that the decoding error
h=t Y probability overC is dominated([13],[[14] by a small set of
. 1-np h “bad” codes with small minimum distance; we will show that
' (Z ¢(y)15Q(y|0)TQ(y|1)A> } if we can avoid these “bad” codes, then the occurrence of the
Y AMLC implies very low error rates.

where 4, is the distance spectrum of the code Now we Let AZ denote the_averag_e distance spectrum @verlt
partition the code; into constant Hamming weight subcode§/@s shown([14] that ify > 0 is selected small enough, then
whereC; , contains all words ir¢; of weight/ (note that in With probability 1 —o(1), a randomly-selected code frof
general these subcodes are nonlinear). By applying a uni§r@lso inC7; this implies that for large enouglV, so that

p

bound over the subcodes on the LHS [0l (22) we get less than half the codes are expurgated, the following bound
holds:
JceC  Qlylc) ; T 24, h>~y
: > =G, . <
Pr( c£0 Q(Y|0)€ >1|C =C;, 0 trans A) 0. h<~ (27)

< ZN:Pr (30 €Cin Qlylc) s > 1 ‘ C=¢ > When using the DS2 bound we can pldg instead of4;, in

: Qy | O)e 0 trans. (25). In practice, when applying the Monte Carlo procedure

h;,l outlined in Sectiof TII=A, we draw codes at random fr@ih
LS Z Py(h) and thus we need to test whether these codes are afSo o
Pt do this, we use the procedure described In [9, Section 5]lwhic
(23) obtains a lower bound. B(C;) on the minimum distance of
the randomly-drawn codé,. If LB(C1) > ~, thenC, € C7.

where by [27) Note, however, that the converse is not necessarily trae, i.
N—h we could haveC; € C” but with LB(C;) < ~. Define the
Py(h) <e®X(Ap)” [(Z w(y)l‘;Q(yIO)}J) ensemble
y (24) C={cec® : LB(C) >~} (28)
. (Z b(y)FQy[0) lfﬂAPQ(y|1)A h} ’ then <~:IearI)C~7 C (. Let A) be the average distance spectrum
” ‘ ‘ ‘ overC?. We will obtain an upper bound a# which is similar

to (24) using a Monte Carlo approach, similar to the argument
Let 4, and P;(h) denote the averages of the distance dignade in Section Il-A. Suppose we rdnexperiments. In each
tribution A, and Pi(h), respectively, taken over the en-experiment we randomly pick a code e C° and calculate
sembleC®. By Jensen’s inequality (applied d64,)?] < LB(C). Now suppose that i, = L(1 — ;) experiments we

[A_h]”7o < p < 1) we have obtain thatL.B(C) > ~v, andey < 0.5 is small. From this set
N of experiments, we conclude as we did in Secfion Ill-A that
Pr(h) <e®(Ay)” [(Z w(y)po(yIO)P> 4] < { SA’“ Z 27 (29)
) >
’ (25)

h P with high confidence level.

) <Z w(y)lfiQ(y|o)%Q(y|1)A Consider the following procedure for obtaining a bound on
y the confidence level of (25)-(P6) whetj (upper-bounded in
(29)) is used as the distance spectrum. The confidence level

output by this algorithm is a combination of the confidence
N level associated withy > 0.5 (see Sectiof III-A) and the

Pr (& # cm | € € AMLC(4) , ¢, trans) <2 Pi(h) statement[{29). That is, the null hypothesis in this case is
h=1

(26) Hy : {n<0.50r Pr(LB(C) >7) <05}  (30)
whereP; (k) is given by [25). This upper bound only depends
on the average distance spectrum, which is known for many _ _
code ensembles and in particular for LDPC codes. Now, we”!g0rithm 1: Given an ensemble of COd@:g_)' a channel
can optimize the bound(25) over > 0,0 < p < 1 and probability distribution@(-|-) and number of triald., do:
the tilting measure)(-). This optimization is performed for 1) Initialize: SetE = 0.
every value ofh, separately Some additional technical details 2) Loop L times:
regarding this optimization are provided in Appendix C. « Pick a codeC uniformly from C°.

The overall bound is given by




« CalculateLB(C).

o If LB(C) <, E < E+1 and skip to next loop
iteration. 2|

« Transmit the all-zero codeword through the channe oo

« Decode using the BP decoder and the LP decod¢ _ o« — -~ 7 7 "7

« If the BP decoder output is not a codeword, or if
P(€) —P(A) >4, setE«+ E+1

3) Output confidence level of bound:Define ¢ = E/L.

If ¢ < 0.5, output&(L,€) defined in [(Ib). Otherwise,
output “error”.

Algorithm[1 is introduced for the purpose of jointly assess
ing the possibility of rejecting the hypothes[s(13), aneé th
validity of (29) as an upper bound on the distance spectrL
using the same confidence level-based Monte Carlo bas 008 057 oos 055 01 o0d 05 ois o ous
method from Sectioh III=A. The algorithm counts the numbe Transition Probability
of failed attemptsE' out of L experiments, where a failure
consists of either having a codenot pass the tegiB(C) > 7, Fig. 1. A comparison between simulated frame error rate ®BR decoder
or, having passed this test, getting a BP decoder outputwhpd the DS2 bound (26), assuming the AMLC, for the (3,4)4eguDPC
does not satisfy the AMLC. The algorithm is correct becausgsemPple and various values &f
if the null hypothesid(30) holds, then in any single expenin

Frame Error Probability

- © —FERBP
—o&— DS2 Bound

we would have a probability of failure at leasb. If the total g 5 16667 711; ?%’f}l
number of failuresE is small (i.e., less than half the total 5 | 0.0733 | 4.95.10-37
number of experiments) then the confidence level, following 10 | 0.02 1.6 - 1042
the derivation in SectioR III=A, is output. On the other hand 20[ 0 7-1071°

if £>0.5L, the result is deemed unreliable. TABLE |

CONFIDENCE LEVEL BOUNDS FOR DIFFERENT VALUES OB
D. Statement of Main Result

The analysis in this section leads to the following result.

Theorem 1:Consider the transmission of a codeword from

an LDPC code drawn at random from the ensentleover which is about1000 times lower than the simulated frame
an MBIOS channel. Fix the proximity gap > 0 and the error rate ap = 0.14. In the second experiment, both the BP

expurgation depthy > 0. Then the probability of frame and LP decoders succeeded in decoding all transmissiods, an

error with BP decoding given that the AMLCI(8)}(9) holds i hus in Algorithm[1 we get = 0. Thls_ puts the confidence
upper-bounded by [25(26). This bound holds with configen e_vel of all the DS2 bound curves in Figure 1 at an extremely
level £(L, €) which can be obtained using teMonte Carlo igh level of 600
experiments, as detailed in AlgoritHoh 1. £(600,0) =1 -2 (31)
In this case, the conditional frame error probability given
IV. NUMERICAL RESULTS AND DISCUSSION that the AMLC holds is more thad orders of magnitude
Figure 1 shows a comparison between the frame error ratealler than the simulated frame error rate (the difference
(FER) obtained by a simulation of the BP decoder over thxetween the BP curve and tlie= 0 curve forp = 0.1). The
binary symmetric channel (BSC) and the DS2 bouhnd (28)pnfidence level in this case is also much higher than in the
calculated for various values 6f In this example, we considerfirst experiment. Due to the high confidence levels obsemed i
the ensembleC® of (3,4)-regular LDPC codes with blockthe first experiment withp = 0.14, the confidence level result
length N = 1000. For the calculation of the DS2 bound andf the second experiment with= 0.1 is not surprising, and
the distance spectrum we uge= 20 as the expurgation depth.in general we expect the confidence level to increase as the
We conducted two experiments to determine the confidendgannel noise level decreases.
level of the bound, using Algorithid 1. In the first experiment The strength of this result is that it demonstrates that fhe L
150 randomly-generated codes were tested over a BSC witbcoder can provide the BP decoder with extra error detectio
crossover probabilityp = 0.14. In the second experiment,capability. This capability is especially useful in applions
600 randomly-generated codes were tested over a BSC withhere a codeword should be rejected unless it is decoded
p = 0.1. In both experiments, all the codes belonged toorrectly, and rejection should occur with high probabilit
the ensembleC”. The results of the first experiment argas in data applications requiring high reliability). Aeking
summarized in Tablél I. These results indicate that in thi®deword reliability results of this order via simple Monte
case, the null hypothesis_{30) can be rejected with very higlarlo simulation would require very long simulation runs. |
confidence level even far = 0. Consequently, the conditionalfact, our technique for upper bounding the frame error rate
frame error probability given that the the AMLC holds forgiven that the AMLC property holds, has a common feature
§ = 0, is (with very high confidence) lower thah- 10~°, with the importance sampling method, since both attempt



to alleviate the computational burden associated with Emp  standard iterative decoding scherfle¥he same goes for
Monte Carlo simulation. We also note that in both experiment  nonbinary LDPC codes when represented using the LP
described above, the AMLC was satisfied in a large percentage formulation proposed by Flanagat al. [17].

of the trials, implying that it is not only capable of increas , , )

the reliability of the decoder output, but it also does soyve Finally, it rr?aé/ behpk;]selrv;]ed thatr(])urLbF?un? can be |mprovr(]ad
frequently Using the AMLC provides an alternative to external y any metho whic tg ?ens the - 1€ axatlon,\ eg., the
error-detection codes, such as cyclic redundancy chedkshw check node merging technique [9), lifting methods [1], a_md
cause some coding rate loss. This comes at the expensea)fe%?ers' By using any of these methods, we can obtain a

processing, in the shape of an LP decoder at the receiver. Wé:tor)‘ such thatP(A) is larger than that obtained by the

note that this decoder can be implemented in linear time [ t'andard LP decoder, essentially because the optimizéjon

There is also a one-time task of computing the confiden performed overasr:naller domain. The result is that f_or any
level, which can be performed off-line. The computation -decoded codev_vord, we can use a sm_allgr value fin .
complexity of calculating the lower bound [9] on the minimuni"® AMLC (3), which gives an exponential improvement in
distanceL B(C) is quadratic in the block length. Thus the tasfhe DS2 bound, as can be clearly seer(id (B3)-(26).

of obtaining a confidence level using Algorittith 1 is perfodme

with complexityO(N? L), whereL is the number of simulated

blocks. We also note the following points. V. CONCLUSION

« Itis possible to tune the AMLC result to obtain different A new property, the approximate maximum-likelihood cer-
error rates and confidence levels by varying the value tificate, is introduced. This property of a BP-decoded code-
the proximity gaps and the expurgation depth Higher word enables to increase its reliability, i.e., to incredise
values ofs will produce higher values of the DS2 bouncerror detection capability. This is achieved for LDPC codes
(this is evident from Figure 1), but on the other hand willising tools related to linear programming decoding, inicigd
increase the confidence level (as can be seen in Thblea)ecently-proposed algorithm for finding a lower bound an th
as the requirement](7) becomes more lax. Higher valuggnimum distance of a specific code which serves to improve
of ~ will yield lower values of the DS2 bound. This,the result. By applying the AMLC in the error floor region, it
however, comes at the expense of a lower confidence lewdls demonstrated that the property can imply a frame error
because while running Algorithin 1 more codes will beate several orders of magnitude lower than a simulated erro
rejected as having low minimum distance. rate. While the increased frame error detection capalatity

« One may observe that in the example above, the AMLIIds with a certain confidence level, it was shown that this
result is applied to aandom selection of a code from anlevel is extremely high in the error floor region.
ensembleln many applications, it would be desirable to
apply the AMLC result to a specific code rather than an
ensemble. The difficulty is that whilensemble averages
of distance spectra are typically known or can be easily APPENDIXA
upper-bounded, for specific codes this is not the case PROOF OFLEMMA ]
in general. Naturally, if one obtains for a specific code

the exact distance spectrum (or an upper bound), it iSconsider first the BP decoder. From the symmetry of the
straightforward to plug it in the DS2 bounl {25)-26)gp aigorithm over MBIOS channels 18], we know that
Another alternative is to use known concentration results

[15] for the distance spectrum which enable one to give .
upper bounds on the distance spectrum of a specific code, &i((—1)°m . y) = { Ci(y?? Cm,i =0 (32)
which themselves hold with some confidence level. This 1-¢(y), emi=1
confidence level can be integrated with our confidence
bound{(L,¢€). The result would be a looser bound (asvhere (—1)°~ is a vector of+1 corresponding to the code-
compared to[(25)-(26)) which applies with confidenceord c,,, the multiplication(—1)¢~ -y is componentwise, and
level worse thar¢(L, ¢), but it would apply to specific ¢; (resp.c,, ;) is thed'th bit of ¢ (resp.c,,,). Now consider the
codes. LP decoder, which is used to produce the ve&oFix ¢ > 0.

« Application of the AMLC result is not restricted to theThe vector\ = {);};cz satisfies the symmetry condition (see
BP decoder. The result extends trivially to any decod§t],[8 Lemma 6])
which satisfies the symmetry conditidn32). In particular,
this condition is fulfilled by standard message-passing A(y) =0
algorithms, e.g., min-sum, Gallager-A, Gallager-B. Ai((=1)m - y) = { 1 /\T(y) o (33)

« In a more general context, the AMLC result can be IS
applied to any LP formulation. In particular, the LP

program proposed by Fe!dman [16] for generql Turbo 1gor standard parallel concatenated Turbo codes, no exjnnga needed
codes can be used to achieve better error detection uniektuse all codes in the ensemble do not have codewordsyolbvemveight.



Now, where(c); is thei'th bit of codewordc. We now have
(Hcec Qly|c) C=0C )
Pr :
cn, trans.

: c#em  QyTem) ~
Pr(¢ € AMLC(0) | ¢y, trans)

_p, | FeC . I Qy: | 0)

C# Cm Qyi 1)

=Pr(P(€)—P(A) <4, ¢eC | cp trans)

(;1 () @

i€A1(c,cm)

Q(yz‘|1) 5
1T g0 =t

“i(y) <6, ¢€C | cm trans) icda(e,em)
dceC Q( i 10)
=Pr : H
) 0 Co i (A c m
= (s (G ) (-0 @Dy ( CFOn e diferen QU @)
2\ QD)
(% | 1) 5 C=¢C
. >
“A((=D° -y <, eeC | o trans) _eAl(_[ ) Q(y; | 0)8 z1 0 trans.
. dceC Qyi| 1)

Sotox (S @t - niw) < ~pr : 11

<1€I ) ¢ ?é em i€A1(c,cm)UAs(c,cm) Q(yz | O)
cC=¢;
ceC |0 trans) e >1 0 trans. >
_Pr(P(&)—P(A\) <6, é€C | O trans) _p( 3¢EC QW) s ] C=C
. c#0 Q(y|0)  ~ | Otrans.
Pr(¢ € AMLC(4) | O trans)
where
« the first equality is due to the definition (34) of the sets
where Aq and A,.

« the second equality is due to the same definitiongl pf
andA; as well as the symmetry of the chann@(({|z) =
Q(—y[1 — x)).
the third equality is due to the symmetry of the channel.
« the final equality, which is the desired result, is due to
the linearity of the code.

« the first inequality is by the definitiof(9).

« in the second equality we use the definitibh (5) and stress,
the dependence on.

« in the third equality we use the symmetry of the channel *
as well as the symmetry of the BP decoded (32).

« in the fourth equality we use the symmetry of the LP and

BP decoders [(32).(83)). APPENDIXC
« in the fifth equality we again use the definitidd (5). OPTIMIZATION OF THE DS2BOUND
« the final equality is again by the definitiofl (9). Consider the DS2 bounfl{25) for fixéd Let 3= L. First,

rewrite the bound in exponential form as
The above series of equalities hold for aill This proves the

claim Pl(h) < e~ NEos28,8,p,2:%())

A 0 —
Eps2(8, 8,0, \,9()) = — NP)‘ - % In (Ay)

(Z (y/0) )
APPENDIXB ’

PROOF OF LEMMARZ —pBln <Z1/) FQyl0) (y|1)A>

Assuming fixed values of5 and §, the exponent
Eps2(9, 8, p, A, (+)) should be maximized over

A>0, 0<p<l, {w(w:Zw(y):l} (36)

{i:(c1)i=0, (c2)i =1} For fixed values of\ and p, we use calculus of variations to
1, (c2); =0} (34) find the optimum tilting measure; this analysis yields the

D=

For any two codewords; andcs, define the sets

Aq(c1,c2)
As(cy,c2)

> 1>
—~

~. .
—

Q

A%

SN—
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optimality condition
(=)= a(y)
Ply) e
S v )
A1~ 2)g2(y)
=0 (37
e tewm) 0
wherey is a Lagrange multiplier and
A
)2 Q0’00200 (G0

The solution to[(37) is given in the following implicit form

Y(y) = (o

(y) + rg2(y))” = CQ(yl0)

(T

where

£, Qo) (14 (5

Z Q(yIO)( Zé) <1+m(8§5l3§)A>p_1
(38)

The appropriate normalizing constapis given by

To find the optimized tilting measure, we solve](38) numeri-

A
c= |ZQuio) (145 (22 (39)

cally, and determing by (39). The optimal values of and
p are then found numerically.
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