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Abstract—This paper considers point to point secure communi-
cation over flat fading channels under an outage constraint.More
specifically, we extend the definition of outage capacity to account
for the secrecy constraint and obtain sharp characterizations
of the corresponding fundamental limits under two different
assumptions on the transmitter CSI (Channel state information).
First, we find the outage secrecy capacity assuming that the trans-
mitter has perfect knowledge of the legitimate and eavesdropper
channel gains. In this scenario, the capacity achieving scheme
relies on opportunistically exchanging private keys between the
legitimate nodes. These keys are stored in a key buffer and later
used to secure delay sensitive data using the Vernam’s one time
pad technique. We then extend our results to the more practical
scenario where the transmitter is assumed to know only the
legitimate channel gain. Here, our achievability arguments rely on
privacy amplification techniques to generate secret key bits. In the
two cases, we also characterize the optimal power control policies
which, interestingly, turn out to be a judicious combination of
channel inversion and the optimal ergodic strategy. Finally, we
analyze the effect of key buffer overflow on the overall outage
probability.

I. I NTRODUCTION

Secure communication is a topic that is becoming increas-
ingly important thanks to the proliferation of wireless devices.
Over the years, several secrecy protocols have been developed
and incorporated in several wireless standards; e.g., the IEEE
802.11 specifications for Wi-Fi. However, as new schemes are
being developed, methods to counter the specific techniques
also appear. Breaking this cycle is critically dependent onthe
design of protocols that offer provable secrecy guarantees. The
information theoretic secrecy paradigm adopted here, allows
for a systematic approach for the design of low complexity
and provable secrecy protocols that fully exploit the intrinsic
properties of the wireless medium.

Most of the recent work on information theoretic secrecy
is, arguably, inspired by Wyner’s wiretap channel [2]. In this
setup, a passive eavesdropper listens to the communication
between two legitimate nodes over a separate communication
channel. While attempting to decipher the message, no limit
is imposed on the computational resources available to the
eavesdropper. This assumption led to definingperfect secrecy
capacity as the maximum achievable rate subject to zero mu-
tual information rate between the transmitted message and the
signal received by the eavesdropper. In the additive Gaussian
noise scenario [3], the perfect secrecy capacity turned out
to be the difference between the capacities of the legitimate
and eavesdropper channels. Therefore, if the eavesdropper
channel has a higher channel gain, information theoretic secure
communication is not possible over the main channel. Recent

works have shown how to exploit multipath fading to avoid
this limitation [4], [5], [7]. The basic idea is to opportunisti-
cally exploit the instants when the main channel observes a
higher gain than the eavesdropper channel to exchange secure
messages. This opportunistic secrecy approach was shown to
achieve non-zeroergodic secrecy capacityeven whenon
average the eavesdropper channel has favorable conditions
over the legitimate channel. Remarkably, this result stillholds
even when the instantaneous channel state information of the
eavesdropper channel is not available at the legitimate nodes.

The ergodic result in [4] applies only to delay tolerant
traffic, e.g., file downloads. Early attempts at characterizing the
delay limited secrecy capacity drew the negative conclusion
that non-zero delay limited secrecy rates are not achievable,
over almost all channel distributions, due tosecrecy outage
events corresponding to the instants when the eavesdropper
channel gain is larger than the main one [6], [8]. Later, it
was shown in [12] that, interestingly, a non-zero delay limited
secrecy rate could be achieved by introducingprivate key
queuesat both the transmitter and the receiver. These queues
are used to store private key bits that are sharedopportunis-
tically between the legitimate nodes when the main channel
is more favorable than the one seen by the eavesdropper.
These key bits are used later to secure the delay sensitive
data using the Vernam one time pad approach [1]. Hence,
secrecy outages are avoided by simply storing the secrecy
generated previously, in the form of key bits, and using them
whenever the channel conditions are more advantageous for
the eavesdropper. A following work studied the key queue
dynamics and power control strategies for this system [13].
However, these works stopped short of proving sharp capacity
results or deriving the corresponding optimal power control
policies. To that end, in this paper we study the secrecy outage
capacity characterization of the block fading wiretap channel.
We first consider the scenario where perfect knowledge about
the main and eavesdropper channels are availablea-priori at
the transmitter. The outage secrecy capacity and corresponding
optimal power control policy are obtained and then the results
are generalized to the more practical scenario where only
the instantaneous main channel state information (CSI) is
available at the transmitter. Finally, the impact of theprivate
key queueoverflow on secrecy outage probability is studied.
Overall, our results reveal interesting structural insights on
the optimal encoding and power control schemes as well as
sharp characterizations of the fundamental limits on secure
communication of delay sensitive traffic over fading channels.
Note that, we provide some intuition and very brief sketches



of the proofs of our theorems. Full proofs can be found in
[14].

II. SYSTEM MODEL

We study a point-to-point wireless communication link, in
which a transmitter is trying to send information to a legitimate
receiver, under the presence of a passive eavesdropper. We
divide time into discrete slots, where blocks are formed byN
channel uses, andB blocks combine to form a super-block.
Let the communication period consist ofS super-blocks. We
use the notation(s, b) to denote thebth block in thesth super-
block. We adopt a block fading channel model, in which the
channel is assumed to be constant over a block, and changes
randomly from one block to the next. Within each block(s, b),
the observed signals at the receiver and at the eavesdropper
are:

Y(s, b) = Gm(s, b)X(s, b) +Wm(s, b)

Z(s, b) = Ge(s, b)X(s, b) +We(s, b),

respectively, whereX(s, b) ∈ CN is the transmitted signal,
Y(s, b) ∈ CN is the received signal by the legitimate
receiver, andZ(s, b) ∈ CN is the received signal by the
eavesdropper.Wm(s, b) andWe(s, b) are independent noise
vectors, whose elements are drawn from standard complex
normal distribution. We assume that the channel gains of
the main channelGm(s, b) and the eavesdropper channel
Ge(s, b) are i.i.d. complex random variables. The power gains
of the fading channels are denoted byHm(s, b) = |Gm(s, b)|2

and He(s, b) = |Ge(s, b)|
2. We sometimes use the vector

notationH(·) = [Hm(·) He(·)] for simplicity, and also use
the notationHs,b = {H}s,bs′=1,b′=1 to denote the set of channel
gains H(s′, b′) observed until block(s, b). We use similar
notation for other signals as well, and denote the sample
realization sequences with lowercase letters. We assume that
the probability density function of instantaneous channelgains,
denoted asf(h), is well defined, and is known by all parties.
We define channel state information (CSI) as one’s knowledge
of the instantaneous channel gains. We definefull transmitter
CSI as the case in which the transmitter has full causal
knowledge of the main and eavesdropper channel gains. We
define main transmitter CSIas the case in which that the
transmitter only knows the CSI of the legitimate receiver. In
both cases, the eavesdropper has complete knowledge of both
the main and the eavesdropper channels. LetP (s, b) denote
the power allocated at block(s, b). We consider a long term
power constraint (or average power constraint) such that,

lim sup
S,B→∞

1

SB

S
∑

s=1

B
∑

b=1

P (s, b) ≤ Pavg (1)

for somePavg > 0.
Let {W (s, b)}S,Bs=1,b=1 denote the set of messages to be

transmitted with a delay constraint.W (s, b) becomes available
at the transmitter at the beginning of block(s, b), and needs
to be securely communicated to the legitimate receiver at
the end of that particular block. We consider the problem of

constructing(2NR, N) codes to communicate message packets
W (s, b) ∈ {1, · · · , 2NR} of equal size, which consists of:

1) A stochastic encoder that maps(w(s, b), xs,b−1) to
x(s, b) based on the available CSI, wherexs,b−1 sum-
marizes the previously transmitted signals1, and

2) A decoding function that mapsys,b to ŵ(s, b) at the
legitimate receiver.

Note that we consider the current blockx(s, b) to be a function
of the past blocksxs,b−1 as well. This kind of generality
allows us to store shared randomness to be exploited in the
future to increase the achievable secrecy rate.

Define the error event with parameterδ at block (s, b) as

E(s, b, δ) =
{

Ŵ (s, b) 6= W (s, b)
}

∪
{

1

N
‖X(s, b)‖2 > P (s, b) + δ

}

,

which occurs either when the decoder makes an error, or
when the power expended is greater thanP (s, b) + δ. The
equivocation rate at the eavesdropper is defined as the en-
tropy rate of the message at block(s, b), conditioned on the
received signal by the eavesdropper during the transmission
period, and available eavesdropper CSI, which is equal to
1
N
H(W (s, b)|ZSB,hSB). The secrecy outage event at rateR

with parameterδ at block(s, b) is defined as

Osec(s, b, R, δ) = Oeq(s, b, R, δ) ∪ Och(s, b, R) (2)

where the equivocation outage

Oeq(s, b, R, δ) =

{

1

N
H(W (s, b)|ZSB,hSB) < R− δ

}

occurs if the equivocation rate at block(s, b) is less thanR−δ,
and channel outage

Och(s, b, R) =

{

1

N
I (X(s, b);Y(s, b)) < R

}

occurs if channel at block(s, b) is unsuitable for reliable
transmission at rateR. Defining Ōsec(·) as the complement
of the eventOsec(·), we now characterize the notion ofǫ-
achievable secrecy capacity.

Definition 1: RateR is achievable with at mostǫ probabil-
ity of secrecy outage if, for any fixedδ > 0, there existS,B
andN large enough such that the conditions

P(E(s, b, δ)|Ōsec(s, b, R, δ)) < δ (3)

P(Osec(s, b, R, δ)) < ǫ+ δ (4)

are satisfied for all(s, b), s 6= 1.
We call suchR an ǫ-achievable secrecy rate. Note that the

security constraints are not imposed on the first super-block.
Definition 2: The ǫ-achievable secrecy capacity is the

supremum ofǫ-achievable secrecy ratesR.
Remark 1:The notion of secrecy outage was previous

defined and used in [6], [8]. However, those works did not

1An exception is forb = 1, in which case the previous signals are
summarized byxs−1,B .



consider the technique of storing shared randomness for future
use, and in that case, secrecy outage depends only on the
instantaneous channel states. In our case, secrecy outage
depends on previous channel states as well. Note that we do
not impose a secrecy outage constraint on the first superblock
(s = 1). We refer to the first superblock as an initialization
phase used to generate initial common randomness between
the legitimate nodes. Note that this phase only needs to appear
once in the communication lifetime of that link. In other
words, when a session (which consists ofS superblocks)
between the associated nodes is over, they will not need to
go through the initialization step again before the subsequent
sessions.

III. C APACITY RESULTS

In this section, we investigate this capacity under two
different cases; full CSI and main CSI at the transmitter.
Before giving the capacity results, we define the following
quantities. For a given power allocation functionP (s, b), let
Rm(s, b) andRs(s, b) be as follows,

Rm(s, b) , log(1 + P (s, b)Hm(s, b)) (5)

Rs(s, b) ,[log(1 + P (s, b)Hm(s, b))

− log(1 + P (s, b)He(s, b))]
+, (6)

where[·]+ = max(·, 0). Note that,Rm(·) is the supremum of
achievable main channel rates, without the secrecy constraint.
Also,Rs(·) is the non-negative difference between main chan-
nel and eavesdropper channel’s supremum achievable rates.
We define memoryless power allocation strategy as a mapping
from the available instantaneous CSI toR+. We consider2

the set of memoryless power allocation strategiesP . For full
CSI, a memoryless power allocation policy is a function of
h(s, b) = [hm(s, b) he(s, b)]. For simplicity, we drop the block
index (s, b), and use the notationP (h) for a memoryless
power allocation policy. Similarly, withmain CSI memoryless
power allocation policies are functions ofhm(s, b) only, and
we use the notationP (hm) for the stationary power allocation
policy. In both cases, since the secrecy rateRs(s, b), and the
main channel rateRm(s, b) are completely determined by the
power allocation functionsP (·) and channel gainsh, we will
interchangeably use the notationsRs(s, b) ≡ Rs(h, P ) and
Rm(s, b) ≡ Rm(h, P ).

A. Full CSI

Theorem 1:Let the transmitter have full CSI. Then, for any
ǫ, 0 ≤ ǫ < 1, the ǫ-achievable secrecy capacity is identical to

Cǫ
F = max

P (h)∈P′

E[Rs(H, P )]

1− ǫ
, (7)

2Note that, it is shown in [14] that a memoryless power allocation strategy
achieves theǫ achievable secrecy capacity.

where the setP ′ ⊆ P consists of power control policiesP (h)
that satisfies the following conditions.

P

(

Rm(H, P ) <
E[Rs(H, P )]

1− ǫ

)

≤ ǫ (8)

E[P (H)] ≤ Pavg. (9)

Here, we give a brief intuition on the result. For a given
P (h), Rs(h, P ) the supremum of the secret key generation
rates within a block that experiences channel gainsh [3].
This implies that the expected achievable secrecy rate [4] is
E[Rs(H, P )] without the outage constraint. With the outage
constraint, the fluctuations ofRs(H, P ) due to fading are
unacceptable, sinceRs(H, P ) can go below the desired rate
when the channel conditions are unfavorable (e.g., when
Hm < He, Rs(H, P ) = 0). Hence, we utilize the system
illustrated in Figure 1 to address this issue. In our system,
secret key buffers smoothen out these fluctuations to provide
secrecy rate ofE[Rs(H, P )] at each block. The generated
secret key bits are stored in secret key buffers of both the
transmitter and receiver, and they are utilized to secure data of
same size using Vernam’s one-time pad technique. With the
allowable amount of secrecy outages, the secrecy rate goes
up to E[Rs(H, P )]/(1 − ǫ). Equation (8) on the other hand,
ensures that channel outage probability is at mostǫ, hence it is
a necessary condition to satisfy the secrecy outage constraint
in (4) due to (2).

Rs Rs

key queue key queue

XOR

TRANSMITTER

data dataXOR
R

R R

R

channel
wiretap

SHARED KEY BITS

RECEIVER

Fig. 1. The private key queues at the transmitter and the receiver.

Example 1:Consider a four state system, whereHm and
He takes values from the set{1, 10} and the joint probabilities
are as given in Table I. Let the average power constraint be
Pavg = 0.5, and there is no power control, i.e.,P (h) = Pavg

∀h. The achievable instantaneous secrecy rate at each state
is given in Table II. According to the pessimistic result in
[6,8], any non-zero rate cannot be achieved with a secrecy
outage probabilityǫ < 0.6 in this case. However, according to
Theorem 1, for anyǫ > 0, rateR = 0.8

1−ǫ
can be achieved with

ǫ secrecy outage probability3, sinceE[Rs(H, Pavg)] = 0.8. In
Figure 2, we study the performance of two strategies with the
goal of achieving secrecy rate ofR = 1. In strategy1, the
available instantaneous secrecy rate is used greedily, hence in
block2, secrecy outage occurs whenRs = 0. Strategy2 is our
achievable scheme in Theorem 1. We can see that with this

3Although Theorem 1 is stated for the case where random vectorH is
continuous, the result similarly applies to discreteH as well.



strategy, excess secrecy in block1 are stored in the form of
secret key bits, and they are used to secure the data in block
2, hence secrecy outage is avoided.

TABLE I
P(h)

↓ hm \ he → 1 10

1 0.1 0.1
10 0.4 0.4

TABLE II
Rs(h, PAVG )

↓ hm \ he → 1 10

1 0 0
10 2 0

data

recdata
no data bits
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block 1, h = [10 1]
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block 2, h = [10 10]

Fig. 2. A sample path. With strategy 2, secrecy outage can be avoided for
block t = 2 via the use of key bits.

B. Main CSI

Theorem 2:Let the transmitter have main CSI. Then, for
anyǫ, 0 ≤ ǫ < 1, theǫ-achievable secrecy capacity is identical
to

Cǫ
M = max

P (hm)∈P′′

E[Rs(H, P )]

1− ǫ
, (10)

where the setP ′′ ⊆ P consists of power control policies
P (hm) that satisfies the following conditions.

P

(

Rm(H, P ) <
E[Rs(H, P )]

1− ǫ

)

≤ ǫ (11)

E[P (Hm)] ≤ Pavg. (12)

Although the problems (7)-(9) and (10)-(12) are of the same
form, due to the absence of eavesdropper CSI, the maxi-
mization in this case is over power allocation functionsP ′′

that depend on the instantaneous main channel state only.
Hence,Cǫ

M ≤ Cǫ
F . As in the full CSI case, our achievable

scheme uses similar key buffers and Vernam’s one time pad
technique to secure the message. The main difference is the
generation of secret key bits. Due to the lack of knowl-
edge ofHe(s, b) at the transmitter, secret key bits cannot
be generated within a block. Instead, using the statistical
knowledge ofHe(s, b), we generate keys over a super-block.

Roughly, over a superblock the receiver can reliably obtain
NBE[Rm(H, P )] bits of information, while the eavesdropper
can obtainNBE[Rm(H, P )−Rs(H, P )] bits of information.
From privacy amplification arguments [9],NBE[Rs(H, P )]
bits of secret key can be extracted by using a universal hash
function.

In [14], we prove that

lim
Pavg→∞

Cǫ
F = lim

Pavg→∞
Cǫ

M =
EHm>He log (Hm/He)

(1− ǫ)
. (13)

Thus, in the high power regime, the power allocation policy
has minimal impact on the achievable key rate. Our simulation
results also illustrate this fact. On the other hand, when the
average power is limited, the optimality of the power allocation
function is of critical importance, which is the focus of the
following section.

IV. OPTIMAL POWER ALLOCATION STRATEGY

A. Full CSI

The optimal power control strategy,P ∗(h) is the stationary
strategy that solves the optimization problem (7)-(9). In this
section, we will show thatP ∗(h) is a time-sharing between
the channel inversion power policy, and the secure waterfilling
policy. We first introduce the channel inversion power policy,
Pinv(h, R), which is theminimumrequired power to maintain
main channel rate ofR. For h = [hm he],

Pinv(h, R) ,
2R − 1

hm

. (14)

Next we introducePwf(h, λ),

Pwf(h, λ) ,
1

2

[

√

(

1

he

−
1

hm

)2

+
4

λ

(

1

he

−
1

hm

)

−

(

1

he

+
1

hm

)

]+

. (15)

We call it the ‘secure waterfilling’ power policy because
it maximizes the ergodic secrecy rate without any outage
constraint, and resembles the traditional ‘waterfilling’ power
control policy without secrecy. Here, the parameterλ deter-
mines the power expended on average. Now, let us define a
time-sharing region

G(λ, k) ,

{

h : [Rs(h, Pinv)−Rs(h, Pwf)]
+

− λ [Pinv(h, b)− Pwf(h, λ)]
+
≥ k

}

, (16)

which is a function of parametersλ andk.
Theorem 3:P ∗(h) is the unique solution to

P ∗(h) =Pwf(h, λ
∗)+

1 (h ∈ G(λ∗, k∗)) (Pinv(h, C
ǫ
F )− Pwf(h, λ

∗))
+ (17)

subject to:k∗ ≤ 0, λ∗ > 0

Cǫ
F = E[Rs(H, P ∗)]/(1− ǫ) (18)

P(H ∈ G(λ∗, k∗)) = 1− ǫ (19)

E[P ∗(H)] = Pavg, (20)



whereE[Rs(H, P ∗)] is the expected secrecy rate under the
power allocation policyP ∗(h).
Due to (17), the optimal power allocation function is a
time-sharing between the channel allocation power alloca-
tion function and secure waterfilling; a balance between
avoiding channel outages, hence secrecy outages, and max-
imizing the expected secrecy rate. The time sharing region
G(λ, k) determines the instantsh, for which avoiding chan-
nel outages are guaranteed through the choice ofP (h) =
max(Pinv(h, R), Pwf(h, λ)). Equation (19) ensures that chan-
nel outage probability is at mostǫ, and (20) ensures that
average power constraint is met with equality. (18), on the
other hand, is an immediate consequence of (7).

Note that, an extreme case isP ∗(h) = Pwf(h, λ
∗) ∀h,

which occurs whenPinv(h, R) ≤ Pwf(h, λ
∗) for any h ∈

G(λ∗, k∗), which means that the secure waterfilling solution
itself satisfies the channel outage probability in (8). However,
that the other extremeP ∗(h) = Pinv(h, R

∗), ∀h cannot occur
for any non-zeroǫ due to (17). The parameterCǫ

F can be found
graphically as shown in Figure 3, by plottingE[Rs(H, PR)]
and and(1−ǫ)R as a function ofR. The abcissa of the unique
intersection point isR = Cǫ

F .

0
0
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F
ε  on Graph

 

 
E[R

s
( H,PR)]

(1−ε)R

C
F
ε

E[R
s
( H,PC

F

ε

)]

R
max

Fig. 3. FindingCǫ
F

with graphical approach

Example 2:Consider the same system model in Example 1.
We have found that forR = 0.8

1−ǫ
bits/channel use is achievable

with ǫ probability of secrecy outage with no power control, i.e.,
P (h) = 0.5 ∀h. Let ǫ = 0.2, we will see if we can do better
thanR = 1 with power control. Solving the problem (17)-(20),
we can see that4 the time-sharing, and power expended in each
state are as given in Tables III and IV. Forh ≡ [hm he] =
[10 1], i.e., the legitimate channel has a better gain, secure
waterfilling is used and whenh = [10 10], secret key bits
cannot be generated, but channel inversion is used to guarantee
a main channel rate ofR, which is secured by the excess keys
generated during the stateh = [10 1]. As a result, we can
see thatC0.2

F = 1.26 bits per channel use is achievable, which
corresponds to26% increase with respect to no power control.

B. Main CSI

Here, we provide the optimal power control strategy
P ∗(hm), which solves the optimization problem (10)-(12). Let

4Although Theorem 3 assumesH is a continuous random vector, the results
similarly hold for the discrete case as well.

TABLE III
T IME SHARING REGIONS

↓ hm \ he → 1 10

1 wf wf
10 wf inv

TABLE IV
P ∗(h)

↓ hm \ he → 1 10

1 0 0
10 1.11 0.14

us definePw(hm, λ) as the maximum of0, and the solution
of the following equation

∂E[Rs(H, P )]

∂P (hm)
=
hmP(he ≤ hm)

1 + hmP (hm)

−

∫ hm

0

(

he

1 + heP (hm)

)

f(he)dhe − λ = 0

Pw(hm, λ) will replacePwf(h, λ) in the full CSI case.
Theorem 4:P ∗(hm) is the unique solution to

P ∗(hm) =Pw(hm, λ∗)

+ 1(hm ≥ c) (Pinv(hm, Cǫ
M )− Pw(hm, λ∗))

+ (21)

subject to:λ∗ > 0

Cǫ
M = E[Rs(H, P ∗)]/(1− ǫ) (22)

P(Hm ≥ c) = 1− ǫ (23)

E[P ∗(Hm)] = Pavg (24)

whereE[Rs(H, P ∗)] is the expected secrecy rate under the
power allocation policyP ∗(hm).
The graphical solution in Figure 3 to findCǫ

F also generalizes
to the main CSI case.

V. SIZING THE KEY BUFFER

The capacity results of Section III assume availability of
infinite sizesecret key buffers at the transmitter and receiver,
which mitigate the effect of fluctuations in the achievable
secret key bit rate due to fading. Finite-sized buffers, on the
other hand will lead to a higher secrecy outage probability due
to wasted key bits by the key buffer overflows. We revisit the
full CSI problem, and we consider this problem at a ‘packet’
level, where we assume a packet is of fixed size ofN bits.
We provide the following result.

Theorem 5:Let ǫ′ > ǫ. Let MCǫ

F
(ǫ′) be the buffer size (in

terms of packets) sufficient to achieve rateCǫ
F with at most

ǫ′ probability of secrecy outage. Then,

lim
ǫ′ցǫ

MCǫ

F
(ǫ′)

η log(η)
≤ 1 (25)

where

η =
Var[Rs(H, PCǫ

F )] + (Cǫ
F )

2ǫ(1− ǫ)

(ǫ′ − ǫ)Cǫ
F

.

We can interpret the result as follows. If buffer size is infinite,
we can achieve rateCǫ

F with ǫ probability of secrecy outage.
With finite buffer, we can achieve the same rate only with
someǫ′ > ǫ probability of secrecy outage. Considering this
difference to be the price that we have to pay due to the
finiteness of the buffer, we can see that the buffer size required
scales with O

(

1
ǫ′−ǫ

log 1
ǫ′−ǫ

)

, asǫ′ − ǫ → 0.



VI. N UMERICAL RESULTS

In this section, we conduct simulations to illustrate our main
results with two examples. In the first example, we analyze the
relationship between theǫ-achievable secrecy capacity and the
average power. We assume that both the main channel and
eavesdropper channel are characterized by Rayleigh fading,
where the main channel and eavesdropper channel power
gains follow an exponential distribution with a mean2 and
1, respectively. In Figure 4, we plot theǫ-achievable secrecy
capacity as a function of the average power for secrecy outage
probabilityǫ = 0.02, under both full CSI and main CSI cases.
It can be observed that the gap between capacities under full
CSI and main CSI vanishes as average power increases, which
support the result (13).
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Fig. 4. Theǫ-achievable secrecy capacities as a function of average power,
Pavg

Next, we study the relationship between the secrecy outage
probability and the buffer size for a given rate. We assume
that both the main and eavesdropper channel gains follow
a chi-square distribution of degree2, with a mean2 and 1,
respectively. We focus on the full CSI case. In Figure 5, we
plot the secrecy outage probabilities, denoted withǫ′, as a
function of buffer sizeM . On the same graph, we also plot
our asymptotic result given in Theorem 5, which provides an
upper bound on the required buffer size to achieveǫ′ outage
probability for rateCǫ

F , with the assumption that (25) is met
with equality for anyǫ′. We can see that, this theoretical result
serves as an upper bound on the required buffer size when
ǫ′− ǫ, additional secrecy outages due to key buffer overflows,
is very small.

VII. C ONCLUSIONS

This paper obtained sharp characterizations of the secrecy
outage capacity of block flat fading channels under the as-
sumption full and main CSI at the transmitter. In the two
cases, our achievability scheme relies on opportunistically
exchanging private keys between the legitimate nodes and
using them later to secure the delay sensitive information.
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Fig. 5. Relationship between buffer sizeM , and outage probabilityǫ′

We further derive the optimal power control policy in each
scenario revealing an interesting structure based by judicious
time sharing between time sharing and the optimal strategy
for the ergodic. Finally, we investigate the effect of key buffer
overflow on the secrecy outage probability.
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