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Common Information and Secret Key Capacity

Himanshu Tyadi

Abstract—We study the generation of a secret key of maximum
rate by a pair of terminals observing correlated sources and
with the means to communicate over a noiseless public com-
munication channel. Our main result establishes a structual
equivalence between the generation of a maximum rate secret
key and the generation of a common randomness that renders
the observations of the two terminals conditionally indepadent.
The minimum rate of such common randomness, termed in-
teractive common information, is related to Wyner’s notion of
common information, and serves to characterize the minimum
rate of interactive public communication required to genefate an
optimum rate secret key. This characterization yields a sigle-
letter expression for the aforementioned communication rée
when the number of rounds of interaction are bounded. An
application of our results shows that interaction does not educe
this rate for binary symmetric sources. Further, we provide an
example for which interaction does reduce the minimum rate 6
communication. Also, certain invariance properties of cormon
information quantities are established that may be of indepndent
interest.

Index Terms—Common information, common randomness, in-
teractive communication, interactive common information secret
key capacity.

|. INTRODUCTION

We answer this question by characterizing the form of
common randomness (CR) (i.e., shared bits, ske [2]) that the
terminals must establish in order to generate a maximum
rate SK; two examples of such common randomness are
the observations of any one terminal [13]] [1] and of both
terminals [5]. While our main result does not yield a single-
letter characterization, it nonetheless reveals a cefitrkl
between secrecy generation and Wyner’s notion of common
information (Cl) between two dependent ¥ and Y [16].
Wyner defined Cl as the minimum rate of a function of
i.i.d. repetitions of two correlated random variabl&s and
Y that facilitated a certain distributed source coding task.
Alternatively, it can be defined as the minimum rate of a
function of i.i.d. repetitions ofX andY” such that, conditioned
on this function, the i.i.d. sequences are (almost) inddpet
this definition, though not stated explicitly in_[16], follms
from the analysis therein. We introduce a variant of thisorot
of CI called theinteractive Clwhere we seek the minimum
rate of CR that renders the mentioned sequences condltional
independent. Clearly, interactive Cl cannot be smallentha
Wyner's Cl, and can exceed it. Our main contribution is
to show a one-to-one correspondence between such CR and

that observe independent and identically distributedd().i
repetitions of two discrete, finite-valued random varialfles)

correspondence is used to characterize the minimum rate of
communicationRsx required for generating a maximum rate

of known joint probability mass function. The terminals comSK. In fact, it is shown thatRsx is simply interactive Cl

municate over a noiseless public channel of unlimited dépac

minus the secret key capacity.

interactively in multiple rounds, to agree upon the value of When the number of rounds of interaction are bounded,

the key. The key is required to be (almost) independent B¥iS characterization yields a single-letter express@nifsr.
the public communication. The maximum rate of such an SKSing this expression we show that an interactive communi-

termed the secret key capacity, was characterized in [1B], [

cation scheme can have less rate than a noninteractiverone, i

In the works of Maurer and Ahlswede-Csiszar|[13]] [1]general. However, interaction offers no advantage forrgina
SK generation of maximum rate entailed both the terminafymmetric sources. This expression also illustrates the ro
recovering the observations of one of the terminals, udieg {of sufficient statistics in SK generation. We further dwell
least rate of communication required to do so. Later, it w&§ this relationship and show that many CI quantities of
shown by Csiszar-Narayahl [5] that a maximum rate SK capferest remain unchanged if the sources are replaced by the
be generated also by the terminals recovering the obsengaticOrresponding sufficient statistics (with respect to edtlen).
of both the terminals. Clearly, the latter scheme requiresem Interestingly, the effect of substitution by sufficienttitcs
communication than the former. In this paper, we address th@s been studied in the context of the rate-distortion erobl

following question, which was raised in![5, Section VI]:
What is the minimum overall rate of interactive communmati
Rs i required to establish a maximum rate SK?
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for a remote source if_[7, Lemma 2], and recently, for the
lossy and lossless distributed source coding problenisdh [1
Here, in effect, we study this substitution for the disttém
source coding problems underlying the Cl quantities.

The basic notions of CR and SK are explained in the next
section. The definition of interactive Cl and the heuristics
underlying our approach are given in Sectfod Ill. Our main
results are provided in Sectidn ]IV, followed by illustraiv
examples in the subsequent section. Sediidn VI explores the
connection between sufficient statistics and common infor-
mation quantities. A discussion of our results and possible
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extensions is given in the final section. K = K™ with (1/n)H(K) > R — e. The supremum of all
Notation.The rvs X andY take values in finite set¥ and)), achievable SK rates is denoted by and is called the SK
respectively. LetX” = (Xq,...,X,,) andY" = (Y1,...,Y,,) capacity.

denoten i.i.d. repetitions of X and Y, respectively. For
a collection of rvsUy,...,U,, for i < j let U] denote
Ui,Ui41..,U;; wheni = 1, we useU’ = Uy,...,U;. For Theorem 1. [13], [I] The SK capacity forX andY is given
rvs U,V, and0 < ¢ < 1, we sayU is e-recoverable fromi/ by
if there is a functiory of V' such that

P(U=g(V)>1-c

The following resufi is well known.

C=IXAY). )

o Il1. RELATION BETWEEN SECRETKEY AND WYNER’S
Denote the cardinality of the range space of a mapgfirty COMMON | NFORMATION

|| f]], and similarly, with a slight abuse of notation, the (fixed)

range space of a random mappifcby |[F||. We interpret Wyner’s CI for a pair of rvéX,Y") as the

minimum rate of a function of their i.i.d. repetitiofXx™, Y™)

that rendersX™ andY ™ conditionally independent. Formally,
Il. INTERACTIVE COMMUNICATION, COMMON

RANDOMNESS AND SECRETKEYS Definition 3. R > 0 is an achievable CI rate if for every

: : : .0 < € < 1 there exists am > 1 and a (finite-valued) rv
Terminals X and ) (with a slight abuse of notation) . o
communicate interactively, with, say, termindl transmit- L= L()_( ,¥™) of rate(1/n)H(L) < R+ e that satisfies the
ting first. Each terminal then communicates alternately f(gJ'roperty.
r rounds. Specifically, am-interactive communicatiod = lI(Xn AY"|L)<e 3)
(f1, f2, .-, fr) is @ sequence of finite-valued mappings with -

" i . Obvious examples of such an & are L = (X", Y™
faiyr: X X?:Q = Fair1, 0<i<|[(r—1)/2), or X" or Y™, 'Iphe infimum of all achievable(z Cl rat)es,
foi : VX UL = Foy 1<i < /2], denotedC Ty (X AY), is called the Cl ofX andY. This

where {F;}7_, are finite sets andF, = 0. This set-up definition of CI,_ though_ not stated gxplicitly in_[16], f(_)lm;
subsumes protocols where terminlinitiates the commu- from the analysis therein. The following theorem charapéesr
nication upon choosing; = constant. LetF = f (X", Y™) Clw (X NY).
describe collectively the corresponding rv. The rate o thTheorem 2. [16] The CI of the rvsX,Y is
communication is given by )

Clw(X ANY) = %HI(X, Y AW), (4)

1
n log | where the rviV takes values in a (finite) sy with || <

We assume that the communication from each terminal isl4/|Y| and satisfies the Markov conditioki - IV - Y.

(deterministic) function of its knowledge. In particulaan- The direct part follows fromi[16, equation (5.12)]. The piob
domization is not allowed. This is not a limiting assumptionne converse is straightforward. Further, it is a simpleeise
see Sectiof VII-A. to infer from [3) thatC' Iy (X AY) > I[(X AY).

Definition 1. Given interactive communicatioRl as above, a pefinition 4. An achievabler-interactive Cl rate is defined

function L of (X™,Y™) is e-common randomnegs-CR) re- iy a manner analogous to the achievable CI rate, but with the
coverable fro} F if there exist mapping€, = L (X", F)  restriction that the rv& in (3) bee-CR, i.e.,.L — (J, F), where
and L, = LY (Y™, F) such that F is anr-interactive communication and is e-recoverable
from F. The infimum of all achievabler-interactive ClI
Pll=li=L;)=1-¢ rates, denoted’I](X;Y), is called ther-interactive Cl of
Definition 2. A function K of (X", Y™), with values in the rvs X and Y. By definition, the nonnegative sequence
a setk, forms ane-secret key forX and Y (e-SK) if K {CI/(X;Y)} 2, is nonincreasing in and is bounded below

r=1

is e-CR recoverable fromX™ or Y™ and (interactive public by CIyw (X AY). Define
communication)F', and CLIXAY) = lim CI'(X:Y).

1 T— 00

—I(KAF)<e (1)

" Then CL(X AY) > CIw(X AY) > 0. Note that
CIT(X;Y) may not be symmetric inX and Y since the
communication is initiated at termindf. However, since

CIIY(X;Y) < CIN(Y; X) < CII (X Y),

For convenience, simplistically, theSK K is said to be
recoverable fronF'. A rate R > 0 is an achievable SK rate if
for every0 < e < 1 there exists, for sorﬁen > 1, ane-SK

1The rv L is e-recoverable fron(X™, F) or (Y™, F) but not necessarily
from F alone. The deliberate misuse of the terminology “recoverdiom 3 It is shown in [14], [3] that SK capacity remains unchangeereif the
F” simplifies presentation. notion of “weak secrecy” ofK in (D) is tightened to “strong secrecy” by
2 Our results hold even if the phrase “for some> 1” is replaced by “for  omitting the normalization with respect to, and an additional uniformity
all n sufficiently large;” the former has been chosen here for enience. constraintH (K') > log |K| — e is imposed.



clearly, Remark.The relation [B) can be interpreted as follows. Any
. - CR J recoverable from (interactive communicatidf) with

CLXAY) :rlggo CL(X;Y) L = (J,F) satisfying [8), can be decomposed into two

= lim CI/(Y;X) mutually independent parts: An SK of maximum rate and

roee the interactive communicatid. It follows upon rewriting[(8)

= CL{Y A X). ®) as CL(XANY)=I(X AY)+ Rc; that the communication

Further, for all0 < ¢ < 1, J = X" is e-recoverable from F is (approximately) of ratd?c;. Furthermore B¢, is same

Y™ and a communication (of a Slepian-Wolf codewofd)= as Rsk-.

F(X™), andL = (J, F) satisfies[(B). Henc&l'I;(X AY) < A computable characterization of the operational term
H(X); similarly, CL;(X ANY) < H(Y). To summarize, we CI;(X AY) is not known. However, the next result gives

have a single-letter characterization 6fI7 (X;Y).
0<Clw(XAY)<CLXAY)<min{H(X),H(Y)}, Theorem 4. Given rvsX,Y andr > 1, we have
(6)
where the first and the last inequalities can be strict. IfiGec CLI(X:Y) = fnmU IXY AU - Ur), ©)

V-Alwe show that the second inequality is strict for binary

symmetric rvsX, Y. where the minimum is taken over i, ..., U, taking values
The r-interactive Cl plays a pivotal role in optimum raten finite sets4y, ..., U., respectively, that satisfy the following

SK generation. Loosely speaking, our main result asseets gpnditions

following. A CR that satisfied {3) can be used to generate an

21 .
optimum rate SK and conversely, an optimum rate SK yields\'1) Uzit1 & X, U™ =Y, 0<i<|(r—1)/2],

a CR satisfying[{3). In fact, such a CR of rafe can be Uy =Y, U ' o X, 1<i<|[r/2],
recovered from an interactive communication of rdte- C, (P2) X = U" =Y,
whereC' is the SK capacity forX and Y. Therefore, to find 9%

the minimum rate of interactive communication needed t0(p3) (14, 4| < |X]| H U +1, 0<i<|[(r—1)/2
generate an optimum rate SK, it is sufficient to characterize o o

=1
CL(X NY). 21‘—1]
il < VT sl +1, 1< < [r/2],
IV. MAIN RESULTS j=1

Definition 5. A rate R’ > 0 is an achievable-interactive
communication rate folCI] if, for all 0 < ¢ < 1, there
exists, for somen > 1, an r-interactive communicatio® Remark.Note that[[9) has the same form as the expression for
of rate (1/n)log |F|| < R’ + ¢, and ane-CR .J recoverable CTy, (XAY)in @) with W replaced by(U1, ..., U,) satisfying
from F, with L = (J,F) satisfying [3). LetR{,, denote the the conditions above.

infimum of all achievabler-interactive communication rates
for CI7. Similarly, R” > 0 is an achievable-interactive
communication rate for SK capacity if, for all < ¢ < 1,
there exists, for some > 1, anr-interactive communication
F of rate(1/n)log ||F|| < R"+¢, and ane-SK K, recoverable Lemma 5. For an interactive communicatioR it holds that
fromF, of rate(1/n)H(K) > I(X AY)—¢; Rgj denotes the

infimum of all achievable-interactive communication rates H(F | X")+HF |Y") < H(F). (10)
for SK capacity. Note that by their definitions, baitf,, and _ _ o .

RgK are nonincreasing with increasing and are bounded Lemma 6. For an r-interactive communicatioir, define
below by zero. Define

with Uy = 0 and Uy = constant.

Before presenting the proof of our main Theordms 3 and
[4, we give some technical results that will constitute cantr
tools for the proofs.

Fi=F (X0 Vi), 1<i<k,
Rep = 1Lm R, Rsx = li)m R%. (i—1)+1 (i—-1)+1
Then, for allk > ko(n, ¢, |X|,|V]|) there exists am-interactive
Although RY,;(X;Y) and R%,.(X;Y) are not equal to communicatiorF” = F' (X", Y"*) of rate
R7.(Y; X) and Ry, (Y; X), respectively, the quantitieB¢ 1 1
andRsk are symmetric inX andY” using an argument similar — log ||[F'|| < = [H (F|X") + H (F|Y"™)] +¢, (11)
to the one leading td5). nk n

Theorem 3. For everyr > 1 such thatF” is an ¢-CR recoverable fron¥’.

T = Rb, =CIN(X;Y) = I(X AY). @) Remark.Lemmal[® says that, in essence, for an optimum rate

communicationF,
Corollary. It holds that

Rsk = Rer =CL(XAY)—I(XAY). ®) %logl\FH ~ —[H (FIX")+ H (F[Y")].

S|



Lemma 7. (A General Decomposition) For a CR recover-
able from an interactive communicatidh we have
nl(X ANY)
=I(X"ANY"|JF)+H(JF)—H(F|X")
-HF|YY)Y-HJ| X" F)—H(J|Y"F).
(12)

Since(J, F) satisfies
1
—I(X"AY" | JF)<e<e+de),
n

the inequality [(IB), along with the fact thét + d(¢)) — 0
ase — 0, implies that/(X AY) + R{,; is an achievable-
interactive Cl rate; hencelI7 (X;Y) < I(X ANY) + RE;.

Lemmal[® is a special case df| [6, Lemma B.1] (also, see
[12]). The proofs of Lemm&l6 and Lemnfia 7 are given iflaim 2: Rgx > Re;.

the Appendix.
Note that a simplification of(12) gives

1
I(XAY)gE I(X"AY™|JF)+

H(J,F)—H((F|X")—H(F| Y")].
(13)
If J is ane-CR recoverable fronk, Fano’s inequality implies
[H(J | X", F)+ H(J|Y",F)| < 2elog|X||V|+ 2h(e)
(14)

SN

=4(¢), say,

whereh(e) = —eloge — (1 — €)log(1l — €), andd(e) — 0 as
e — 0. Combining [12) and{14) we get

1
I(XAY)>=|I(X"AY™ | J,F)+ H(J,F)
n

~HE X - HE[Y)] 60, 05)
and further, by[{70),
I(XAY) > % [[(X"ANY™|JF)+ H(J,F)— H(F)]
—d(e). (16)

A. Proof of Theorerhl3

In this section we give a proof fofl(7). The proof bf (8) then
follows upon taking limitr — oo on both sides of{{7). The

proof of (@) follows from claims 1-3 below. In particular,eh
proofs of claims 1-3 establish a structural equivalence/een
a maximum rate SK and an SK of rate1 H(J | F) extracted
from a CRJ recoverable fronF such that = (J, F) satisfies
@3).

Claim 1: R,; > CIT(X;Y) — I(X AY).

Proof. By the definition of R, ;, for every0 < e < 1 there
exists, for some: > 1, anr-interactive communicatiolr of
rate

1
ﬁlogHFH < Rgy +e, (17)

and J, an e-CR recoverable fron¥, such thatL = (J,F)
satisfies[(B). It follows upon rearranging the term<in (1@t

%H(J, F)<I(XAY)+ %H(F) + (),

which with (I7) gives

1

EH(J,F)gI(XAY)+1%igI+eJr<$(e). (18)

Proof. Using the definition ofRY%,, for 0 < ¢ < 1 there
exists, for some: > 1, anr-interactive communicatiol® of

rate L log |F|| < R%j + ¢, and ane-SK K recoverable from
F of rate

%H(K) >I(XAY)—e (19)
By choosingJ = K in (18) and rearranging the terms we get,
%I (X" AY" | K,F)<I(XAY)— %H(K | F) + 6(c).
Next, from (1/n)I(K AF) < ¢, we have
%I(X" AY™ K, F) < I(XAY)— %H(K) +et6(e)
< 2e+0(e),

where the last inequality follows fron{_([L9). Sind@e +
d(e)) — 0 ase — 0, R§, is an achievable-interactive
communication rate fo€'I], and thus,R§, > Rf.;.

Claim 3: Ry, <CIJ(X;Y)—-I(X AY).
Proof. For 0 < € < 1, let J be ane-CR recoverable from
an r-interactive communicatiol’, with

%H(J, F) < CII(X;Y) + ¢, 20)
such thatZ = (J,F) satisfies[(B), and so, b{z (113),
L[H(R | X"+ H(F | Y]
< lH(J,F) —I(XAY)+e
ggI[(X;Y)—I(XAY)+2e. (21)

To prove the assertion in claim 3, we show that for some
N > 1 there existsA(e)-SK K = K(XY, Y™) of rate

1
log ||| > I(X AY) - A(¢)

recoverable from anr-interactive communicationF”’
F”’(XN YN) of rate
1
N

1
log [F"|| < — [H(F [ X") + H(F [ Y")] + Ale) — 26,
(22)
whereA(e) — 0 ase — 0. Then [22), along with[{21), would
yield
SIOB[[F]| < CII(XGY) ~ I(XAY) + A%, (23)

so thatCI'(X;Y) — I(X AY) is an achievable-interactive
communication rate for SK capacity, thereby establishimgy t
claim.



It remains to findK andF” as above. To that end, let
be recovered ag; = J; (X", F) and Jo = Jo(Y", F) by
terminalsX and ), respectively, i.e.,

P(J=J1=J2)>1—¢.
Further, fork > 1, let
Ji=Ji (ngi,l)H’Fi) ,

o= T (Yt B, 1<i<h,

n

whereF; = F (ngi71)+l,Y7f(§71)+l). For oddr, we find
an r-interactive communicatio®” such that(J{, F*) is a
e-CR recoverable fron¥”, for all k sufficiently large; the
the SK K will be chosen to be a function ofJf,F*¥)

of appropriate rate. The proof for evenis similar and is
obtained by interchanging the roles.6f and.J,. In particular,

by Lemmal®, for allk sufficiently large there exists an

interactive communicatioR’ such thaff* is ¢-CR recoverable
from F’ of rate given by[(Il1). Next, from Fano’s inequality

Camax{H(J | J) HJ | J2)) < clog| X1+ he). (24)

By the Slepian-Wolf theoreni [15] there exists a mappjhg

of JF of rate

1
z log || f|l < H(Jy | J2) + ne, (25)
such that

JY is e-recoverable fronff (Jf),J5), (26)

for all £ sufficiently large. It follows from[(24)[(25) that

1
—og || < e+ clog|X]|Y] + h(e).

For N = nk, we define the-interactive communicatioR” =
F” (XN, YN) as

F'=F 1<i<r-—1,

Fy = Frlvf(‘]{c)a

Thus, (Jf, F*) is 2¢-CR recoverable fronk”, where, by[(1)
and [27), the rate of communicatidi’ is bounded by

(27)

T=r,

~log [P

< % [H (F|X™) + H (F]Y™)] +2¢ + elog | X|[V] + h(e).
(28)

Finally, to construct the SKK = K (Jf,F*), using the

corollary of Balanced Coloring Lemma ifnl[5, Lemma B.3],

with
U:(JlaF)a V:¢a n:ka g:FI7

we get from[(2B) that there exists a functiihof J§, F* such
that

1
= log [IK

> H(U) - 1 log|[F"|
> H(J1,F) ~ H(F | X") ~ H(F | V")

—n(2e+elog|X||Y| + h(e)), (29)

and
I(K NF') < exp(—ck),

wherec > 0, for all sufficiently largek. We get from[(ZB) and
(I3) that the rate of< is bounded below as follows:

1 1
—log||K|| > I(XANY)——=I(X"AY" | J,F
—log [ K| 2 I(X AY) = I | 71,F)

— 2e — elog | X||Y| — h(e). (30)

Observe that

I(X"AY" | J,F)=I(J1,X"AY™ | J,F)
> I(X"AY"™ | J,J,,F)
>I(X"AY" | J,F)— H(J | Jy),

which along with [2%), and the fact thdt = (J, F) satisfies
), yields

I(X"ANY"™ | 1,F) <e+elog|X||V]|+h(e). (31)

n
Upon combining[(30) and (31) we get,
1
s log | K|| > I(X AY) — 3e — 2¢elog | X|| Y| — 2h(e).

Thus, forA(e) = 4e + 2elog | X||Y| + 2h(e) K is aA(e)-SK
of rate (1/nk)log || K| > I(X AY) — A(e), recoverable from
r-interactive communicatiod”, which with [28), completes
the proof. O

B. Proof of Theorerhl4

Achievability. Consider rvslUy, ..., U,. satisfying conditions
(P1)-(P3) in the statement of TheorEn 4. It suffices to shaw fo
every0 < e < 1, for somen > 1, there exists am-interactive
communicatiorF, ande-CR J recoverable fron¥, such that

I(X,)YANU")—€e< lH(J,F) <I(X,YAU")+e¢ (32)
n
and

%H(F) <IX,YAU)—I(XAY)+e,  (33)

since from [(1B),[(32) and (B83), we have

Lrxm aym | 1 F)

—I(

< %H(F) - %H(J, F)+ I(X AY) +6(c)
< 2e+d(e).

We show below that

(34)

I(X,Y AU = I(X AY)

Lr=1)/2] .
> I(X AUy | Y,U)
=0

r/2] ‘
+ ) I(Y AU | X, U,
i=1

(35)



Thus, the proof will be completed upon showing that therfl, ..., n}. Define rvsU" as follows:
exists ane-CR J, recoverable fron¥ of rate T_1
U1:F17X 7Y’17"l+11T7

1 L(r—1)/2] U; = F, 2<a <,
SHE) < Y I(X AUz | Y,U™) _— {(Fr, Ji), r odd,
=0 T
F. Ja), even.
/2] | (Fro )y
+ Z I(Y AUy | X, U7 +¢, (36) We complete the proof for odd; the proof for evenr can
i=1 be completed similarly. It was shown by Kaspi|[10, equations

(3.10)-(3.13)] that

such that(J, F) satisfies[(3R). For = 2, such a construction 2 ,
was given by Ahlswede-Csisz4rl [2, Theorem 4.4]. (In their Uzig1 - XT’le o Yr, 0<i<|(r—1)/2],
constructionF was additionally a function ofl.) The exten- Usi o Yr, U™ = Xp, 1<i<
sion of their construction to a generais straightforward, and Next, note from[[31) that

is relegated to the appendix.
It remains to prove[(35). Note €+ elog |X[|Y] + h(e)

1
> —I(X"ANY" | J1,F)
[(r=1)/2] n
Ty . 21 n )
IXYAUD) = 3, X AU |Y,U0%) > LS 1 Ay X LT
1=0 n “—
Lr/2) X =
2i—1 .
_EI(Y/\UZHXaU ) > =S I A | XY, L F)
i= i=1
[(r—1)/2] |r/2] ;
) ) =I1(XrANYr|U"). 39
= Y LY AUsia | U+ Y (X AUy | UPY), Xr A Y |U7) (39)
i=0 i=1 Similarly, it holds that
(37) n T-1
e+ elog |X|| Y| +h(e) > I(Xp ANYp | X770, J1,F,T).
Further, from conditions (P1)-(P3) it follows that (40)
The entropy rate ofJ, F) is now bounded as
Lr=1)/2] 2 _ 1
S I AUy [U)+ > I(X AU | U ~H(J,F)
i=0 i=1 1 1
~I(Y AX) 2 —H(J,F) = ~H(J1 | J)
[(r=1)/2] lr/2] 1
) ) > = _ _
_ Z I(Y A U2i+l | UQZ) + Z I(X A U2i | UQZfl) - nH(']laF) ElOg|‘)(‘||)}| h(ﬁ)
i=1 i=2 1
= —I(X™,Y"AJi,F) —elog|X||YV]| — h
FIX AUy |Uy) + I(Y AUL) — I(Y A X) el 11 ) — elog | X[V = hle)
Ltr=1)/2] L2 ‘ = H(X7,Yr)— —H(X™| J1,F)
= > IV AUpipa |UP)+ Y I(X AUz | U ) n
i=1 i=2 ——HY"| X", Ji,F) — elog |X||Y]| — h(e)
IXAU |U) —I(XAY | U i
L(tl)fzj 2| Ur) — I( L|/2J1) = H(Xp,Yr) — H(Xr | X7, 1, F,T)
. . T-1 n n
- Z I(Y AUzt | Um) + Z I(X AU | U%_l) —HOr | X Y11, X, X0, J1, B, T)
i=1 i=2 —elog|X|| V| — h(e)
—I(XAY | U1,Uz) > I(X7,Yr AUT) — € — 2elog | X|| V| — 2h(e),
=.=—I(XAY|U)=0. (38)

where the second inequality follows from Fano’s inequality
and the last inequality follows froni_(#0). Consequently,
Combining [3¥) and{38) we gdi(35). 1

ConverseLet R > 0 be an achievable-interactive Cl rate. R > EH(J’ F) -«
Then, for all0 < e < 1, for somen > 1, there exists am- r

! ' = >I(Xp,YrANU") =2 log |X h(e)). 41

interactive communicatioR, ande-CR .J recoverable fronF, 2 I(Xr, ¥z ) (e + elog| X[V + h(e))- - (41)
such that(1/n)H(J,F) < R+¢e and L = (J, F) satisfies[(B). We now replace the rv&7, ..., U, with those taking values in
Let J be recovered ad; = J1(X™, F) andJ, = Jo(Y™ F) finites setsifs, ...,U,, respectively, withify, ...,U, satisfying
by terminalsX and ), respectively, i.e.P(J = J; = J2) > the cardinality bounds in condition (iii). Similar bound&re
1 — e. Further, let rvT" be distributed uniformly over the setderived in the context of interactive function computatiaon



[11). For1 <[ < r, assume that rv&f,...,U;_; satisfy the The answer to the optimization problems|[inl(44) dnd (45) can
cardinality bounds. We consider oddhe steps for evehare be given explicitly. In fact, we specify next a minimal suiiint
similar. If the rvU; does not satisfy the cardinality bound, fronstatistic forY” on the basis o . Define an equivalence relation
the Support Lemmé [4, Lemma 15.4], we can replace it withn X" as follows:
another rnvU; that takes less than or equal|tt| Hli;} ;| +1 , ,

; ; ; i~ . r~x <P (y|z)=Pyx (y|2"), yel.
values, while keeping the following quantities unchanged: YiX |

Pypuit, I(Xp AYr |UT), andI(Xp, Yo AU"). Letg; be the_function c.orresp.or_1ding to t_hg equiva_Iepce classes
_ - of ~. We claim thatg} is a minimal sufficient statistic foy”
Note that we have only altere@y, in the joint pmf on the basis off. This expression for the minimal sufficient
Px,vrUr = Pu,Px,ui-10, Py, | xui-1. Hence, the Markov re- statistic was also given if[9, Lemma 3.5(4)]. Specifically,
lations in (P1) remain unaltered. Furthermdrg, v, =Pxy. X - ¢(X) - Y since withg}(X) = ¢, say, we have
Finally, since the set of pmfs on a finite alphabet is compact,

(46)

and the choice of above was arbitrary, it follows upon taking Pygrx) (W | ©)
e — 01in (39) and[(41) that there exists satisfying (P1)-(P3) _ Z Py x1g: () (0,7 | €)
such that = N ’
R>I(X, Y ANU"),
_ ( ) = > Pxigx) @] 0)Pyxgrx) (] z.0)
which completes the proof. O wgs (z)=c

= PY|X.,gi‘(X) (y | .I',C), V. with 9?(95) =c
V. CAN INTERACTION REDUCE THE COMMUNICATION

RATE? Also, if g1 (X) satisfiesX < g;(X) = Y theng; is a function

It is well known that the SK capacity can be attained b§f 91- TO see this, ley: (z) = g1(z") = ¢ for somez, 2" € X

using a simple one-way communication from termidalto en,
terminal ) (or from ) to X). Here we derive the minimum p
rate Ry; of such noninteractive communication using the
expression folCI7 (X;Y) in (@). Since this expression has &0 thatg;(z) = gi(«’). Sinceg; is a minimal sufficient
double Markov structurgt can be simplified by the following statistic forY” on the basis ofX, it follows from (44) that
observation (seé [4, Problem 16.25]): If r'5 X, Y satisfy CINX:Y) = H (g5(X)),

U-eX-eY X-oU-—-Y, (42)

Yigx) (@ le)=Pyx (y|z)=Pyx (y|2), yel,

and similarly, withg;(Y") defined analogously,
then there exist functiong = f(U) andg = ¢(X) such that . .
() P(f(U) =g(X)) = 1; CIL;(Y; X)=H(g3(Y)).

(i) X - g(X)-=Y. Therefore, from{l7), the minimum ra#@y ; of a noninteractive
In particular, for rvsU, X, Y that satisfy [4R), it follows from communication for generating a maximum rate SK is given by
(i) above that

(X, YANU)=1(XANU) > I(g(X) A f(U)) = H(g(X)). , o
From the expression foRyy, it is clear that the rate of

Turning to [9), for rvsU" with » odd, the observations ,qninteractive communication can be reduced by replacing
above _app“fi to ﬂ:fl rvs{ and Y conditioned on each y anqy with their respective minimal sufficient statistics
reaﬂzatlo)r}UUT_lz u ) t|rr]nthI|es that there exists a funcUonQT(X) and ¢5(Y). Can the rate of communication required
91 =91 ( ) ) such tha for generating an optimum rate SK be reduced by resorting
X - g(X, U, U =, (43) to cqmplex interactive co_mmunicgtion protocols defined in
Section[D? To answer this gquestion we must compare the
and expression forRy; with Rgy. Specifically, from Theorem
[(X,YAU")>T(X,Y AU +H (¢ (X, U4 U™, [3 and the Corollary following it, interaction reduces théera

o o ) of communication iff, for some > 1,
where rvU" ! satisfies (P1), (P3). Similar observations hold

for evenr. Thus, for the minimization in{9), conditioned on CL{ (X;Y) <min{H (91(X)), H (97(X))}, (48)
arbitrarily chosen rvé/"—! satisfying (P1), (P3), the r,. is
selected as aufficient statistic foy” given the observatiorX
(sufficient statistic forX given the observatio”) whenr is CL(XAY)=min{H (¢7(X)), H (g5 (X))} .
odd (- is even). Specifically, for = 1, we have

Ryp =min{H (97(X)), H (91(X))} = (X NY). (47)

whereg; andg; are as in[(4l7); interaction does not help iff

Note that instead of comparing with 7/ (X;Y) in (48), we
CI}(X;Y) = . m(i)l(l)GYH (91(X)), (44)  can also compare with'I7(Y; X).
” We shall explore this question here, and give an example
where the answer is in the affirmative. In fact, we first show
CINY;X)= min H(g(Y)). (45) thatinteraction does not help in the case of binary symmetri
Yega(Y)eX sources. Then we give an example where interaction does help

and



A. Binary Symmetric Sources

For binary rvsX andY, we note a property of rv&" that
satisfy the conditions (P1)-(P3) in Theoré&in 4.

Lemma 8. Let X andY be{0, 1} valued rvs withl (X AY") #

if X andY are independent;(u”) = 0. Note thatr is a
stopping-time adapted t&1, ..., U,.. Then, from [GL), [(BR),
CI’(X;Y) remains unchanged if we restrict the suppor/6f
to sequences” with u; = ¢ for all i > 7(u"). Furthermore,
the Markov condition (P1) implies that if for a sequence

0. Then, for rvl/y, ..., U, that satisfy the conditions (P1)-(P3) = 7(4) is odd then

in Theoreni }, for every realizatian, ..., u, of Uy, ..., U,., one
of the following holds:

HX|U =u")=0, or HY |U =u")=0. (49)
Proof. Given a sequence”, assume that
HX|U =u")>0 and HY |U" =u") > 0,
which is equivalent to
Pxjor (1| u")Pxjpr (0| u") >0 and
Pyjur (1| u") Pyyr (0] u") > 0. (50)

We consider the case whenis even; the case of odd is
handled similarly. From the Markov conditiod§ o U" - Y
andX - Y, U™ ! = U,, we have

Px.yiur (z,y]u")
=Pxpr (x| u") Pyjyr (y | u")

= Pxjy,ur— (50 | .%UT_l) Pyjr (y|u"), =x,y€{0,1}.
SincePy - (y | u") > 0 from (B0), we have
Pxjur (x| u") =Pxjypr— (x| y,w™Y), z,y€{0,1},

which further implies

PX\Y,UT*1 (l’ | 1,UT_1) = PX\Y,UT’I (l’ | O,’U,T_l) 5
xz €{0,1}.
Hence, (X AY | U1 = u"~1) = 0. Noting from [50) that
Pxjyr—1 (1 | uril) Pxjyr—1 (O | uril) >0,

we can do the same analysis as above, agaim foi. Upon
repeating this processtimes we get/(X A Y) = 0, which
is a contradiction. Therefore, eithéf(X | U™ = ") = 0 or
H(Y |U" =u") = 0 holds. O

Note that

CL/(X;Y) = H(X,Y) ~max H(X,Y | U"),

where themax is taken over rvé/" as in Theorerl4. IH (X |
Ut = ') =0, it follows that
I(XAY |U =)

H(X,Y |U' =u"Ul,)

0, and
HY |U' =, U}},)

<HY | U =uh). (51)
Similarly, H(Y | U? = u*) = 0 implies
I(XAY|U'=u')=0, and
HX, Y |U" =", Uj;) SHX |U" =u'). (52)

For a sequence/” with Py~ (u") > 0, let 7(u") be the
minimum value ofi such that

HX|U =u')=0o0r HY | U =) = 0;

Py x,ur (y | ,u") =Py|x ur (v | z,u" ),
and so if
Pxju- (1] u")Pxjpr (0| u") >0,
it holds from the definition of- that
Pyjy- (1| u")Pyjyr (0 [u”) >0,

which is a contradiction. Therefore, we ha¥BX | U™ =
u™) = 0. Similarly, H(Y | U™ = «™) = 0 holds for evenr.
To summarize,

CII(X;Y) =minI (X,Y AUT), (53)

whereU™ are rvs satisfying (P1)-(P3), andis the stopping-
time defined above.

We show next that for binary symmetric sources, interaction
can never reduce the rate of communication for optimum rate
SK generation. In factwe conjecture that for any binary rvs
X,Y, Rnr = Rsk.

Theorem 9. Let X andY be {0, 1}-valued rvs, with
1
P(X=0Y=0)=PX=1Y=1)= 5(1 —9),

1 1
P(X=0Y=1)=P(X=1Y=0)=55 0<6<z.

(54)
Then,
CL(XAY)=min{H(X); HY)},

i.e., interaction does not help to reduce the communication
required for optimum rate SK generation.

Remark.As a consequence of Theorém 9, for sources with
joint distribution as in[(54), the second inequality i (Bndoe
strict. Specifically, it was noted by Wyner (see the disaussi
following equation (1.19) in[[16]) that for binary symmetri
sourcesC Ty (X AY) < 1. From Theoreni]9, we have

CL(X AY)=min{H(X); HY)} = 1.

Thus, for such source§/ Iy (X ANY) < CL(X AY).

Proof. Denote byl{; the following set of stopped sequences
inU":

Fori < r, for a sequence.” € U" the stopped sequence
ut e Uy if:

H(X|U =v)>0,H(Y|U =u') >0,
H(X|U'=u)=00rH (Y |U =u")=0.

Vj <i, and

Fori € {0,1}, define the following subsets of]:
ux = {uT €Uy :TisoddPxy- (i |u") = 1}’
U = {u” €Uy : 7is evenPyy- (i |u”) =1}.



By their definition the set&(s*, U, U}, andi} are disjoint,
whereby we have

Pu- ) = Pur (16 Ju Jud Ju)
P () + P (U)] =1
1=0

(55)

For v € U, denote byp(u™) the probability Py- (u™).
Further, foru™ € U Ju;*, denote byWw™” : X — Y the
stochastic matrix corresponding ®g-x, ;- (- | -,u"), and for

u” € Uy |Juy, denote byT*" : Yy — X the stochastic

matrix corresponding t® x|y,y- (- | -, u”). With this notation,
the following holds:

L

=Pxy (’L,’L)

= > p)W i)+ Y pu)T (i),
uTeUX uTeuy

i €{0,1}, (56)

since the set&;<, U, UY , U are disjoint. Upon adding (56)

fori =0,1, we get

1

>

=0

o op@)W @[+ D p)T (i ])
uTelX uTeuy

= (1-9).
Furthermore, from[{35) we get
1
1= > p)+ > p().
=0 u7euX uT ey

Therefore, since the functiog(z) = —zlog z is concave for
0 < z < 1, the Jensen'’s inequality yields

g(1—6)> 21: > plu)g (WG 10)) +

=0 uTeuX
> pg (TG 10) 6D
uT ey
Similarly, using
%5 =Pxy (Z,j)
= > p) (1= ) +
uTeUX
> o) (=T (1)), i#jige {01}
urely
we get
1
9@ =3 > plun)g (L= (i ]0) +
=0 ymeuX
> pg (1-T"G 1) (68)

On adding[(5F) and(38) we get
h(6) = g(6) +9(1—9)

zi > pln)h (WG] i) +

=0 uTEUiX
> wl)h (TG 1)
uT ey

whereh is the binary entropy function. Note that the right side
above equald/(X,Y | U™), which yields

h(0) =max{H(X |Y); H(Y | X)} > H(X,Y | U7).
Since rvsU" above were arbitrary, we have from{53),
CINX:;Y)> H(X,Y) —max{H(X | Y); HY | X})
= min{H(X); H(Y)}.
Combining this with [B), we obtain
CIN(X:Y)=min{H(X); H(Y)}.

B. An example where interaction does help

Consider rvsX andY with X = Y = {0, 1,2}, and with
joint pmf:

wherea, b, ¢ are honnegativea+b+c = 1, ande # a, which
holds iff b # 1 — 8a. Assume that

ISEEES S
o 8 2
Q@ 2 2

2a > b > a. (59)

From [48), to show that interaction helps, it suffices to find
rvs Uy, ..., U, satisfying (P1)-(P3) such that

»Ur) <min{H (g7(X)), H (95(Y))},
(60)

whereg; andg; are as in[(4l7). Froni(46); (z) = g7 (2') iff

Py x (y,x) _ Px ()
Py,x (y,2') Px(a')

I(X,Y AU, ..

, YED, (61)

i.e., the ratio%% does not depend op. Therefore, for
the pmf aboveg:(X) andg;(Y) are equivalent to¥ andY’,

respectively. Thus,

min {H (¢7(X)), H (9(Y))} = min{H (X); H(Y)},

where H(X) = H(Y) for the given pmf.
Next, letU; = f1(X), Us = f2(Y, f1(X)), where f; and
fo are given below:
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Clearly, U; andU; satisfy (P1) and (P2). For (P3), note thaRemark. (i) Theorem[ID implies that the minimum rate of
if (U1,Uz) = (1,0), thenX = 2, and if (U1,Uz) = (2,1), communication for generating a maximum rate secret key
thenY = 0. Finally, if (U1,Us) = (2,2), thenX € {0,1} remains unchanged ik andY are replaced by, (X) and
andY € {1, 2}, implying g2(Y) as above, respectively.

Pxy (@,y) (i) Note thatg, (X) andg,(Y") above are, respectively, func-
Pxyivn: (@9]2,2) = =20 == tions of g: (X ) andg3(Y) defined throughl(46).
1 =
=7 Y (z,y) € {0,1} x {1,2}. Proof. First note that

Therefore I(X AY | Uy, Us) = 0, and solUy, U, satisfy (P3). [XAY) = Hg(X) A Y) = TH{g1(X) AgaY)) . (62)

We show that{{60) holds for this choice &, U,. Specifically, Next, consider the interactive Cl. From {62), any protocol
I(X,Y ANUy,Us) = H (Uy,Us), and the following holds:  that generates an optimum rate SK for the soutg¢X’) and
_ g2(Y) also generates an optimum rate SK for the sources
HY) = H (U1, U5) X andY. Thus, the minimum communication rate for prior

=H(X)—H (U1,Us) protocols is bounded below by the minimum communication
= H (X|Uy) — H (Us|Un) rate for the latter protocols, so that by Theorgm 3,
=P(f1(X)=2) [H (X|f1(X) =2) CIi (91(X); 92(Y)) — I (91(X) A g2(Y))

>CIN(X;Y)—I(XAY),
—H (f2(2,Y)|f1(X) = 2)] which, by [62), is

= (5a +b) [ (Px|f,(x) (012) = h (Pyz,x) (012))] CIT (91(X); g2(Y)) > CIT (X Y). (63)
= (5a +b) {h ( sa b) —h ( ot bb)] . In fact, (63) holds with equality: We claim that any choice of
ba + ba + rvs U" that satisfy (P1)-(P3) also satisfy the following Markov
Then, from [(59), relations:

a+b 3a 1

— <<= ; X),U* Y <i<|(r—1)/2
5a+b<5a+b<2’ Uzit1 e g1( );?_1%92( )s O_Z._L(T )/2],
which implies [6D) forU;, Us. Uzi = g2(Y), U1 = g1 (X), 1<i<[r/2],
g1(X) e U" - go(Y). (64)

VI. SUFFICIENT STATISTICS AND COMMON INFORMATION
QUANTITIES It follows that

In this work we encountered three ClI quantities: Shannon’s CIj (91(X);92(Y)) <
mutual informationZ(X A Y), Wyner's Cl CIyw (X AY), <
and interactive CICI;(X AY). In fact, the first notion of N
Cl was given by Gacs and Korner in the seminal wdrk [8pnd consequently,

In particular, they specified the maximal common function of CI” X) a0 (Y)) < CIT (XY

X andY, denoted here ascf(X,Y’), such that any other i (91(X);2(Y)) = CIF (XY

common function ofX andY is a function ofmcf(X,Y); Thus, by [€B),

the Gacs-Korner Cl is given b¥f (mcf(X,Y")). The following , . R

inequality ensues (seel[8[,]16], and inequalify (6)): CL (91(X);92(Y)) = CI] (X;Y). (65)

H(nct(X,Y)) < I(XAY) < CLw(X AY) < CL(X AY). Taking the limitr — oo we get
Since any good notion of Cl between r¥sandY measures CLi (g1(X) AN g2(Y)) = CL (X NY).

the correlation betweeN andY’, it is reasonable to expect they; Lamains to establisfi{64): instead, using induction wales
Cl to remain unchanged ik andY” are replaced by their re- jish the following stronger Markov relations: Far< i < r,
spective sufficient statistics. The following theorem bhshes

I(g1(X),92(Y)ANU")
I(X,Y AU"),

this for the quantities] (mcf (X, Y)), [(XAY), Cly (X AY), Ui = g1(X),U""" =Y, iodd
and H (mcf(X,Y)). Ui = g2(Y), U™ - X, ieven
Theorem 10. For rvs X andY’, let functionsg; of X and go X e g(X),U' =Y andX - ¢o(Y),U" =Y. (66)

of Y be such that - ¢;(X) = Y and X e ¢g5(Y) = Y.
Then the following relations hold:

H(mef(X,Y)) = H (mef (91(X), 92(Y)))

Clearly, [66) implies the first two Markov relations ih_{64).
The last Markov chain in(64) follows upon observing

0=T(XAY |U") = (g1(X)Aga(Y)[U").

I(XAY)=1(g1(X)ANg2(Y)),
CIw (X AY) = CI (g1(X) A ga(Y)), To see that[(66) holds far= 1 note that
CII(X;Y)=CI (01(X);92(Y)), 72>1, I(XAY | 1(X),Un)
CL(XANY)=CIL(g1(X)ANg2(Y)). SIXAY | (X)) + T (UL AY [ 91(X),X) =0,
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and It follows from (4) that

I(XAY | g2(Y),Uy) Clw (X AY) > Cly (g(X) AY). (68)
STEAY [ 2(Y) +T{U1AY,02(Y) | X) = 0. On the other hand, for an i = L (g" (X™),Y™) we have
Next, assume thal (66) holds for an evenrhen, from (P1) 1 o 1 .
we get: EI(X NY |L):EI(9 (X")AY™[ L),
I (Y AU | X,U") =0 since
SV AU | X,0:(X0,U7) =0 _ L(X"AY™ | Lg" (X™) < T(X"AY" L] g" (X))
SI(Y AX,Usy | 1(X),U7) =1 (¥ A X | 1(X),U) =0, LT AY" | g7 (X7) =0,

where the last equality follows froni (66). From the last Thus, from the definition oIy (¢(X) A Y) we get
inequality above we have
Clw (X AY) < Clw (g(X) AY),

so that, by[(€B),
Clw (X AY) = Cly(g(X) AY).

U1 o g1(X),U' =Y and X - ¢(X), Ut - Y.
Furthermore, it also follows froni (66) that

I(XAY | gY),UT) < T (X,Uis1 AY | g2(Y),U")
=1 (U1 AY | g2(Y), X, U") O
<I(Uia AY | X,U") =0,

VIl. DISCUSSION

where the last equality follows from (P1). Thus, we have A Local Randomization

X o gao(Y), U™ =Y, Although independent local randomization was not allowed

establishing the validity of[{86) foi + 1. The proof of [6#) " Y fﬁrmulauEn, o;r m_alnt_resglt cha_alral;terlcz:mg% holds del
can be completed by induction by using a similar argumeﬁmen when such randomization IS available. Lonsider a mode
for odd . where terminals¥ and ), in additional to their respective

Next, we consider the Géacs-Korner Cl. Note that ang})servatlonsX and ¥, have access to finite-valdeavs

common function ofg; (X) and g»(Y) is also a common ! and T, respectively. The rvd, Tp, and (X", Y™) are
function of X andY. Consequently, mutually independent. The SK capacity is defined as before,

with X™ and Y™ now replaced by(X™, T7) and (Y™, T5),
H(mcf(X,Y)) > H(mcf(g1(X),g2(Y))). (67) respectively. Itis knowri[13][]2] that even with randontipa

) _ the SK capacity equal$(X A Y). For this model, denote

For the reverse inequality, observe that for artihsuch that {he minimum rate of-interactive communication required to

HUJY) = HU|X) = 0 we have generate an SK of rat&(X AY) by R%.
U-eX-g1(X)=Y. Lemma 11. For » > 1,
Thus, H (Ulg1(X)) < HU|Y) = 0, and similarly, R = Rip.

H (Ulg2(Y)) = 0. In particular, it holds that ) .
To see this, we define quantitiég., andCI, analogously

H (mef(X,Y)|g1(X)) = H (nef (X, Y)]g2(Y)) = 0, to R%, andCI;, with X™ andY™ replaced by X", T}) and
and so (Y™ Ty), respectively. Note that this substitution is made even
in condition [3), i.e., the CR/ and the communicatioR now
H(mcf(X,Y)) < H(mef(g1(X), g2(Y))), are required to satisfy:
which along with [6) yields l] (X" Ty Y™, Ty | J,F) < e. (69)
” <

Hmet(X,Y)) = H(mct(g1(X), g2(Y))- We observe thaf{(12) still holds, withX™, 7}) and (Y™, T5)

Finally, we consider Wyner's Cl and claim that this, tooteplacing, respectivelyX™ andY™ on the right-side. There-
remains unchanged upon replacing the sources with thisire, the proof of Theorerl 3 is valid, and we get:
respective sufficient statistics (for the other source3uffices
to show that

_ By its definitionRY,; < R}, sinceL = (J,F) = L(X",Y™)
CIw(X ANY) =Clw(g(X)A\Y), o1 < Req ; ",
wl ) w(9(X) ) satisfying [3) will meet[(€P) as well. We claim th&t},, >
for a functiong such thatX - g(X) - Y. Consider an rv Rf,,, which by [70) and Theorerfil 3 implies Lemrial 11.
W for which X = W - Y is satisfied. We have

R, =Ry =CI, —I(X AY). (70)

4The cardinalities of the range spacesTaf and T are allowed to be at

0=I(XAY |W)>T(g(X)ANY |W). most exponential im.
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rate of communication required to generate a maximum rate
CR) SK, CR(p) —p = I(X AY) for p > Rgk. Thus, our
results characterize the graph 6fR(p) for all p > Rgxk.
The quantityRsk is the minimum value op for which the
HEGY) slope of CR(p) is 1; CR(Rsk) is equal to the interactive
X AY) common informatior I; (X AY'). Furthermore, from the proof
/L of Theoreni B, a CH that satisfied[3) must yield an optimum
rate SK. Thus, any CR recoverable from a communication of
. rate less thamRsy cannot satisfy[(3). A characterization of
CR(p) for p < Rsk is central to the characterization@fp),
and this, along with a single-letter characterizationffx,
remains an interesting open problem.

min{H(X), H(Y)}

CL(X AY)

.
(X AY),”

L'/ APPENDIX
Proof of Lemméal6:

From the Slepian-Wolf theorem [115], there exist mappings
fi, .., fr Of FF ... F*, respectively, of rates

Rsx min{ H(X|Y), H(Y|X)} H(X|Y)+ H(Y|X) iz

Fig. 1.  Minimum rate of communicatiolRsy for optimum rate SK 1 ne
generation 7 log | foitrll < H(Faivr | Y™, Fry o Foi) + o

0<i<[(r—1)/2},

Indeed, consider CR/ recoverable fromF such that(J, F) %bg | foil| < H(Foi | X", Fi, .., Foio1) + ?,
attain R;,;. Then, the condition({89) gives "
cI n(89) g L<i<|r/2,

1
EI(X" ANY™ | JF, T, Ty) ~ 0. such that

So, there exist,, t2 such that conditioned ofyy = t1,75 = to  Fy ., is ;-recoverable from
the CRJ is still recoverable fron¥, and " _
(f2i+1(F2ki+1)7 YNa Flkv ey F2kz) 30 <1< L(T - 1)/2J7

1 n n
SIX"AY" | LF T =10, To = 1) =0, FJ, is —-recoverable from
T

Thus, withT} = 1, T» = t, fixed, (J, F) constitutes a feasible (foi(F5), XN FF L FE ), 1<di<|r/2],
choice in the definition ofRy,;. Since the number of values
taken by F can only decrease upon fixing, = t1,7> =

ts, We getRy,, > RY,,. Therefore, the availability of loca
randomization does not decrease the rate of communicat

for all £ sufficiently large. Thus, the communicati@& given
by F = fi (FF), 1 < i < r constitutes the required

K2

ﬁﬂ{nmunication of rate

required for generating an optimum rate SK. L log ||F’|| < 1 [H (F|X™) + H (F|Y"™)] + e
nk n
. |
B. Less-than-optimum rate SKs
. P - L . Proof of Lemmal7:
SK generation is linked intrinsically to the efficient geaer o7 — 1 (X", Y™) we have

tion of CR. Forp > 0, a rateR > 0 is an achievable CR rate '
for p if for every 0 < e < 1 there exists, for some > 1, an nl(X AY)
e-CR L with 1 =HX"Y")Y-HX"|Y")-H{Y"|X")

~H(L)2R—e =H(X"Y"|T)—H(X"|Y",T)—H{Y"| X", T)
recoverable from am-interactive communicatiol', for arbi- +H(T)-H(T|X")-H(T|Y")
trary r, of rate . =I(X"ANY"|T)+HT)-H((T|X")-H(T|Y").

EH(F) <pte Lemma[T follows upon choosing = J, F. O

the maximum achievable CR rate fpris denoted byC'R(p).  Proof of [32) and[(36):

Similarly, denote byC(p) the maximum rate of an SK that |t remains to prove that there existsCR .J, recoverable

can be generated using a communication as above. It canfliegn F such that/, F satisfy [32) and[{36). We provide a CR

shown in a straightforward manner that generation scheme with stages. Foll < k < r, denote by

- & the error event in théth stage (defined below recursively

Clp) = CR(p) = p- (71) in terms of&;,_1), and by&, the negligible probability event

The graph ofC'R as a function ofy is plotted in FigCLCR(p) corresponding toX™, Y™ not being Pxy -typical.

is an increasing and a concave functionppfas seen from a  Considerl < k£ < r, k odd. For brevity, denote by the

simple time-sharing argument. Sindesx is the minimum rvs U*~! and by U the rv Uy; for k = 1, V is taken to
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be a constant. Suppose that conditionedgn, terminalsX  Thus, the claim will follow upon showing thd@ (£,) — 0 as
and) observe, respectively, sequences X" andy € Y, n — oo. In particular, it remains to show th&@ (Ex2) — 0
as well as a common sequeneec V" such that(v,x,y) andP(&s3) — 0, k = 1,...,r, asn — oo. As before, we
are jointly Py xy-typical. For§ > 0, generate at randomshow this for oddk and the proof for evert follows mutatis
exp [n(I(X,Y AU | V) + )] sequencean € U™ that are mutandis To that end, note first that for any jointl#yy x-
jointly Py -typical with v, denoted byu;;, 1 < ¢ < Ny, typical (u,v,x), the set ofy € " such that(u, v,x,y) are
1 <j < N, where jointly typical with (u, v, x) has conditional probability close
_ to 1 conditioned onU™ = u, V" = v, X™ = x, and so by
Ni=expln ([(X AU Y, V) +39)], the Markov relationY - V, X -e- U, also conditioned on
No =expln(I(Y AU V) =25)]. V" = v,X" = x. Upon choosingu = L® (v, x) in the
The sequences;; are generated independently for differendrgument above, we gét(&y2) — 0. Finally, we show that
indicesij. Denote byL(*) (v,x) a sequence;, 1 <i < N;, P (Ek3) will be small, for large probability choices of the ran-
1 < j < No, that is jointly Py x -typical with (v, x) (if there dom codebooKu;; }. Specifically, for fixed typical sequences
exist more than one such sequences, choose any of thefw)x,y), the probabilityP (&3 | V" = v, X" =x,Y" =y)
The error event when no such sequence is found is denotedounded above exactly as [ [2, equation (4.15)]:
by &i1; this happens with probability vanishing tbdoubly n n n
exponentially inn. The communicatiorF), (v, x) is defined to Pl | V" =v, X" =x,Y" =)
equal the first index of u;; = L) (v,x). Upon observing
Fy(v,x) = i, the terminal) computesLék) (v,y,i) as the
unique sequence iflu;;, 1 < j < N»}, that is jointly typical

N1 N2 N

< > ((wv.x) oty P -ypical
i=1 =1 I=1,1#]

with (v,y). If no such sequence is found or if several such (w;, v,uy) jointly PUVy—typicaI)
sequences are found an error evépt occurs. Clearly, the )
rate of communicatior, is bounded above by < NiNj.exp[-n(I(X AU [V)+ (X AU | V) +o(n))]

1 < exp[—nd + o(n)],
—logN1 =I(X AU |Y,V)+36
n b1 for all n sufficiently large. Note that the probability distribution
=I(X AU [ Y, UP) + 39, (A1) in the calculation above comes from codebook generation,
and also, for large, and in particular, the second inequality above uses the fact
1 * 1 that u; andu,; are independently selected fbe£ j. Thus,
EH(L ) < - log(1+ NiNo) S I(X,Y AU [V) 426 P(&4|Ew) — 0 for an appropriately chosen codebook,

= I(X,Y AU, | Y, U 1) + 26. (A2) which completes the proof. O

Denote by&; the event( L*) (v, x), v, x,y) not being jointly ACKNOWLEDGEMENTS

Puvxy-typical. The error everd is dejined a¥y = E-1U  The jdeas presented in this work are based on heuristics
Ek1 U £ U &xs. Then, conditioned odj; the terminals share ¢, e jnterplay between CR generation and SK generation,
sequencesu;;, v) that are jointly typical with(x, y). In the developed, over the years, jointly with Prof. Prakash Nanay
next stagek + 1, the sequencéu;;, v) plays the role of the Further, his comments on an earlier version of this manpiscri

sequencev. The scheme for stages with evénis defined |0 innroved the presentation, especially that of Selion
analogously with roles oft and ) interchanged. We claim where he also simplified the proofs.

that L(Y, ..., L(") constitutes the required CR along with the
communicatiorF = [, ..., Fy. Then, [36) follows from[(AlL),
and the second inequality in (32) follows from {(A2). Moregve
for every realization, ..., u, of LY, .. L"), with E = 1¢,
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