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Common Information and Secret Key Capacity
Himanshu Tyagi†

Abstract—We study the generation of a secret key of maximum
rate by a pair of terminals observing correlated sources and
with the means to communicate over a noiseless public com-
munication channel. Our main result establishes a structural
equivalence between the generation of a maximum rate secret
key and the generation of a common randomness that renders
the observations of the two terminals conditionally independent.
The minimum rate of such common randomness, termed in-
teractive common information, is related to Wyner’s notion of
common information, and serves to characterize the minimum
rate of interactive public communication required to generate an
optimum rate secret key. This characterization yields a single-
letter expression for the aforementioned communication rate
when the number of rounds of interaction are bounded. An
application of our results shows that interaction does not reduce
this rate for binary symmetric sources. Further, we provide an
example for which interaction does reduce the minimum rate of
communication. Also, certain invariance properties of common
information quantities are established that may be of independent
interest.

Index Terms—Common information, common randomness, in-
teractive communication, interactive common information, secret
key capacity.

I. I NTRODUCTION

Consider secret key (SK) generation by a pair of terminals
that observe independent and identically distributed (i.i.d.)
repetitions of two discrete, finite-valued random variables (rvs)
of known joint probability mass function. The terminals com-
municate over a noiseless public channel of unlimited capacity,
interactively in multiple rounds, to agree upon the value of
the key. The key is required to be (almost) independent of
the public communication. The maximum rate of such an SK,
termed the secret key capacity, was characterized in [13], [1].

In the works of Maurer and Ahlswede-Csiszár [13], [1],
SK generation of maximum rate entailed both the terminals
recovering the observations of one of the terminals, using the
least rate of communication required to do so. Later, it was
shown by Csiszár-Narayan [5] that a maximum rate SK can
be generated also by the terminals recovering the observations
of both the terminals. Clearly, the latter scheme requires more
communication than the former. In this paper, we address the
following question, which was raised in [5, Section VI]:
What is the minimum overall rate of interactive communication
RSK required to establish a maximum rate SK?
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We answer this question by characterizing the form of
common randomness (CR) (i.e., shared bits, see [2]) that the
terminals must establish in order to generate a maximum
rate SK; two examples of such common randomness are
the observations of any one terminal [13], [1] and of both
terminals [5]. While our main result does not yield a single-
letter characterization, it nonetheless reveals a centrallink
between secrecy generation and Wyner’s notion of common
information (CI) between two dependent rvsX andY [16].
Wyner defined CI as the minimum rate of a function of
i.i.d. repetitions of two correlated random variablesX and
Y that facilitated a certain distributed source coding task.
Alternatively, it can be defined as the minimum rate of a
function of i.i.d. repetitions ofX andY such that, conditioned
on this function, the i.i.d. sequences are (almost) independent;
this definition, though not stated explicitly in [16], follows
from the analysis therein. We introduce a variant of this notion
of CI called theinteractive CI where we seek the minimum
rate of CR that renders the mentioned sequences conditionally
independent. Clearly, interactive CI cannot be smaller than
Wyner’s CI, and can exceed it. Our main contribution is
to show a one-to-one correspondence between such CR and
the CR established for generating an optimum rate SK. This
correspondence is used to characterize the minimum rate of
communicationRSK required for generating a maximum rate
SK. In fact, it is shown thatRSK is simply interactive CI
minus the secret key capacity.

When the number of rounds of interaction are bounded,
this characterization yields a single-letter expression for RSK .
Using this expression we show that an interactive communi-
cation scheme can have less rate than a noninteractive one, in
general. However, interaction offers no advantage for binary
symmetric sources. This expression also illustrates the role
of sufficient statistics in SK generation. We further dwell
on this relationship and show that many CI quantities of
interest remain unchanged if the sources are replaced by their
corresponding sufficient statistics (with respect to each other).
Interestingly, the effect of substitution by sufficient statistics
has been studied in the context of the rate-distortion problem
for a remote source in [7, Lemma 2], and recently, for the
lossy and lossless distributed source coding problems in [17].
Here, in effect, we study this substitution for the distributed
source coding problems underlying the CI quantities.

The basic notions of CR and SK are explained in the next
section. The definition of interactive CI and the heuristics
underlying our approach are given in Section III. Our main
results are provided in Section IV, followed by illustrative
examples in the subsequent section. Section VI explores the
connection between sufficient statistics and common infor-
mation quantities. A discussion of our results and possible
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extensions is given in the final section.
Notation.The rvsX andY take values in finite setsX andY,
respectively. LetXn = (X1, ..., Xn) and Y n = (Y1, ..., Yn)
denoten i.i.d. repetitions ofX and Y , respectively. For
a collection of rvsU1, ..., Ur, for i ≤ j let U j

i denote
Ui, Ui+1..., Uj; when i = 1, we useU j = U1, ..., Uj . For
rvs U, V , and0 < ǫ < 1, we sayU is ǫ-recoverable fromV
if there is a functiong of V such that

P (U = g(V )) ≥ 1− ǫ.

Denote the cardinality of the range space of a mappingf by
‖f‖, and similarly, with a slight abuse of notation, the (fixed)
range space of a random mappingF by ‖F‖.

II. I NTERACTIVE COMMUNICATION , COMMON

RANDOMNESS AND SECRET KEYS

Terminals X and Y (with a slight abuse of notation)
communicate interactively, with, say, terminalX transmit-
ting first. Each terminal then communicates alternately for
r rounds. Specifically, anr-interactive communicationf =
(f1, f2, ..., fr) is a sequence of finite-valued mappings with

f2i+1 : Xn ×F2i → F2i+1, 0 ≤ i ≤ ⌊(r − 1)/2⌋,

f2i : Y
n ×F2i−1 → F2i, 1 ≤ i ≤ ⌊r/2⌋,

where {Fi}
r
i=1 are finite sets andF0 = ∅. This set-up

subsumes protocols where terminalY initiates the commu-
nication upon choosingf1 = constant. LetF = f (Xn, Y n)
describe collectively the corresponding rv. The rate of this
communication is given by

1

n
log ‖F‖.

We assume that the communication from each terminal is a
(deterministic) function of its knowledge. In particular,ran-
domization is not allowed. This is not a limiting assumption;
see Section VII-A.

Definition 1. Given interactive communicationF as above, a
functionL of (Xn, Y n) is ǫ-common randomness(ǫ-CR) re-
coverable from1 F if there exist mappingsL1 = L

(n)
1 (Xn,F)

andL2 = L
(n)
2 (Y n,F) such that

P (L = L1 = L2) ≥ 1− ǫ.

Definition 2. A function K of (Xn, Y n), with values in
a setK, forms an ǫ-secret key forX and Y (ǫ-SK) if K
is ǫ-CR recoverable fromXn or Y n and (interactive public
communication)F, and

1

n
I(K ∧ F) ≤ ǫ. (1)

For convenience, simplistically, theǫ-SK K is said to be
recoverable fromF. A rateR > 0 is an achievable SK rate if
for every 0 < ǫ < 1 there exists, for some2 n ≥ 1, an ǫ-SK

1The rvL is ǫ-recoverable from(Xn,F) or (Y n,F) but not necessarily
from F alone. The deliberate misuse of the terminology “recoverable from
F” simplifies presentation.

2 Our results hold even if the phrase “for somen ≥ 1” is replaced by “for
all n sufficiently large;” the former has been chosen here for convenience.

K = K(n) with (1/n)H(K) ≥ R − ǫ. The supremum of all
achievable SK rates is denoted byC, and is called the SK
capacity.

The following result3 is well known.

Theorem 1. [13], [1] The SK capacity forX andY is given
by

C = I(X ∧ Y ). (2)

III. R ELATION BETWEEN SECRET KEY AND WYNER’ S

COMMON INFORMATION

We interpret Wyner’s CI for a pair of rvs(X,Y ) as the
minimum rate of a function of their i.i.d. repetitions(Xn, Y n)
that rendersXn andY n conditionally independent. Formally,

Definition 3. R ≥ 0 is an achievable CI rate if for every
0 < ǫ < 1 there exists ann ≥ 1 and a (finite-valued) rv
L = L (Xn, Y n) of rate(1/n)H(L) ≤ R+ ǫ that satisfies the
property:

1

n
I (Xn ∧ Y n | L) ≤ ǫ. (3)

Obvious examples of such an rvL are L = (Xn, Y n)
or Xn or Y n. The infimum of all achievable CI rates,
denotedCIW (X ∧ Y ), is called the CI ofX and Y . This
definition of CI, though not stated explicitly in [16], follows
from the analysis therein. The following theorem characterizes
CIW (X ∧ Y ).

Theorem 2. [16] The CI of the rvsX,Y is

CIW (X ∧ Y ) = min
W

I(X,Y ∧W ), (4)

where the rvW takes values in a (finite) setW with |W| ≤
|X ||Y| and satisfies the Markov conditionX −◦−W −◦− Y .

The direct part follows from [16, equation (5.12)]. The proof of
the converse is straightforward. Further, it is a simple exercise
to infer from (4) thatCIW (X ∧ Y ) ≥ I(X ∧ Y ).

Definition 4. An achievabler-interactive CI rate is defined
in a manner analogous to the achievable CI rate, but with the
restriction that the rvsL in (3) beǫ-CR, i.e.,L = (J,F), where
F is an r-interactive communication andJ is ǫ-recoverable
from F. The infimum of all achievabler-interactive CI
rates, denotedCIri (X ;Y ), is called ther-interactive CI of
the rvs X and Y . By definition, the nonnegative sequence
{CIri (X ;Y )}∞r=1 is nonincreasing inr and is bounded below
by CIW (X ∧ Y ). Define

CIi(X ∧ Y ) = lim
r→∞

CIri (X ;Y ).

Then CIi(X ∧ Y ) ≥ CIW (X ∧ Y ) ≥ 0. Note that
CIri (X ;Y ) may not be symmetric inX and Y since the
communication is initiated at terminalX . However, since

CIr+1
i (X ;Y ) ≤ CIri (Y ;X) ≤ CIr−1

i (X ;Y ),

3 It is shown in [14], [3] that SK capacity remains unchanged even if the
notion of “weak secrecy” ofK in (1) is tightened to “strong secrecy” by
omitting the normalization with respect ton, and an additional uniformity
constraintH(K) ≥ log |K| − ǫ is imposed.
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clearly,

CIi(X ∧ Y ) = lim
r→∞

CIri (X ;Y )

= lim
r→∞

CIri (Y ;X)

= CIi(Y ∧X). (5)

Further, for all0 < ǫ < 1, J = Xn is ǫ-recoverable from
Y n and a communication (of a Slepian-Wolf codeword)F =
F (Xn), andL = (J, F ) satisfies (3). Hence,CIi(X ∧ Y ) ≤
H(X); similarly, CIi(X ∧ Y ) ≤ H(Y ). To summarize, we
have

0 ≤ CIW (X ∧ Y ) ≤ CIi(X ∧ Y ) ≤ min{H(X), H(Y )},
(6)

where the first and the last inequalities can be strict. In Section
V-A we show that the second inequality is strict for binary
symmetric rvsX,Y .

The r-interactive CI plays a pivotal role in optimum rate
SK generation. Loosely speaking, our main result asserts the
following. A CR that satisfies (3) can be used to generate an
optimum rate SK and conversely, an optimum rate SK yields
a CR satisfying (3). In fact, such a CR of rateR can be
recovered from an interactive communication of rateR − C,
whereC is the SK capacity forX and Y . Therefore, to find
the minimum rate of interactive communication needed to
generate an optimum rate SK, it is sufficient to characterize
CIi(X ∧ Y ).

IV. M AIN RESULTS

Definition 5. A rate R′ ≥ 0 is an achievabler-interactive
communication rate forCIri if, for all 0 < ǫ < 1, there
exists, for somen ≥ 1, an r-interactive communicationF
of rate (1/n) log ‖F‖ ≤ R′ + ǫ, and anǫ-CR J recoverable
from F, with L = (J,F) satisfying (3). LetRr

CI denote the
infimum of all achievabler-interactive communication rates
for CIri . Similarly, R′′ ≥ 0 is an achievabler-interactive
communication rate for SK capacity if, for all0 < ǫ < 1,
there exists, for somen ≥ 1, an r-interactive communication
F of rate(1/n) log ‖F‖ ≤ R′′+ǫ, and anǫ-SK K, recoverable
from F, of rate(1/n)H(K) ≥ I(X∧Y )−ǫ; Rr

SK denotes the
infimum of all achievabler-interactive communication rates
for SK capacity. Note that by their definitions, bothRr

CI and
Rr

SK are nonincreasing with increasingr, and are bounded
below by zero. Define

RCI = lim
r→∞

Rr
CI , RSK = lim

r→∞
Rr

SK .

Although Rr
CI(X ;Y ) and Rr

SK(X ;Y ) are not equal to
Rr

CI(Y ;X) andRr
SK(Y ;X), respectively, the quantitiesRCI

andRSK are symmetric inX andY using an argument similar
to the one leading to (5).

Theorem 3. For everyr ≥ 1,

Rr
SK = Rr

CI = CIri (X ;Y )− I(X ∧ Y ). (7)

Corollary. It holds that

RSK = RCI = CIi(X ∧ Y )− I(X ∧ Y ). (8)

Remark.The relation (8) can be interpreted as follows. Any
CR J recoverable from (interactive communication)F, with
L = (J,F) satisfying (3), can be decomposed into two
mutually independent parts: An SKK of maximum rate and
the interactive communicationF. It follows upon rewriting (8)
asCIi(X ∧ Y ) = I(X ∧ Y ) + RCI that the communication
F is (approximately) of rateRCI . Furthermore,RCI is same
asRSK .

A computable characterization of the operational term
CIi(X ∧ Y ) is not known. However, the next result gives
a single-letter characterization ofCIri (X ;Y ).

Theorem 4. Given rvsX,Y and r ≥ 1, we have

CIri (X ;Y ) = min
U1,...,Ur

I(X,Y ∧ U1, ..., Ur), (9)

where the minimum is taken over rvsU1, ..., Ur taking values
in finite setsU1, ...,Ur, respectively, that satisfy the following
conditions

(P1) U2i+1 −◦−X,U2i −◦− Y, 0 ≤ i ≤ ⌊(r − 1)/2⌋,

U2i −◦− Y, U2i−1 −◦−X, 1 ≤ i ≤ ⌊r/2⌋,

(P2) X −◦− U r −◦− Y,

(P3) |U2i+1| ≤ |X |
2i
∏

j=1

|Uj |+ 1, 0 ≤ i ≤ ⌊(r − 1)/2⌋,

|U2i| ≤ |Y|
2i−1
∏

j=1

|Uj |+ 1, 1 ≤ i ≤ ⌊r/2⌋,

with U0 = ∅ andU0 = constant.

Remark.Note that (9) has the same form as the expression for
CIW (X∧Y ) in (4) withW replaced by(U1, ..., Ur) satisfying
the conditions above.

Before presenting the proof of our main Theorems 3 and
4, we give some technical results that will constitute central
tools for the proofs.

Lemma 5. For an interactive communicationF it holds that

H(F | Xn) +H(F | Y n) ≤ H(F). (10)

Lemma 6. For an r-interactive communicationF, define

Fi = F
(

Xni
n(i−1)+1, Y

ni
n(i−1)+1

)

, 1 ≤ i ≤ k.

Then, for allk ≥ k0(n, ǫ, |X |, |Y|) there exists anr-interactive
communicationF′ = F′

(

Xnk, Y nk
)

of rate

1

nk
log ‖F′‖ ≤

1

n
[H (F|Xn) +H (F|Y n)] + ǫ, (11)

such thatFk is an ǫ-CR recoverable fromF′.

Remark.Lemma 6 says that, in essence, for an optimum rate
communicationF,

1

n
log ‖F‖ ≈

1

n
[H (F|Xn) +H (F|Y n)] .
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Lemma 7. (A General Decomposition) For a CRJ recover-
able from an interactive communicationF we have

nI(X ∧ Y )

= I (Xn ∧ Y n | J,F) +H(J,F)−H (F | Xn)

−H (F | Y n)−H (J | Xn,F)−H (J | Y n,F) .
(12)

Lemma 5 is a special case of [6, Lemma B.1] (also, see
[12]). The proofs of Lemma 6 and Lemma 7 are given in
the Appendix.

Note that a simplification of (12) gives

I(X ∧ Y ) ≤
1

n

[

I (Xn ∧ Y n | J,F)+

H(J,F)−H (F | Xn)−H (F | Y n)

]

.

(13)

If J is anǫ-CR recoverable fromF, Fano’s inequality implies

1

n

[

H(J | Xn,F) +H(J | Y n,F)
]

≤ 2ǫ log |X ||Y|+ 2h(ǫ)

= δ(ǫ), say, (14)

whereh(ǫ) = −ǫ log ǫ − (1 − ǫ) log(1 − ǫ), andδ(ǫ) → 0 as
ǫ → 0. Combining (12) and (14) we get

I(X ∧ Y ) ≥
1

n

[

I (Xn ∧ Y n | J,F) +H(J,F)

−H (F | Xn)−H (F | Y n)

]

− δ(ǫ), (15)

and further, by (10),

I(X ∧ Y ) ≥
1

n
[I (Xn ∧ Y n | J,F) +H(J,F)−H(F)]

− δ(ǫ). (16)

A. Proof of Theorem 3

In this section we give a proof for (7). The proof of (8) then
follows upon taking limitr → ∞ on both sides of (7). The
proof of (7) follows from claims 1-3 below. In particular, the
proofs of claims 1-3 establish a structural equivalence between
a maximum rate SK and an SK of rate≈ 1

nH(J | F) extracted
from a CRJ recoverable fromF such thatL = (J,F) satisfies
(3).
Claim 1: Rr

CI ≥ CIri (X ;Y )− I(X ∧ Y ).
Proof. By the definition ofRr

CI , for every 0 < ǫ < 1 there
exists, for somen ≥ 1, an r-interactive communicationF of
rate

1

n
log ‖F‖ ≤ Rr

CI + ǫ, (17)

and J , an ǫ-CR recoverable fromF, such thatL = (J,F)
satisfies (3). It follows upon rearranging the terms in (16) that

1

n
H(J,F) ≤ I(X ∧ Y ) +

1

n
H(F) + δ(ǫ),

which with (17) gives

1

n
H(J,F) ≤ I(X ∧ Y ) +Rr

CI + ǫ+ δ(ǫ). (18)

Since(J,F) satisfies

1

n
I (Xn ∧ Y n | J,F) ≤ ǫ ≤ ǫ + δ(ǫ),

the inequality (18), along with the fact that(ǫ + δ(ǫ)) → 0
as ǫ → 0, implies thatI(X ∧ Y ) + Rr

CI is an achievabler-
interactive CI rate; hence,CIri (X ;Y ) ≤ I(X ∧ Y ) + Rr

CI .

Claim 2: Rr
SK ≥ Rr

CI .
Proof. Using the definition ofRr

SK , for 0 < ǫ < 1 there
exists, for somen ≥ 1, an r-interactive communicationF of
rate 1

n log ‖F‖ ≤ Rr
SK + ǫ, and anǫ-SK K recoverable from

F of rate
1

n
H(K) ≥ I(X ∧ Y )− ǫ. (19)

By choosingJ = K in (16) and rearranging the terms we get,

1

n
I (Xn ∧ Y n | K,F) ≤ I(X ∧ Y )−

1

n
H(K | F) + δ(ǫ).

Next, from (1/n)I(K ∧ F) < ǫ, we have

1

n
I (Xn ∧ Y n | K,F) ≤ I(X ∧ Y )−

1

n
H(K) + ǫ+ δ(ǫ)

≤ 2ǫ+ δ(ǫ),

where the last inequality follows from (19). Since(2ǫ +
δ(ǫ)) → 0 as ǫ → 0, Rr

SK is an achievabler-interactive
communication rate forCIri , and thus,Rr

SK ≥ Rr
CI .

Claim 3: Rr
SK ≤ CIri (X ;Y )− I(X ∧ Y ).

Proof. For 0 < ǫ < 1, let J be anǫ-CR recoverable from
an r-interactive communicationF, with

1

n
H(J,F) ≤ CIri (X ;Y ) + ǫ, (20)

such thatL = (J,F) satisfies (3), and so, by (13),

1

n
[H(F | Xn) +H(F | Y n)]

≤
1

n
H(J,F)− I(X ∧ Y ) + ǫ

≤ CIri (X ;Y )− I(X ∧ Y ) + 2ǫ. (21)

To prove the assertion in claim 3, we show that for some
N ≥ 1 there exists∆(ǫ)-SK K = K(XN , Y N ) of rate

1

n
log ‖K‖ ≥ I(X ∧ Y )−∆(ǫ)

recoverable from anr-interactive communicationF′′ =
F′′(XN , Y N ) of rate

1

N
log ‖F′′‖ ≤

1

n
[H(F | Xn) +H(F | Y n)] + ∆(ǫ)− 2ǫ,

(22)

where∆(ǫ) → 0 asǫ → 0. Then (22), along with (21), would
yield

1

N
log ‖F′′‖ ≤ CIri (X ;Y )− I(X ∧ Y ) + ∆(ǫ), (23)

so thatCIri (X ;Y )− I(X ∧ Y ) is an achievabler-interactive
communication rate for SK capacity, thereby establishing the
claim.
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It remains to findK andF′′ as above. To that end, letJ
be recovered asJ1 = J1(X

n,F) and J2 = J2(Y
n,F) by

terminalsX andY, respectively, i.e.,

P (J = J1 = J2) ≥ 1− ǫ.

Further, fork ≥ 1, let

J1i = J1

(

Xni
n(i−1)+1,Fi

)

,

J2i = J2

(

Y ni
n(i−1)+1,Fi

)

, 1 ≤ i ≤ k,

whereFi = F
(

Xni
n(i−1)+1, Y

ni
n(i−1)+1

)

. For oddr, we find

an r-interactive communicationF′′ such that
(

Jk
1 ,F

k
)

is a
ǫ-CR recoverable fromF′′, for all k sufficiently large; the
the SK K will be chosen to be a function of

(

Jk
1 ,F

k
)

of appropriate rate. The proof for evenr is similar and is
obtained by interchanging the roles ofJ1 andJ2. In particular,
by Lemma 6, for allk sufficiently large there exists anr-
interactive communicationF′ such thatFk is ǫ-CR recoverable
from F′ of rate given by (11). Next, from Fano’s inequality
1

n
max{H(J | J1);H(J1 | J2)} ≤ ǫ log |X ||Y|+ h(ǫ). (24)

By the Slepian-Wolf theorem [15] there exists a mappingf
of Jk

1 of rate

1

k
log ‖f‖ ≤ H(J1 | J2) + nǫ, (25)

such that

Jk
1 is ǫ-recoverable from

(

f
(

Jk
1

)

, Jk
2

)

, (26)

for all k sufficiently large. It follows from (24), (25) that
1

nk
log ‖f‖ ≤ ǫ+ ǫ log |X ||Y|+ h(ǫ). (27)

ForN = nk, we define ther-interactive communicationF′′ =
F′′

(

XN , Y N
)

as

F ′′
i = F ′

i , 1 ≤ i ≤ r − 1,

F ′′
k = F ′

r , f(J
k
1 ), i = r,

Thus,
(

Jk
1 ,F

k
)

is 2ǫ-CR recoverable fromF′′, where, by (11)
and (27), the rate of communicationF′′ is bounded by

1

nk
log ‖F′′‖

≤
1

n
[H (F|Xn) +H (F|Y n)] + 2ǫ+ ǫ log |X ||Y|+ h(ǫ).

(28)

Finally, to construct the SKK = K
(

Jk
1 ,F

k
)

, using the
corollary of Balanced Coloring Lemma in [5, Lemma B.3],
with

U = (J1,F), V = φ, n = k, g = F′,

we get from (28) that there exists a functionK of Jk
1 ,F

k such
that

1

k
log ‖K‖

≥ H(U)−
1

k
log ‖F′′‖

≥ H(J1,F)−H(F | Xn)−H(F | Y n)

− n(2ǫ+ ǫ log |X ||Y| + h(ǫ)), (29)

and

I(K ∧ F′) ≤ exp(−ck),

wherec > 0, for all sufficiently largek. We get from (29) and
(13) that the rate ofK is bounded below as follows:

1

nk
log ‖K‖ ≥ I(X ∧ Y )−

1

n
I (Xn ∧ Y n | J1,F)

− 2ǫ− ǫ log |X ||Y| − h(ǫ). (30)

Observe that

I(Xn ∧ Y n | J,F) = I(J1, X
n ∧ Y n | J,F)

≥ I(Xn ∧ Y n | J, J1,F)

≥ I(Xn ∧ Y n | J1,F)−H(J | J1),

which along with (24), and the fact thatL = (J,F) satisfies
(3), yields

1

n
I(Xn ∧ Y n | J1,F) ≤ ǫ+ ǫ log |X ||Y| + h(ǫ). (31)

Upon combining (30) and (31) we get,

1

nk
log ‖K‖ ≥ I(X ∧ Y )− 3ǫ− 2ǫ log |X ||Y| − 2h(ǫ).

Thus, for∆(ǫ) = 4ǫ+ 2ǫ log |X ||Y|+ 2h(ǫ) K is a∆(ǫ)-SK
of rate(1/nk) log ‖K‖ ≥ I(X ∧Y )−∆(ǫ), recoverable from
r-interactive communicationF′′, which with (28), completes
the proof.

B. Proof of Theorem 4

Achievability.Consider rvsU1, ..., Ur satisfying conditions
(P1)-(P3) in the statement of Theorem 4. It suffices to show for
every0 < ǫ < 1, for somen ≥ 1, there exists anr-interactive
communicationF, andǫ-CR J recoverable fromF, such that

I(X,Y ∧ U r)− ǫ ≤
1

n
H(J,F) ≤ I(X,Y ∧ U r) + ǫ, (32)

and

1

n
H(F) ≤ I(X,Y ∧ U r)− I(X ∧ Y ) + ǫ, (33)

since from (16), (32) and (33), we have

1

n
I (Xn ∧ Y n | J,F)

≤
1

n
H(F)−

1

n
H(J,F) + I(X ∧ Y ) + δ(ǫ)

≤ 2ǫ+ δ(ǫ).

We show below that

(34)

I(X,Y ∧ U r)− I(X ∧ Y )

=

⌊(r−1)/2⌋
∑

i=0

I(X ∧ U2i+1 | Y, U2i)

+

⌊r/2⌋
∑

i=1

I(Y ∧ U2i | X,U2i−1). (35)
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Thus, the proof will be completed upon showing that there
exists anǫ-CR J , recoverable fromF of rate

1

n
H(F) ≤

⌊(r−1)/2⌋
∑

i=0

I(X ∧ U2i+1 | Y, U2i)

+

⌊r/2⌋
∑

i=1

I(Y ∧ U2i | X,U2i−1) + ǫ, (36)

such that(J,F) satisfies (32). Forr = 2, such a construction
was given by Ahlswede-Csiszár [2, Theorem 4.4]. (In their
construction,F was additionally a function ofJ .) The exten-
sion of their construction to a generalr is straightforward, and
is relegated to the appendix.

It remains to prove (35). Note

I(X,Y ∧ U r)−

⌊(r−1)/2⌋
∑

i=0

I(X ∧ U2i+1 | Y, U2i)

−

⌊r/2⌋
∑

i=1

I(Y ∧ U2i | X,U2i−1)

=

⌊(r−1)/2⌋
∑

i=0

I(Y ∧ U2i+1 | U2i) +

⌊r/2⌋
∑

i=1

I(X ∧ U2i | U
2i−1).

(37)

Further, from conditions (P1)-(P3) it follows that

⌊(r−1)/2⌋
∑

i=0

I(Y ∧ U2i+1 | U2i) +

⌊r/2⌋
∑

i=1

I(X ∧ U2i | U
2i−1)

− I(Y ∧X)

=

⌊(r−1)/2⌋
∑

i=1

I(Y ∧ U2i+1 | U2i) +

⌊r/2⌋
∑

i=2

I(X ∧ U2i | U
2i−1)

+ I(X ∧ U2 | U1) + I(Y ∧ U1)− I(Y ∧X)

=

⌊(r−1)/2⌋
∑

i=1

I(Y ∧ U2i+1 | U2i) +

⌊r/2⌋
∑

i=2

I(X ∧ U2i | U
2i−1)

+ I(X ∧ U2 | U1)− I(X ∧ Y | U1)

=

⌊(r−1)/2⌋
∑

i=1

I(Y ∧ U2i+1 | U2i) +

⌊r/2⌋
∑

i=2

I(X ∧ U2i | U
2i−1)

− I(X ∧ Y | U1, U2)

= ... = −I(X ∧ Y | U r) = 0. (38)

Combining (37) and (38) we get (35).

Converse.Let R ≥ 0 be an achievabler-interactive CI rate.
Then, for all0 < ǫ < 1, for somen ≥ 1, there exists anr-
interactive communicationF, andǫ-CRJ recoverable fromF,
such that(1/n)H(J,F) ≤ R+ ǫ andL = (J,F) satisfies (3).
Let J be recovered asJ1 = J1(X

n,F) andJ2 = J2(Y
n,F)

by terminalsX andY, respectively, i.e.,P (J = J1 = J2) ≥
1 − ǫ. Further, let rvT be distributed uniformly over the set

{1, ..., n}. Define rvsU r as follows:

U1 = F1, X
T−1, Y n

T+1, T,

Ui = Fi, 2 ≤ i < r,

Ur =

{

(Fr, J1), r odd,

(Fr, J2), r even.

We complete the proof for oddr; the proof for evenr can
be completed similarly. It was shown by Kaspi [10, equations
(3.10)-(3.13)] that

U2i+1 −◦−XT , U
2i −◦− YT , 0 ≤ i ≤ ⌊(r − 1)/2⌋,

U2i −◦− YT , U
2i−1 −◦−XT , 1 ≤ i ≤ ⌊r/2⌋.

Next, note from (31) that

ǫ+ ǫ log |X ||Y|+ h(ǫ)

≥
1

n
I(Xn ∧ Y n | J1,F)

≥
1

n

n
∑

i=1

I(Xi ∧ Y n | X i−1, J1,F)

≥
1

n

n
∑

i=1

I(Xi ∧ Yi | X
i−1, Y n

i+1, J1,F)

= I(XT ∧ YT | U r). (39)

Similarly, it holds that

ǫ+ ǫ log |X ||Y| + h(ǫ) ≥ I(XT ∧ Y n
T+1 | XT−1, J1,F, T ).

(40)

The entropy rate of(J,F) is now bounded as

1

n
H(J,F)

≥
1

n
H(J1,F)−

1

n
H(J1 | J)

≥
1

n
H(J1,F)− ǫ log |X ||Y| − h(ǫ)

=
1

n
I(Xn, Y n ∧ J1,F)− ǫ log |X ||Y| − h(ǫ)

= H(XT , YT )−
1

n
H(Xn | J1,F)

−
1

n
H(Y n | Xn, J1,F)− ǫ log |X ||Y| − h(ǫ)

= H(XT , YT )−H(XT | XT−1, J1,F, T )

−H(YT | XT−1, Y n
T+1, XT , X

n
T+1, J1,F, T )

− ǫ log |X ||Y| − h(ǫ)

≥ I(XT , YT ∧ U r)− ǫ− 2ǫ log |X ||Y| − 2h(ǫ),

where the second inequality follows from Fano’s inequality,
and the last inequality follows from (40). Consequently,

R ≥
1

n
H(J,F)− ǫ

≥ I(XT , YT ∧ U r)− 2(ǫ+ ǫ log |X ||Y| + h(ǫ)). (41)

We now replace the rvsU1, ..., Ur with those taking values in
finites setsU1, ...,Ur, respectively, withU1, ...,Ur satisfying
the cardinality bounds in condition (iii). Similar bounds were
derived in the context of interactive function computationin
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[11]. For 1 ≤ l ≤ r, assume that rvsU1, ...,Ul−1 satisfy the
cardinality bounds. We consider oddl; the steps for evenl are
similar. If the rvUl does not satisfy the cardinality bound, from
the Support Lemma [4, Lemma 15.4], we can replace it with
another rvŨl that takes less than or equal to|X |

∏l−1
i=1 |Ui|+1

values, while keeping the following quantities unchanged:

PXTUl−1 , I(XT ∧ YT | U r), andI(XT , YT ∧ U r).

Note that we have only alteredPUl
in the joint pmf

PXTYTUr = PUl
PXTUl−1|Ul

PYT |XUl−1 . Hence, the Markov re-
lations in (P1) remain unaltered. Furthermore,PXTYT

= PXY .
Finally, since the set of pmfs on a finite alphabet is compact,
and the choice ofǫ above was arbitrary, it follows upon taking
ǫ → 0 in (39) and (41) that there existsU r

1 satisfying (P1)-(P3)
such that

R ≥ I(X,Y ∧ U r),

which completes the proof.

V. CAN INTERACTION REDUCE THE COMMUNICATION

RATE?

It is well known that the SK capacity can be attained by
using a simple one-way communication from terminalX to
terminalY (or from Y to X ). Here we derive the minimum
rate RNI of such noninteractive communication using the
expression forCIri (X ;Y ) in (9). Since this expression has a
double Markov structure, it can be simplified by the following
observation (see [4, Problem 16.25]): If rvsU,X, Y satisfy

U −◦−X −◦− Y, X −◦− U −◦− Y, (42)

then there exist functionsf = f(U) andg = g(X) such that
(i) P (f(U) = g(X)) = 1;
(ii) X −◦− g(X)−◦− Y .

In particular, for rvsU,X, Y that satisfy (42), it follows from
(i) above that

I(X,Y ∧ U) = I(X ∧ U) ≥ I(g(X) ∧ f(U)) = H(g(X)).

Turning to (9), for rvsU r with r odd, the observations
above applied to the rvsX and Y conditioned on each
realizationU r−1 = ur−1 implies that there exists a function
g1 = g1

(

X,U r−1
)

such that

X −◦− g
(

X,U r−1
)

, U r−1 −◦− Y, (43)

and

I (X,Y ∧ U r) ≥ I
(

X,Y ∧ U r−1
)

+H
(

g
(

X,U r−1
)

| U r−1
)

,

where rvU r−1 satisfies (P1), (P3). Similar observations hold
for evenr. Thus, for the minimization in (9), conditioned on
arbitrarily chosen rvsU r−1 satisfying (P1), (P3), the rvUr is
selected as asufficient statistic forY given the observationX
(sufficient statistic forX given the observationY ) whenr is
odd (r is even). Specifically, forr = 1, we have

CI1i (X ;Y ) = min
X−◦−g1(X)−◦−Y

H (g1(X)) , (44)

and

CI1i (Y ;X) = min
Y −◦−g2(Y )−◦−X

H (g2(Y )) . (45)

The answer to the optimization problems in (44) and (45) can
be given explicitly. In fact, we specify next a minimal sufficient
statistic forY on the basis ofX . Define an equivalence relation
on X as follows:

x ∼ x′ ⇔ PY |X (y | x) = PY |X (y | x′) , y ∈ Y. (46)

Let g∗1 be the function corresponding to the equivalence classes
of ∼. We claim thatg∗1 is a minimal sufficient statistic forY
on the basis ofX . This expression for the minimal sufficient
statistic was also given in [9, Lemma 3.5(4)]. Specifically,
X −◦− g∗1(X)−◦− Y since withg∗1(X) = c, say, we have

PY |g∗

1
(X) (y | c)

=
∑

x∈X

PY,X|g∗

1
(X) (y, x | c)

=
∑

x:g∗

1
(x)=c

PX|g∗

1
(X) (x | c) PY |X,g∗

1
(X) (y | x, c)

= PY |X,g∗

1
(X) (y | x, c) , ∀x with g∗1(x) = c.

Also, if g1(X) satisfiesX−◦−g1(X)−◦−Y theng∗1 is a function
of g1. To see this, letg1(x) = g1(x

′) = c for somex, x′ ∈ X .
Then,

PY |g1(X) (y | c) = PY |X (y | x) = PY |X (y | x′) , y ∈ Y,

so that g∗1(x) = g∗1(x
′). Since g∗1 is a minimal sufficient

statistic forY on the basis ofX , it follows from (44) that

CI1i (X ;Y ) = H (g∗1(X)) ,

and similarly, withg∗2(Y ) defined analogously,

CI1i (Y ;X) = H (g∗2(Y )) .

Therefore, from (7), the minimum rateRNI of a noninteractive
communication for generating a maximum rate SK is given by

RNI = min {H (g∗1(X)) , H (g∗1(X))} − I(X ∧ Y ). (47)

From the expression forRNI , it is clear that the rate of
noninteractive communication can be reduced by replacing
X and Y with their respective minimal sufficient statistics
g∗1(X) and g∗2(Y ). Can the rate of communication required
for generating an optimum rate SK be reduced by resorting
to complex interactive communication protocols defined in
Section II? To answer this question we must compare the
expression forRNI with RSK . Specifically, from Theorem
3 and the Corollary following it, interaction reduces the rate
of communication iff, for somer > 1,

CIri (X ;Y ) < min {H (g∗1(X)) , H (g∗1(X))} , (48)

whereg∗1 andg∗2 are as in (47); interaction does not help iff

CIi(X ∧ Y ) = min {H (g∗1(X)) , H (g∗1(X))} .

Note that instead of comparing withCIri (X ;Y ) in (48), we
can also compare withCIri (Y ;X).

We shall explore this question here, and give an example
where the answer is in the affirmative. In fact, we first show
that interaction does not help in the case of binary symmetric
sources. Then we give an example where interaction does help.
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A. Binary Symmetric Sources

For binary rvsX andY , we note a property of rvsU r that
satisfy the conditions (P1)-(P3) in Theorem 4.

Lemma 8. LetX andY be{0, 1} valued rvs withI(X∧Y ) 6=
0. Then, for rvsU1, ..., Ur that satisfy the conditions (P1)-(P3)
in Theorem 4, for every realizationu1, ..., ur of U1, ..., Ur, one
of the following holds:

H(X | U r = ur) = 0, or H(Y | U r = ur) = 0. (49)

Proof. Given a sequenceur, assume that

H(X | U r = ur) > 0 and H(Y | U r = ur) > 0,

which is equivalent to

PX|Ur (1 | ur) PX|Ur (0 | ur) > 0 and

PY |Ur (1 | ur) PY |Ur (0 | ur) > 0. (50)

We consider the case whenr is even; the case of oddr is
handled similarly. From the Markov conditionsX −◦−U r −◦−Y
andX −◦− Y, U r−1 −◦− Ur, we have

PX,Y |Ur (x, y | ur)

= PX|Ur (x | ur) PY |Ur (y | ur)

= PX|Y,Ur−1

(

x | y, ur−1
)

PY |Ur (y | ur) , x, y ∈ {0, 1}.

SincePY |Ur (y | ur) > 0 from (50), we have

PX|Ur (x | ur) = PX|Y,Ur−1

(

x | y, ur−1
)

, x, y ∈ {0, 1},

which further implies

PX|Y,Ur−1

(

x | 1, ur−1
)

= PX|Y,Ur−1

(

x | 0, ur−1
)

,

x ∈ {0, 1}.

Hence,I(X ∧ Y | U r−1 = ur−1) = 0. Noting from (50) that

PX|Ur−1

(

1 | ur−1
)

PX|Ur−1

(

0 | ur−1
)

> 0,

we can do the same analysis as above, again forr − 1. Upon
repeating this processr times we getI(X ∧ Y ) = 0, which
is a contradiction. Therefore, eitherH(X | U r = ur) = 0 or
H(Y | U r = ur) = 0 holds.

Note that

CIri (X ;Y ) = H(X,Y )−max
Ur

H(X,Y | U r),

where themax is taken over rvsU r as in Theorem 4. IfH(X |
U i = ui) = 0, it follows that

I
(

X ∧ Y | U i = ui
)

= 0, and

H(X,Y | U i = ui, U r
i+1) = H(Y | U i = ui, U r

i+1)

≤ H(Y | U i = ui). (51)

Similarly, H(Y | U i = ui) = 0 implies

I
(

X ∧ Y | U i = ui
)

= 0, and

H(X,Y | U i = ui, U r
i+1) ≤ H(X | U i = ui). (52)

For a sequenceur with PUr (ur) > 0, let τ(ur) be the
minimum value ofi such that

H(X | U i = ui) = 0 or H(Y | U i = ui) = 0;

if X and Y are independent,τ(ur) = 0. Note thatτ is a
stopping-time adapted toU1, ..., Ur. Then, from (51), (52),
CIri (X ;Y ) remains unchanged if we restrict the support ofU r

to sequencesur with ui = φ for all i > τ(ur). Furthermore,
the Markov condition (P1) implies that if for a sequenceur,
τ = τ(ur) is odd then

PY |X,Uτ (y | x, uτ ) = PY |X,Uτ−1

(

y | x, uτ−1
)

,

and so if

PX|Uτ (1 | uτ ) PX|Uτ (0 | uτ ) > 0,

it holds from the definition ofτ that

PY |Uτ (1 | uτ ) PY |Uτ (0 | uτ ) > 0,

which is a contradiction. Therefore, we haveH(X | U τ =
uτ ) = 0. Similarly, H(Y | U τ = uτ ) = 0 holds for evenτ .
To summarize,

CIri (X ;Y ) = min
Uτ

I (X,Y ∧ U τ ) , (53)

whereU r are rvs satisfying (P1)-(P3), andτ is the stopping-
time defined above.

We show next that for binary symmetric sources, interaction
can never reduce the rate of communication for optimum rate
SK generation. In fact,we conjecture that for any binary rvs
X,Y , RNI = RSK .

Theorem 9. Let X and Y be {0, 1}-valued rvs, with

P (X = 0, Y = 0) = P (X = 1, Y = 1) =
1

2
(1 − δ),

P (X = 0, Y = 1) = P (X = 1, Y = 0) =
1

2
δ, 0 < δ <

1

2
.

(54)

Then,
CIi(X ∧ Y ) = min{H(X);H(Y )},

i.e., interaction does not help to reduce the communication
required for optimum rate SK generation.

Remark.As a consequence of Theorem 9, for sources with
joint distribution as in (54), the second inequality in (6) can be
strict. Specifically, it was noted by Wyner (see the discussion
following equation (1.19) in [16]) that for binary symmetric
sources,CIW (X ∧ Y ) < 1. From Theorem 9, we have

CIi(X ∧ Y ) = min{H(X);H(Y )} = 1.

Thus, for such sources,CIW (X ∧ Y ) < CIi(X ∧ Y ).

Proof. Denote byUr
0 the following set of stopped sequences

in Ur:
For i ≤ r, for a sequenceur ∈ Ur the stopped sequence
ui ∈ Ur

0 if:

H
(

X | U j = uj
)

> 0, H
(

Y | U j = uj
)

> 0, ∀ j < i, and

H
(

X | U i = ui
)

= 0 or H
(

Y | U i = ui
)

= 0.

For i ∈ {0, 1}, define the following subsets ofUr
0 :

UX
i =

{

uτ ∈ Ur
0 : τ is odd, PX|Uτ (i | uτ ) = 1

}

,

UY
i =

{

uτ ∈ Ur
0 : τ is even, PY |Uτ (i | uτ ) = 1

}

.
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By their definition the setsUX
0 ,UX

1 ,UY
0 , andUY

1 are disjoint,
whereby we have

PUτ (Ur
0 ) = PUr

(

UX
0

⋃

UX
1

⋃

UY
0

⋃

UY
1

)

=

1
∑

i=0

[

PUr

(

UX
i

)

+ PUr

(

UY
i

)]

= 1. (55)

For uτ ∈ Ur
0 , denote byp(uτ ) the probability PUτ (uτ ).

Further, foruτ ∈ UX
0

⋃

UX
1 , denote byWuτ

: X → Y the
stochastic matrix corresponding toPY |X,Uτ (· | ·, uτ ), and for
uτ ∈ UY

0

⋃

UY
1 , denote byT uτ

: Y → X the stochastic
matrix corresponding toPX|Y,Uτ (· | ·, uτ ). With this notation,
the following holds:

1

2
(1− δ)

= PX,Y (i, i)

=
∑

uτ∈UX
i

p(uτ )Wuτ

(i | i) +
∑

uτ∈UY
i

p(uτ )T uτ

(i | i),

i ∈ {0, 1}, (56)

since the setsUX
0 ,UX

1 ,UY
0 ,UY

1 are disjoint. Upon adding (56)
for i = 0, 1, we get

1
∑

i=0





∑

uτ∈UX
i

p(uτ )Wuτ

(i | i) +
∑

uτ∈UY
i

p(uτ )T uτ

(i | i)





= (1− δ).

Furthermore, from (55) we get

1 =
1

∑

i=0

∑

uτ∈UX
i

p(uτ ) +
∑

uτ∈UY
i

p(uτ ).

Therefore, since the functiong(z) = −z log z is concave for
0 < z < 1, the Jensen’s inequality yields

g(1− δ) ≥
1

∑

i=0

∑

uτ∈UX
i

p(uτ )g
(

Wuτ

(i | i)
)

+

∑

uτ∈UY
i

p(uτ )g
(

T uτ

(i | i)
)

(57)

Similarly, using

1

2
δ = PX,Y (i, j)

=
∑

uτ∈UX
i

p(uτ )
(

1−Wuτ

(i | i)
)

+

∑

uτ∈UY
j

p(uτ )
(

1− T uτ

(j | j)
)

, i 6= j, i, j ∈ {0, 1},

we get

g(δ) ≥
1

∑

i=0

∑

uτ∈UX
i

p(uτ )g
(

1−Wuτ

(i | i)
)

+

∑

uτ∈UY
i

p(uτ )g
(

1− T uτ

(i | i)
)

(58)

On adding (57) and (58) we get

h(δ) = g(δ) + g(1− δ)

≥
1

∑

i=0

∑

uτ∈UX
i

p(uτ )h
(

Wuτ

(i | i)
)

+

∑

uτ∈UY
i

p(uτ )h
(

T uτ

(i | i)
)

,

whereh is the binary entropy function. Note that the right side
above equalsH(X,Y | U τ ), which yields

h(δ) = max{H(X | Y );H(Y | X)} ≥ H(X,Y | U τ ).

Since rvsU r above were arbitrary, we have from (53),

CIri (X ;Y ) ≥ H(X,Y )−max{H(X | Y );H(Y | X})

= min{H(X);H(Y )}.

Combining this with (6), we obtain

CIri (X ;Y ) = min{H(X);H(Y )}.

B. An example where interaction does help

Consider rvsX andY with X = Y = {0, 1, 2}, and with
joint pmf:





a a a
b a a
a c a



 ,

wherea, b, c are nonnegative,7a+b+c = 1, andc 6= a, which
holds iff b 6= 1− 8a. Assume that

2a > b > a. (59)

From (48), to show that interaction helps, it suffices to find
rvs U1, ..., Ur satisfying (P1)-(P3) such that

I (X,Y ∧ U1, ..., Ur) < min {H (g∗1(X)) , H (g∗2(Y ))} ,
(60)

whereg∗1 andg∗2 are as in (47). From (46),g∗1(x) = g∗1(x
′) iff

PY,X (y, x)

PY,X (y, x′)
=

PX (x)

PX (x′)
, y ∈ Y, (61)

i.e., the ratio PY,X (y,x)
PY,X (y,x′) does not depend ony. Therefore, for

the pmf above,g∗1(X) andg∗2(Y ) are equivalent toX andY ,
respectively. Thus,

min {H (g∗1(X)) , H (g∗2(Y ))} = min{H(X);H(Y )},

whereH(X) = H(Y ) for the given pmf.
Next, let U1 = f1(X), U2 = f2(Y, f1(X)), wheref1 and

f2 are given below:

f1(x) =

{

1, x = 2,

2, x = 0, 1,

f2(y, 1) = 0, ∀ y ∈ {0, 1, 2}, and f2(y, 2) =

{

1, y = 0,

2, y = 1, 2.
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Clearly,U1 andU2 satisfy (P1) and (P2). For (P3), note that
if (U1, U2) = (1, 0), thenX = 2, and if (U1, U2) = (2, 1),
then Y = 0. Finally, if (U1, U2) = (2, 2), thenX ∈ {0, 1}
andY ∈ {1, 2}, implying

PX,Y |U1,U2
(x, y | 2, 2) =

PX,Y (x, y)

4a

=
1

4
, ∀ (x, y) ∈ {0, 1} × {1, 2}.

Therefore,I(X ∧Y | U1, U2) = 0, and soU1, U2 satisfy (P3).
We show that (60) holds for this choice ofU1, U2. Specifically,
I (X,Y ∧ U1, U2) = H (U1, U2), and the following holds:

H(Y )−H (U1, U2)

= H(X)−H (U1, U2)

= H (X |U1)−H (U2|U1)

= P (f1(X) = 2)

[

H (X |f1(X) = 2)

−H (f2(2, Y )|f1(X) = 2)

]

= (5a+ b)
[

h
(

PX|f1(X) (0|2)
)

− h
(

PY |f1(X) (0|2)
)]

= (5a+ b)

[

h

(

3a

5a+ b

)

− h

(

a+ b

5a+ b

)]

.

Then, from (59),

a+ b

5a+ b
<

3a

5a+ b
<

1

2
,

which implies (60) forU1, U2.

VI. SUFFICIENT STATISTICS AND COMMON INFORMATION

QUANTITIES

In this work we encountered three CI quantities: Shannon’s
mutual informationI(X ∧ Y ), Wyner’s CI CIW (X ∧ Y ),
and interactive CICIi(X ∧ Y ). In fact, the first notion of
CI was given by Gács and Körner in the seminal work [8].
In particular, they specified the maximal common function of
X and Y , denoted here asmcf(X,Y ), such that any other
common function ofX and Y is a function ofmcf(X,Y );
the Gács-Körner CI is given byH(mcf(X,Y )). The following
inequality ensues (see [8], [16], and inequality (6)):

H(mcf(X,Y )) ≤ I(X ∧ Y ) ≤ CIW (X ∧ Y ) ≤ CIi(X ∧ Y ).

Since any good notion of CI between rvsX andY measures
the correlation betweenX andY , it is reasonable to expect the
CI to remain unchanged ifX andY are replaced by their re-
spective sufficient statistics. The following theorem establishes
this for the quantitiesH(mcf(X,Y )), I(X∧Y ), CIW (X∧Y ),
andH(mcf(X,Y )).

Theorem 10. For rvs X andY , let functionsg1 of X andg2
of Y be such thatX −◦− g1(X)−◦− Y andX −◦− g2(Y )−◦− Y .
Then the following relations hold:

H(mcf(X,Y )) = H (mcf (g1(X), g2(Y ))) ,

I(X ∧ Y ) = I (g1(X) ∧ g2(Y )) ,

CIW (X ∧ Y ) = CI (g1(X) ∧ g2(Y )) ,

CIri (X ;Y ) = CIri (g1(X); g2(Y )) , r ≥ 1,

CIi(X ∧ Y ) = CIi (g1(X) ∧ g2(Y )) .

Remark. (i) Theorem 10 implies that the minimum rate of
communication for generating a maximum rate secret key
remains unchanged ifX and Y are replaced byg1(X) and
g2(Y ) as above, respectively.
(ii) Note thatg1(X) andg2(Y ) above are, respectively, func-
tions of g∗1(X) andg∗2(Y ) defined through (46).

Proof. First note that

I(X ∧ Y ) = I (g1(X) ∧ Y ) = I (g1(X) ∧ g2(Y )) . (62)

Next, consider the interactive CI. From (62), any protocol
that generates an optimum rate SK for the sourcesg1(X) and
g2(Y ) also generates an optimum rate SK for the sources
X andY . Thus, the minimum communication rate for prior
protocols is bounded below by the minimum communication
rate for the latter protocols, so that by Theorem 3,

CIri (g1(X); g2(Y ))− I (g1(X) ∧ g2(Y ))

≥ CIri (X ;Y )− I (X ∧ Y ) ,

which, by (62), is

CIri (g1(X); g2(Y )) ≥ CIri (X ;Y ) . (63)

In fact, (63) holds with equality: We claim that any choice of
rvsU r that satisfy (P1)-(P3) also satisfy the following Markov
relations:

U2i+1 −◦− g1(X), U2i −◦− g2(Y ), 0 ≤ i ≤ ⌊(r − 1)/2⌋,

U2i −◦− g2(Y ), U2i−1 −◦− g1(X), 1 ≤ i ≤ ⌊r/2⌋,

g1(X)−◦− U r −◦− g2(Y ). (64)

It follows that

CIri (g1(X); g2(Y )) ≤ I (g1(X), g2(Y ) ∧ U r)

≤ I (X,Y ∧ U r) ,

and consequently,

CIri (g1(X); g2(Y )) ≤ CIri (X ;Y ) .

Thus, by (63),

CIri (g1(X); g2(Y )) = CIri (X ;Y ) . (65)

Taking the limitr → ∞ we get

CIi (g1(X) ∧ g2(Y )) = CIi (X ∧ Y ) .

It remains to establish (64); instead, using induction we estab-
lish the following stronger Markov relations: For1 ≤ i ≤ r,

Ui −◦− g1(X), U i−1 −◦− Y, i odd,

Ui −◦− g2(Y ), U i−1 −◦−X, i even,

X −◦− g1(X), U i −◦− Y andX −◦− g2(Y ), U i −◦− Y. (66)

Clearly, (66) implies the first two Markov relations in (64).
The last Markov chain in (64) follows upon observing

0 = I (X ∧ Y | U r) ≥ I (g1(X) ∧ g2(Y ) | U r) .

To see that (66) holds fori = 1 note that

I (X ∧ Y | g1(X), U1)

≤ I (X ∧ Y | g1(X)) + I (U1 ∧ Y | g1(X), X) = 0,
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and

I (X ∧ Y | g2(Y ), U1)

≤ I (X ∧ Y | g2(Y )) + I (U1 ∧ Y, g2(Y ) | X) = 0.

Next, assume that (66) holds for an eveni. Then, from (P1)
we get:

I
(

Y ∧ Ui+1 | X,U i
)

= 0

⇔I
(

Y ∧ Ui+1 | X, g1(X), U i
)

= 0

⇔I
(

Y ∧X,Ui+1 | g1(X), U i
)

= I
(

Y ∧X | g1(X), U i
)

= 0,

where the last equality follows from (66). From the last
inequality above we have

Ui+1 −◦− g1(X), U i −◦− Y and X −◦− g1(X), U i+1 −◦− Y.

Furthermore, it also follows from (66) that

I
(

X ∧ Y | g2(Y ), U i+1
)

≤ I
(

X,Ui+1 ∧ Y | g2(Y ), U i
)

= I
(

Ui+1 ∧ Y | g2(Y ), X, U i
)

≤ I
(

Ui+1 ∧ Y | X,U i
)

= 0,

where the last equality follows from (P1). Thus, we have

X −◦− g2(Y ), U i+1 −◦− Y,

establishing the validity of (66) fori + 1. The proof of (64)
can be completed by induction by using a similar argument
for odd i.

Next, we consider the Gács-Körner CI. Note that any
common function ofg1(X) and g2(Y ) is also a common
function ofX andY . Consequently,

H(mcf(X,Y )) ≥ H(mcf(g1(X), g2(Y ))). (67)

For the reverse inequality, observe that for an rvU such that
H(U |Y ) = H(U |X) = 0 we have

U −◦−X −◦− g1(X)−◦− Y.

Thus, H (U |g1(X)) ≤ H(U |Y ) = 0, and similarly,
H (U |g2(Y )) = 0. In particular, it holds that

H (mcf(X,Y )|g1(X)) = H (mcf(X,Y )|g2(Y )) = 0,

and so,

H(mcf(X,Y )) ≤ H(mcf(g1(X), g2(Y ))),

which along with (67) yields

H(mcf(X,Y )) = H(mcf(g1(X), g2(Y ))).

Finally, we consider Wyner’s CI and claim that this, too,
remains unchanged upon replacing the sources with their
respective sufficient statistics (for the other source). Itsuffices
to show that

CIW (X ∧ Y ) = CIW (g(X) ∧ Y ),

for a functiong such thatX −◦− g(X) −◦− Y . Consider an rv
W for which X −◦−W −◦− Y is satisfied. We have

0 = I(X ∧ Y | W ) ≥ I (g(X) ∧ Y | W ) .

It follows from (4) that

CIW (X ∧ Y ) ≥ CIW (g(X) ∧ Y ) . (68)

On the other hand, for an rvL = L (gn (Xn) , Y n) we have

1

n
I (Xn ∧ Y n | L) =

1

n
I (gn (Xn) ∧ Y n | L) ,

since

I (Xn ∧ Y n | L, gn (Xn)) ≤ I (Xn ∧ Y n, L | gn (Xn))

= I (Xn ∧ Y n | gn (Xn)) = 0.

Thus, from the definition ofCIW (g(X) ∧ Y ) we get

CIW (X ∧ Y ) ≤ CIW (g(X) ∧ Y ),

so that, by (68),

CIW (X ∧ Y ) = CIW (g(X) ∧ Y ).

VII. D ISCUSSION

A. Local Randomization

Although independent local randomization was not allowed
in our formulation, our main result characterizingRSK holds
even when such randomization is available. Consider a model
where terminalsX and Y, in additional to their respective
observationsXn and Y n, have access to finite-valued4 rvs
T1 and T2, respectively. The rvsT1, T2, and (Xn, Y n) are
mutually independent. The SK capacity is defined as before,
with Xn and Y n now replaced by(Xn, T1) and (Y n, T2),
respectively. It is known [13], [2] that even with randomization
the SK capacity equalsI(X ∧ Y ). For this model, denote
the minimum rate ofr-interactive communication required to
generate an SK of rateI(X ∧ Y ) by R̃r

SK .

Lemma 11. For r ≥ 1,

R̃r
SK = Rr

SK .

To see this, we define quantities̃Rr
CI andC̃I

r

i analogously
to Rr

SK andCIri , with Xn andY n replaced by(Xn, T1) and
(Y n, T2), respectively. Note that this substitution is made even
in condition (3), i.e., the CRJ and the communicationF now
are required to satisfy:

1

n
I (Xn, T1 ∧ Y n, T2 | J,F) ≤ ǫ. (69)

We observe that (12) still holds, with(Xn, T1) and (Y n, T2)
replacing, respectively,Xn andY n on the right-side. There-
fore, the proof of Theorem 3 is valid, and we get:

R̃r
CI = R̃r

SK = C̃I
r

i − I(X ∧ Y ). (70)

By its definitionR̃r
CI ≤ Rr

CI , sinceL = (J,F) = L(Xn, Y n)
satisfying (3) will meet (69) as well. We claim that̃Rr

CI ≥
Rr

CI , which by (70) and Theorem 3 implies Lemma 11.

4The cardinalities of the range spaces ofT1 andT2 are allowed to be at
most exponential inn.



12

I(X ∧ Y )

I(X ∧ Y )

RSK H(X|Y ) + H(Y |X)

H(X,Y )

CR(ρ)

ρmin{H(X|Y ), H(Y |X)}

min{H(X), H(Y )}

CIi(X ∧ Y )

Fig. 1. Minimum rate of communicationRSK for optimum rate SK
generation

Indeed, consider CRJ recoverable fromF such that(J,F)
attain R̃r

CI . Then, the condition (69) gives

1

n
I (Xn ∧ Y n | J,F, T1, T2) ≈ 0.

So, there existt1, t2 such that conditioned onT1 = t1, T2 = t2
the CRJ is still recoverable fromF, and

1

n
I (Xn ∧ Y n | J,F, T1 = t1, T2 = t2) ≈ 0.

Thus, withT1 = t1, T2 = t2 fixed,(J,F) constitutes a feasible
choice in the definition ofRr

CI . Since the number of values
taken byF can only decrease upon fixingT1 = t1, T2 =
t2, we get R̃r

CI ≥ Rr
CI . Therefore, the availability of local

randomization does not decrease the rate of communication
required for generating an optimum rate SK.

B. Less-than-optimum rate SKs

SK generation is linked intrinsically to the efficient genera-
tion of CR. Forρ ≥ 0, a rateR ≥ 0 is an achievable CR rate
for ρ if for every 0 < ǫ < 1 there exists, for somen ≥ 1, an
ǫ-CR L with

1

n
H(L) ≥ R− ǫ,

recoverable from anr-interactive communicationF, for arbi-
trary r, of rate

1

n
H(F) ≤ ρ+ ǫ;

the maximum achievable CR rate forρ is denoted byCR(ρ).
Similarly, denote byC(ρ) the maximum rate of an SK that
can be generated using a communication as above. It can be
shown in a straightforward manner that

C(ρ) = CR(ρ)− ρ. (71)

The graph ofCR as a function ofρ is plotted in Fig. 1.CR(ρ)
is an increasing and a concave function ofρ, as seen from a
simple time-sharing argument. SinceRSK is the minimum

rate of communication required to generate a maximum rate
SK, CR(ρ) − ρ = I(X ∧ Y ) for ρ ≥ RSK . Thus, our
results characterize the graph ofCR(ρ) for all ρ ≥ RSK .
The quantityRSK is the minimum value ofρ for which the
slope ofCR(ρ) is 1; CR (RSK) is equal to the interactive
common informationCIi(X∧Y ). Furthermore, from the proof
of Theorem 3, a CRL that satisfies (3) must yield an optimum
rate SK. Thus, any CR recoverable from a communication of
rate less thanRSK cannot satisfy (3). A characterization of
CR(ρ) for ρ < RSK is central to the characterization ofC(ρ),
and this, along with a single-letter characterization ofRSK ,
remains an interesting open problem.

APPENDIX

Proof of Lemma 6:
From the Slepian-Wolf theorem [15], there exist mappings

f1, ..., fr of F k
1 , ..., F

k
r , respectively, of rates

1

k
log ‖f2i+1‖ ≤ H(F2i+1 | Y n, F1, ..., F2i) +

nǫ

2r
,

0 ≤ i ≤ ⌊(r − 1)/2⌋,

1

k
log ‖f2i‖ ≤ H(F2i | X

n, F1, ..., F2i−1) +
nǫ

2r
,

1 ≤ i ≤ ⌊r/2⌋,

such that

F k
2i+1 is

ǫ

2r
-recoverable from

(

f2i+1(F
k
2i+1), Y

N , F k
1 , ..., F

k
2i

)

, 0 ≤ i ≤ ⌊(r − 1)/2⌋,

F k
2i is

ǫ

2r
-recoverable from

(

f2i(F
k
2i), X

N , F k
1 , ..., F

k
2i−1

)

, 1 ≤ i ≤ ⌊r/2⌋,

for all k sufficiently large. Thus, the communicationF′ given
by F ′

i = fi
(

F k
i

)

, 1 ≤ i ≤ r constitutes the required
communication of rate

1

nk
log ‖F′‖ ≤

1

n
[H (F|Xn) +H (F|Y n)] + ǫ.

Proof of Lemma 7:
For T = T (Xn, Y n) we have,

nI(X ∧ Y )

= H (Xn, Y n)−H (Xn | Y n)−H (Y n | Xn)

= H (Xn, Y n | T )−H (Xn | Y n, T )−H (Y n | Xn, T )

+H(T )−H (T | Xn)−H (T | Y n)

= I (Xn ∧ Y n | T ) +H(T )−H (T | Xn)−H (T | Y n) .

Lemma 7 follows upon choosingT = J,F.

Proof of (32) and (36):
It remains to prove that there existsǫ-CR J , recoverable

from F such thatJ,F satisfy (32) and (36). We provide a CR
generation scheme withr stages. For1 ≤ k ≤ r, denote by
Ek the error event in thekth stage (defined below recursively
in terms ofEk−1), and byE0 the negligible probability event
corresponding toXn, Y n not beingPXY -typical.

Consider1 ≤ k ≤ r, k odd. For brevity, denote byV the
rvs Uk−1 and by U the rv Uk; for k = 1, V is taken to



13

be a constant. Suppose that conditioned onEc
k−1 terminalsX

andY observe, respectively, sequencesx ∈ Xn andy ∈ Yn,
as well as a common sequencev ∈ Vn such that(v,x,y)
are jointly PVXY -typical. For δ > 0, generate at random
exp [n(I(X,Y ∧ U | V ) + δ)] sequencesu ∈ Un that are
jointly PUV -typical with v, denoted byuij , 1 ≤ i ≤ N1,
1 ≤ j ≤ N2, where

N1 = exp [n (I(X ∧ U | Y, V ) + 3δ)] ,

N2 = exp [n (I(Y ∧ U | V )− 2δ)] .

The sequencesuij are generated independently for different
indicesij. Denote byL(k)(v,x) a sequenceuij , 1 ≤ i ≤ N1,
1 ≤ j ≤ N2, that is jointlyPUV X -typical with (v,x) (if there
exist more than one such sequences, choose any of them).
The error event when no such sequence is found is denoted
by Ek1; this happens with probability vanishing to0 doubly
exponentially inn. The communicationFk(v,x) is defined to
equal the first indexi of uij = L(k)(v,x). Upon observing
Fk(v,x) = i, the terminalY computesL(k)

2 (v,y, i) as the
unique sequence in{uij , 1 ≤ j ≤ N2}, that is jointly typical
with (v,y). If no such sequence is found or if several such
sequences are found an error eventEk2 occurs. Clearly, the
rate of communicationFk is bounded above by

1

n
logN1 = I(X ∧ U | Y, V ) + 3δ

= I(X ∧ Uk | Y, Uk−1) + 3δ, (A1)

and also, for largen,
1

n
H(L(k)) ≤

1

n
log(1 +N1N2) ≤ I(X,Y ∧ U | V ) + 2δ

= I(X,Y ∧ Uk | Y, Uk−1) + 2δ. (A2)

Denote byEk3 the event
(

L(k)(v,x),v,x,y
)

not being jointly
PUV XY -typical. The error eventEk is defined asEk = Ek−1∪
Ek1 ∪ Ek2 ∪ Ek3. Then, conditioned onEc

k the terminals share
sequences(uij ,v) that are jointly typical with(x,y). In the
next stagek + 1, the sequence(uij ,v) plays the role of the
sequencev. The scheme for stages with evenk is defined
analogously with roles ofX andY interchanged. We claim
that L(1), ..., L(r) constitutes the required CR along with the
communicationF = F1, ..., Fk. Then, (36) follows from (A1),
and the second inequality in (32) follows from (A2). Moreover,
for every realizationu1, ...,ur of L(1), ..., L(r), with E = 1Er

we have,

P

(

L(1), ..., L(r) = u1, ...,ur | E = 0
)

≤ P ({(x,y) : (u1, ...,ur,x,y) are jointlyPUrXY typical})

≤ exp [−n(I(X,Y ∧ U r)− δ)] ,

for n large, which further yields
1

n
H(L(1)...L(r) | E = 0) ≥ I(X,Y ∧ U r)− δ.

Therefore,
1

n
H(L(1)...L(r))

≥
1

n
H(L(1)...L(r) | E = 0)− P (Er) log |X ||Y|

≥ I(X,Y ∧ U r)− δ − P (Er) log |X ||Y|.

Thus, the claim will follow upon showing thatP (Er) → 0 as
n → ∞. In particular, it remains to show thatP (Ek2) → 0
and P (Ek3) → 0, k = 1, ..., r, as n → ∞. As before, we
show this for oddk and the proof for evenk follows mutatis
mutandis. To that end, note first that for any jointlyPUV X -
typical (u,v,x), the set ofy ∈ Yn such that(u,v,x,y) are
jointly typical with (u,v,x) has conditional probability close
to 1 conditioned onUn = u, V n = v, Xn = x, and so by
the Markov relationY −◦− V,X −◦− U , also conditioned on
V n = v, Xn = x. Upon choosingu = L(k)(v,x) in the
argument above, we getP (Ek2) → 0. Finally, we show that
P (Ek3) will be small, for large probability choices of the ran-
dom codebook{uij}. Specifically, for fixed typical sequences
(v,x,y), the probabilityP (Ek3 | V n = v, Xn = x, Y n = y)
is bounded above exactly as in [2, equation (4.15)]:

P (Ek3 | V n = v, Xn = x, Y n = y)

≤
N1
∑

i=1

N2
∑

j=1

N2
∑

l=1,l 6=j

P

(

(uij ,v,x) jointly PUV X -typical,

(uil,v,uil) jointly PUV Y -typical

)

≤ N1N
2
2 . exp[−n(I(X ∧ U | V ) + I(X ∧ U | V ) + o(n))]

≤ exp[−nδ + o(n)],

for all n sufficiently large. Note that the probability distribution
in the calculation above comes from codebook generation,
and in particular, the second inequality above uses the fact
that uil anduij are independently selected forl 6= j. Thus,
P (Ek3 | Ek2) → 0 for an appropriately chosen codebook,
which completes the proof.
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[8] P. Gács and J. Körner, “Common information is far less than mutual
information,” Problems of Control and Information Theory, vol. 2, no. 2,
pp. 149–162, 1973.



14

[9] S. Kamath and V. Ananthram, “A new dual to the Gács-Körner common
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