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Abstract—For any n; transmit, n, receive antenna f: x n,) [ for a definition of “STBC-scheme”) is at least +n,. — 1,
MIMO system in a quasi-static Rayleigh fading environment, where n;, and n, are the number of transmit and receive
it was shown by Elia et al. that linear space-time block code- gntannas; respectively. The first explicit DMT-optimal SI-B

schemes (LSTBC-schemes) which have the non-vanishing dete h ted inl [3] fart it ant d
minant (NVD) property are diversity-multiplexing gain tra deoff scheme was presented inl [3] far transmit antennas, an

(DMT)-optimal for arbitrary values of n, if they have a code- Subsequently, in another landmark pager [4], explicit DMT-
rate of n, complex dimensions per channel use. However, for optimal STBC-schemes consisting of both square (minimal-
asymmetric MIMO systems (wheren, < n.), with the exception delay) and rectangular STBCs from cyclic division algebras
of a few LSTBC-schemes, it is unknown whether general LSTBC- were presented for arbitrary valuessof andn,.. In the same

schemes with NVD and a code-rate of., complex dimensions . o S . .
per channel use are DMT-optimal. In this paper, an enhanced PaPer.a sufficient criterion for achieving DMT-optimalias
sufficient criterion for any STBC-scheme to be DMT-optimal Proposed for general STBC-schemes. For a class of STBC-
is obtained, and using this criterion, it is established tha schemes based on linear STEC($STBCS) which have a
any LSTBC-scheme with NVD and a code-rate ofmin{n:,n,} code-rate (see Definitidd 6, Sectionl 1V, for a formal defaniti
complex dimensions per channel use is DMT-optimal. This of «code-rate”, and Definitiofi]7 for a definition of “LSTBC-
result settles the DMT-optimality of several well-known, bw-ML- B ’ . - .
decoding-complexity LSTBC-schemes for certain asymmetei scheme”. Henceforth in this paper, an LSTBC-scheme with
MIMO systems. code-rate equal td& complex dimensions per channel use
Index Terms—Asymmetric MIMO system, diversity- IS. refer.red to as ‘rateé LSTBQ Sc.he'f”e) ofn; complex
multiplexing gain tradeoff, linear space-time block codes d'm?n‘?"ons perchannel use, this Crlterl_onItranslatese_todth-
low ML-decoding complexity, non-vanishing determinant, Vvanishing determinargroperty (see Definitionl8, SectignllV),
outage-probability, STBC-schemes. a term first coined in6], being sufficient for DMT-optimalit
It was later shown in[]7] that the DMT-optimal LSTBC-
schemes constructed [n [4] are also approximately univVensa
arbitrary number of receive antennas. In the literaturereh
Space-time coding (STC)[1] for multiple-input, multiple-exist several other rate; LSTBC-schemes with NVD - for
output (MIMO) antenna systems has extensively been studiggample, sed [8][]9]/110], and references therein. It iéo
as a tool to exploit the diversity provided by the MIMO fadinghoted that the sufficient criterion presented [in [4] for DMT-
channel. MIMO systems have the capability of permittingptimality holds only for LSTBC-schemes whose code-rate
reliable data transmission at higher rates compared to tlgfualsn, complex dimensions per channel use.

provided by the single-input, single-output (SISO) antenn A few LSTBC-schemes with code-rate less tharcomplex

system. In particular, when the delay requirement of th&esys d"gmensions per channel use have been shown to be DMT-

I. INTRODUCTION AND BACKGROUND

s less than the coherence time (the time frame during Whi8 timal for certain asymmetric MIMO systems. The Alamouti
the channel gains are constant and independent of the dha% %le-scheme[[ll] for the x 1 system is known to be DMT-

gﬁg‘/ﬁegfi:i?g:gg;g;‘li?é f[zt]hti;hfi??s; ég;g?gﬁ?g di-rq?ﬁtimal [2] while diagonal rate-1 STBC-schemes with NVD
channel with STC, there exists a fundamental tradeoff bextwe ave been shown to be DMT-optimal for arbitrany x 1

. . ; . . . . - -systems [[7]. In [[12], the DMT-optimality of a few rate-
diversity gain and multiplexing gain (see Definitidn 3 andibe 1 LSTBC-schemes for certain multiple-input, single-ottpu
nition[4, Sectiofll), referred to as “diversity-multipiex gain ’

deoff” (DMT). Th imal DMT | h .. (MISO) systems has been established, including that of the
trg eoff” ( ): ‘e optima was also ¢ aractenzg ull-diversity quasi-orthogonal STBC-scheme of Su and Xia
with the assumption that the block length of the space-ti

- ) for the 4 x 1 tem. F tric MIMO t
block codes (STBC) of the scheme (see Definifibn 2, Secti Bh ;r> 2e th>(<a onslillsk?];nwn (I)DrM?I'S-)c/)r;)l?rjnealncrat& LSsTyBsCe_ms
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A. Motivation for our results In this paper, we present a new criterion for DMT-optimality

It is natural to question the need for establishing th@f general STBC-schemes using which we prove the DMT-
DMT-optimality of raten, LSTBC-schemes for asymmetricOPtimality of many low-ML-decoding-complexity LSTBC-
MIMO systems when there already exist DMT-optimal, rae- Schemes [15]-[20] for asymmetric MIMO systems. Since the
LSTBC-schemes for arbitrary values of andn,.. However, NeW criterion enables us to identify a larger class of DMT-
it is important to note that all the known results on DMTOPtimal LSTBC-schemes which was not possible using the
optimality of explicit LSTBC-schemes are with regards 1@MT-criterion in [4], we call our criterion an enhanced one.
maximume-likelihood (ML)-decoding, and in the literature,
barring a few notable exceptions (for example.]1[14]), thB. Contributions and paper organization
issue_ of ML_-decoding complexity is generally excluded from The contributions of this paper are the following.
the discussion on DMT-optimal LSTBC-schemes. There exist
several low-ML-decoding complexity LSTBC-schemes that
have a code-rate less thap complex dimensions per channel
use and are equipped with the NVD property. Examples of
these for asymmetric MIMO systems are rate-LSTBC- )
schemes that are based on fast-decodable LSTBCs [15] from
cyclic division algebras, LSTBC-schemes from co-ordinate
interleaved orthogonal designs [16], and four-group decod
able LSTBC-schemes [1L7]-[20]. For these LSTBC-schemes,
the sufficient criterion provided in_[4] for DMT-optimality
which requires that LSTBCs have a code-ratexpfcomplex 3)
dimensions per channel useespective of the number of
;eceil\:)/e antennas, is not applicable.rl]-|ence, thire is aroberr LSTBCs with low ML-decoding complexity) are DMT-
or obtaining a new DMT-criterion that can take into account . . t
LSTBC-schemes (with NVD) whose code-rate is less than .?.Zgggl) for certain asymmetric MIMO systems (see
complex dimensions per channel use. ' ) )

Further, for asymmetric MIMO systems, the standard sphereThe rest of the paper s organized as f‘?“?.WS- SecE_IIon “Ede.a'
decoder [[21] or its variations (see, for example.l [22]] [2 ith the system mo_del and relevant definitions while Sectlon_
and references therein) cannot be used in entirety to decoth presgnts the main resu_lt of_the paper - an enhanced suffi-
ratesn;, LSTBCs. For am; x n,, MIMO system, the standard cient criterion for DMT-optimality of general STBC-schesie

sphere decoder can be used to decode LSTBCs whose ¢ tion[IV gives a brief introduction to linear STBCs along
rate is at moBtn,.. — min{ns,n,} complex dimensions with a few relevant definitions, and provides a new critefimn
main T ) T

per channel use. Recent results on fixed-complexity sphaﬁg'()ptima"ty of IF]STgf\Zﬁ_for _asy:_nmetfric MIMO sI)I/SI;tems.
decoders[[25],[126] are extremely promising from the poi |'\s/|<lz_u33|0nd_on the | _-olf)g$§(|:ty (;] some wetl- nov;n_
of view of low complexity decoding. In particular, it has o'/ v --decoding-comp exity -Schemes Is presented |

been shown analytically in[[26] that the fixed—complexitfecuo'w' Concluding remarks constitute Secfion V.

sphere decoder, although provides quasi-ML performance,NOtation Throughout the paper, bold, lowercase letters are

helps achieve theamediversity order of ML-decoding with used to denote vectors, and bold, uppercase letters ardaised

a worst-case complexity of the order of VE where M is denote matrices. For a complex matKx its Hermitian trans-

the number of possibilities for each complex symbol (or {hROSe, transpose, trace, determinant, rank, and Frobeaius n

H T
size of the signal constellation employed when each symboﬁre der!oted bX ™, X7, tr(X), det(X), Rank(X), and||X],
encoded independently), aidis the dimension of the Search_respecuvely. The set of all real numbers, complex numbers,

On the other hand, an exhaustive ML-search would incuraQd integers are denoted )y C, andZ, respectively. The

complexity of the order of\/ . In the same paper, it has alsoreal and the imaginary parts _Of a complex-v_alu_ed vextare
q,]edwted by; andxq, respectively. The cardinality of a s&t

been shown that the gap between quasi-ML performance a . .
the actual ML performance approaches zero at high Sign(Ljﬁ_denoted byS|, while Sx T denotes the Cartesian product of

to-noise ratio, independent of the constellation employed setss and_T, meaning WhIChSXT - {st)|s€s,teT}.
any case, it has been established[in| [27] that the exact he notatlonS < T |mp_I|es thaFS IS a proper subset o .
decoding complexity of the sphere decoder is lesser than t eT x T sized 'def“'ty matrix IS den_oted bVT and O

of other known ML-decoders at high SNR. This motivate enotes the null mairix of gpproprlate d|m§n5|on:

one to seek DMT-optimal LSTBC-schemes whose LSTBCS Fclr a complex numbet, its f:omple>.< conjugate Is denoted
are entirely sphere decodable, i.e., have a code-ratedtsit iby @*, and the(.) operator acting on- is defined as

mostn,,;, complex dimensions per channel use. A { Ty —xQ ]

1) We present a new criterion for DMT-optimality of
general STBC-schemes. This criterion enables us to
encompass all rates,;, LSTBC-schemes with NVD
which was not possible using the DMT-criterion bf [4].
In the context of LSTBCs, we show that a code-
rate of n,,;,, complex dimensions per channel use is
necessary for LSTBC-schemes to be DMT-optimal, and
for asymmetric MIMO systems, we show that rate-
LSTBC-schemes are DMT-optimal if they have the NVD
property.

We show that some well-known low-ML-decoding-
complexity LSTBC-schemes (STBC-schemes based on

€r =
T T
2When a rates; STBC is used in an asymmetric MIMO system, there @ !
exist techniques (se€_[24] and references therein) to ms&eofithe sphere The (v) operator can similarly be applied to any matrix
decoder. However, these are either sub-optimal decodotmigues with no nxm . . . .
guarantee on preserving the diversity order of ML-decodimgdemand a X eC by replacing eaCh_ en.trybij th Lijs T =
high computational complexity when ML-decoding is emphkbye 1,2,---,n,5 =1,2,--- ,m, resulting in a matrix denoted by



Code-Rate No. of Rx
Number of Block length |  (in complex antennas, Constellation
LSTBC transmit antennas | of the STBC| dimensions per for which used
nt T channel use) | STBC-scheme
is DMT-optimal
Alamouti Code [[11] 2 2 1 1 QAM
Yao-Wornell Codel[B],
Dayal-Varanasi Codé [31],
Golden codel[B],
Silver code [[30], [[32],138], 2 2 2 any nr QAM
Serdar-Sari codé [34],
Known Srinath-Rajan codé [35]
DMT- Perfect coded [9] 2,3,4,6 nt nt any n, QAM/HEX
optimal 2™,3(27)
LSTBC- 2(3"), ¢"(a —1)/2,
schemes Kiran-Rajan coded [8] neZ’, qis ng ne any n, QAM/ HEX
prime of the form
q=4s+ 3,
Codes from CDAI4] any n: nt nt any n, QAM
Codes from CDAI[4] any n; anyl > n; ng any n, QAM
perfect STBCs[[10] any n: nt nt any n, QAM/HEX
Diagonal STBCs
with NVD [m any n: ne 1 1 QAM
Lu-Hollanti anyn; > 2 T > ny 2 2 QAM
Lu-Hollanti any n; > 2 T>nt ng — 1 ng — 1 QAM
MISO CodesI[12] -
(including QOSTBCI[1B]) anyn; = 4 4 1 1 QAM
STBCs from CIOD [[16] i i 1 1 Rotated QAM
Existing MISO Codes|[28] 4 4 1 1 QAM
LSTBC- 4-group decodable  on 4
Schemes STBCs [17]{20] m=2"neZ e 1 1 QAM
shown Fast-decodable
to be STBCs [15], [35] 4 4 2 nr <2 QAM
DMT- Fast-decodable
optimal asymmetric STBC< [15] any . e T < T T < 70t QAM
in this Punctured perfect
paper STBC¢ for any n¢ ne ny < ng Ny < i QAM
asymmetric MIMO
Punctured Lattice ng = nym,
Codes [29] me 7t ng Ny < Ny Ny < Ny QAM
Block-diagonal ng = nym,
STBCs [29] m e 7t e < i < QAM

£ Punctured perfect STBCs refer to rate-STBCs obtained from rate; perfect STBCs[[10] (which transmit? complex information
symbols inn; channel uses) by restricting the number of complex infolmnasymbols transmitted to be onty;n,.

TABLE |
A TABLE (BY NO MEANS EXHAUSTIVE) OF DMT-OPTIMAL LINEAR STBC-SCHEMES

X € R?"*?m_Given a complex vectox = [z, 29, - ,7,]7, valued functionsf(x) andg(z), we write f(z) = o (g(x)) as
x is defined ak = [z17, 710, , Tn1, Tng) - It follows that = — oo if and only if
for matricesA € C™*", B € C"*?, andC = AB, the
equalitiesC = AB, andvec(C) = (I, ® A)vec(B) hold.

For a complex random matriX, Ex(f(X)) denotes the
expectation of a real-valued functiof(X) over X. For any Further, f(x) = z° implies that lim %
real number, | 2| denotes the largest integer not greaterthag’ < are similarly defined. rree
z, andz™ = max{0,z}. The Q-function ofz is denoted by
Q(x) and given as

Q(x) :/ \/12_Fef%dt.

Throughout the papetogx denotes the logarithm of to
base 2, antbg, = denotes the natural logarithm of For real-

lim 1)

=0.
T—>00 g(x)

=b, and<, >,

II. SYSTEM MODEL

We consider am; transmit antennag, receive antenna
MIMO system {; x n,. system) with perfect channel-state in-
formation available at the receiver (CSIR) alone. The cleann
is assumed to be quasi-static with Rayleigh fading. Theegyst



model is DMT-optimality of an STBC-scheme, is rephrased here with
Y =HX +N, (1) its statement consistent with the notation and terminologpd

o xT . : . n,xr N this paper.

yvhereY €C IS the rece_|ved 5|gngl matrb¥ € C Theorem 1:[4] For a quasi-statie:; x n,, MIMO channel

is the codeword matrix that is transmitted over a blockiof | . Rayleigh fading and perfect CSIR, an STBC-schetne

M XNt n.xXT &
channel usesii €C and!\l € C™*" are res_pec_uvely that satisfies[{3) is DMT-optimal for any value of. if for all
the channel matrix and the noise matrix with entries mdepenOssible airs of distinct codewordXy, X») of X(SNR)
dently and identically distributed (i.i.d.) circularly symetric b P L2 '

. . . the difference matrixX; — Xo = AX # O is such that,
complex Gaussian random variables with zero mean and unl? ! 2 7

variance. The average signal-to-noise ratio at each receiv det (AXAXH) > SNR"t(l—n%)_ (5)
antenna is denoted byN R. ] o ]

Definition 1: (Space-time block codled space-time block ~ Relying on Theorenill, an explicit construction scheme
code (STBC) of block-length” for an n; transmit antenna Was presented_t(_) obtain DMT-optimal LSTB_C-schemes whose
MIMO system is a finite set of complex matrices of sizex7. LSTBCs are minimal-delayl( = ;) and obtained from cyclic

Definition 2: (STBC-schemeAn STBC-schemeY is de- division aIgebras_(CDA). All these STBCs ha\{e a codg-rate
fined as a family of STBCs indexed /N R, each STBC of of n; complex dimensions per channel use irrespective of

block lengthT so thatX = {X(SNR)}, where the STBC the value ofn,. However, Theoreril1l does not account for
X(SNR) corresponds to a signal-to-noise ratio $N R at LSTBC-schemes whose LSTBCs have code-rate less+han

each receive antenna. complex dimensions per channel use. In the following sagtio
At a signal-to-noise ratio 06N R, the codeword matrices we present an enhanced DMT-criterion that brings within its

of X(SNR) are transmitted over the channel. Assuming th&©P€ all ratez,i, LSTBC-schemes with NVD.

all the codeword matrices ot (SNR) = {X;(SNR),i =

1,---,|X(SNR)|} are equally likely to be transmitted, we 1. MAIN RESULT

have .
We present below the main result of our paper - an enhanced

1 e 5 sufficient criterion for DMT-optimality of general STBC-
RGN > IX(SNR)? =T SNE. () schemes.
=1 Theorem 2:For a quasi-statia; x n,, MIMO channel with
It follows that for the STBC-schem#, Rayleigh fading and perfect CSIR, an STBC-scheméhat

IX;(SNR)|? < SNR, Yi=1,2,---,|X(SNR)|. (3) satisfies [(B) is DMT-optimal for any value of,. if for all
- ’ 7 possible pairs of distinct codewordX;, X3) of X(SNR),

The bit rate of transmission i§l/T) log | X (SNR)| bits per the difference matrixX; — X, = AX # O is such that,
channel use. Henceforth in this paper, a codewQd N R) € .
X(SNR) is simply referred to aX; € X(SNR). det(AXAXH) > SNR"*(PW). (6)

Definition 3: (Multiplexing gain) Let the bit rate of trans-
mission of the STBCX(SNR) in bits per channel use be
denoted byR(SNR). Then, the multiplexing gain of the
STBC-scheme is definedl[2] as

Remark 1:Notice that compared to the criterion given by
(8, our criterion given by[(6) places less demand on the
determinants of codeword difference matrices of the STBCs
that the STBC-scheme comprises of. This enables one to

b~ fim R(SNR) widen the class of DMT-optimal LSTBC-schemes, and for this
SNR—oc log SNR' reason, we call our criterion an “enhanced criterion” coraga
Equivalently, RGSNR) = rlog SNR + o(log SNR) where, t© that given by[(p). _
for reliable communication; € [0, nmin] [2]- Proof of Theorenf]2: To prove the theorem, we first

Definition 4: (Diversity gair) Let the probability of code- Show that the STBC-schem& is DMT-optimal when each
word error of the STBCY (SN R) be denoted by, (SN R). codeword difference matridAX # O of X(SNR) satisfies

Then, the diversity gaid(r) of the STBC-scheme correspond- det (AXAXH) 3 SNR”f(l’ﬁ) )
ing to a multiplexing gain of- is given by - ’
log P,(SNR) and then conclude the proof taking aid of Theofém 1. Towards
d(r) = —_lim logeW' this end, we assume without loss of generality that the code-

word X; of X(SNR) is transmitted. It is also assumed that

For ann; x n, MIMO system, the maximum achievabler >y, which is a prerequisite for achieving a diversity gain

diversity gain isnn,.. of n;n, when the bit rate of the STBC-scheme is constant
Definition 5: (Optimal DMT curve [[2]) The optimal DMT with SNR (a special case of the = 0 condition). Let
curved*(r) that is achievable with STBC-schemes forax  AX;, = X; — X;, where X;, [ = 2,--- ,|X(SNR)|, are
n, MIMO system is a piecewise-linear function connecting thRe remaining codewords ot (SNR). It is to be noted
points (k, d(k)), k = 0,1, , nmin, Where that the bit rate of transmission isog SN R + o(log SN R)
P B bits per channels use, and 9&(SNR)| = SNR'T, with

d(k) = (n: = k)(nr = k). “) r € [0,nmin). Considering the channel model given iy (1)

Theorem 3 of[[4], which provides a sulfficient criterion fowith ML-decoding employed at the receiver, the probability



o £ {H ’ log det (I SZRHH )grlogSNR—i—o(logSNR)}, (8)

that X; is wrongly decoded toX, for a particular channel to the product of its diagonal entries. We define the set of

Qi
>

Zlog <1+—||h |2) >r10gSNR+0(1ogSNR)}. 9)

matrix H is given by channel realizqtion@_ as shown in[(B) at the top of the page.
P.(X1 = XaH) = Q (M) Clearly, 0° C O, and hence,
v2 P(O%&) < P(O,E). (14)

So, the probability thaX, is wrongly decoded conditioned onyence, using[{14) if{11), we have
H is upper bounded as

s P. < P(O)PE|O) +P(0,€). (15)
P.(X1|H) < Z Q <7l> . (10) We now need to evaluate (®,&). Denoting the entries
1=2 V2 of H by hij, i =1,--- ,n,, j =1,---,n, we observe that

The probability of codeword error averaged over all channgl”, log (1 + SnLtRHhi”z)
realizations is given by

P = Eu(P.(XiH) - Zlog( > 1+5NR|hij|2))

_ /p(H)Pe(X1|H)dH i=1

where throughout the paper(.) denotes the probability den- z = Z Zlog (1+ SNR|h;/*), (16)

sity function (pdf). Let i=1 j=1

£ := event that there is a codeword error ywth (]IQ) following from the concavity ofog(.) and Jensen’s
inequality.

and consider the set of channel realizatidhglefined in [(8)

at the top of the page. Now, We now define two disjoint sets of channel realizatidhs

and® as shown in[(21) and_(22) at the top of the next page.

P, = / p(H)P.(X1|H)dH +/ p(H)P.(X1|H)dH Clearly, O is the disjoint union of® and O. Therefore,
o o° ~
= P(0.£) +P(0".¢) PO.£) = P(0.£)+P(02)
P(O)P(&]O) + P (0%, €), (11) _

P(O)P (5|6) + P(@, 5)

where R.) denotes “probability of”, and¢ = {H | H ¢ O}. ~ -
P(0O) is the well-known probability of outaf42], and RE|O) < PO)+P (O’ 5) ' (47
is the probability of codeword error given that the chansel i

in outage.P(0) and RE|O) have been derived][2] to be  In Appendix A, it is shown that

PO) = SNR (), (12) P(O) = SNR™™(n=7), (18)

- 0 ..
PElO) = SNR (13) So, we are now left with the evaluation of(@,é‘), which

whered*(r) is given in Definitio 5. So, the DMT curve of anis done as follows.
STBC-scheme is determined completely by, £), which ..
(0.8) = [ pHPOXIH)H
o

is the probability that there is a codeword error and the nhhn
is not in outage. To obtain an upper bound ofCP, &), |X(SNR)|

H ; HAX
we proceed as follows. Note that, + (SNR/n)HH' is < / p(H)Q <| l||> dH (19)
a positive definite matrix. Denoting the rows &f by h;, P Fo) V2
i1=1,---,n,, we have X(SNR
SNR,, SNR - (Z )l/ p(H)Q [RUBVELY 4
log det (Inr ) Zlog (1 + —||h |2) — JO V2
|X(SNR)| IHU,Dy |
which is due to Hadamard'’s mequallty which states that the = Z / p(H)Q <#> dH
determinant of a positive definite matrix is less than or équa 1=2 o V2
|X(SNR)| IH.D |
3In the literature, &’ is often used instead oK’ in (B) to define the outage = / < G > dHy, (20)
probability. However, for either definition[_{1.2) holds éru o,



where [I9) is obtained using _(10), anmkX; = U;D;V{, Using [29) in [26), we have aSNR — oo,

obtained upon singula; value dTec;)mpo&t]ion (SVD), with |X(SNR)|

U, e Cm>™ D e Rm*4 Ve C***. In (20), H;, = HU,, A - —0

and O; is as defined in[{23) at the top of the next page. P(O’g) = Z Fo; = SNR™=, (30)
Denoting the entries dfi, = HU, by h;; (1), we define the set
O; as shown in[(24) at the top of the page. In Appendix
it is shown thatO; = O] almost surely aS NR — oco. As a

I;_yvhlch is becausgX (SN R)| has a polynomial dependency
with SNR (since |Y(SNR)| = SNR'T) but all the Py,

result, in the high SNR scenari¢_{20) becomes experience an exponential fall with increasifgV R (so that
|X(SNR)| the&i’sl\re exponentially equal /N R~ °°). Using [18) and[(30)
H.D in , we obtain
P(0.€) < Z / (” l l|>dHl. (26) ). we obtain
V2 P(0,E) < SNRw{—ni(nr—r)—oo}
Now, we evaluate each of the summands[of (26). Let = SNR™™=r) (31)
Poy é/ (O (|HlDl||> dH,. Using [12), [IB), and(31) if(15), we arrive at
! el \/5 P, = SNRmax{—d*(r),—nt(nT—r)} _ S]VR—d*(r)7

Now, we defineFo; (9) as whered*(r) is given in Definition[b. This proves the DMT-

Poy (6) a (H)Q IIH:Dy| I optimality of the STBC-scheme whef (7) is satisfied.
A O,(é)p ! NG b Now, combining this obtained result with that of Theorem

we see that an STBC-scheme is DMT-optimal if for each
where©j(¢) is as defined in[(25) at the top of the page W'”&odeword difference matridX # O,
0 > 0. It is clear that asS NR — oo,

Po; > Po;(01) = Po;(d2) > Poy(d3) >

det (AXAXT) 2 gNR(mn{m(=55)m(1=55)})

for 0 < 0; < 6 < d3 < ---. To be precise, = SNR (- ""“")'

lim  Po > _lim Poi(61)> lim  Po(6s) > This completes the proof of the theorem. _ |

SNR—o00 SNR—oo ! SNR—oo ! Note 1: Theoren{]L can also be proved using the steps of
and hence the proof of Theorerfil2. To do so, we need to redefingiven
log Po, log Poy (61) by (8) as being equal to
lim > lim ——L—~
SN oo logSNR =~ SNR—c logSNR H log det (|nt T S7]:7RHHH) < rlogSNR
> log Po; (92) + o(log SNR) |

lim
oo logSNR
SN o8 RedefiningO this way is justified becauséet(l + AB) =

for 0 <4, <9 <---. Also, from the definitions o, and  ;04(1 + BA), with | begin the identity matrix of compatible

Poy(6), it is evident that dimensions. WithD thus redefined, proceeding as in the proof
. | o)) = lim P of Theoren2 from[{(B) onwards helps us arrive at the proof
Pt (SN}?H—lM)o o )) TSNS 01 of TheorentL.

The implication of Theorelnl2 is that for asymmetric MIMO
systems, the requirement demanded by Thedrem 1 on the
minimum of the determinants of the codeword difference

where ‘9 — 07" means thatd tends to0 through positive
values. Therefore,

lim ( ‘m IOgPO/(‘S)) im log Po, 27) matrices of STBCs that the STBC-scheme consists of is
§—0+ SN R0 log SNR SN R0 log SNR relaxed. In the following section, we show the usefulness of
In Appendix C, it is shown that for every/> 0, asSNR — Theoren® in the context of LSTBCs for asymmetric MIMO
0, systems.
s s
1 —(aSNR7r 4o SNR7r
Po,(9) < 5e ( ro(snr)) (28)

IV. DMT-OPTIMALITY CRITERION FORLSTBC-SCHEMES
wherea = SN RC. Using [28) in [[27), we obtain

log Po In its most general form, an LSTB@’, is given by

im — 2L = o .
SNR—oo log SNR
so that L {;( 1Air + 5iq Q)} (32)
Pos = SNR™°. 29
i ( ) where [Slj,SlQ,--- ,SkI,SkQ]T c A C RszI, and Air,

The interpretation of(29) is thdt,, experiences aexponen- A;, € C**7 are calledweight matriced16] associated with
tial fall with increasingS N R, and the dependency WithV R the real information symbols;; and siq, respectively. In the
is not polynomial (unlike, for example,(®) given by [18)). case of most known LSTBCs, either all the real symho}s

si@, respectively take values independently from the same



o & {H g}log (1+‘531V—tR||hi|2) >rlogSNR+o(1ogSNR)znitg;ilog(uﬂvmhim) . (21)

o - {H %iélog(l—i—SNRmijF) > rlog SNR + o(log SNR) b, (22)

0 & {Hl iilog (1+SNR|hij|2) > myrlog SNR + o(log SNR) », (23)
i=1 j=1

o, & {Hl iilog(l—i—SNRmij(l)F) > ntrlogSNR+0(1ogSNR)}, (24)
i=1 j=1

0)(6) = {Hl iilog(l—i—SNRmij(lﬂz) > nt(r+5)1ogSNR}. (25)
i=1 j=1

a finite subset of @k-dimensional real lattice with each of
the real symbols independently takilhgﬁ possible values.
Further, if k/T < n..,, all the symbols of the STBC can
be entirely decoded using the standard sphere-decbder [21]
or each symbol paifs;;, sig) jointly takes values from a real or its variations[[22],[[28]. However, whek/T > 1,5, for
constellationA” ¢ R**! (the same can be viewed as eacbach of thq;q@-”’"%) possibilities for any2(k — nminT)
complex symbols; = si; + jsiq, j = v/—1, taking values real symbols, the remainingn,:,T real symbols can be
from a complex constellation that is subset®)f independent evaluated using the sphere decoder. Hence, the ML-contylexi
of other symbol pairs, in which case of the rate£ STBC in such a scenario is approximately

T
A=A"x A" x---x A" |A|(1‘ %) times the sphere-decoding complexity of a rate-
o Nomin S 1BC.

For the LSTBC given by[{32), the system model given[By (1}) I?efiniti_on 7. (LSTBC-.scherr)eA rate+ /T LSTBC-scheme
can be rewritten as is defined as a family of rate/T" LSTBCs (indexed by

§ . SNR) of block lengthT so thatX £ {X(SNR)}, where
vee(Y) = (I @ H) Gs+ vec(N), the STBCX, (SN R) corresponds to a signal-to-noise ratio of
SNR at each receive antenna.

signal setA’, in which case
A=A x A" x - x A,

2k times

Mmin

(33)

whereG € R2Tx2k jg called theGenerator matrixof the

STBC, ands € R%*1 hoth defined as

[vec(AH) vec(A1g), -+, vec(AkQ)} , (34)
I, (35)

G

A
S = [811181Q7"' aSkI7SkQ

with Es (tr (GsS G')) < T' SNR.
Definition 6: (Code-rate of an LSTBCThe code-rafk of

the LSTBC X, defined in [(3R) is
Code-RateY;) = RanTk(G) real dpcu
_ Rank(G)
= —57 complex dpcu

where “dpcu” stands for
G is the generator matrix of’;,. If Rank(G) = 2k, X, is

called a ratet/T STBC, meaning which it has a code-rate of

k/T complex dpcu.

“dimensions per channel use”, and

For an LSTBCX, (SN R) of the form given by[(3P) with
the 2k-dimensional real constellation denoted SN R),
from (@), we have that for each codeword matds <
XL(SNR),i=1,2,---,|XL(SNR)|,

[IX[I* = |Gs||* < SNR,
whereG ands are as defined i _(34) anf{35), respectively.
For convenience, we assume that

max {||Gg|?’} = SNR
SCA(SNR)

and hence,

max|sis[? = SNR,
SiI

mxlsl = SNR }W—L--- k@9
S$iQ

A necessary condition for an LSTBC given Hy}32) to b¥'hen the bit rate oft, (SN R) is rlog SN R + o(log SN R)
sphere-decodablé [21] is that the constellatidnshould be bits per channel use, we hajd(SN R)| = SNR'". Further,

when each of thek real symbols takes values from the same

4In the literature, “code-rate” is referred to simply as &atin this paper, real constellationd’(SN R), it follows that

to avoid confusion with the bit rate which E% bits per channel use, we

have opted to use the term “code-rate”.

|A(SNR)| = SNR. (37)



Let A'(SNR) = pAn—pam, Whereyp is a scalar normalizing symbols, and can be expressed as
constant designed to satisfy the constraintdin (36);_pam 9 y
Ti € Apz— )
e {Z(%—IAZ-[ tzohQ)| ;L g g } 7

is the regularM/-PAM constellation given by
i=1,2,---,9
1=1

M
Anr— =<2 |—— l,1=1,3---2M —1,, (38 ) ) _
MPAN { { 2 J * } (38) where Ay2_grx is an M2-HEX constellation given by

and pAyr—pam = {pa | a € Apr—pam}. Now, we have from

(37) and [(3B), a,b€ Ay—pam,

- Arve_pgex = ya+wb i2n .
M = SNR?%, w=e¢e3
uM = SNR%, We can equivalently expreskp as
T 9
and hencey? = SNR(I=75). ' ' 8i1,5iQ € AM—pam
Xp = S; Al + s; Al i ’ 5
For an LSTBC-scheme¥' that satisfies[{3) and has a bit " ;( i oAiq) i=1,2---.9

rate of rlog SNR + o(log SNR) bits per channel use with , . . 3 .
the real symbols of its LSTBCs taking values from a scalehereA;; = Air, Ajg = —3Air + A, i =1,2,--- 9.
M-PAM, the LSTBCsX (SN R) can be expressed as In general, any LSTBCX; with a generator matrbG
and a 2k-dimensional constellationd that is a subset of
XL(SNR) = {uX | X € Xy (SNR)}, a 2k-dimensional real latticeC can be alternatively viewed
wherep? = SNR(-7) and X, (SN R) is theunnormal- to have GG, as its generator matrix and Z-dimensional
- ; i int nstellationd’ that is a subset d£2**!, whereG; € R2k*2k
ized (so that it does not satisfy the energy constraint given ¢ ' L
@) LSTBC given by is the generator matrix of.
In the following lemma, we prove that for an LSTBC-

k . .
X (SNR) — JA + 5i0A; 39) scheme to be DMT-optimal, the code-rate of its LSTBCs has
o ) {Z(S IR T 5iQ Q)} (39) to be at least equal ta,,;, complex dpcu.

Lemma 1:A ratep LSTBC-scheme withp < min{n;,n,}

i=1

with si7,si0 € Ay—pam, i = 1,2,--- ,k, andM = SNR. :
’ o is not DMT-optimal.
With X (SNR) and Ay (SNR) thus defined, we define the P

oo ; Proof: With the system model given by (33), frol (2),
- hing det t ty of an LSTBC-sch
POC:E)V\@”IS 18 CEISINEt PIORETY Ot an SENeMe B2 haveks (tr (GssG")) < T SNR. Hencetr (GQG') <

. : T SNR, wh =E; (s5) € R**2¥, SinceG is fixed f
Definition 8: (Non-vanishing determinantAn LSTBC- SN I, whereQ (S )e INCets 1S TIXEC Tor

. . . ) LSTBC, that(Q) = o SNR f finit
schemeY is said to have the non-vanishing determinant pro o0 we assume (Q) =a or some finite

. . . Bositive constant: with the overall constraintr (GQGT) <
erty if the codeword difference matricésx of A, (SNR) are T SNR being satisfied. Now, the ergodic capacity][38]of

such that the equivalent channel is given Wyl [5]
: H R 0
Arg(lglo det (AXAX ) = SNR". c - max c(Q),
tr(GQGT)<T SNR
A necessary and sufficient condition for an LSTBC-scheme 1 B TaT
X = {X.,(SNR)}, where X,(SNR) has weight matrices ~ C(Q) = 5-En [10gd€t (|2Tm +HGQG'H )}

Air, Aig, i = 1,--- ,k, and encodes its real symbols using

PAM, to have the non-vanishing determinant property is thif€reéH = I @ H, and capacity is achieved & is jointly
the designi;, defined as Gaussian with zero mean and a covariance mafixhat

satisfiestr(Q) = a SN R. Now, (o« SNR)l4;, — Q is positive
s } (40) semidefinitd and so iHG (( SNR)Io, — Q) G'H'. Hence,

k
Xy, = {Z(SuAu +sihiQ)| 1 B . B .
e lorn, + (o SNRYHGG™H' > lyp, +HGQG'H',

i=1

is such that for any non-zero matii of Az, whereA = B denotes thal —B is positive semidefinite. Using

det (XX*") > ¢, the inequalitydet(A) > det(B) whenA = B [37, Corollary

. . . 7.7.4], we have
whereC' is some strictly positive constant bounded away from

1 _ _
zero. C < 5B (togdet (127w, + (a SNR)HGGTH'))
Remark 2: Any LSTBC is completely specified by a set of 1 o
weight matrices (equivalently, its generator matrix, dedirin = ﬁEH (log det (|2k + (o SNR)G'H HG ) (41)

(34)) and a2k-dimensional real constellatiod that its real

symbol vector takes values from, as evident from (32). How-

ever, for an LSTBC, the set of weight matrices (equivalently 5SinceQ is symmetric and positive semidefinite with(Q) = a SNR,

_ ’ : _ | ; ; il T

its generator matrix) and thek-dimensional constellation €ach eigenvalue d@ is at most equal taw SN K. With Q = UPU", whereU
d tb . A | ider th fect is an orthonormal matrix ang is a diagonal matrix with the diagonal entries

need not be unique. As an example, consider the periect ¢ ﬁg the eigenvalues dd, it is clear that(aw SNR)lo, — Q is positive

for 3 transmit antennas, which encodasdependent complex semidefinite.



ilogdet (EH (|2k + (a SNR)GTHTHG))(42) number of transmit antennas - the perfect codes for 2, 3,
2T 4, and 6 transmit antennas] [9]. For the case < ny,

— LT log det (I2x + (an, SNR)GTG) Corollary[1 establishes that a rate-LSTBC-scheme with the
21 NVD property achieves the optimal DMT and such LSTBC-
= 57 log det (Ia + (an, SNR)D), (43) schemes can make use of the sphere decoder efficiently. For

. ] ) asymmetric MIMO systems, rate- LSTBC-schemes with the
where [41) is due to the identitet(l +AB) = det(l +BA),  NvD property can be obtained directly from ratgL STBC-
(42) is due to Jensen’s inequality and the fact thatdet(.) schemes with the NVD property, as shown in the following
is concavel[3]7, Theorem 7.6.7] on the convex set of pos't'\é%rollary.
definite matrices, and(#3) is obtained upon the singulareval Corollary 2: Consider a rater, minimum delay LSTBC-
decomposition ofG'G, resulting in G'G = UDU'. Let gchemex — {X(SNR)} equipped with the NVD property,

Rank(G) = 2pT (since the code-rate of the LSTBC js \yhere X(SNR) = {uX | X € Xy(SNR)}, with p? =
complex dpcu), and denoting the non-zero diagonal entnfies§NR(17L) and

Dbyd;,i=1,2,---,2pT, we have "

2pT nt
1 XU(SNR) = (Si]Ai] + SiQAiQ)
C < o7 izgllog (1+ (an.d;) SNR). (44) {;

Equation [44) reveals that &V R — oo, C < plog SNR+ Wwheres;;, sig € Ay—pam, i = 1,2,--- ,n2, M = SNRz: .
o(log SNR). Since the ergodic capacity itself is at mostet Z C {1,2,---,n?}, with |Z| = nyn,, wheren, < n,.
plog SNR + o(log SNR), if p < nin, the error probability Then, the rate:. LSTBC-schemex’ consisting of LST-
of the LSTBC-scheme is bounded away from 0 when p. BCs A’(SNR) = {uX | X € X[ (SNR)}, with p* =
Hence, the diversity gaid(r) of the LSTBC-scheme is not SNR(I=%7) and
given by [4), making the LSTBC-scheme strictly sub-optimal
with respect to DMT. [ ] X/;(SNR) = {Z(S“A“ + SiQAiQ)}

So, for DMT-optimality, the LSTBCs of the LSTBC-scheme ieT

should have a code-rate of at least;, complex dpcu. Now, where s, s € Aur_pamy i € T, M = SNRT . is DMT-

vlsltl\a/l_lg_lz)/gtiamzrfflmency criterion for an LSTBC-scheme to bgptimal for the asymmetrig; x n,. quasi-static MIMO channel

. " with Rayleigh fading and CSIR.
givi?]rcglla;(y :(LS Jbi;)the I{'i; B|C;<s gf )a(m (;?gﬁsmi 2 b'e The proof is a trivial application of Corollafy 1 and the fact
L = U ’ =

(1_4 that X’ also has the NVD property. As an example, consider
SNR\" "min/, and the Golden code-schenl€ [8]; = {Xc(SNR)}, where

minT YA(SNR) — a(sy +s20)  afss + s40)
Xy (SNR) = 2; (sirAir + SiQAiQ) o )= {H { ja(ss + S4é) a(s1 + 825) ] } ’
where s;1,5:10 € Am—pam, i = 1,2, npin T, M = Sil:%iQ € Ani—pam, @ = 1,2,3,4, M = SNRI, p* =
SNRZwwm . Then, X is DMT optimal for the quasi-static SNRO=5), 9 = (1 + V5)/2,80 = (1 -v5)/2, j = V-1,
Rayleigh fadedn; x n, MIMO channel with CSIR if it has @ = 1+ j6, anda = 1+ j6. It is known thatX is DMT-
the non-vanishing determinant property. optimal for arbitrary values of.,.. So, from Corollary P, the
The proof follows from the application of Theorel 2LSTBC-schemeX(, = {X(SNR)}, where
Notice the difference between the result of Corollaly 1 and , a(s1 + s26) 0
that of Theorem 3 of[[4]. The latter result relies on STBC- AG(SNR) = {M { 0 a(s1 + 520) H
schemes that are based on ratd-STBCs, irrespective of the .
value ofn,, while our result only requires that the code-rat@ith sir,siq € An—paw, @ = 1,2, M = SNR3, 2
of the LSTBC bemin{n,, n,} complex dpcu which, together SNR'~", is DMT-optimal for the2 x 1 MIMO system.
with NVD, guarantees DMT-optimality of the LSTBC-scheme. Note 2: The described method of obtaining a rate-
The usefulness of our result for asymmetric MIMO systendsSTBC from a rater, LSTBC (n, < n) is calledpuncturing
is discussed in the following section. .

A. Schemes based on CIOD for thex 1 and4 x 1 MIMO
V. DMT-OPTIMAL LSTBC-SCHEMES FORASYMMETRIC  systems

MIMO sYSTEMS The STBC from CIODI[[16] fort transmit antennas, denoted
Raten; LSTBC-schemes having the NVD property ardy X and given by[(4b) at the top of the next page, is a rate-
known to be DMT-optimal for arbitrary number of receivel LSTBC with symbol-by-symbol ML-decodabilityX- has
antennas. The methods to construct LSTBCs of such scheraeminimum determinant 0f0.24 when its symbolse;, i =
for arbitrary values ofn; with minimal-delay " = n;) 1,2,3,4 take values from aan—!(2)/2 radian rotated\/2-
have been proposed ihl[4],[10], and such constructions wi@AM constellation, irrespective of the value bf. Expressing
additional properties have also been proposed for specif®) as
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T1r +Jr3Q  Tar + jrag 0 0 i € 0 Aye onnr
- —Tor + jTag T — jT3Q 0 0 e S
X = . . i=1,2,3.4, (45)
0 0 T3r +Jr1Q  Tar + JjTaq 6= 1tan1(2)
0 0 —T41 + jT2q X31 — JT1Q T2

(46)

4
Xo = {Z(quu + xiQAiQ)}
i1

wherexz; € e/’ App2_gan, i =1,2,3,4,60 = 1 tan™'(2). we
note that[(4B) can be alternatively written as

4
XC = {Z(SZ[A;] + SiQA;Q)}

=1

wheres;r, sig € Ay—pam, i =1,---,4, and
Al = cosOA; + sin 0A;q, i1=1,2,3,4,
'Z-Q = —sinbA;; + cos0Ag. 0= %tan’l(Q).

Since X has a minimum determinant df.24 independent
of the value ofM, any non-zero matrixX of

4
Xy = {Z(SZ[A;I + SiQA/iQ) SiI,8iQ € Z }
=1

is such that
det (XX™) > 0.04.

Hence, the CIOD based STBC-scheme has the NVD proper

and is DMT-optimal for thet x 1 MIMO system. Using the

same analysis, one can show that the STBC-scheme basegrcczl)ti

the CIOD for2 transmit antennas is DMT-optimal for tRex 1
MIMO system.

B. Four-group decodable STBC-schemes #grx 1 MIMO
systems

For the special case of, being a power of2, rated, 4-

is used. An interesting property of this LSTBC is that it
allows fast-decoding, meaning which, for the ML-decoding
of the 16 real symbols (08 complex symbols) of the STBC
using a sphere decoder, it suffices to ugeraal-dimensional
sphere decoder instead of1& real-dimensional one. Since
the LSTBC-scheme based on this fast-decodable STBC has
the non-vanishing determinant property, it is DMT-optirfal
the4 x 2 MIMO system.

Several rate:,., fast-decodable STBCs have been con-
structed in[[15] for various asymmetric MIMO configurations
- for example, ford x 2, 6 x 2, 6 x 3, 8 x2,8 x 3,8 x4
MIMO systems. For am; x n,. asymmetric MIMO system,
these STBCs transmit a total of;n, complex symbols in
n; channel uses, and with regards to ML-decoding, only an
nyn, — = complex-dimensional sphere decoder is required
as against am;n,, complex-dimensional sphere decoder re-
quired for decoding general ratg- LSTBCs. These STBCs
are constructed from division algebra and the STBC-schemes
based on these STBCs have the NVD propédrty [15]. Hence,
for an n; x n, asymmetric MIMO system, LSTBC-schemes
consisting of these rate; fast-decodable STBCs are DMT-
optimal. Table[ll lists some known LSTBC-schemes that are
now proven to be DMT-optimal using the sufficient criterion
osed in this paper.
e DMT curves for some well-known DMT-optimal
LSTBC-schemes are shown in Figl 1, FId. 2, Hig. 3 and
Fig.[4. In all the figures, the perfect code-scheme refers to
the LSTBC-scheme that is based on rateperfect codes
[Q], [2Q], and this scheme is known to be DMT-optimal for
arbitrary number of receive antennas [4]. The DMT-curves
of the LSTBC-schemes that are based on ratd-STBCs

group decodable STBCS have been extensively studied in Hiincide with that of the rate; perfect code-scheme.

literature [17]420]. For all these STBCs, the, real symbols

taking values from PAM constellations can be separated into
four equal groups such that the symbols of each group can b
decoded independently of the symbols of all the other groups
For all these STBCs, the minimum determinant, irrespectiv

of the size of the signal constellation, is given by][20]

AH)%iélQ(AXAX H) = dé,min

where dpmin is the minimum product distance in;/2 real

VI. CONCLUDING REMARKS

?n this paper, we have presented an enhanced sufficient
cgterion for DMT-optimality of STBC-schemes using which
we have established the DMT optimality of several low-
ML-decoding-complexity LSTBC-schemes for certain asym-
metric MIMO systems. However, obtaining a necessary and
sufficient condition for DMT-optimality of STBC-schemes is
still an open problem. Further, obtaining low-ML-decoding

dimensions, which has been shown to be a constant boundethplexity STBC-schemes with NVD for arbitrary number of

away from 0 in [38]. Hence, from Corollanf]l, LSTBC-

transmit antennas is another possible direction of rekearc

schemes consisting of thesegroup decodable STBCs are

DMT-optimal forn, x 1 MIMO systems withn, being a power
of 2.

C. Fast-decodable STBCs
In [20] a rate2, LSTBC was constructed for thé x 2

MIMO system, and in[[39], the LSTBC-scheme based on
this code is shown to have the NVD property when QAM
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Fig. 1. DMT curve for the QOSTBC-scheme, the CIOD-Fig. 2. DMT curve for ratel, 4-group decodable STBC-
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Fig. 3. DMT curve for the fast-decodable LSTBC-schemeg&ig. 4. DMT curve for the fast-decodable LSTBC-scheme
[15], [35], and the perfect code-schenid [9] for thex 2  [I5] and the perfect code-schenie][10] for thex 3 MIMO
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APPENDIX A [ijli=1,- ., j=1,-- .n,» W€ have

EVALUATION OF P(O)

P(O) = r / e” Xy SN GNR= e 2 dar,  (50)

(@]
We have wherer = (log, SN R)™" and
PO) = /~p(H)dH - /~ [T TT pth)dths) 48) .
o Oi=1j=1 >, log (1—1—2]. 731\’37“ ”) > rlogSNR
— P 12 0= + o(log SNR),
/(§ gp(|h1]| )d(lhl_]| )7 (49) (o4 ZL’J log (1 + SNRl*Otij) S ner log SNR

+ o(log SNR)
where [48) is because of the independence of the entrikls of
and [@9) is by change of variables with as defined in[{47) Somax{(1—aj)t,j=1,---,m} >
at the bottom of the page. It is well known thatjh;;|?) = = {a‘ Sl —ay)t < ner }7
e~hil* for the case of Rayleigh fading. Lefh;;|? = “ '
SNR~%i. Now,p(ai;) = (log, SNR)e SN "7 SN R, wheremax{.} denotes “the largest element of”. Note that in

Defining the column vectoraa € R™"™*! as o = (B0), the integrand is exponentially decaying WitV R when
. ) | SNR <N L - 2
O£ ¢ |hi*|> log | 1+ - > |hi* | > rlog SNR + o(log SNR) > — > Tlog(1 4 SNR|hy|?) (47)
- t - - -
=1 Jj=1 =1 j=1
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any one of thew;; is negative, unlike a polynomial decaywe have for alli =1,--- ,n,, j=1,-- ,n
when all thea;; are non-negative. Hence, using the concept
developed in[[2] (se€ [2, p. 1079] for details),

P(O) = SNR~/(e"),

lhij ()2 > SNR™min{aulue (A0 k=1, ne}
> SNR ™ “in;

almost surely so that

where
e ng Bij < auy, almost surely
a’) = inf Qi Py i
fer) fola) Vliiet ;; ! By assumption|h;;(1)|?> = SNR~i. So, let
with R, representing the set of non-negative real numbers. [hij(1)]> = eSNR™% + 0 (SNR™%7)

It is easy to check that the infimum occurs when all but MWQith « = SNRY. Hence S log (1 + SNR|h~(l)|2)
of o;; are1 — -, while the other two ard — = + § and =l 7

1-L -6 respectively, wheré — 0%. Hence,

n

r = Y log (1 +cSNR'™P + 0 (SNR'7F4))
P(O) = SNR™™(=7), =1
> 3 log (1 n SNRl_"””J‘) , SNR - oo,
j=1
APPENDIX B ny
PROOF THATO; = O] ALMOST SURELY ASSNR — o = Zlog (1+SNR'"9), (54)
j=1
As done earlier, the rows of the random matiik are B > 9
denoted byh, i = 1,2, - ,n,. Let |h;|> = SNR—u = Zlog(1+SNR|hij| ) almost surely
with o;; € R, andu £ [ug, ua, -+ ,u,,]’ be a complex o =1 _
column vector independent &, with either |u;|*> = SNR° and this is true for ali = 1,2, - -, n.. Note that[(5H) is due
oru; =0, j = 1,2,---,n,. Defining the indicatord;, I,, to (83). Hence, at a high SNR, almost surely
oo I as S log (1+ SNRIR (1)) = S log (1 + SN Ry, P)
1, if |uj[* = SNR® ij 0.J
I7: i j:17"'anta
0 otherwise So. i
we have, asSN 1t — oo, S log (1+ SNRIhy[2) > nerlog SN R + o(log SN R),
hal2 = S hiuy S Rl "
| | Z 7% Z ik %k then
Jj=1 k=1
n ni—1 n 2
¢ ¢ ¢ i i log (1 4+ SNR|h;(1)|*) > nyrlog SNR + o(log SNR)
= > Pl +2) > Re(hyhjujup) ;
j=1 j=1 k=j+1 . . - :
. _8 almost surely asSNR — oo. SinceU; is unitary, it can be
=2 SNE almost surely (51) similarly proven using the same steps taken in this appendix
where R¢.) denotes “the real part of”, and that if
B=min{ay | [; 0, j =1,2,--- ;). > log (1+ SNR|Ri;(1)]*) > nyrlog SNR + o(log SNR),

. i,j
We use the term “almost surely” il (51) because thg’s h
are independent random variables. Now, denotingitheow then
of HU; by h; (1) (with entriesh;;(1), j = 1,---,n;) and the > “log (1+ SNR|hi;|*) > nyrlog SNR + o(log SNR)
(i,7)t" entry of U; by w;; (1), let |h;;(1)|?> = SNRPi4 with
Bi; € R. It is to be noted that sincH; is unitary, each row
and column ofJ; has at least one non-zero entry. Siteis

full-ranked, it is always possible to obtaip € {1,--- ,n:}, Zlog (1 + SNR|hij|2) > nyrlog SNR + o(log SNR)

,J

almost surely at a high SNR. Hence, 88 R — oo,

1=1,2,---,n, such that i
[, ] = [1,2,--, P, (52) s equivalent to
un, (1) # 0, Vi=1,--- my, (53) 3 "log (1 + SNRIhi;(1)*) > nyrlog SNR + o(log SN R)

whereP is some permutation matrix of size x n;. In other 7

words, for any unitary matrix, one can choose a non-zeadmost surely and sa); = O; almost surely as’ NR — oc.
element in each column such that in each column, the position

of the chosen non-zero element is different from that of the

chosen non-zero elements of all other columns. Uding (51),
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APPENDIX Cé and hence,

5 5
—(aSNR™ +o( SNR™r
PROOF THAT Ppy (8) < e ’ ( >> ,0>0 L AsNr\]"
;; log ntT?(l) =mn(r+9)logSNR. (59)
Noting that d3(l) are the eigenvalues of AX;AXF,
Recall that we have [|AX?> < SNR from (@). Therefore,
B |H:Dy || tr (AX;AX]") < SNR which leads toy_)", d3(l) < SNR.
Foy(9) = /Ol/(é_)p(Hz)Q ( /2 dHy Therefore, we obtain
where di(l) < SNR, Vj=1,2,-- ,m. (60)
Without loss of generality, letw;;, i = 1,--- ,n,, j =
1,---,k, for somek < n;, be positive. So, from{39), we
O[(8) £ S Hy | log (1+ SNRIhi;(1)]*) = ne(r + 6)log SNR have
i
; . ASNR
We definel|H;D |.:.(5) as Zl <nd2 ) (1 8)log SN R
[[HiDi [, (8 )—g}igl{HHlDlHQ}- (55) ==t
1(0) so that
We have
X nt(T+5)
Poo) < [ pHoQ (LHlDle—m(é)) i A = msNR U Hd2
l 10 V2
IIHzDzlmm(5)>
< Q(7 . _(I_M 1
2 > SNR wn Lo 40 61
1 quDlH;{;a) B SNR":— k (61)
< 56 (56) 1
. (1 nir+) SNR"t 1-55)
_ 22 > (1 kny )
which is due to the bound)(z) < ie=, z > 0. We = SNR ( SN Rne—k ) (62)

Q

2
now proceed to evaluaﬂﬂﬂlDlem( ) as follows. Denoting nys
the non-zero entries ob; by d;(1), j = 1,2,---n, (it is = SNRF-,
to be noted that these are the singular valuesAof; and  \ypere [Bl) is due td(60), and(62) is due to the assumption
we assume than\X; is full-ranked, i.e. of rankn;, which thatdet(AXAXH) _ Hn dg() > gNRM(1-7). So, we
is necessary for the STBC to have a diversity gaimef,
whenr = 0), and lettinga;; 2 |hy;(1)|? the problem of have A > SNRknT, and using this in[{38), we obtain, as
evaluating||H;D,||?,;,,(6) can be interpreted as the following® N R — oo,

convex optimization problem: A 1

n n aij: 2 - j:17"'ant-
L ned= (1 SNR
minimize ZZ(I” i (57) d(0)
Gig i=1 j=1 It is now clear that all theu;;, i =1, ,n,, j=1,--+ ,n,
- . . S5 .
subject to are positive (i.e.k = n;) so thatA > SNR=-. Using these

obtained values of,;; in (57), we have, a§ NR — oo,

——E E log(1 + a;; SNR) nr o M 2(1)
2 _

D25 = Y0 (2 - ghn

+ (r+90)logSNR

IN

0 1=1 j=1
3

Vi=1,---,n S
. 9 s Ty > o
ai;; < 0, { Vi1 oy > ;le ( 0 logSNR)) (63)
The solution to this optimization problem is = n.A—o(logSNR)
+ ~ 5
1 [ASNR ) > SNR™, (64)
i = _ 7 , . .
7 SNR | nd2(l) where [6B) is becausé?(l) < SNR so thatd3(l)/SNR is
. . 5
where) is the Karush-Kuhn-Tucker (KKT) multiplier satisfy- °(10g SIV1?), and [G#) is gue to the facat that> SN R»r. So,
ing IHD1]12,5,,(8) > aSNR# + o0 (SNR# ) with a = SNRC.
n Using this result in[(56), we arrive at
iilog 1+ /\ilizzv?—l =n(r+9)log SNR, 1 —(aSNR%A—o(SNR%))
i—1 j—1 nedi (1) Poi(6) < 3¢ )
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This completes the proof.

(18]
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