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Abstract—This paper considers point to point secure communi-
cation over flat fading channels under an outage constraintMore
specifically, we extend the definition of outage capacity tocount
for the secrecy constraint and obtain sharp characterizaibns
of the corresponding fundamental limits under two different
assumptions on the transmitter CSI (Channel state informaion).
First, we find the outage secrecy capacity assuming that theans-
mitter has perfect knowledge of the legitimate and eavesdmper
channel gains. In this scenario, the capacity achieving seime
relies on opportunistically exchanging private keys betwen the
legitimate nodes. These keys are stored in a key buffer and tier
used to secure delay sensitive data using the Vernam’s oneng
pad technique. We then extend our results to the more practil
scenario where the transmitter is assumed to know only the
legitimate channel gain. Here, our achievability argumens rely on
privacy amplification techniques to generate secret key bé. In the
two cases, we also characterize the optimal power control fioies
which, interestingly, turn out to be a judicious combination of
channel inversion and the optimal ergodic strategy. Finalf, we
analyze the effect of key buffer overflow on the overall outag
probability.

|. INTRODUCTION

works have shown how to exploit multipath fading to avoid
this limitation [4], [5], [7]. The basic idea is to opportstir
cally exploit the instants when the main channel observes a
higher gain than the eavesdropper channel to exchangessecur
messages. This opportunistic secrecy approach was shown to
achieve non-zereergodic secrecy capacityeven whenon
average the eavesdropper channel has favorable conditions
over the legitimate channel. Remarkably, this result bollds
even when the instantaneous channel state informationeof th
eavesdropper channel is not available at the legitimatesod
The ergodic result in [4] applies only to delay tolerant
traffic, e.g., file downloads. Early attempts at characiegithe
delay limited secrecy capacity drew the negative conctusio
that non-zero delay limited secrecy rates are not achieyabl
over almost all channel distributions, due gecrecy outage
events corresponding to the instants when the eavesdropper
channel gain is larger than the main one [6], [8]. Later, it
was shown in [12] that, interestingly, a non-zero delay tadi
secrecy rate could be achieved by introducpriyate key
gueuesat both the transmitter and the receiver. These queues

Secure communication is a topic that is becoming increasre used to store private key bits that are shanggbrtunis-
ingly important thanks to the proliferation of wireless @ms. tically between the legitimate nodes when the main channel
Over the years, several secrecy protocols have been deeklos more favorable than the one seen by the eavesdropper.
and incorporated in several wireless standards; e.g.BE&| These key bits are used later to secure the delay sensitive
802.11 specifications for Wi-Fi. However, as new schemes atata using the Vernam one time pad approach [1]. Hence,
being developed, methods to counter the specific techniqsegrecy outages are avoided by simply storing the secrecy
also appear. Breaking this cycle is critically dependentten generated previously, in the form of key bits, and using them
design of protocols that offer provable secrecy guaraniées whenever the channel conditions are more advantageous for
information theoretic secrecy paradigm adopted herewallothe eavesdropper. A following work studied the key queue
for a systematic approach for the design of low complexityynamics and power control strategies for this system [13].
and provable secrecy protocols that fully exploit the mgi¢ However, these works stopped short of proving sharp capacit
properties of the wireless medium. results or deriving the corresponding optimal power cdntro

Most of the recent work on information theoretic secrecgolicies. To that end, in this paper we study the secrecygaeuta
is, arguably, inspired by Wyner’s wiretap channel [2]. listh capacity characterization of the block fading wiretap atedn
setup, a passive eavesdropper listens to the communicatiga first consider the scenario where perfect knowledge about
between two legitimate nodes over a separate communicatibea main and eavesdropper channels are availapeaori at
channel. While attempting to decipher the message, no lintie transmitter. The outage secrecy capacity and correlapgpn
is imposed on the computational resources available to thpetimal power control policy are obtained and then the tesul
eavesdropper. This assumption led to defirpegfect secrecy are generalized to the more practical scenario where only
capacity as the maximum achievable rate subject to zero mthe instantaneous main channel state information (CSI) is
tual information rate between the transmitted messagetand available at the transmitter. Finally, the impact of hévate
signal received by the eavesdropper. In the additive Gansskey queueverflow on secrecy outage probability is studied.
noise scenario [3], the perfect secrecy capacity turned dDverall, our results reveal interesting structural inssgbn
to be the difference between the capacities of the legiemahe optimal encoding and power control schemes as well as
and eavesdropper channels. Therefore, if the eavesdropgiearp characterizations of the fundamental limits on secur
channel has a higher channel gain, information theoretisree communication of delay sensitive traffic over fading chdsne
communication is not possible over the main channel. Recé\bte that, we provide some intuition and very brief sketches



of the proofs of our theorems. Full proofs can be found iconstructing 2%, N') codes to communicate message packets

[14]. W(s,b) € {1,--- 2N} of equal size, which consists of:

1) A stochastic encoder that mags(s,b), x**~1) to
x(s,b) based on the available CSI, whex&*~! sum-
We study a point-to-point wireless communication link, in  marizes the previously transmitted sigritaland

which a transmitter is trying to send information to a legédte ~ 2) A decoding function that mapg*® to (s, b) at the

receiver, under the presence of a passive eavesdropper. We legitimate receiver.

divide time into discrete slots, where blocks are formed\by Note that we consider the current blagks, b) to be a function
channel uses, an#8 blocks combine to form a super-block.of the past blocksc®*~! as well. This kind of generality

Let the communication period consist Sfsuper-blocks. We ajlows us to store shared randomness to be exploited in the
use the notatiorts, b) to denote thé block in thes™ super- fytyre to increase the achievable secrecy rate.

block. We adopt a block fading channel model, in which the pefine the error event with parameteat block (s, b) as
channel is assumed to be constant over a block, and changes

Il. SYSTEM MODEL

randomly from one block to the next. Within each bldskb), E(s,b,8) = {W(s,b) # W(s,b)}U
the observed signals at the receiver and at the eavesdropper 1 5
are: NHX(Sab)H > P(s,0) +6 ¢,

Y (5,0) = Gm(s,0)X(s,b) + Win(s,) which occurs either when the decoder makes an error, or
Z(s,b) = Ge(s,b)X(s,0) + We(s,b), when the power expended is greater thafs,b) + 0. The
equivocation rate at the eavesdropper is defined as the en-

. N . .
respectively, vj\\/[he_reX(s,b) < C IS _the transmitted s_|gnal, tropy rate of the message at blo¢k b), conditioned on the
Y(s,b) € C is the received signal by the Iegltlmatereceived signal by the eavesdropper during the transmissio
receiver, andZ(s,b) € CV is the received signal by the g y bp 9

eavesdroppeV,,. (s, b) and W (s, b) are independent noiseplerlod, and a\glabé% eavesdropper CSI, which is equal to
=H(W(s,b)|Z°",h°"). The secrecy outage event at rdte
vectors, whose elements are drawn from standard comp& . ,
S
th parametep at block (s, b) is defined as

normal distribution. We assume that the channel gains of
the main channel&,,(s,b) and the eavesdropper channel Oseds,b, R, ) = Oeq(s,b, R, §) U Ocn(s, b, R) (2)
G.(s,b) are i.i.d. complex random variables. The power gains ) )

of the fading channels are denoted Hy, (s, b) = |G, (s,b)|2 Where the equivocation outage

and H.(s,b) = |G.(s,b)|*>. We sometimes use the vector 1 $B 5B

notation H(-) = [H,,(-) H.(-)] for simplicity, and also use  Oea(s,b; R,6) = {NH(W(SabNZ h”7) <R - 5}

the notationH** = {H}%"  ,_, to denote the set of channel _ _ _ _

gains H(s',v') observed until block(s, b). We use similar OCCUTS if the equivocation rate at blogk b) is less thamR — 4,
notation for other signals as well, and denote the samg#8d channel outage

realization sequences with lowercase letters. We assuate th 1

the probability density function of instantaneous chamyadts, Ocn(s, b, R) = {NI (X(s,0); Y (s,0)) < R}

denoted ag(h), is well defined, and is known by all parties.

We define channel state information (CSI) as one’s knowledgecurs if channel at blocKs,b) is unsuitable for reliable
of the instantaneous channel gains. We defidietransmitter  transmission at rate?. Defining Ose-) as the complement
CSl as the case in which the transmitter has full caus@f the eventOsed-), we now characterize the notion ef
knowledge of the main and eavesdropper channel gains. @eievable secrecy capacity.

define main transmitter CSlas the case in which that the Definition 1: RateR is achievable with at mostprobabil-
transmitter only knows the CSI of the legitimate receivar. lity of secrecy outage if, for any fixed > 0, there existS, B
both cases, the eavesdropper has complete knowledge of itfl/V large enough such that the conditions

the main and the eavesdropper channels. Rgt, b) denote A

the power allocated at blocks, b). We consider a long term P(E(s,b, 9)Oseds, b, R, 0)) < 8 )

power constraint (or average power constraint) such that, P(Oseds, b, R,0)) < e+ (4)
1 S.B are satisfied for al(s,b), s # 1.
lim sup — Z Z P(s,b) < Payg (1) We call suchR an e-achievable secrecy rate. Note that the
S,B—o0 SB

s=1b=1 security constraints are not imposed on the first superkbloc
Definition 2: The e-achievable secrecy capacity is the
supremum ofe-achievable secrecy ratdsa
Remark 1:The notion of secrecy outage was previous
defined and used in [6], [8]. However, those works did not

for some Payg > 0.

Let {W(s,b)}>5,_, denote the set of messages to b
transmitted with a delay constraiii/ (s, b) becomes available
at the transmitter at the beginning of blo¢k b), and needs
to be securely communicated to the legitimate receiver altian exception is forb = 1, in which case the previous signals are
the end of that particular block. We consider the problem efimmarized bys—1:5.



consider the technique of storing shared randomness farsfutwhere the seP’ C P consists of power control policieB(h)
use, and in that case, secrecy outage depends only on ttie satisfies the following conditions.
instantaneous channel states. In our case, secrecy outage

depends on previous channel states as well. Note that we do P (Rm(H7P) < w) <e (8)
not impose a secrecy outage constraint on the first sup&rbloc - €
(s = 1). We refer to the first superblock as an initialization E[P(H)] < Payg 9)

phase used to generate initial common randomness beth|een

. ) re, we give a brief intuition on the result. For a given
the legitimate nodes. Note that this phase only needs toaappﬁ(h) R.(h, P) the supremum of the secret key generation
once in the communication lifetime of that link. In other A

. ) . rates within a block that experiences channel gaing3].
words, when a session (which consists ®fsuperblocks) This implies that the expected achievable secrecy rates[4] i

between the agsqgigted_ nodes is over, they will not needﬂg (H, P)] without the outage constraint. With the outage
go through the initialization step again before the subsatu constrai’nt the fluctuations oR.(H, P) due to fading are

Sessions. unacceptable, sinc&,(H, P) can go below the desired rate
when the channel conditions are unfavorable (e.g., when
[1l. CAPACITY RESULTS H,, < H., R;(H,P) = 0). Hence, we utilize the system
illustrated in Figure 1 to address this issue. In our system,
In this section, we investigate this capacity under tweecret key buffers smoothen out these fluctuations to peovid
different cases; full CSI and main CSI at the transmittesecrecy rate offi[R,(H, P)] at each block. The generated
Before giving the capacity results, we define the followingecret key bits are stored in secret key buffers of both the
quantities. For a given power allocation functiétis, b), let transmitter and receiver, and they are utilized to secute ofa
Ry, (s,b) and Ry(s,b) be as follows, same size using Vernam’s one-time pad technique. With the
allowable amount of secrecy outages, the secrecy rate goes
Ryp(s,0) £log(1 + P(s,b) Hn(s, b)) (5)  up to E[R,(H, P)]/(1 — ¢). Equation (8) on the other hand,
Ry(s,b) £[log(1 + P(s,b)H,,(s,b)) ensures that channel outage probability is at mpkence it is
+ a necessary condition to satisfy the secrecy outage cartstra
log(1 + P(s,b)He(s, b))]™, ® (@) due to (2).

where[-]* = max(-,0). Note that,R,,(-) is the supremum of SHARED KEY BITS
achievable main channel rates, without the secrecy conistra Rsi i Re
Also, R,(+) is the non-negative difference between main chan-
nel and eavesdropper channel's supremum achievable rates. keyqueue key queue
We define memoryless power allocation strategy as a mapping

from the available instantaneous CSI k™. We consider’ Ri iR

the set of memoryless power allocation stratedies-or full R wiretap R

CSI, a memoryless power allocation policy is a function o T H T T
h(s,b) = [hm(s,b) he(s,b)]. For simplicity, we drop the block TRANSMITTER RECEIVER

index (s,b), and use the notatio®(h) for a memoryless
power allocation policy. Similarly, witlmain CSI memoryless
power allocation policies are functions bf, (s, b) only, and

we use the notatio®(,,,) for the stationary power allocation o .
Ufem) A H, takes values from the sét, 10} and the joint probabilities

policy. In both cases, since the secrecy rBitgs,b), and the ) ) bl h int b
main channel rat&?,,, (s, b) are completely determined by the?€ as given in Table |. Let the average power constraint be

power allocation function(-) and channel gaink, we will VP]?IVQ :h0'5’ znd tg?re' is no power control, i.eé(h) = Pavg;]
interchangeably use the notatiofs (s,b) = R.(h, P) and "0 The achievable instantaneous secrecy rate at each state

Rn(s,b) = Ry (b, P). is given in Table II. According to the p_essimist_ic result in
[6,8], any non-zero rate cannot be achieved with a secrecy
outage probability < 0.6 in this case. However, according to

A. Full CSI Theorem 1, for any > 0, rateR = £ can be achieved with

\f secrecy outage probabilitysinceE[R;(H, Payg)] = 0.8. In

igure 2, we study the performance of two strategies with the
oal of achieving secrecy rate ¢ = 1. In strategyl, the
. E[R,(H, P)] available instantaneous secrecy rate is used greedilgehen

Cp = e (7)  block2, secrecy outage occurs wh&y = 0. Strategy2 is our

achievable scheme in Theorem 1. We can see that with this

Fig. 1. The private key queues at the transmitter and thevexce

Example 1:Consider a four state system, whelkg, and

Theorem 1:Let the transmitter have full CSI. Then, for an
€, 0 < e < 1, the e-achievable secrecy capacity is identical tg

2Note that, it is shown in [14] that a memoryless power allocastrategy SAlthough Theorem 1 is stated for the case where random védtds
achieves the achievable secrecy capacity. continuous, the result similarly applies to discréfeas well.



strategy, excess secrecy in blotlkare stored in the form of Roughly, over a superblock the receiver can reliably obtain

secret key bits, and they are used to secure the data in bI6¢BE[R,,(H, P)] bits of information, while the eavesdropper

2, hence secrecy outage is avoided. can obtainN BE[R,,,(H, P) — Rs(H, P)] bits of information.
From privacy amplification arguments [ON BE[R;(H, P)]

TABLE | TABLE I ; ; :
P(h) Re(h, Pavo) ?chg:) r?ecret key can be extracted by using a universal hash
Thm\ he— | 1] 10 Thm\ he— | 1] 10 In [14], we prove that
E log (H,,/H.)
1 0101 1 0] o0 : e _ e _ DHm>He 08 (Hm/He
10 04|04 10 ‘ 2 ‘ 0 pa%;&o Cr = palgilm Chn = 1o - (13)
Thus, in the high power regime, the power allocation policy
has minimal impact on the achievable key rate. Our simutatio
: results also illustrate this fact. On the other hand, when th
o | bk h=p101] . channo e average power is limited, the optimality of the power alkima
> | y-zsnr =2 data | Ry=2 ~eo) function is of critical importance, which is the focus of the
Q following section.
© Outage
A | blockz, h=p1010] wiretap IV. OPTIMAL POWERALLOCATION STRATEGY
Ry=258,R =0 data | -2 g =g [M0da@bIsTr A. Full CSI
cerauets The optimal power control strategl,*(h) is the stationary
2 key bits strategy that solves the optimization problem (7)-(9). His t
o | Dokl L key bit lﬁ _ section, we will show thaP*(h) is a time-sharing between
> | Ru=2%8.R =2 T o) BT retap, T the channel inversion power policy, and the secure watadill
% policy. We first introduce the channel inversion power pglic
= No Outage keyqueue |\ - bits Py (h, R), which is theminimumrequired power to maintain
D | block2,h=[1010] 1 key bi J7 main channel rate oR. Forh = [h,, h.],
Rn=2.58R =0 wiretap R
Taaritéo) T | channel | T (fe0) Po(h, R) AL 2t -1 (14)
) hm .

Fig. 2. A sample path. With strategy 2, secrecy outage carnvbieled for Next we introducePys(h, A),
block t = 2 via the use of key bits.

1 1 1\? 4/1 1
Fu(h, ) 5[\/(;1—‘;1—) 3 ()
B. Main CSI e | e m

Theorem 2:Let the transmitter have main CSI. Then, for — (i + L } . (15)

anye, 0 < e < 1, thee-achievable secrecy capacity is identical
to We call it the ‘secure waterfilling’ power policy because

E[R,(H, P)] it maximizes the ergodic secrecy_rate without_ any outage

(10)  constraint, and resembles the traditional ‘waterfillingwer
control policy without secrecy. Here, the parameitedeter-

where the setP” C P consists of power control policies mines the power expended on average. Now, let us define a

Cyy= max ————1 2
M phmyerr  1—e

P(h,,) that satisfies the following conditions. time-sharing region
E[Rs(H, P
P (Rm<H,P> < %) <e (1) Gk 2 {h: [Rs(h, Pv) — R (b, Par)]

E[P(H,,)| < Payg. (12)

Although the problems (7)-(9) and (10)-(12) are of the same
form, due to the absence of eavesdropper CSI, the mawhich is a function of parametersandk.
mization in this case is over power allocation functioh$ Theorem 3:P*(h) is the unique solution to
that depend on the instantaneous main channel state onIy.P*(h) — Pyt (1, A+

Hence,C§, < C%. As in the full CSI case, our achievable . . ot
scheme uses similar key buffers and Vernam’s one time pad 1(h e g\, k") (Bn(h, CF) = Pat(h, A7) (17)
technique to secure the message. The main difference is tisabject to:k™ < 0,A* >0

generation of secret key bits._ Due to the Iack_of knowl- C5 = E[Ry(H, P)]/(1 —¢) (18)
edge of H.(s,b) at the transmitter, secret key bits cannot P(H € GO\, k) = 1 — e (19)
be generated within a block. Instead, using the statistical N ’

knowledge ofH, (s, b), we generate keys over a super-block. E[P*(H)] = Pavg, (20)

A [Pou(h,b) — Par(, A)]F > k} (16)



TABLE Il TABLE IV

where E[R,(H, P*)] is the expected secrecy rate under the [ . == o P*(h)

power allocation policyP*(h).

Due to (17), the optimal power allocation function is a |4, \ s, — | 1] 10 Lhm\ he— | 1 | 10
time-sharing between the channel allocation power alloca- i | wi 1 0 o
tion function and secure waterfilling; a balance between 10 ‘ wf ‘ inv 10 ‘ 1,11‘ 0.14

avoiding channel outages, hence secrecy outages, and max-

imizing the expected secrecy rate. The time sharing region

G(A, k) determines the instants, for which avoiding chan- us defineP, (h.,, \) as the maximum of), and the solution

nel outages are guaranteed through the choicé’@) = of the following equation

max(Phny(h, R), Py (h, \)). Equation (19) ensures that chan- OE[R,(H, P)]  hmP(he < hym)

nel outage probability is at most, and (20) ensures that oP(h ’) R P_(h )

average power constraint is met with equality. (18), on the m N meATm

other hand, is an immediate consequence of (7). _/ " ( he > F(he)dhe — A =0
Note that, an extreme case B*(h) = Pu(h,\*) Vh, 0 L+ heP(hiy) o

which occurs whenPy (h, R) < Put(h,A") for any h €  p (n,, \) will replace Py (h, \) in the full CSI case.

G(A\*, k*), which means that the secure waterfilling solution Theorem 4:P*(h,,) is the unique solution to

itself satisfies the channel outage probability in (8). Hoeve ) .

that the other extrem®&*(h) = By (h, R*), Vh cannot occur P (hm) =P (hm, ")

for any non-zere due to (17). The parameték, can be found + 1(hm > €) (Pry(ham, C5y) = Pu(ho, )T (21)
graphically as shown in Figure 3, by plottifg| R (H, P)] subject to:\* > 0
and and1—¢)R as a function of?. The abcissa of the unique c * B
intersection point isk = C%.. Chs = E[R(H, P1)]/(1 =) (22)
P(H, >c)=1—c¢ (23)
Finding C; on Graph E[P*(Hym)] = Pavg (24)

——ER(HPY)] where E[R,(H, P*)] is the expected secrecy rate under the
power allocation policyP*(h,,).

The graphical solution in Figure 3 to finds, also generalizes
to the main CSI case.

E[R ( H.PH)]

V. SIZING THE KEY BUFFER
The capacity results of Section Ill assume availability of

F max infinite sizesecret key buffers at the transmitter and receiver,
which mitigate the effect of fluctuations in the achievable
Fig. 3. FindingC’, with graphical approach secret key bit rate due to fading. Finite-sized buffers, lom t

other hand will lead to a higher secrecy outage probability d

Example 2:Consider the same system model in Example 1o wasted key bits by the key buffer overflows. We revisit the
We have found that foR = & bits/channel use is achievablefull CSI problem, and we consider this problem at a ‘packet’
with e probability of secrecy outage with no power control, i.elevel, where we assume a packet is of fixed sizeNobits.
P(h) = 0.5 Vh. Let e = 0.2, we will see if we can do better We provide the following result.
thanR = 1 with power control. Solving the problem (17)-(20), Theorem 5:Let ¢’ > . Let Mc« (¢') be the buffer size (in
we can see thathe time-sharing, and power expended in eaderms of packets) sufficient to achieve ratg with at most
state are as given in Tables Ill and IV. For= [h,, h.] = € probability of secrecy outage. Then,
[10 1], i.e., the legitimate channel has a better gain, secure Mc: (€)
waterfilling is used and wheh = [10 10], secret key bits -
cannot be generated, but channel inversion is used to gearan
a main channel rate a&, which is secured by the excess key¥/nere
generated during the state = [10 1]. As a result, we can B Var[Rs(H, PCF)] + (C%)%e(1 — ¢)
see tha’CfB,;2 = 1.26 bits per channel use is achievable, which = (¢ —€)C%
corresponds t@6% increase with respect to no power ContrOlWe can interpret the result as follows. If buffer size is iitén

B. Main CSI we can achieve rat€s, with ¢ probability of secrecy outage.
) ) With finite buffer, we can achieve the same rate only with
Here, we provide the optimal power control strateg¥omee’ - ¢ probability of secrecy outage. Considering this
P*(hm), which solves the optimization problem (10)-(12). Lefjitference to be the price that we have to pay due to the

_ _ finiteness of the buffer, we can see that the buffer size requi
4Although Theorem 3 assum#¥ is a continuous random vector, the results 1

H 1 /
similarly hold for the discrete case as well. scales with 0(6/_6 log 6/_6)’ ase’ —e— 0.

lim — 22 < (25)
e nlog(n)




Buffer Size vs Outage Probability

VI. NUMERICAL RESULTS

250 : :
In this section, we conduct simulations to illustrate ouinma 200t -G

results with two examples. In the first example, we analyee tl f —— Theoretical

relationship between theachievable secrecy capacity and the & **°

average power. We assume that both the main channel ¢ glOO* .

eavesdropper channel are characterized by Rayleigh fadi = .| . |

where the main channel and eavesdropper channel po T o e o b 4 e

gains follow an exponential distribution with a meanand Soz 003 0.04 0.05 0.06 0.07

1, respectively. In Figure 4, we plot theachievable secrecy Outage Probabiliy, &

capacity as a function of the average power for secrecy eutagFig. 5. Relationship between buffer siaé, and outage probability’

probabilitye = 0.02, under both full CSI and main CSI cases.
It can be observed that the gap between capacities under full

CSl and main CSl vanishes as average power increases, Wijgd further derive the optimal power control policy in each
support the result (13). scenario revealing an interesting structure based by ijutc
time sharing between time sharing and the optimal strategy

Outage Capacity vs Power for the ergodic. Finally, we investigate the effect of keyféu

‘‘‘‘‘‘‘‘‘
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Fig. 4.
Pavg

Thee-achievable secrecy capacities as a function of averagempow [7]

Next, we study the relationship between the secrecy outaé%
probability and the buffer size for a given rate. We assume
that both the main and eavesdropper channel gains folloff]
a chi-square distribution of degree with a mean2 and 1,
respectively. We focus on the full CSI case. In Figure 5, weo]
plot the secrecy outage probabilities, denoted withas a
function of buffer sizeM. On the same graph, we also plot
our asymptotic result given in Theorem 5, which provides gim;
upper bound on the required buffer size to achiéveutage
probability for rateCs,, with the assumption that (25) is metflz]
with equality for anye’. We can see that, this theoretical result
serves as an upper bound on the required buffer size when
¢ — ¢, additional secrecy outages due to key buffer overflovJ%,?’]
is very small.

VII. CONCLUSIONS [14]

This paper obtained sharp characterizations of the secrecy
outage capacity of block flat fading channels under the as-
sumption full and main CSI at the transmitter. In the two
cases, our achievability scheme relies on opportunisfical
exchanging private keys between the legitimate nodes and
using them later to secure the delay sensitive information.

overflow on the secrecy outage probability.
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