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Abstract

Interference alignment (IA) was shown effective for interference management to improve transmission rate

in terms of the degree of freedom (DoF) gain. On the other hand, orthogonal space-time block codes (STBCs)

were widely used in point-to-point multi-antenna channelsto enhance transmission reliability in terms of the

diversity gain. In this paper, we connect these two ideas, i.e., IA and space-time block coding, to improve the

designs of alignment precoders for multi-user networks. Specifically, we consider the use of Alamouti codes

for IA because of its rate-one transmission and achievability of full diversity in point-to-point systems. The

Alamouti codes protect the desired link by introducing orthogonality between the two symbols in one Alamouti

codeword, and create alignment at the interfering receiver. We show that the proposed alignment methods can

maintain the maximum DoF gain and improve the ergodic mutualinformation in the long-term regime, while

increasing the diversity gain to2 in the short-term regime. The presented examples of interference networks have

two antennas at each node and include the two-user X channel,the interferring multi-access channel (IMAC),

and the interferring broadcast channel (IBC).

I. INTRODUCTION

Interference plays a major role in open air network communication and interference management is

crucial for future wireless network designs. Recent research shows much interest in a technique called

This work was supported in part by the NSF award CCF-0963925.Part of this work was presented at IEEE International Symposium

on Information Theory (ISIT) 2011.
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interference alignment (IA) that enhances network throughput in terms of the degree of freedom (DoF)

gain (or equivalently the multiplexing gain). Through the control of either spatial transmit beamformers

[1]–[3] or temporal correlation patterns [4], interference casts overlapping shadows in the receive signal

space at unintended receivers. Such control minimizes the dimensions of interference while keeping

useful signals discernable at receivers. The technique is the key to achieve the maximum DoF gain

in interference channels [1], X channels [2], [5], and broadcast channels [3], [4] at the cost of simple

linear processing for transmitters and receivers.

In addition to network throughput, reliability in terms of the diversity gain is another performance

metric. When channels are in deep fading, the signal-to-noise (SNR) level at the receiver is low and

systems cannot support specified transmission rate, which consequently results in outage events with

finite diversity gain. Various techniques have been intensively studied to improve the spatial diversity

gain, e.g., Alamouti codes [6], space-time block codes (STBCs) [7], [8], and beamforming methods

for point-to-point multi-input multi-output (MIMO) channels; the interference cancellation (IC) method

for multi-access channels (MACs) [9], [10]; and the downlink IC method for broadcast channels (BCs)

[11]. Conceptually, the DoF gain and the diversity gain demonstrate different dimensions of performance

metrics in high SNR. The DoF gain reflects the long-term performance, where systems can have ergodic

power constraints (e.g., use a Gaussian codebook that has infinite peak power) and infinite-length channel

coding against noise corruption. When the system has perfect channel state information at the transmitter

(CSIT), rate adaption can be performed with infinite sets of codebooks. The rate can be instantaneously

zero when channels are in deep fading, or grow linearly withlog SNR to boost the transmission rate

[12]. A system pursuing the DoF gain operates inthe long-term regime. With long-term constraints

on power, decoding delay, and rate, channel outage can be avoided by choosing a codebook with a

rate lower than the instantaneous capacity. On the other hand, the diversity gain reflects the short-term

performance, where systems have constraints on power, decoding delay, and rates for a finite number of

fading blocks (e.g., a delay-limited system). With a non-zero minimum rate constraint, channel outages

cannot be avoided and are dominated by finite diversity gain,although power allocation and rate adaption

can be performed within the constrained blocks [13]. A system pursuing the diversity gain operates in
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the short-term regime. Both metrics are of equal importance for communication system designs. We are

particularly interested in the spatial diversity gain, which can be straightforwardly combined with other

forms of diversity, e.g., frequency diversity and time diversity. The existing alignment methods in [1],

[2], although achieve the maximum DoF gain, provide only a spatial diversity gain of 1 in the short-term

regime [14]. In this paper, we aim at improving the diversitygain without losing the maximum DoF

gain.

The main idea conceived by STBCs with orthogonal designs is the orthogonality between embedded

symbols [7]. The orthogonality guarantees no SNR loss at thereceiver if the zero-forcing (ZF) method

is used to decouple symbols in one block. The improvement holds for any SNRs. Consequently, full-

diversity is achieved as long as the block code has full-rank. We adopt this idea into the linear alignment

design to protect the desired channels. While the previous alignment methods only focus on linear IA

at unintended receivers without considering the desired channels, our proposed method uses STBC to

enhance the reliability of desired channels without affecting alignment at interferring receivers. This

explains the diversity improvement obtained by the proposed methods. Specifically, since Alamouti

code is the only complex orthogonal design that can achieve rate-one (the maximum possible rate for

orthogonal designs) [7], we embed Alamouti codes into alignment designs. Alamouti code also has

another nice property that its2× 2 matrix structure is closed under matrix multiplication andaddition.

This property is utilized for the IC method in MACs such that the Alamouti structure of the equivalent

channel matrix is preserved after cancelling the interfering users [9]. Enlightened by these facts, we

propose new alignment methods using Alamouti codes.

We motivate the idea in a double-antenna2 × 2 X channel, where two transmitters send symbols

to each of the two receivers. The maximum DoF gain of such a network is known to be4
3
× 2 = 8

3

[2], achievable by symbol extensions over three channel uses and sending two symbols over each

communication direction. Since each transmitter has two antennas and only two symbols are sent to

each receiver, we propose to convey these two symbols in a block with Alamouti structure. Alignment

at interferring receivers is achieved on an equivalent channel matrix with Alamouti structure. Therefore,

the two symbols of the same user are orthogonal to each other and decoupling them does not incur
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SNR loss. Consequently, the maximum transmit diversity gain is obtained. The contributions of this

paper are summarized as

1) In the two-user double-antenna X channel, compared to thelinear alignment method in [2], our

proposed scheme achieves higher diversity gain, i.e., a diversity gain of2 at the same DoF gain8
3
.

Our proposed method only requires local CSIT instead of global CSIT as assumed in [2]. In other

words, each transmitter only needs to know the channel information from itself to both receivers.

2) The proposed method can be extended with the same diversity gain improvement to cellular

networks such as the interferring MAC (IMAC) and the interferring BC (IBC) [15], where inter-

cell interference affects desired communication. The mobile stations (MSs) only require local

channel information. Since the IMAC and the IBC are dual to each other, we use the idea of

duality [11], [16], [17] to transform the alignment solution in the IMAC to the solution in the

IBC. Simulation shows significant bit error rate (BER) performance improvement compared to

the downlink IA method [18].

3) Improvements are not limited to the diversity gain in the high SNR regime. Our proposed

method also demonstrates improvements, compared to the aforementioned existing methods in

the literature, on the achievable ergodic mutual information at any SNR.

IA with diversity benefits is also parallelly studied in [19]–[21] at rate-one (one DoF is communicated

per node pair) for interference channels and X channels. Notably, [19] considers feasibility of IA for

diversity gain in interference channels. Besides interference alignment at unintended receivers, transmit

beamformers are also designed to maximize the signal to interference-plus-noise (SINR). Consequently,

their designs for a three-user interference channel with three antennas at transmitters and two antennas

at receivers bring a diversity gain of3. Note that our paper differs from [19], [20] in the number of DoFs

transmitted per node pair. We allow the network to achieve the maximum DoF gain, while in [19], [20],

each transmitter sends only one DoF to the intended receiver. Naturally, it is more challenging to design

a system transmitting more DoFs. Secondly, our system allows symbol extensions or multiple channel

uses, while their system does not use symbol extensions. Thirdly, the mechanisms of the protection for

the desired link are different. Our paper considers STBCs, while their papers use transmit beamformers.
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The rest of the paper is organized as follows. Section II discusses the channel model and reviews the

alignment scheme in [2]. In Section III, we present the alignment method using Alamouti designs for

X channels. Section IV extends the proposed method to the IMAC and IBC. Simulations are shown in

Section V and conclusions are given in Section VI. Proofs of theorems are provided in the appendices.

Notations: Let a vectora ∈ CN×1 be drawn from a complex vector space with dimensionN × 1.

We denotediag (a) ∈ CN×N as a diagonal matrix whose diagonal entries are copied from the entries in

a. For a matrixA, we useAT, A∗, tr (A), vec(A), and‖A‖ to denote its transpose, Hermitian, trace,

vectorization, and Frobenius norm, respectively. For two matricesA1 andA2, the notationsA1⊗A2 are

used for the Kronecker product. When matricesA1,A2 ∈ C
N×N are drawn from the same matrix space,

we useA1 ≺ A2 to denote their differenceA2 −A1 to be positive definite. The notationCN (0, 1) is

used for a circular symmetric complex Gaussian distribution with zero mean and variance 1.

II. PREVIOUS L INEAR ALIGNMENT IN TWO-USER X CHANNELS

This section explains the X channel model and the previous linear alignment solution for X channels.

Consider anM-antenna2 × 2 MIMO X channel. Two transmitters send symbols to two receivers,

where each node is equipped withM antennas. Each of the two transmitters hasK independent symbols

intended for each of the two receivers. In other words, Transmitterj has symbols[ji]k for Receiveri, where

j, i ∈ {1, 2}, k ∈ {1, 2, . . . , K}. Throughout the paper, we use indicesj, i, k for transmitter, receiver,

and symbol, respectively. The expected power ofs
[ji]
k is E

∣
∣
∣s

[ji]
k

∣
∣
∣

2

= P , whereP is the available power

at the transmitter per channel use. When the system is operated in the long-term regime, a Gaussian

codebook can be used fors[ji]k and each symbol carries one DoF gain. In other words, the bit rate ofs[ji]k

scales likelogP in the high SNR regime. Since each symbol carries one DoF gain, symbol rate is equal

to the DoF gain. We call a transmission method that achieves the maximum DoF gaina maximum-rate

scheme. In the short-term regime,s[ji]k is generated from a finite set of codebooks. With a non-zero

minimum rate constraint, system performance is dominated by the worst codebook. Without loss of

generality, we can assumes[ji]k is uncoded and drawn from fixed constellations with finite cardinality,

e.g., QPSK or 16QAM. Denote the constellation asS and its cardinality as|S|. The bit rate ofs[ji]k is

DRAFT



6

fixed to log |S| at any SNR. For simplicity, we will present the paper by assuming fixed constellation

for s[ji]k to study the achievable diversity gain unless otherwise stated.

To focus on spatial diversity gain, we model channels as Rayleigh block fading. The channel matrix

from Transmitterj to Receiveri is denoted asH[ji] ∈ CM×M . Then, the(m,n)th entry inH[ji], denoted

as h[ji]
mn, is the fading channel coefficient from transmit Antennam to receive Antennan. We model

h
[ji]
mn as drawn from i. i. d.CN (0, 1) distribution. In addition, all channels are assumed block fading

(also known as constant channels), i.e., all channels keep unchanged during the transmission. Let the

transmit duration beT channel uses, and Transmitterj embeds2K symbols, i.e.,s[j1]k ands[j2]k , into a

block X[j] ∈ CT×M . The signal block sampled at Receiveri can be written as

Y[i] = X[1]H[1i] +X[2]H[2i] +W[i], i ∈ {1, 2}. (1)

where Y[i],W[i] ∈ CT×M and W[i] denotes the additive white Gaussian noise (AWGN) matrix at

Receiveri. Each entry inW[i] has i. i. d.CN (0, 1) distribution.

The reason for choosing2 × 2 MIMO X channels is for its simplicity and the existence of linear

alignment using finite signaling dimensions. For a generalJ ×R X channels withmin{J,R} > 2, the

feasibility of linear IA is still open, and so far the best achievable solution is the asymptotical alignment

that requires infinite signaling dimensions to approach themaximum DoF gain [5].

In what follows, we review the linear IA method in [2] for the2×2 MIMO X channels with a change

of notations used in this paper. The alignment achieves the maximum symbol rate of4M
3

symbols/channel

use over the network. The design needs three channel uses forsignaling, i.e.,T = 3. Transmitterj

linearly combines2M symbols (M symbols for each receiver) into the transmitted blockX[j]. In total,

4M symbols are transmitted over the network in3 channels uses, which provides a symbol rate of4M
3

symbols/channel use. The design is based on the vector transform of system equation in (1),

vec
(
Y[i]
)

︸ ︷︷ ︸

y[i]

=
(
H[1i]T ⊗ I3

)

︸ ︷︷ ︸

H
[1i]

vec
(
X[1]

)

︸ ︷︷ ︸

x[1]

+
(
H[2i]T ⊗ I3

)

︸ ︷︷ ︸

H
[2i]

vec
(
X[2]

)

︸ ︷︷ ︸

x[2]

+ vec
(
W[i]

)

︸ ︷︷ ︸

w[i]

, i ∈ {1, 2}, (2)

wherey[i],x[j],w[i] ∈ C3M×1 andH
[ji]

∈ C3M×3M . The equivalent transmitted vectorx[j] is designed

as linear beamforming of symbolss[ji]k

x[j] = v[j1]
[

s
[j1]
1 s

[j1]
2 . . . s

[j1]
M

]T

+ v[j2]
[

s
[j2]
1 s

[j2]
2 . . . s

[j2]
M

]T

, (3)
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wherev[ji] denotes the3M ×M beamforming matrix from Transmitterj to Receiveri. The symbols

s
[11]
k , (k = 1, 2, . . . ,M) are intended for Receiver 1, hence become interference for Receiver 2. The

beamformerv[11] alignss[11]k with s
[21]
k in anM-dimensional subspace at Receiver 2 as

H
[22]

v[21] = H
[12]

v[11].

Similarly, the symbolss[12]k are aligned withs[22]k in anM-dimensional subspace at Receiver 1 as

H
[21]

v[22] = H
[11]

v[12].

Since channel matrices are almost surely full rank, we can immediately obtainv[21] andv[22] as functions

of v[11] andv[12], respectively,

v[21] =
(

H
[22]
)−1

H
[12]

v[11],v[22] =
(

H
[21]
)−1

H
[11]

v[12]. (4)

The remaining beamformersv[11] and v[12] are designed for linear independence between the desired

signal space and the interference subspace as

v[11] = U(IM ⊗E1), v[12] = U(IM ⊗E2), (5)

whereE1 = [1, 1, 0]T, E2 = [1, 0, 1]T, and U ∈ C
3M×3M is denoted as the eigenvector matrix of

(

H
[11]
)−1

H
[21]
(

H
[22]
)−1

H
[12]

whose eigenvalues are arranged asλ1 6= λ2, λ1 6= λ3, λ4 6= λ5, λ4 6=

λ6, . . . , λ3M−2 6= λ3M−1, λ3M−2 6= λ3M . At each receiver, ZF is performed to cancel interference and

separate useful symbols to obtain symbol-by-symbol decodings. From (4) and (5), each transmitter

requires global channel information to design the beamformers. For simplicity, we call this transmission

methodthe JaSh scheme.

III. A LAMOUTI -CODED TRANSMISSION FORX CHANNELS

In this section, we present how Alamouti designs can be used for the linear IA in X channels. While

previous alignment schemes consider the designs of alignment precoders only based on interfering links

and disregard the desired links, we incorporate the idea of Alamouti designs to protect the transmission

of desired symbols, because Alamouti codes achieve full transmit spatial diversity in point-to-point

MIMO systems [6]. Consequently, the proposed alignment method can achieve the same maximum
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symbol-rate as the scheme in [2] but with a higher diversity gain. To use Alamouti codes, we assume

each node in the X channel has two antennas, i.e.,M = 2. We first present the transmission method

in Subsection III-A, then analyze the achievable diversitygain in Subsection III-B. In this section, we

assume that each transmitter has channel information from itself to both receivers, i.e., Transmitterj

only knowsH[j1] andH[j2]. Receivers require global channel information.

A. The transmission method

The maximum rate of the double-antenna2× 2 X channel is2× 4
3
= 8

3
[2]. To achieve this rate, we

design each transmitter to send two symbols to each of the tworeceivers in three channel uses, i.e.,

K = 2 andT = 3. The system diagram is shown in Fig. 1. The transmitted blockX[j] is designed as

X[j] =

√

3

4

















s
[j1]
1 s

[j1]
2

−s
[j1]∗
2 s

[j1]∗
1

0 0









V[j1] +









0 0

−s
[j2]∗
2 s

[j2]∗
1

s
[j2]
1 s

[j2]
2









V[j2]









, j ∈ {1, 2}, (6)

whereV[ji] ∈ C2×2 denotes the beamforming matrix from Transmitterj to Receiveri. Recall that

from (1), the vertical and horizontal dimensions ofX[j] represent temporal and spatial dimensions,

respectively. The symbols to Receiver1 are encoded by Alamouti designs and transmitted in the first

two time slots; whereas the symbols to Receiver2 are encoded by Alamouti designs too, but transmitted

in the last two time slots. Compared to the designs in (3), ourscheme allows each transmitter to send

linear combinations of both the original symbols and their conjugate. The beamforming matrices are

designed to aligns[11]k ands[21]k at Receiver 2, and aligns[12]k ands[22]k at Receiver 1 as shown in Fig. 2.

Specifically, we design the beamforming matrix as the normalized inversion of the cross channel matrix,

V[ji] = c[ji]
(

H[jī]
)−1

, j, i ∈ {1, 2} (7)

where the index̄i denotes the receiver other than Receiveri and the coefficientc[ji] = 1/
∥
∥
∥

(
H[jī]

)−1
∥
∥
∥ is

to satisfy the power constraint1 tr
(
V[ji]V[ji]∗

)
= 1. This power constraint implicitly ensures each entry

1In this paper, we design power to be equally allocated between symbols for two users, because we focus on the diversity gain

performance. Further power allocation to maximize the array gain is possible.
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in V[ji] to be smaller than 1 and avoids high peak powers. The coefficient
√

3
4

in (6) is to normalize

the transmit power toE
s
[ji]
k

tr
(
X[j](X[j])∗

)
= 3P in three channel uses. Inserting (6) into (1), the receive

signal blocks can be expanded as

Y[1] =
∑

j∈{1,2}

√

3

4









s
[j1]
1 s

[j1]
2

−s
[j1]∗
2 s

[j1]∗
1

0 0









H̃[j1] +

√

3

4









0 0

−c[11]s
[12]∗
2 − c[21]s

[22]∗
2 c[11]s

[12]∗
1 + c[21]s

[22]∗
1

c[11]s
[12]
1 + c[21]s

[22]
1 c[11]s

[12]
2 + c[21]s

[22]
2









+W[1],

(8)

Y[2] =
∑

j∈{1,2}

√

3

4









0 0

−s
[j2]∗
2 s

[j2]∗
1

s
[j2]
1 s

[j2]
2









H̃[j2] +

√

3

4









c[12]s
[11]
1 + c[22]s

[21]
1 c[12]s

[11]
2 + c[22]s

[21]
2

−c[12]s
[11]∗
2 − c[22]s

[21]∗
2 c[12]s

[11]∗
1 + c[22]s

[21]∗
1

0 0









+W[2],

(9)

where H̃[ji] = V[ji]H[ji] denotes the equivalent channels that incorporate beamforming matrices. In

the above equations, the first term represents desired symbols, whereas the second term represents

interference. It can be observed that the interference termstill has Alamouti structure, sincec[ji] is a

real number. In other words,s[12]k ands[22]k are aligned at Receiver 1, whiles[11]k ands[21]k are aligned at

Receiver 2. We can further convert the system equations intovector forms to study the receive signal

space. Let us denote thetth row of Y[i] andW[i] be y
[i]
t andw

[i]
t , respectively, wheret ∈ {1, 2, 3}.

Denote the aligned interfering symbols asI
[1]
k = c[11]s

[12]
k + c[21]s

[22]
k , I

[2]
k = c[12]s

[11]
k + c[22]s

[21]
k , and the

(m,n)th entry of H̃[ji] as h̃[ji]
mn. The receiver calculates̃y[i] = vec

([

y
[i]∗
1 , (−1)i

(

y
[i]
2

)T

,y
[i]∗
3

]∗)

, and

Eqns. (8) and (9) can be converted as

ỹ[1] =

√

3

4




















h̃
[11]
11 h̃

[11]
21 h̃

[21]
11 h̃

[21]
21 0 0

−h̃
[11]∗
21 h̃

[11]∗
11 −h̃

[21]∗
21 h̃

[21]∗
11 0 1

0 0 0 0 1 0

h̃
[11]
12 h̃

[11]
22 h̃

[21]
12 h̃

[21]
22 0 0

−h̃
[11]∗
22 h̃

[11]∗
12 −h̃

[21]∗
22 h̃

[21]∗
12 −1 0

0 0 0 0 0 1







































s
[11]
1

s
[11]
2

s
[21]
1

s
[21]
2

I
[1]
1

I
[1]
2




















+ w̃[1] (10)
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at Receiver1, and

ỹ[2] =

√

3

4




















0 0 0 0 1 0

h̃
[12]∗
21 −h̃

[12]∗
11 h̃

[22]∗
21 −h̃

[22]∗
11 0 −1

h̃
[12]
11 h̃

[12]
21 h̃

[22]
11 h̃

[22]
21 0 0

0 0 0 0 0 1

h̃
[12]∗
22 −h̃

[12]∗
12 h̃

[22]∗
22 −h̃

[22]∗
12 1 0

h̃
[12]
12 h̃

[12]
22 h̃

[22]
12 h̃

[22]
22 0 0







































s
[12]
2

s
[12]
1

s
[22]
1

s
[22]
2

I
[2]
1

I
[2]
2




















+ w̃[2] (11)

at Receiver2, whereỹ[i], w̃[i] ∈ C6×1 andw̃[i] = vec
([

w
[i]∗
1 , (−1)iw

[i]T
2 ,w

[i]∗
3

]∗)

denotes the equivalent

AWGN vector at Receiveri. It can be observed that the equivalent channel vectors ofs
[ji]
1 and s

[ji]
2

(correspond to the(2j− 1) and(2j)th columns in the equivalent channel matrix) are orthogonal. Thus,

the desired links are enhanced by embedding Alamouti codes into alignment. The receive signal space

is illustrated in Fig. 2.

In what follows, we explain receiver decoding using IC originally proposed for MAC [9]. Although

IC is essentially ZF, IC avoids high dimensional matrix processing (simplify the computation of matrix

inversion in the projection matrix). Since the designs of the network is symmetric to each receiver, we

focus only on the processing at Receiver 1 to simplify presentation. Processing at Receiver 2 is similar

and has the same performance as that of Receiver 1. Since we only discuss Receiver 1, in what follows,

we will remove receiver indexi from ỹ[i] andw̃[i] to simplify the presentation. The IC has the following

two steps:

1) Step 1: Remove aligned interference: Let the τ th entry of ỹ and w̃ in (10) be ỹτ and w̃τ ,

respectively. Since the equivalent channels for interferenceI [1]1 andI [1]2 are constant in (10), the aligned

interferenceI [1]1 andI [1]2 can be cancelled by
[

ỹ1 ỹ2 + ỹ6 ỹ4 ỹ5 − ỹ3

]T

. (12)
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Let ŷ1 =

[

ỹ1 ỹ2 + ỹ6

]T

, ŷ2 =

[

ỹ4 ỹ5 − ỹ3

]T

, ŵ1 =

[

w̃1 w̃2 + w̃6

]T

, ŵ2 =

[

w̃4 w̃5 − w̃3

]T

. The

resulting equivalent system equation can be simplified as





ŷ1

ŷ2




 =

√

3

4











Ĥ
[11]
1

Ĥ
[11]
2











s
[11]
1

s
[11]
2




+






Ĥ
[21]
1

Ĥ
[21]
2











s
[21]
1

s
[21]
2









+






ŵ1

ŵ2




 , (13)

whereĤ[j1]
n ∈ C2×2 has an Alamouti structure

Ĥ[j1]
n =






h̃
[j1]
1n h̃

[j1]
2n

h̃
[j1]∗
2n −h̃

[j1]∗
1n




 , j ∈ {1, 2}.

2) Step 2: Decouple symbols from different transmitters: The system equation in (13) is similar

to that of a MAC system with two double-antenna transmittersand one double-antenna receiver. The

equivalent noise vector
[
ŵT

1 ŵT
2

]T
is white but does not have identical variances for each entry. IC is

applicable to decouples[11]1 ands[11]2 from s
[21]
1 ands[21]2 . Receiver 1 conducts

Ĥ
[21]∗
1

∥
∥
∥Ĥ

[21]
1

∥
∥
∥

2 ŷ1 −
Ĥ

[21]∗
2

∥
∥
∥Ĥ

[21]
2

∥
∥
∥

2 ŷ2

︸ ︷︷ ︸

ŷ

=

√

3

4





Ĥ

[21]∗
1 Ĥ

[11]
1

∥
∥
∥Ĥ

[21]
1

∥
∥
∥

2 −
Ĥ

[21]∗
2 Ĥ

[11]
2

∥
∥
∥Ĥ

[21]
2

∥
∥
∥

2






︸ ︷︷ ︸

Ĥ






s
[11]
1

s
[11]
2




+

Ĥ
[21]∗
1 ŵ1

∥
∥
∥Ĥ

[21]
1

∥
∥
∥

2 −
Ĥ

[21]∗
2 ŵ2

∥
∥
∥Ĥ

[21]
2

∥
∥
∥

2 .

(14)

Due to the completeness of matrix addition, matrix multiplication, and scalar multiplication of the

Alamouti matrix, the equivalent channel matrix̂H still has the Alamouti structure. Thus,s[11]k can be

decoded by

s
[11]
k = argmax

s
ĥ∗
kŷs, k ∈ {1, 2}, (15)

whereĥk denotes thekth column ofĤ. Note that the decoding complexity is symbol-by-symbol. Similar

to (14), we can decouples[21]1 and s
[21]
2 by calculating Ĥ

[11]∗
1

∥

∥

∥

Ĥ
[11]
1

∥

∥

∥

2 ŷ1 −
Ĥ

[11]∗
2

∥

∥

∥

Ĥ
[11]
2

∥

∥

∥

2 ŷ2. Similar operations can

be performed at Receiver 2 to decodes
[12]
k and s

[22]
k . Therefore, four procedures of symbol-by-symbol

decoding are required at each receiver to recover desired symbols.

B. Performance analysis

This subsection provides diversity gain analysis in the short-term regime. Further, we show that the

proposed scheme does not lose the DoF gain in the long-term regime.
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In a point-to-point channel, diversity gain is defined as theasymptotical slope of BER with respect to

the receive SNR in the high SNR regime. For our considered network model, we define diversity gain

as the asymptotical rate of BER with respect to powerP for the symbol-by-symbol decoding given in

(15). A diversity calculation technique using instantaneous normalized receive SNR was proposed in

[22] for short-term communication systems. For a vector channel with an equivalent system equation

y = hs +w, wherey,h, s,w denote the receive signal vector, the equivalent channel vector, transmit

symbol, and the equivalent noise vector, respectively. Theinstantaneous normalized receive SNR for

symbol s is defined asγ = h∗Σ−1h, whereΣ is the covariance matrix ofw. Diversity gain for the

maximum-likelihood (ML) decoding of this equivalent system equation can be calculated as

d = − lim
ǫ→0

logP (γ < ǫ)

log ǫ
, (16)

whereP (γ < ǫ) denotes the outage probability ofγ. Using this technique, we present the following

theorems.

Theorem 1: In the short-term regime, the JaSh scheme achieves a diversity gain no more than1 for

the 2× 2 double-antenna X channel.

Proof: See Appendix B for proof.

The intuition of the theorem can be explained as follows. Thereceiver observes a six-dimensional

signal space, in which two dimensions are for aligned interference and four dimensions are for desired

symbols. The equivalent channel vectors for desired symbols are randomly distributed in the receive sig-

nal space as shown from (41) (the beamforming vectorsu1,u2 depend on channels ofH[21],H[12],H[22],

while the equivalent channel matrix isH[11] for all desired symbols). By a ZF receiver, the projection to

cancel the aligned interference and decouple the desired symbols incurs SNR loss. Thus, the resulting

diversity gain is 1.

Theorem 2: In the short-term regime, the proposed alignment method with Alamouti designs achieves

a diversity gain of 2 for the2× 2 double-antenna X channel.

Proof: See Appendix D for proof.

This diversity improvement can be intuitively explained asfollows. Compared to the JaSh scheme, two

desired symbols are orthogonal (See (10) and (11)) due to theuse of Alamouti structure at transmitters.
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After removing aligned interference, the system equation in (13) is similar to a MAC with two double-

antenna transmitters and one double-antenna receiver. TheIC uses one receive antenna to decouple

symbols. Then, the receive diversity of the proposed schemeis 1. A transmit diversity gain of 2 is

achievable through Alamouti designs. The total diversity gain is the product of the transmit diversity

and receiver diversity, i.e., it is 2.

Next, we discuss the proposed scheme in the long-term regime. In this case, Gaussian codebooks can

be used fors[ji]k , and transmitters adjust the rate over infinite sets of Gaussian codebooks based on CSIT

and the transmit power. The network can reliably transmit information without outage assuming infinite

coding. The DoF gain is defined as the asymptotical ratio between the bit-rate andlogP [12]. For our

proposed scheme, each symbols
[ji]
k can be viewed as a data stream whose bit-rate can be adjusted

adaptively. The achievable DoF gain is shown in the following theorem.

Theorem 3: In the long-term regime, the proposed alignment method withAlamouti designs achieves

the maximum DoF gain of8
3

for the 2× 2 double-antenna X channel.

Proof: Since interferring symbols are aligned by the design and appear in different temporal

dimensions compared to the desired symbol (At Receiver 1, the desired symbols are received in time

Slots 1 and 2, and interferring symbols are received in time Slots 2 and 3), the desired symbols can be

decoupled from the interferring symbols. Then, it is sufficient to show the linear independence among

the desired symbols. We only show the linear independence atReceiver 1, since the channel matrix of

the four desired symbols has the same structure at Receiver 2. We need to prove that the following

4× 4 matrix has full rank












h̃
[11]
11 h̃

[11]
21 h̃

[21]
11 h̃

[21]
21

−h̃
[11]∗
21 h̃

[11]∗
11 −h̃

[21]∗
21 h̃

[21]∗
11

h̃
[11]
12 h̃

[11]
22 h̃

[21]
12 h̃

[21]
22

−h̃
[11]∗
22 h̃

[11]∗
12 −h̃

[21]∗
22 h̃

[21]∗
12













. (17)

This is straightforward since the determinant of the above matrix is a polynomial function of eight

entriesh̃[j1]
mn with j,m, n ∈ {1, 2}. Recall that̃h[11]

mn depends on channel matricesH[11] andH[12], while

h̃
[21]
mn depends onH[21] andH[22], with all channel matrices being independently drawn. The equivalent
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channels̃h[11]
mn are independent from̃h[21]

mn . Then, the determinant polynomial is either 0 or non-zero for

all values ofh̃[j1]
mn with probability 1 [23]. Whenh̃[11]

11 = h̃
[21]
12 = 1 and h̃

[11]
21 = h̃

[11]
12 = h̃

[11]
22 = h̃

[21]
11 =

h̃
[21]
21 = h̃

[21]
22 = 0, the matrix in (17) becomes an identity matrix and full rank.Thus, the determinant is

not a zero polynomial and the matrix in (17) is full rank with probability 1.

For each data streams[ji]k , a rate that grows linearly withlogP can be reliably supported. Since8

streams are sent over the network in3 channel uses, the proposed scheme achieves the DoF gain of8
3
.

The outerbound on the DoF gain of the2× 2 double-antenna X channel was characterized in [2] to be

8
3
. Therefore, the proposed scheme achieves the maximum DoF gain.

IV. A LAMOUTI -CODED TRANSMISSION FORCELLULAR NETWORKS

In this section, we discuss two types of cellular networks: the IMAC and IBC networks [15], where

interference from a neighboring cell degrades in-cell communication. Again, the use of Alamouti codes

together with IA can bring the maximum transmission rate anda diversity gain of2. We explain the

network models and show the maximum DoF gain in Subsection IV-A. Since the X channel is a special

case of the IMAC, we briefly describe its transmission in Subsection IV-B. Transmission in the IBC

is more challenging compared to the IMAC because of the required designs of imperfect alignment.

Description for alignment in IBC is contained in SubsectionIV-C. Regarding channel information, each

MS requires only the knowledge of the interferring link connected to itself, and each base station (BS)

needs channel information within its cell as well as the knowledge of its MSs’ beamformers.

A. The IMAC and IBC network models

Consider a two-cell IMAC as illustrated in the left side of Fig. 3. In each cell, one BS serves two

MSs. All nodes are equipped with two antennas. In the IMAC, wecan use the receiver’s index for

the cell index, since there is only one receiver in each cell.In Cell i, transmitterj has independent

symbolss[ji]k to send to Receiveri, wherei, j ∈ {1, 2}. The desired links are described by channel matrix

H[ji], whereH[ji] ∈ C2×2. Due to the simultaneous transmission, Cell 1 creates co-channel interference

to Cell 2, and similarly does Cell 2 to Cell 1. The interferring link from Transmitterj to Cell i is

described by channel matrixI[ji], whereI[ji] ∈ C2×2. We assume that all entries in channel matrices
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have i. i. d.CN (0, 1) distribution, and remain constant during the transmission. The reciprocal channel

of the IMAC is an IBC, where the directions of communication are reversed. Contrary to the IMAC,

in the IBC, we can use the transmitter’s index for the cell index, since there is only one transmitter

in each cell. Transmitterj sends independent symbolss[ji]k to Receiveri in Cell j through linkH[ji],

and simultaneously interferes Useri in the other Cell̄j through linkI[j̄i]. We can use similar notations

as that of the IMAC for the IBC with an exchange of the cell and user indices. The IBC and adopted

notations are shown in the right side of Fig. 3.

IA is considered for the IMAC in [15] and the IBC in [18], [24].These two channel models are

introduced for frequency selective channels in [15], wherethe duality between these two channels is

also demonstrated. Transmission in a two-cell IBC is studied in [24] with the number of BS antennas

larger than the number of receive antennas. Our paper considers a MIMO setting where all nodes have

equal number of antennas. First, we show the outerbound on the DoF gains. In the proof, we assume

that s[ji]k operates in the long-term region and carries one DoF gain.

Theorem 4: For a two-cell IBC with two users in each cell and two antennasat each node, letd[ji]

be the DoF gain sent from Transmitterj to Receiveri in Cell j. The DoF gain regionDIBC is

d[11] + d[21] + d[22] ≤ 2, (18)

d[12] + d[21] + d[22] ≤ 2, (19)

d[21] + d[11] + d[12] ≤ 2, (20)

d[22] + d[11] + d[12] ≤ 2. (21)

Proof: The proof is similar to that of the outerbound on X channels [2]. Since the network is

symmetric for each cell and each receiver, we only show inequality (18) and the other three inequal-

ities hold by similar arguments. We argue that the DoF gain region max
DIBC

(
d[11] + d[21] + d[22]

)
can be

outerbounded by those of two channels illustrated in Fig. 4.The first outerbound is a modified IBC

without Receiver 2 in Cell 1. BS1 sends messages only to Receiver 1. Obviously, any reliable coding

schemes in the IBC can be used reliably in the modified IBC. Then, let DIBC′

denote the DoF gain

regions of the modified IBC, we havemax
DIBC

(
d[11] + d[21] + d[22]

)
≤ max

DIBC′

(
d[11] + d[21] + d[22]

)
. We can
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further outerbound the DoF region of the modified IBC using the Z channel by allowing receivers in

Cell 2 to cooperate (right side of Fig. 4). This is because anyreliable coding schemes for the modified

IBC can be used in the Z channel by adding interference at receivers in Cell 2 and decoding as if

R3 and R4 are distributed. Let the DoF gain region of the Z channel beDZ. From Corollary 1 in

[2], we havemax
DZ

(
d[11] + d[21] + d[22]

)
≤ 2, since both BS2 and R1 have two antennas. It follows

max
DIBC

(
d[11] + d[21] + d[22]

)
≤ max

DZ

(
d[11] + d[21] + d[22]

)
≤ 2.

Due to the duality between the IMAC and the IBC, the same DoF gain region holds for the IMAC.

Combing (18), (19), (20), (21) results ind[11] + d[12] + d[21] + d[22] ≤ 8
3
.

B. Transmission methods in the IMAC

The maximum rate for the considered IMAC is8
3

symbols per channel use. Noticing that the double-

antenna2 × 2 X channel is a special scenario of the two-cell IMAC whenI[ji] = H[jī]. Then, it

is straightforward to use the method we have proposed for theX channel for the two-cell IMAC.

Specifically, two symbolsk ∈ {1, 2}, encoded in Alamouti codes, are transmitted in three channel uses.

Transmission in Cell1 occurs in the first two time slots, while transmission in Cell2 occurs in the last

two time slots. For Transmitterj in Cell i, the normalized inversion ofI[ji] is used as the alignment

precoder. Then, four interferring symbols are aligned intotwo dimensions. Since the X channel is a

special case of the considered IMAC, a diversity gain of 2 is achievable at the maximum rate of8
3

symbols per channel use. Diversity analysis for the IMAC using the proposed method is similar to

Theorem 3.

C. Transmission methods in the IBC

In what follows, we discuss the extension to the two-cell IBC. By duality of reciprocal channels, the

maximum rate of the two-cell IBC is also8
3

symbols per channel use. Let the transmission durationT be

three channel uses. To achieve the maximum rate, each transmitter sends two symbols to each receiver.

In total, 8 symbols are transmitted over the network in three channel uses, which amounts to the rate

of 8
3

symbols per channel use. Since each receiver is equipped with two antennas and receives in three

time slots, a six-dimensional signal space is created. Eachreceiver intends to decode two symbols and
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leaves the remaining four-dimensional subspace for six interfering symbols (two symbols are for the

other receiver in the same cell, i.e., intra-cell interference, and four symbols are from the other cell, i.e.,

inter-cell interference). Thus, we need an alignment design that aligns six symbols in four-dimensional

subspace. Such an imperfect alignment design cannot be trivially extended from the proposed method

for X channels, where interference is completely aligned.

We use the method constructing a dual system from the original system as proposed in [11]. The

methodology has been used to design the dual Alamouti codes and the downlink IC method, where

receiver processing is totally blind of channel information. The constructed scheme can bring to the

dual system the same diversity gain as in the original system. We use the transmission method in the

IMAC as the original system to derive its dual system. The derivation is involved, and we directly

present the transmission method in the two-cell IBC. Note that a diversity gain of 2 is achievable for

the dual system, following the definition of dual systems with ZF designs (Definition 1 and Proposition

1 in [11]).

The system diagram is shown in Fig. 5. Let the transmit block be X[j], whereX[j] ∈ C
3×2. The

receive block at Receiveri in Cell j can be written as

Y[ji] = X[j]H[ji] +X[j̄]I[ji] +W[ji], (22)

whereW[ji] ∈ C3×2 denotes the AWGN matrix. Different from the IMAC, we use the inversion of the

interferring link as the receive beamforming matrix

Y[ji]
(
I[ji]
)−1

︸ ︷︷ ︸

Ỹ[ji]

= X[j]H[ji]
(
I[ji]
)−1

︸ ︷︷ ︸

H̃[ji]

+X[j̄] +W[ji]
(
I[ji]
)−1

︸ ︷︷ ︸

W̃[ji]

. (23)

By such receive beamforming matrices, the equivalent interferring links are identical at both receivers in

one cell. This helps the design of alignment precoder, as will be explained later. The transmitter design

is based on the equivalent channel matrixH̃[ji] ∈ C2×2. Each transmitter collects two symbolss[ji]k

(k ∈ {1, 2}), modulated by PSK constellations, for each receiver in thecell. The symbols are encoded
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using Alamouti codes followed by linear precoding as





x
[j]
11 x

[j]
12

x
[j]
21 x

[j]
22




 =






s
[j1]
1 s

[j1]
2

−s
[j1]∗
2 s

[j1]∗
1






︸ ︷︷ ︸

S[j1]

P[j1] +






s
[j2]
1 s

[j2]
2

−s
[j2]∗
2 s

[j2]∗
1






︸ ︷︷ ︸

S[j2]

P[j2], (24)

whereP[ji] ∈ C2×2 are the precoding matrix for Receiveri in Cell j. We use the precoding matrices

from the downlink IC method [11]. Let the(m,n)the entry ofH̃[ji] be h̃[ji]
mn. The matrixP[ji] is designed

as

P[ji] = α[ji]





Ĥ

[ji]∗
1 Ĥ

[jī]
1

∥
∥
∥h̃

[jī]
1

∥
∥
∥

2 −
Ĥ

[ji]∗
2 Ĥ

[jī]
2

∥
∥
∥h̃

[jī]
2

∥
∥
∥

2












h̃
[jī]∗
11

∥

∥

∥
h̃
[jī]
1

∥

∥

∥

2 −
h̃
[jī]∗
21

∥

∥

∥
h̃
[jī]
2

∥

∥

∥

2

h̃
[jī]∗
12

∥

∥

∥
h̃
[jī]
1

∥

∥

∥

2 −
h̃
[jī]∗
22

∥

∥

∥
h̃
[jī]
2

∥

∥

∥

2






, (25)

whereα[ji] ∈ R denotes a power control parameter for Receiveri in Cell j, h̃[ji]
m denotes themth row

in H̃[ji], and

Ĥ[ji]
m =






h̃
[ji]
m1 h̃

[ji]
m2

−h̃
[ji]∗
m2 h̃

[ji]∗
m1




 , m ∈ {1, 2}. (26)

For the details behind the derivation of the designs in (25),the interested reader is referred to [11].

Here, we only explain how alignment is created. The symbolsx
[ji]
tm in (24) are rearranged to generate

the transmit blockX[j],

X[1] =









x
[1]
11 x

[1]
12

x
[1]
21 x

[1]
22

x
[1]∗
22 −x

[1]∗
21









, X[2] =









−x
[2]∗
22 x

[2]∗
21

x
[2]
21 x

[2]
22

x
[2]
11 x

[2]
12









. (27)

The four entries in the left-side of (24) carry four independent symbols. Recall that the vertical dimension

of X[j] refers to the temporal dimension. From (27), Transmitter1 sends four symbols in the first two

time slots. In time Slot3, redundant symbols are transmitted to make the submatrix intime Slots2 and

3 have theswapped Alamouti structure, i.e.,





a b

b∗ −a∗




 , (28)

which can be obtained by swapping the columns of an Alamouti matrix. Transmitter2 sends four

symbols in the last two time slots. In time Slot1, redundant symbols are transmitted to make the
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submatrix in time Slots1 and 2 also have the swapped Alamouti structure. It will be shown that the

swapped Alamouti structure aligns the interference as well.

Let us further discuss receiver operations. Let the(t, n)th entry ofỸ[ji] in (23) beỹ[ji]tn . The receivers

in Cell 1 extract useful symbols using signals received in the first two time slots as
[

ŷ
[1i]
1 ŷ

[1i]
2

]

=

[

ỹ
[1i]
11 + ỹ

[1i]∗
22 ỹ

[1i]
12 − ỹ

[1i]∗
21

]

, i ∈ {1, 2}. (29)

In Cell 2, receivers calculate

[

ŷ
[2i]
1 ŷ

[2i]
2

]

=

[

ỹ
[2i]
31 + ỹ

[2i]∗
22 ỹ

[2i]
32 − ỹ

[2i]∗
21

]

, i ∈ {1, 2} using signals

received in the last two time slots. Decoding of symbols
[ji]
k is performed bymax

s
ŷ
[ji]
k s∗. The simple

receiver operations are due to the precoder designs in (24).From the receiver operations in (23), (29),

and the decoding, only the knowledge ofI[ji] is required at Receiveri in Cell j. Transmitter operations

are based oñH[ji]. Then, the knowledge ofH[ji] andI[ji] for i ∈ {1, 2} is required at Transmitterj.

1) Alignment pattern: In what follows, we explain how the proposed method aligns six symbols

in a four-dimensional subspace and how Alamouti designs areused to protect desired symbols. First,

we introduce some intermediate variables to simplify notations. Note that from (26) and (24), both the

matricesĤ[ji]
m andS[ji] have the Alamouti structure. Since matrix multiplication and addition are closed

for two Alamouti matrices, we can definec[ji]k ∈ C






c
[ji]
1 c

[ji]
2

−c
[ji]∗
2 c

[ji]∗
1




 = α[ji]S[ji]





Ĥ

[ji]∗
1 Ĥ

[jī]
1

∥
∥
∥h̃

[jī]
1

∥
∥
∥

2 −
Ĥ

[ji]∗
2 Ĥ

[jī]
2

∥
∥
∥h̃

[jī]
2

∥
∥
∥

2




 (30)
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as the rotated symbols ofs[ji]k . Without loss of generality, we only show alignment at receivers in Cell

1. Using c[ji]k , we can expand the receive signals of Receiver 1 in (23) usingc
[ji]
k as






ỹ
[11]
11 ỹ

[11]
12

ỹ
[11]
21 ỹ

[11]
22




 =







∑

i=1,2






c
[1i]
1 c

[1i]
2

−c
[1i]∗
2 c

[1i]∗
1












h̃
[1ī]∗
11

∥

∥

∥
h̃
[1ī]
1

∥

∥

∥

2 −
h̃
[1ī]∗
21

∥

∥

∥
h̃
[1ī]
2

∥

∥

∥

2

h̃
[1ī]∗
12

∥

∥

∥
h̃
[1ī]
1

∥

∥

∥

2 −
h̃
[1ī]∗
22

∥

∥

∥
h̃
[1ī]
2

∥

∥

∥

2


















h̃
[11]
11 h̃

[11]
12

h̃
[11]
21 h̃

[11]
22




+






−x
[2]∗
22 x

[2]∗
21

x
[2]
21 x

[2]
22




+ W̃

[1i]
1

=






c
[11]
1 c

[11]
2

−c
[11]∗
2 c

[11]∗
1












h̃
[12]∗
11 h̃

[11]
11

∥

∥

∥
h̃
[12]
1

∥

∥

∥

2 −
h̃
[12]∗
21 h̃

[11]
21

∥

∥

∥
h̃
[12]
2

∥

∥

∥

2

h̃
[12]∗
11 h̃

[11]
12

∥

∥

∥
h̃
[12]
1

∥

∥

∥

2 −
h̃
[12]∗
21 h̃

[11]
22

∥

∥

∥
h̃
[12]
2

∥

∥

∥

2

h̃
[12]∗
12 h̃

[11]
11

∥

∥

∥
h̃
[12]
1

∥

∥

∥

2 −
h̃
[12]∗
22 h̃

[11]
21

∥

∥

∥
h̃
[12]
2

∥

∥

∥

2

h̃
[12]∗
12 h̃

[11]
12

∥

∥

∥
h̃
[12]
1

∥

∥

∥

2 −
h̃
[12]∗
22 h̃

[11]
22

∥

∥

∥
h̃
[12]
2

∥

∥

∥

2







︸ ︷︷ ︸

H[11]

+






c
[12]
1 c

[12]
2

−c
[12]∗
2 c

[12]∗
1













∣

∣

∣
h̃
[11]
11

∣

∣

∣

2

∥

∥

∥
h̃
[11]
1

∥

∥

∥

2 −

∣

∣

∣
h̃
[11]
21

∣

∣

∣

2

∥

∥

∥
h̃
[11]
2

∥

∥

∥

2

h̃
[11]∗
11 h̃

[11]
12

∥

∥

∥
h̃
[11]
1

∥

∥

∥

2 −
h̃
[11]∗
21 h̃

[11]
22

∥

∥

∥
h̃
[11]
2

∥

∥

∥

2

h̃
[11]∗
12 h̃

[11]
11

∥

∥

∥
h̃
[11]
1

∥

∥

∥

2 −
h̃
[11]∗
22 h̃

[11]
21

∥

∥

∥
h̃
[11]
2

∥

∥

∥

2

∣

∣

∣
h̃
[11]
12

∣

∣

∣

2

∥

∥

∥
h̃
[11]
1

∥

∥

∥

2 −

∣

∣

∣
h̃
[11]
22

∣

∣

∣

2

∥

∥

∥
h̃
[11]
2

∥

∥

∥

2








︸ ︷︷ ︸

H[12]

+






−x
[2]∗
22 x

[2]∗
21

x
[2]
21 x

[2]
22




+ W̃

[1i]
1 . (31)

The matricesH[11] ∈ C2×2 and H[12] ∈ C2×2 are the equivalent channel matrices forc
[11]
k and c

[12]
k ,

respectively. Let the(m,n)th entry ofH[11] andH[12] be h[11]
mn andh[12]

mn , respectively. It can be verified

that

h
[12]
11 + h

[12]∗
22 =

∣
∣
∣h̃

[11]
11

∣
∣
∣

2

∥
∥
∥h̃

[11]
1

∥
∥
∥

2 −

∣
∣
∣h̃

[11]
21

∣
∣
∣

2

∥
∥
∥h̃

[11]
2

∥
∥
∥

2 +






∣
∣
∣h̃

[11]
12

∣
∣
∣

2

∥
∥
∥h̃

[11]
1

∥
∥
∥

2 −

∣
∣
∣h̃

[11]
22

∣
∣
∣

2

∥
∥
∥h̃

[11]
2

∥
∥
∥

2






∗

=

∣
∣
∣h̃

[11]
11

∣
∣
∣

2

+

∣
∣
∣h̃

[11]
12

∣
∣
∣

2

∥
∥
∥h̃

[11]
1

∥
∥
∥

2 −

∣
∣
∣h̃

[11]
21

∣
∣
∣

2

+

∣
∣
∣h̃

[11]
22

∣
∣
∣

2

∥
∥
∥h̃

[11]
2

∥
∥
∥

2 = 0

h
[12]
12 − h

[12]∗
21 =

h̃
[11]∗
11 h̃

[11]
12

∥
∥
∥h̃

[11]
1

∥
∥
∥

2 −
h̃
[11]∗
21 h̃

[11]
22

∥
∥
∥h̃

[11]
2

∥
∥
∥

2 −





h̃
[11]∗
12 h̃

[11]
11

∥
∥
∥h̃

[11]
1

∥
∥
∥

2 −
h̃
[11]∗
22 h̃

[11]
21

∥
∥
∥h̃

[11]
2

∥
∥
∥

2






∗

= 0.

Thus, the matrixH[12] has the swapped Alamouti structure that has been defined in (28). Now, let

us explain the use of the swapped Alamouti structure to pad the transmit block in (27). From (31),

all interferring symbols are carried inc[12]1 , c
[12]
2 , x

[2]
11 , x

[2]
12 , x

[2]
21, and x

[2]
22 . Note that in (31), the rotated

symbolsc[12]1 and c
[12]
2 have the Alamouti structure. It can be verified that multiplying the Alamouti

matrix containingc[12]1 and c
[12]
2 with the matrixH[12] still has the swapped Alamouti structure. Also

from (31), the interfering symbols from Cell 2, i.e.,x[2]
21 , x

[2]
22 , are placed in a matrix having the swapped

Alamouti structure (it is created by the padding in (27)). Therefore, all six interfering symbols are

aligned on the swapped Alamouti structure, which occupies only a two-dimensional subspace in the

four-dimensional signal space (we only consider two receive time slots). Adding receive signals in time
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Slot 3 at most expands the dimension of the interference subspace from two to four. Then, we are able

to align six interferring symbols in a four-dimensional subspace. This intuitively explains the alignment

pattern. To see a complete picture of the receive signal space, we can expand the receive signals in time

Slot 3 in (23) usingc[ji]k as

[

ỹ
[11]
31 ỹ

[11]
32

]

=

[

x
[1]∗
22 −x

[1]∗
21

]






h̃
[11]
11 h̃

[11]
12

h̃
[11]
21 h̃

[11]
22




+

[

x2
11 x2

12

]

+ w̃
[11]
2

=

[

c
[11]
2 −c

[11]
1

]







h̃
[12]
21

∥

∥

∥
h̃
[12]
2

∥

∥

∥

2

h̃
[12]
11

∥

∥

∥
h̃
[12]
1

∥

∥

∥

2

h̃
[12]
22

∥

∥

∥
h̃
[12]
2

∥

∥

∥

2

h̃
[12]
12

∥

∥

∥
h̃
[12]
1

∥

∥

∥

2












h̃
[11]
11 h̃

[11]
12

h̃
[11]
21 h̃

[11]
22






︸ ︷︷ ︸

H
[11]

+

[

c
[12]
2 −c

[12]
1

]







h̃
[11]
21

∥

∥

∥
h̃
[11]
2

∥

∥

∥

2

h̃
[11]
11

∥

∥

∥
h̃
[11]
1

∥

∥

∥

2

h̃
[11]
22

∥

∥

∥
h̃
[11]
2

∥

∥

∥

2

h̃
[11]
12

∥

∥

∥
h̃
[11]
1

∥

∥

∥

2












h̃
[11]
11 h̃

[11]
12

h̃
[11]
21 h̃

[11]
22






︸ ︷︷ ︸

H
[12]

+

[

x
[2]
11 x

[2]
12

]

+ w̃
[11]
2 (32)

Denote the(m,n)th entry ofH
[11]

andH
[12]

ash
[11]

mn andh
[12]

mn , respectively. Combining (31) and (32),

we can obtain the equivalent vector system equation at Receiver 1 as



















ỹ
[11]
11

ỹ
[11]
12

ỹ
[11]∗
21

ỹ
[11]∗
22

ỹ
[11]
31

ỹ
[11]
32




















=




















h
[11]
11 h

[11]
21

h
[11]
12 h

[11]
22

h
[11]∗
21 −h

[11]∗
11

h
[11]∗
22 −h

[11]∗
12

−h
[11]

21 h
[11]

11

−h
[11]

22 h
[11]

12

























c
[11]
1

c
[11]
2




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












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

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11 h
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21
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21 −h
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21 −h

[12]∗
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[12]
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[12]
21
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21

[12] h
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11
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22 h
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11

























c
[12]
1
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2




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


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


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
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
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


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
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





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


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

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x
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
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



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+


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
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

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
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
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
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
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h
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−h
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




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

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


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c
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1
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2




+




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
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

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

x
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21
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x
[2]
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x
[2]
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





















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+




















w̃
[11]
11

w̃
[11]
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w̃
[11]∗
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w̃
[11]∗
22
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[11]
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



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
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From (33), the interfering symbols to Receiver1
(

c
[12]
1 , c

[12]
2 , x

[2]
11 , x

[2]
12, x

[2]
21 , x

[2]
22

)

are aligned in a four-

dimensional subspace spanned by the columns ofQ. The two desired symbolsc[11]1 andc[11]2 are located

in the remaining two-dimensional subspace. The alignment pattern is illustrated in Fig. 6. To cancel the

aligned interference, the receiver discardsỹ
[11]
31 and ỹ[11]32 , then conducts the calculation in (29), i.e.,






ỹ
[11]
11 + ỹ

[11]∗
22

ỹ
[11]
12 − ỹ

[11]∗
21




 =






h
[11]
11 + h

[11]∗
22 h

[11]
21 − h

[11]∗
12

h
[11]
12 − h

[11]∗
21 h

[11]
22 + h

[11]∗
11











c
[11]
1

c
[11]
2




+






w̃
[11]
11 + w̃

[11]∗
22

w̃
[11]
12 − w̃

[11]∗
21




 . (34)

Two desired symbols occupy only a two-dimensional subspacewith the equivalent channel matrix having

the Alamouti structure2. Then, the desired symbols are protected by orthogonal channel vectors due to

the Alamouti design.

To summarize the key elements of alignment at Receiver1 in Cell 1, the precoding matrix used in

(25) creates an equivalent channel matrixH[12] with the swapped Alamouti structure for the interferring

symbols[12]k . Transmitter2 aligns to this structure by padding the transmit blockX[2] in time Slot1. By

using the inversion of the interfering link, six interfering symbolss[12]k , s[21]k , ands[22]k are able to align

in a four-dimensional subspace at both receivers in one cell. It can be verified that such alignment also

occurs in Cell2. Specifically, alignment is created by the swapped Alamoutistructure in time Slots2

and3 of X[1].

V. SIMULATION RESULTS

In this section, we compare the proposed methods with related transmission schemes in both the

short-term regime and the long-term regime. Throughout this section, the horizontal axis in all figures

represents SNR measured in dB. Since the noises are normalized and the transmit power of each user

is P , the SNR of the network isP .

Simulations in the short-term regime are performed for two network models. We simulate the average

BER performance of the proposed methods. Since the diversity gain is not changed by using any channel

codes, we simulate an uncoded system for simplicity. The vertical axis represents the average BER. It is

2In addition, the rotation in (30) diagonalizes the equivalent channel matrix in (34), thus resulting in symbol-by-symbol decoding. For

more details, the interested reader is referred to Proposition 2 in [11].
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averaged over all communication directions. The first groupof simulations shows the BER performance

of the proposed alignment method using Alamouti designs in Xchannels. For comparison, the JaSh

scheme [2] is included. In addition, we have a new modified JaSh scheme that has potential for diversity

improvement. The modified JaSh scheme uses Alamouti codes ontop of the JaSh scheme. Recall that

the JaSh scheme creates a2 × 2 point-to-point channel after removing the aligned interference and

decoupling the symbols from the other transmitter. The modified JaSh scheme uses an Alamouti code

for the 2 × 2 channel to improve diversity while providing only half of the symbol rate of the JaSh

scheme. Uncoded symbolss[ji]k are independently generated from a finite constellation. Toachieve the

same bit rate, different modulations are used for the three methods in Fig. 7. We use BPSK, BPSK,

and QPSK modulations for the proposed scheme, the JaSh scheme, and the modified JaSh scheme,

respectively, to achieve2/3 bits per channel use per pair node (solid curves in Fig. 7). Also, to include

comparison at another bit rate, QPSK, QPSK, and 16PSK modulations are used for the proposed scheme,

the JaSh scheme, and the modified JaSh scheme, respectively,to achieve4/3 bits per channel use per

pair node (dashed curves in Fig. 7).

Our proposed method achieves a diversity gain of 2, whereas the JaSh scheme achieves a diversity

gain of 1. These results verify the analysis in Subsection III-B. It can be observed that the diversity

benefits bring more than10 dB gain at BER=10−3 for both transmission rates. The modified JaSh

scheme cannot bring diversity improvement: only a diversity gain of 1 is observed from Fig. 7. This

is because the2× 2 diagonal channel after removing aligned interference and decoupling symbols has

correlated diagonal entries. The sum of the achievable SNRson each channel is upperbounded by a

term providing a diversity of only 1. The proof for the diversity gain of the modified JaSh scheme is

provided in Appendix C. Consequently, simply using Alamouti codes on top of the JaSh scheme cannot

bring diversity improvement.

The second group of simulations compares the extended scheme with the downlink IA [18] in the

two-cell IBC. Note that in our setting, each node has two antennas and two symbols are transmitted to

each receiver; while in [18], each node has one antenna and one symbol is transmitted to each receiver.

We extend the downlink IA method in [18] to our double-antenna setting to achieve the same symbol
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rate. The system diagram is shown in Fig. 8. The BS uses two transmit precoders: a random precoder

P and a ZF precoderB[j] to null out intra-cell interference. Each receiver utilizes a receive beamformer

u[ji] to zero-force inter-cell interference. Specifically, the BS sends two symbols to each receiver in three

symbol extensions, which creates a six-dimensional signalspace. The receive beamformeru[ji] ∈ C2×6

rejects four interferring symbols from the other cell by zero-forcing the equivalent channel matrix

(I3 ⊗ I[ji])P and accepts two desired symbols. The entries in the random precoderP ∈ C6×4 are

assumed i. i. d.CN (0, 1) distributed. The ZF precoderB ∈ C4×4 cancels the intra-cell interference by

ZF precoding over the equivalent channelsu[ji](I3⊗ I[ji])P. For channel information requirements, both

alignment methods need the knowledge of the interferring link at the receivers, and the transmitters

require channel information within each cell in addition tothe knowledge of the receive beamformers.

Since both alignment methods have the same symbol rate, BPSKis used to achieve2/3 bits per channel

use per receiver (solid curves in Fig. 9), and QPSK is used to achieve4/3 bits per channel use per

receiver (dashed curves in Fig. 9).

Fig. 9 exhibits the comparison. Our proposed method can achieve a diversity gain of 2, which provides

an approximate array gain of20 dB atBER = 10−2, compared to the downlink IA method.

In the long-term regime, we simulate and compare the achievable ergodic mutual information for the

related methods. An i. i. d. Gaussian codebook is used for each symbols[ji]k . The vertical axis represents

the sum rate (measured in bits per channel use) over all communication directions. Figs. 10 and 11 show

the ergodic mutual information for the X channel and the IBC,respectively. We can first observe that

the proposed method achieves the same DoF gain as the JaSh scheme in Fig. 10, and as the downlink IA

method in Fig. 11. Additionally, in the entire SNR regime, our proposed method has a better SNR offset

compared to the previous methods. For example, in Fig. 10, the proposed method outperforms the JaSh

scheme by approximately3 bits/channel use atSNR = 25 dB; in Fig. 11, the proposed method enjoys

approximately8 bits/channel use gain over the downlink IA method atSNR = 25 dB. Similar gains

are also achieved in the low SNR range. For all compared methods, a ZF receiver is used to cancel the

aligned interference as well as decouple the desired signals. Since our proposed method incorporates

orthogonal designs between the two symbols from the same user, a ZF receiver does not incur SNR
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loss when separating these two symbols. On the other hand, for the previous proposed methods, such

an SNR loss occurs during the symbol separation. This intuitively explains the SNR gain in the entire

SNR range.

VI. CONCLUSIONS

In this paper, we have proposed a transmission scheme that achieves the maximum symbol-rate, i.e.,

2
3

from node-to-node, with high reliability for the double-antenna2 × 2 X channel. The alignment

scheme incorporates Alamouti designs before using the normalized inversion of the cross channel

as the transmit beamformer to align symbols at unintended receivers. Each receiver removes aligned

interference followed by symbol decoupling using IC. Consequently, a symbol-by-symbol decoding

complexity is achieved at both receivers. Both simulation and analysis demonstrate a diversity gain of 2

for the symbol-by-symbol decoding in the proposed scheme. This implies that a diversity gain of higher

than 1 is achievable in the short-term regime, yet simultaneously with the maximum DoF gain in the

long-term regime. The proposed transmission scheme has also been extended to two cellular networks,

the IMAC and IBC, to bring the maximum-rate transmission with a diversity gain of 2. Significant

BER performance improvement is observed through simulation compared to the downlink IA method.

Further extension to the two-user X channels with more than 2antennas at each node is also doable by

sending multiple groups of Alamouti codes for each communication direction.

We have also identified that designing alignment for diversity is not straightforward. Using STBCs

on top of the previous alignment method in [2] can neither bring diversity improvements nor maintain

the maximum DoF gain for the two-user X channel. This calls for an optimization of existing alignment

methods to jointly consider the DoF gain and the diversity gain.

Note that the considered network has 2 antennas at each node.The achievable diversity is upper-

bounded by the corresponding point-to-point channel. In other words, the maximum diversity gain for

the considered network is2 × 2 = 4. Our proposed scheme only achieves the full transmit diversity,

whereas the receive diversity gain is only 1. We do not claim that the proposed scheme is optimal in

terms of the diversity gain. Since our proposed scheme separates the desired symbols by ZF, it is possible

to further improve the receive diversity by a joint-decoding of 4 desired symbols at each receiver. Since
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the proposed method needs only four symbol-by-symbol decodings, the expense of the joint-decoding

algorithm is the increased decoding complexity. We conjecture that such a joint decoding will result in

a diversity gain of 4.

To embed Alamouti codes into alignment, the network is required to have infinitely many alignment

modes, because Alamouti codes are rotationally invariant.The discussed network models have redundant

transmit dimensions. Our design uses a normalized inversion of the cross channels (See Eq.(7)) to

constrain the interference subspace to be an identity matrix. In general, the interference subspace can

be arbitrarily chosen, thus generating infinitely many alignment modes. Unfortunately, some interference

networks, e.g., the interference channels without symbol extensions, have finitely many alignment modes

at the maximum DoF gain. Thus, it is not clear how to improve their diversity gains by utilizing

orthogonal designs.
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APPENDIX A

TWO USEFUL LEMMAS

To prove Theorem 1, we need some lemmas.

Lemma 1: Let the entries ofF ∈ C2×2 be i. i. d.CN (0, 1) distributed. The following instantaneous

normalized receive SNR

γ =
1

tr (F−1(F−1)∗)
(35)

provides diversity gain 1.

Proof: Let the singular values ofF be λ1 andλ2 such thatλ1 ≥ λ2. Eqn. (35) can be expanded

as

γ =
1

tr (F−1(F−1)∗)
=

1
1
λ2
1
+ 1

λ2
2

<
1
1
λ2
2

= λ2
2.

Since the smaller singular valueλ2 carries diversity 1 only [25], the diversity gain ofγ is upperbounded

by 1. Further, we can lowerboundγ as

γ =
1

1
λ2
1
+ 1

λ2
2

>
1

1
λ2
2
+ 1

λ2
2

=
λ2
2

2
.

Thus, the instantaneous normalized receive SNR in (35) is lowerbounded by a term with diversity 1.

Therefore, the achievable diversity forγ is exactly 1.
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Lemma 2: Consider the followingN × 1 vector system equation

y = h1s1 +
∑

i=2:M

hisi +w, (36)

wherew ∈ CN×1 have i. i. d.CN (0, 1) distributed entries, and the channel vectorshi ∈ CN×1 are

linearly independent. LetQ ∈ C(N−M+1)×N be any full-rank ZF matrix such that

Qhi = 0N−M+1, i ∈ {2, . . . ,M}. (37)

After ZF, the equivalent channel vector isQh1 and the noise covariance matrix isQQ∗. For any designs

of Q, the resulting instantaneous normalized receive SNR afterZF is

γ = h∗
1Q

∗ (QQ∗)−1
Qh1 = h∗

1Σh1, (38)

whereΣ is the projection matrix to the null space of[h2, . . . ,hM ]. The instantaneous normalized receive

SNR is independent of the designs ofQ.

Proof: Let the SVD ofQ be Q = UΛV whereU ∈ C(N−M+1)×(N−M+1),V ∈ CN×N denote

the singular vector matrix andΛ ∈ C(N−M+1)×N denotes the singular value matrix. Further denote

Λ =
[

Λ̃ 0
]

where Λ̃ ∈ R(N−M+1)×(N−M+1) denotes the diagonal square matrix with all singular

values. It follows

Q∗ (QQ∗)−1
Q = (UΛV)∗ ((UΛV)(UΛV)∗)−1 (UΛV)

= V∗Λ∗U∗ (UΛVV∗Λ∗U∗)−1
UΛV

= V∗Λ∗U∗ (UΛΛ∗U∗)−1
UΛV

= V∗Λ∗U∗U (ΛΛ∗)−1
U∗UΛV

= V∗Λ∗ (ΛΛ∗)−1
ΛV = Ṽ∗Λ̃∗

(

Λ̃Λ̃∗
)−1

Λ̃Ṽ = Ṽ∗Ṽ,

whereṼ denotes the firstN −M +1 rows ofV. It suffices to verify thatṼ∗Ṽ is the projection matrix

to the null space of the subspace spanned by[h2, . . . ,hM ]. For any vector̂h ∈ CN×1 located in the

subspace of[h2, . . . ,hM ], we can assume it to bêh =
∑

i=2:M

hici, whereci ∈ C is an arbitrary coefficient.

From the ZF constraint in (37), we haveQhi = UΛ̃Ṽhi = 0. SinceU andΛ̃ are invertible, it follows
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that Ṽhi = 0. Thus, we have

Ṽ∗Ṽĥ = Ṽ∗Ṽ
∑

i=2:M

hici =
∑

i=2:M

Ṽ∗
(

Ṽ
)

hici = 0.

Note that the rows of̃V also form an orthonormal basis for the considered null space. Therefore,Ṽ∗Ṽ

is a projection matrix to the null space of the subspace spanned by [h2, . . . ,hM ].

Lemma 2 says all ZF receivers are essentially the same in terms of the output SNR. Therefore, to obtain

general results for any ZF receivers, we can rely on a specialZF receiver that simplifies the analysis.

APPENDIX B

PROOF OFTHEOREM 1

The proof is based on the outage probability of the instantaneous normalized receive SNRγ that

has been defined in (16). Since the network is statistically symmetric to each symbol, without loss of

generality, we only study the expression ofγ for s
[11]
k . First, we deriveγ for s[11]k . For M = 2, let the

eigenvalues and eigenvectors of
(
H[11]

)−1
H[21]

(
H[22]

)−1
H[12] be λ1, λ2 andu1,u2, respectively. The

designs in (5) can be expanded as

v[11] =









u1 u2

u2 u1

02 02









, v[12] =









u1 u2

02 02

u2 u1









, (39)

where02 denotes a2× 1 zero vector. The eigenvalues of
(

H
[11]
)−1

H
[21]
(

H
[22]
)−1

H
[12]

are arranged

as diag (λ1, λ2, λ2, λ2, λ1, λ1). Inserting the designs of transmit beamformers in (4) into (2) gives the

received signals at Receiver1

y[1] = H
[11]

v[11]






s
[11]
1

s
[11]
2




+H

[21]
v[21]






s
[21]
1

s
[21]
2




+H

[11]
v[12]






s
[12]
1

s
[12]
2




+H

[21]
v[22]






s
[22]
1

s
[22]
2




+w[1]

= H
[11]

v[11]






s
[11]
1

s
[11]
2




+ α[21]H

[21]
v[11]






s
[21]
1

s
[21]
2




+H

[11]
v[12]






s
[12]
1

s
[12]
2




+ α[22]H

[11]
v[12]






s
[22]
1

s
[22]
2




+w[1]

= H
[11]

v[11]






s
[11]
1

s
[11]
2




+ α[21]H

[21]
v[11]






s
[21]
1

s
[21]
2




+H

[11]
v[12]






s
[12]
1 + α[22]s

[22]
1

s
[12]
2 + α[22]s

[22]
2






︸ ︷︷ ︸

[I1 I2]
T

+w[1], (40)
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whereH
[21]

= H
[21]
(

H
[22]
)−1

H
[12]

; I1, I2 denote the aligned interference; andα[21], α[22] are coefficients

to normalize the power of transmit beamformers. Note that
(
H[11]

)−1
H[21]

(
H[22]

)−1
H[12]ui = λiui due

to the definition of eigenvalue decomposition. LetH[21] = H[21]
(
H[22]

)−1
H[12]. It follows H[21]ui =

λiH
[11]ui.

Replacing the designs in (39) into (40) gives

y[1] = H
[11]









u1 u2

u2 u1

02 02














s
[11]
1

s
[11]
2




+ α[21](I3 ⊗H[21])









u1 u2

u2 u1

02 02














s
[21]
1

s
[21]
2




+H

[11]









u1 u2

02 02

u2 u1














I1

I2




+w[1]

= H
[11]









u1 u2

u2 u1

02 02














s
[11]
1

s
[11]
2




+ α[21]H

[11]









λ1u1 λ2u2

λ2u2 λ1u1

02 02














s
[21]
1

s
[21]
2




+H

[11]









u1 u2

02 02

u2 u1














I1

I2




+w[1]. (41)

To decouples[11]1 , the receiver projectsy[1] into the null of the subspaces spanned by the equivalent

channel vectors ofs[11]2 , s
[21]
1 , s

[21]
2 , I1, andI2. The resulting instantaneous normalized receive SNRγ is

upperbounded by that of the scenario when projecting only the null of the subspace spanned bys
[11]
2 , s

[21]
1 ,

ands[21]2 . This upperbound system corresponds to the system equation without aligned interference





ỹ
[1]
1

ỹ
[1]
2




 =






H[11]

H[11]











u1 u2

u2 u1











s
[11]
1

s
[11]
2




+ α[21]






H[11]

H[11]











λ1u1 λ2u2

λ2u2 λ1u1











s
[21]
1

s
[21]
2




+






w̃
[1]
1

w̃
[1]
2




 ,

(42)

where
[

ỹ
[1]T
1 , ỹ

[1]T
2

]T

corresponds to the first four entries iny[1] with ỹ
[1]
1 , ỹ

[1]
2 ∈ C2×1, and similar

notations apply tõw[1]
1 , w̃

[1]
2 ∈ C2×1. To simplify the analysis, from Lemma 2, we can use a specific ZF

receiver that does not lose generality. We first invert the channel matrixH[11] and switch the positions

of s[11]2 ands[21]2 as





(
H[11]

)−1
ỹ
[1]
1

(
H[11]

)−1
ỹ
[1]
2




 =






u1 u2

u2 κu1











s
[11]
1

α[21]λ2s
[21]
2






+






κu1 u2

u2 u1











α[21]λ2s
[21]
1

s
[11]
2




+






(
H[11]

)−1
w̃

[1]
1

(
H[11]

)−1
w̃

[1]
2




 , (43)
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whereκ denotes the ratio of the eigenvalues of
(
H[11]

)−1
H[21]

(
H[22]

)−1
H[12], i.e., κ = λ1

λ2
. Define

u = [u1 u2] as the eigenvector matrix of
(
H[11]

)−1
H[21]

(
H[22]

)−1
H[12] and

P =






0 1

1 0




 ,Q =






κ 0

0 1




 . (44)

To cancels[21]1 ands[11]2 , the receiver calculates̃y ∈ C2×1 as

ỹ = (H[11])−1ỹ
[1]
1 − uQ(H[11]uP)−1ỹ

[1]
2 =

(
u− uQ (uP)−1

uQP
)
[

s
[11]
1 α[21]λ2s

[21]
2

]T

+ (H[11])−1w̃
[1]
1 − u(QP−1)u−1

(
H[11]

)−1
w̃

[1]
2

= (1− κ)u

[

s
[11]
1 α[21]λ2s

[21]
2

]T

+ (H[11])−1w̃
[1]
1 − uQPu−1(H[11])−1w̃

[1]
2 . (45)

Note that the equivalent channel matrix isu. To further decouples[11]1 from s
[21]
2 by ZF, the receiver

multipliesu−1 to the left side ofỹ to achieve

u−1ỹ = (1− κ)

[

s
[11]
1 α[21]λ2s

[21]
2

]T

+ u−1(H[11])−1w̃
[1]
1 −QPu−1(H[11])−1w̃

[1]
2

︸ ︷︷ ︸

w̃

. (46)

Since the entries iñw[1]
1 andw̃[1]

2 are i. i. d.CN (0, 1) distributed, the covariance matrix of the equivalent

noise vectorw̃ can be calculated as

Σ = u−1
(
H[11]∗H[11]

)−1
(u−1)∗ +QPu−1

(
H[11]∗H[11]

)−1
(u−1)∗PQ. (47)

To decodes[11]1 , the receiver uses the(1, 1)th entry ofΣ as the variance for noise. Denote

∆ =
(
u∗H[11]∗H[11]u

)−1
(48)

and its(i, j)th entry asδij . The noise variance in the decoding ofs
[11]
1 can be calculated asδ11 + κ2δ22.

The instantaneous normalized receive SNR for this upperbound system can be expressed as

γ′ =
(1− κ)2

δ11 + κ2δ22
. (49)

Now, we focus on the outage probability ofγ. Let ǫ be an arbitrary small positive number. The outage

probability of the upperbound system can be expanded as

P (γ < ǫ) > P (γ′ < ǫ) > P (γ′ < ǫ|1 ≤ |κ| ≤ 2)P (1 ≤ |κ| ≤ 2). (50)
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Using the condition1 ≤ |κ| ≤ 2, we can further upperboundγ′ by γ′ < (1+2)2

δ11+δ22
= 9

tr∆
. Thus, we have

P (γ < ǫ) > P

(
1

tr∆
<

ǫ

9

)

P (1 ≤ |κ| ≤ 2).

Recall thatκ is the ratio of the eigenvalues of
(
H[11]

)−1
H[21]

(
H[22]

)−1
H[12]. All channel matrices are

independently generated from a continuous distribution. Thus,P (1 ≤ |κ| ≤ 2) is a bounded nonzero

positive number. It suffices to rely on the scaling of the outage probability of 1
tr∆

. From the definition

of ∆ in (48), we have

1

tr∆
=

1

tr
(

(u∗H[11]∗H[11]u)
−1
) =

1

tr
(
(H[11]∗H[11])−1 (uu∗)−1) <

2

tr ((H[11]∗H[11])−1)
.

The inequality in the last line is valid becauseuu∗ ≺ tr (uu∗)I2 = 2I2, wheretr (uu∗)I2 − uu∗ is a

positive definite matrix. Applying Lemma 1 to the term 1

tr ((H[11])−1(H[11]∗)−1)
results in a diversity gain

of only 1. Thus, the achievable diversity for1
tr∆

is not larger than 1. This concludes the proof.

APPENDIX C

DIVERSITY ANALYSIS FOR THE MODIFIED JASH SCHEME

The modified JaSh scheme collects two alignment blocks and uses Alamouti codes as the inner codes.

The resulting instantaneous normalized receive SNR is the sum of those ofs[11]1 and s
[11]
2 in the JaSh

scheme. In this appendix, we present the analysis for the modified JaSh scheme.

Theorem 5: In the short-term regime, the achievable diversity gain of the modified JaSh scheme is

no more than 1 for the2× 2 double-antenna X channel.

Proof: The analysis is similar to the proof of Theorem 1. From (41), the instantaneous normalized

receive SNR ofs[11]2 can be obtained from that ofs[11]1 by swappingu1 andu2. Similar to the specific

ZF receiver in (45) and (46), we can obtain an upperbound on the instantaneous normalized receive

SNR of s[11]2 from (49) as

γ
[11]
2 <

(1− κ)2

κ2δ11 + δ22
,

whereκ andδij are defined in (43) and (48), respectively. Since the use of Alamouti codes accumulates

the SNRs ofs[11]1 ands[11]2 , we have

γ
[11]
1 + γ

[11]
2 <

(1− κ)2

δ11 + κ2δ22
+

(1− κ)2

κ2δ11 + δ22
.
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The conditional bounding technique in (50) can be straightforwardly applied as

P
(

γ
[11]
1 + γ

[11]
2 < ǫ

)

> P

(
(1− κ)2

δ11 + κ2δ22
+

(1− κ)2

κ2δ11 + δ22
< ǫ | 1 ≤ |κ| ≤ 2

)

P (1 ≤ |κ| ≤ 2)

> P

(
1

δ11 + δ22
<

ǫ

18

)

P (1 ≤ |κ| ≤ 2).

The rest of the proof is similar to that of Theorem 1 by showingthat the scaling of the outage probability

of P
(

1
δ11+δ22

< ǫ
)

has only diversity 1. This concludes the proof.

The results of Theorem 5 are surprising. Although the instantaneous normalized receive SNRsγ[11]
1 and

γ
[11]
2 are correlated, they are still distinct. Theorem 5 implies that the sum of two distinct SNRs is not

sufficient to achieve a diversity of 2.

APPENDIX D

PROOF OFTHEOREM 3

The proof is based on the outage probability of the instantaneous normalized receive SNR ofs[11]1 .

Since the design is symmetric for all symbols, similar diversity results apply to the decoding of other

symbols. LetĤ[21] =

[

Ĥ
[21]∗
1

∥

∥

∥
Ĥ

[21]
1

∥

∥

∥

2 −
Ĥ

[21]∗
2

∥

∥

∥
Ĥ

[21]
2

∥

∥

∥

2

]∗

, Ĥ[11] =
[

Ĥ
[11]∗
1 Ĥ

[11]∗
2

]∗

. The equivalent system in (14)

can be rewritten as

ŷ =

√

3

4
Ĥ[21]∗Ĥ[11]






s
[11]
1

s
[11]
2




+ Ĥ[21]∗






ŵ1

ŵ2




 . (51)

The covariance matrix of the equivalent noise vector isĤ[21]∗ΣŵĤ
[21], whereΣŵ = diag (1, 2, 1, 2) . Let

the first column ofĤ[11] be ĥ[11]
1 , whereĥ[11]

1 =
[

h̃
[11]
11 h̃

[11]∗
21 h̃

[11]
12 h̃

[11]∗
22

]T

. The instantaneous normalized

receive SNR ofs[11]1 can be expressed as

γ =
3

4

(

Ĥ[21]∗ĥ
[11]
1

)∗ (

Ĥ[21]∗ΣŵĤ
[21]
)−1

Ĥ[21]∗ĥ
[11]
1 .

Define γ̄ = ĥ
[11]∗
1 Ĥ[21]

(

Ĥ[21]∗Ĥ[21]
)−1

Ĥ[21]∗ĥ
[11]
1 . It can be shown that3

4
γ̄ ≥ γ ≥ 3

8
γ̄. By (16), γ and

γ̄ have the same diversity. Thus, we focus on analyzing the outage probability ofγ̄ to get rid ofΣŵ.

Since the columns of̂H[21] are orthogonal,̄γ can be further simplified as

γ̄ =






1

2
∥
∥
∥Ĥ

[21]
1

∥
∥
∥

2 +
1

2
∥
∥
∥Ĥ

[21]
2

∥
∥
∥

2






−1

︸ ︷︷ ︸

b[21]

ĥ
[11]∗
1 Ĥ[21]Ĥ[21]∗ĥ

[11]
1 . (52)
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It is complicated to analyze the distribution ofγ̄ directly. Instead, we fixH[21], H[12], andH[22], and

allow only H[11] to change. Then,̂H[21] is fixed, whereaŝh[11]
1 is still a random vector. SincẽH[11] =

1

‖(H[12])−1‖
(H[12])−1H[11], it can be shown that the conditional distribution ofγ̄ is a generalized Chi-

square distribution with degree 2. The covariance matrix ofthe components in the generalized Chi-square

distribution can be calculated as

Φ = E
H[11]|H[ji],(j,i)6=(1,1)

b[21]Ĥ[21]∗ĥ
[11]
1 ĥ

[11]∗
1 Ĥ[21] = b[21]Ĥ[21]∗

(

E
H[11]|H[ji],(j,i)6=(1,1)

(

ĥ
[11]
1 ĥ

[11]∗
1

))

Ĥ[21].

(53)

The equality holds becausêH[21] only depends oñH[21], which depends onH[21] andH[22]. Thus,Ĥ[21]

is independent fromH[11]. It can be calculated thatE
(

h̃
[11]
1i h̃

[11]∗
1i

)

=

∥

∥

∥(H[12])
−1

1·

∥

∥

∥

2

∥

∥

∥(H[12])
−1

∥

∥

∥

2 , E
(

h̃
[11]
2i h̃

[11]∗
2i

)

=

∥

∥

∥(H[12])
−1

2·

∥

∥

∥

2

∥

∥

∥(H[12])
−1

∥

∥

∥

2 , andE
(

h̃
[11]
1i h̃

[11]
2i

)

= 0 for i = 1, 2, where
(
H[12]

)−1

k·
denotes thekth row of

(
H[12]

)−1
. Let

ΘH[12] = diag

(
∥

∥

∥(H[12])
−1

1·

∥

∥

∥

2

∥

∥

∥(H[12])
−1

∥

∥

∥

2 ,

∥

∥

∥(H[12])
−1

2·

∥

∥

∥

2

∥

∥

∥(H[12])
−1

∥

∥

∥

2

)

. The covariance matrix can be simplified as

Φ = b[21]





Ĥ

[21]∗
1 ΘH[12]Ĥ

[21]
1

∥
∥
∥Ĥ

[21]
1

∥
∥
∥

4 +
Ĥ

[21]∗
2 ΘH[12]Ĥ

[21]
2

∥
∥
∥Ĥ

[21]
2

∥
∥
∥

4




 . (54)

Given the covariance matrix, we calculate the outage probability of γ̄ conditioned onH[21], H[12], and

H[22]. Denote the eigenvalues ofΦ asλ1 andλ2. Since the distribution of̄γ is a generalized Chi-square

with degree 2, the probability density function (pdf) ofγ̄ is fγ̄ = exp(−γ̄/λ1)
λ1−λ2

+ exp(−γ̄/λ2)
λ2−λ1

. It follows that

P
(
γ̄ < ǫ|H[21],H[12],H[22]

)
=

∫ ǫ

0

exp
(

− γ̄
λ1

)

λ1 − λ2

+
exp

(

− γ̄
λ2

)

λ2 − λ1

dλ̄

=
λ1

λ1 − λ2

(

1− exp

(

−
ǫ

λ1

))

−
λ2

λ1 − λ2

(

1− exp

(

−
ǫ

λ2

))

= 1−
λ1

λ1 − λ2
exp

(

−
ǫ

λ1

)

+
λ2

λ1 − λ2
exp

(

−
ǫ

λ2

)

= 1−
λ1

λ1 − λ2

(

1−
ǫ

λ1

+
ǫ2

λ2
1

)

+
λ2

λ1 − λ2

(

1−
ǫ

λ2

+
ǫ2

λ2
2

)

+ o
(
ǫ2
)
=

ǫ2

λ1λ2

+ o
(
ǫ2
)
.
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Using (16), the diversity gain of̄γ can be calculated as

d = lim
ǫ→0

logP (γ < ǫ)

log ǫ
= lim

ǫ→0

log E
H[ji],(j,i)6=(1,1)

P
(
γ < ǫ|H[ji], (j, i) 6= (1, 1)

)

log ǫ

= lim
ǫ→0

log ǫ2
(

E
H[ji]

1
λ1λ2

)

+ o(ǫ2)

log ǫ
.

Obviously, the achievable diversity gain is 2 if and only ifE
H[ji]

1
λ1λ2

is bounded by a limited number.

Next, we show thatE
H[ji]

1
λ1λ2

is upperbounded by a limited number, followed by being lowerbounded

by another number.

Theorem VI.7.1 in [26] introduces a lowerbound on the determinant of the sum of two Hermitian

matrices. SinceΘH[12] is a diagonal matrix, we havedetΦ > detΘH[12] . It follows,

E
H[ji]

1

λ1λ2
= E

H[ji]

1

detΦ
< E

H[12]

1

detΘH[12]

< E
H[12]

1

detMH[12]

, (55)

whereMH[12] =
(H[12])−1(H[12]∗)−1

∥

∥

∥(H[12])
−1

∥

∥

∥

2 . The last inequality is valid because of the Hadamard inequality since

the diagonal entries ofΘH[12] andMH[12] are the same. Let the eigenvalues ofH[12]H[12]∗ bex1 andx2,

whose joint pdf can be expressed as1
2π

exp
(

−x2
1+x2

2

2

)

(x1 − x2)
2. The RHS of (55) can be calculated

as

E
H[12]

1

detMH[12]

= E
x1,x2

(
x−1
1 + x−1

2

)2

x−1
1 x−1

2

= E
x1,x2

(

2 +
x2

x1

+
x1

x2

)

= 2 + 2 E
x1,x2

x2

x1

E
x1,x2

x2

x1
=

1

2π

∫
x2

x1
exp

(

−
x2
1 + x2

2

2

)

(x1 − x2)
2dx1dx2 <

1

2π

∫

x1x2 exp

(

−
x2
1 + x2

2

2

)

dx1dx2 =
2

π
.

The last inequality holds because(x1 − x2)
2 < x2

1. Thus, we have shown thatE
H[ji]

1
λ1λ2

is upper-

bounded by2 + 4
π
. Finally, we show the lowerbound. Since the sum of the diagonal entries inΘH[12]

is equal to 1, i.e.,

∥

∥

∥(H[12])
−1

1·

∥

∥

∥

2

∥

∥

∥(H[12])
−1

∥

∥

∥

2 +

∥

∥

∥(H[12])
−1

2·

∥

∥

∥

2

∥

∥

∥(H[12])
−1

∥

∥

∥

2 = 1, we haveΘH[12] ≺ I2. Then, from (54),Φ ≺

b[21]

(

Ĥ
[21]∗
1 Ĥ

[21]
1

∥

∥

∥
Ĥ

[21]
1

∥

∥

∥

4 +
Ĥ

[21]∗
2 Ĥ

[21]
2

∥

∥

∥
Ĥ

[21]
2

∥

∥

∥

4

)

= I2. It follows,

E
H[ji]

1

λ1λ2

= E
H[ji]

1

detΦ
>

1

det I2
= 1.

Therefore, E
H[ji]

1
λ1λ2

is lowerbounded by1.
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Fig. 1. IA designs using Alamouti codes for the2× 2 double-antenna X channel.
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equivalent channel vector ofs[ji]1 is orthogonal to that ofs[ji]2 .
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Fig. 7. BER comparison in the X channels for the proposed method (labeled as ‘AlaAlign’), the JaSh scheme, and the modifiedJaSh

scheme (labeled as ‘Alamouti+JaSh’). RateR is measured as bits per channel use per node pair.
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Fig. 9. BER comparison in the IBC between the proposed method(labeled as ‘AlaAlign’) and the downlink IA method (labeledas

‘Downlink IA’). Rate R is measured as bits per channel use per receiver.

0 5 10 15 20 25 30
0

5

10

15

20

25

SNR (dB)

B
its

 / 
ch

an
ne

l u
se

AlaAlign
JaSh
Alamouti+JaSh

Fig. 10. Achievable ergodic mutual information in the two-user X channel.
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Fig. 11. Achievable ergodic mutual information in the two-cell IBC.
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