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Abstract

We consider theN-user broadcast erasure channel withunicast sessions (one for each user)
where receiver feedback is regularly sent to the transmiittéhe form of ACK/NACK messages. We
first provide a generic outer bound to the capacity of thisesyswe then propose a virtual-queue-based
inter-session mixing coding algorithm, determine its r&gion and show that it achieves capacity under
certain conditions on channel statistics, assuming thstaitaneous feedback is known to all users.
Removing this assumption results in a rate region that atyioplly differs from the outer bound by
1 bit as L — oo, where L is the number of bits per packet (packet length). For the cdsabitrary
channel statistics, we present a modification of the prevelgorithm whose rate region is identical to
the outer bound folV = 3, when instant feedback is known to all users, and differsiftbe bound by
1 bit as. — oo, when the 3 users know only their own ACK. The proposed allgors do not require

any prior knowledge of channel statistics.
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. INTRODUCTION

Broadcast channels have been extensively studied by toerafion theory community since their
introduction in [1]. Although their capacity remains unkvio in the general case, special cases have
been solved, including the important category of “degraaddnnels([2]. Another class of channels that
has received significant attention is erasure channelsiendither the receiver receives the input symbol
unaltered or the input symbol is erased (i.e. not receivedllatat the receiver. The class of erasure
channels is usually employed as a model for lossy packetankswy

Combining the above classes, a broadcast packet erasuneeth@PEC) is a suitable abstraction
for wireless communications modeling since it capturesassentially broadcast nature of the medium
as well as the potential for packet loss (due to fading, plack#ision etc). Since this channel is not
necessarily degraded, the computation of its feedbackcitgpa@gion is an open problem. Numerous
variations of this channel, under different assumptiorasjehbeen studied, a brief summary of which
follows.

For multicast traffic, an outer bound to the capacity regibrerasure channels is derived in [3], in
the form of a suitably defined minimum cut, and it is proved tthe bound can be achieved by linear
coding at intermediate nodes. The broadcast nature is regphy requiring each node to transmit the
same signal on all its outgoing links, while it is assumed tha destinations have complete knowledge
of any erasures that occurred on all source-destinatidmspét a sense, [3] is the “wireless” counterpart
to the classical network coding paradigm ©f [4], since itriear all results of([4] (which were based on
the assumption of error-free channels) into the wirelegsgme.

The concept of combining packets for efficient transmis&iased on receiver feedback is also used in
[5], where broadcast traffic is assumed and a rate-optineag-delay, offline algorithm is presented for
3 users. Online heuristics that attempt to minimize the diexpdelay are also presented. Reference [6]
expands on this work by presenting an online algorithm tbates at each slot a (NP-hard) set packing
problem in order to decide which packets to combine. Thisritlyn also aims in minimizing delay.

Multiple unicast flows, which are traditionally difficult teandle within the network coding paradigm,
are studied in[[7] for a network where each source is conddota relay as well as to all destinations,
other than its own, and all connections are modeled as BPECapacity outer bound is presented for
an arbitrary number of user and is shown to be achievable fof = 3 and almost achievable for
N = 4,5. The capacity-achieving algorithm operates in two stagis the relay having knowledge of

the destination message side information at the end of tke diage but not afterward (i.e. once the
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second stage starts, the relay does not receive feedbauokili® destinations).

A similar setting is studied in_[8], where ACK-based packembining is proposed and emphasis is
placed on the overhead and complexity requirements of thpgsed scheme. An actual implementation
of packet XORing in an intermediate layer between the IP ab2.18. MAC layers is presented and
evaluated in[[9], while[[10] proposes a replacement for tB2.81 retransmission scheme based on
exploiting knowledge of previously received packets.

This paper expands upon earlier work in][11],1[12], (whichds¢d the caséV = 2) and differs from
the aforementioned works in that, although it also usesdha df packet mixing (in the network coding
sense), it introduces additional concepts and tools tha¢mgdize the results concerning achievable rates
to more than 2 users and provides explicit performance gteea. Specifically, an outer bound to the
feedback capacity region for multiple unicast flows (onedach user) is computed and, assuming public
feedback is available, two online algorithms (nanoebe1,,, andCODE2,,,;) are presented that achieve
this bound under certain conditions on rates and chann@tgta. If public feedback is not available, we
propose modifications to these algorithms that achieve raithin 1 bit/transmission of the outer bound
asymptotically in the size of packet length.

The algorithms do not require any knowledge of channel patara (such as erasure probabilities)
or future events so that they can be applied to any BPEC. Tiseyreceiver feedback to combine
packets intended for different users into a single packéthwis then transmitted. The combining scheme
(i.e. choosing which packets to combine and how) relies omoaig of virtual queues, maintained in
the transmitter, which are updated based on per-slot dlail@ceiver ACK/NACKSs. This queue-based
coding concept has also been used_in [13], albeit for braadcatfic with stochastic arrivals where the
stability region of the proposed algorithm becomes asytigatly optimal as the erasure probability goes
to 0, whereas we consider systems with an arbitrarily fixemler of packets per unicast session where
the capacity is achieved for arbitrary values of erasurdaidity.

During the preparation of this paper, we were informed thatM@ng has independently studiedinl[14]
the same problem as appears here and proposed codinglaigothat achieve capacity under the same
conditions as ours. Although the two works share commonsigeamely, employing degraded channels
to derive capacity outer bounds and performing packet gpbased on receiver feedback), the proposed
algorithms, the procedures for handling overhead, as vgeth@ methodology used for deriving their rate
regions, are quite different.

The paper is structured as follows. Secfidn Il describegtaet model under investigation and provides

the necessary definitions in order to derive the capacitgrobnbund in Sectiof 1ll. The first coding
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algorithm is presented in Sectign]IV, along with a discussb the intuition behind the algorithm and
a detailed example. The main properties of the algorithmadse presented. The algorithm’s optimal
performance under certain conditions on channel statistincl publicly available feedback is established
in Sectior Y. We also present a variant of the algorithm tlesdnot require public feedback due to the
incorporation of overhead and determine the corresponeidgction. A modification of the algorithm
that achieves capacity for 3 users under arbitrary chartaébktics is presented in Sectign]VI, while

Section VIl concludes the paper. Appendi€és A-G containtrabthe technical proofs.

Il. SYSTEM MODEL AND DEFINITIONS

The system model is a direct extensiomfausers of the corresponding modellinl[11] but is nonetheless
repeated for completeness. We study a time-slotted systearewa packet of fixed length bits is
transmitted in each slot. Without loss of generality, wenmalize to unity the actual time required to
transmit a single bit so that the time intery&l — 1)L [L), for I = 1,2,..., corresponds to sldt The
communication system consists of a single transmitter sset&” = {1,2,..., N} of receivers/users (we
hereafter use these two terms interchangeably), while lla@reel is modeled as memoryless broadcast
erasure (BE), so that each broadcast packet is either eztaivaltered by a user or is “erased” (i.e. the
user does not receive the packet). The latter case is eqoivia considering that the user receives the
special symbolF, which is distinct from any other possible transmitted pecknd does not actually
map to a physical packet (since it models an erasure). Weatterause the term “packet” to refer to
any sequence of bits and the term “symbol” to refer to a packet or an eradur@ve retain however
the standard nomenclature of “input symbol” and “output Bgity although the former is a true packet
while the latter can also be an erasure).

In information-theoretic terms, the broadcast packetwemshannel is described by the tugh, (); :

i € N),p(Y|X;)), whereX is the input symbol alphabet (we hereafter assuthe= F,, with F, a

suitable field of sizej), ; = Y = X U {E} is the output symbol alphabet (whefe ¢ X) for user

i, andp(Y;|X;) is the probability of having, at sldt outputy; = (Yi;,i € N) for a broadcast input
symbol X;. The memoryless property implies thatY;|X;) is independent of, so that it is simply
written asp(Y'|X). Since the transmitted symbols are packetd.djits, we identifyF, with the set of
L-bit sequences, so that it holgs= oL,

Define Z; £ I[Y;; = E] as the indicator function of an erasure occurring for usat slot/, and
consider the random vectdf; = (Z;;,7 € ). The sequencgZ;}°, is assumed to consist of temporally

iid vectors (we denote witl¥Z the random vector with distribution equal to that f), although, for a
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fixed slot, arbitrary correlation between erasures foredéht users is allowed. For any index et
we defineFB; £ {Z; =1, Vi e T} = niez{Z; = 1} as the event that an erasure occursdtrusers
in Z. We also use the convention that an intersection over anyemgéx set yields the entire space to
defineEy £ ) (the sample space). We denaete= Pr(E7) (so thate = 1) and, for simplicity, writee;
instead ofey;,. In order to avoid trivially degenerate cases, we hendefassume; < 1 for all i € V.

Using the introduced notation, when the transmitter at thgirining of slot/ broadcasts symbaX;,
each usei receives symbolt;; = Z; | F' + (1 — Z; ;) X;. At the end of each slat all users inform the
transmitter whether the symbol was received or not, whickosivalent to each usérsending the value
of Z;, (essentially, a simple ACK/NACK) through an error-free eelelay control channel.

A channel code, denoted &3811, ..., My, n), for the broadcast channel with feedback is now defined
as the aggregate of the following components (this is annsida of the standard definition ih [15] to
N users):

« message setd); of size|W;| = M; for each usei € N/, where|-| denotes set cardinality. Denote the
message that needs to be communicateWag (Wi, i € N) € W, whereW £ Wi X ... xWhn.lt
will also be helpful to interpret the message Bt as follows: assume that useneeds to decode
a given setlC; of L-bit packets. Then)V; is the set of all possiblgC;|L bit sequences, so that it
holds |W;| = M; = 2/&ilL,

« an encoder that transmits, at skpta symbolX; = f;(W,Y!!) belonging toF,, based on the
value of W and all previously gathered feedbak® ' £ (Y1,...,Y ;). X; is a function of W
only. A total of n symbols are transmitted for messagé.

o N decoders, one for each usere N, represented by the decoding functiogs: " — W,
so that the reconstructed symbol g = g(Y;"), whereY” £ (Yi1,...,Y:,) is the sequence
of symbols received by user (including any erasure symbols) during then slots. Thus, the
decoding performed by usérdepends only on packets receivedby.e. each user knows only its
own feedback.

Hence, a code is fully specified by the tupléM;, ..., My,n,(f;:1=1,...,n),(g; : i € N)), which
contains the message set size along with the encoding/ahectdhctions; for brevity, we will simply
write (M, ..., My,n) to denotec. The probability of erroneous decoding for mess&ges A, (W) =
Pr(Uien{9:(Y]") # W;}|W). The rateR for this code, measured in information bits per transmitted
symbol, is now defined as the vectdt = (R; : i« € N) with R; = (log, M;)/n. Hence, it holds
R; = |KKi|L/n.

Let € be a class of My, ..., My,n) codes. Then, a vector rale = (Ry, ..., Ry) is achievableinder
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¢ if there exists a sequence of codd¢g"?:],..., [2"f~] n) in € such thatﬁ SWew (W) =0
asn — oo. Equivalently, we say tha€ achieves rateR. The closure of the set of rateR that are
achievable unde€ constitutes the rate region @¢f We further define a rat&® to be achievable if there
exists some clas€ of codes that achieveR. Finally, the capacity region of a channel is defined as
the closure of the set of all achievable rates, i.e. the céosiithe union of rate regions of all possible
classes of code& for this channel.

The following definition, introduced iri [2], will be usefuhideriving the outer bound for the capacity
of the broadcast erasure channel.

Definition 1: A broadcast, not necessarily erasure, charifgl(); : i € N),p(Y'| X)) with receiver
set\ is physically degraded if there exists a permutatioan A such that the sequenceé — Yz ) —
... = Yz forms a Markov chain.
A generalization taV users of the 2-user proof in [lL6] provides the following fiesu

Lemma 1:Feedback does not increase the capacity region of a phlysiteajraded broadcast channel.

We now have all necessary tools to compute a capacity outarcho

I1l. CAPACITY OUTER BOUND

Our derivation of the capacity outer bound is based on a ndethmilar to the approaches in [14], |17]-
[19]. We initially state a general result on the capacity oddulcast erasure chann&ithout feedback
[20].

Lemma 2: The capacity region (measured in information bits per tritied symbol) of a broadcast
erasure channel with receiver s&tand no feedback is

R;
CmFB:{RZO:Z gL}, (1)
—~ 1—¢
1EN
which implies that capacity can be achieved by a simple tiragsg scheme.

We denote withC' the channel under consideration and, for an arbitrary p&tion = on A/, introduce
a new, hypothetical, broadcast chandgl with the same input/output alphabets @sand an erasure
indicator function onAﬂ(i)J = ]_[;1:1 Zx(j)4- In other words, a symbol at slétis erased by usert (i) in

Cr ifand only it is erased bgll usersr(j) in channelC', with 5 < 4, at slotl. This occurs with probability
€ (i) £ €U {n(i)} A straightforward calculation reveals that it holds— Y. () — ... — Yr(). Hence,
choosing the permutatiof in Definition[d such thatr(i) = 7(N — i + 1), we deduce that channél,

is physically degraded.
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In fact, channel’; can be viewed as an augmentation of the original chafihelvhere additional
error-free virtual channels are introduced between theivecs. Specifically, each use(i) in C‘m for
1 <7 < N —1, sends its output symbol to use(: + 1) through an error-free channel. Hence, any
achievable rate for channél can also be achieved faF, using the same code as @ and ignoring
any symbols transmitted through the virtual channels. Begavith Crp, C},FB the feedback capacity
regions of channel§’, o respectively, we conclude that it holdsz C C},FB.

The above set inclusion already provides an outer boun@{e. In order to derive this bound, we
note that the previous results imply that the feedback agpesgion of the physically degraded channel
C, is identical, due to Lemmi 1, to the capacity regiorCafwithout feedback. The latter is described,
in general form, in LemmA]2 whence the following result falto

Lemma 3: The feedback capacity region 6f; is given by

ieN
The above analysis was based on a particular permutatid@onsidering allN! permutations on\'

provides a tighter general outer bound.

Lemma 4:1t holds Cpp C Cout £ ﬂﬂepC},FB, whereP is the set of all possible permutations &h

The outer bound’*“! has been derived based on the decoding rule in Secfion lleaeh user in
channelC' knows only its own feedback at each slot (hereafter refetoeds “private” feedback). This
raises a question regarding whether this bound is also ¥atighublicly available feedback (i.e. when
each user irC' knows the feedback from all other users at each slot). Thestipn can be answered in
the affirmative by extending the bounding arguments in tleemework of [21], which considered the
caseN = 3 and public feedback (which corresponds to a decoding fonatif the formg;(Y;*, Z™)),
to generalN. Since the use of public feedback simplifies the presemiaifothe proposed algorithms,
we initially assume that public feedback is available anabpse a coding algorithm namedDE1,,,.
We remove this assumption later in Section V-A by proposirginaple overhead scheme on top of the

former algorithm, which leads to a new algorithm, nantedE1,,;, that only requires private feedback.

IV. A CLASS OF CODES

In this Section, we present a class of codes, collectivelgrred to as algorithncopEl,,;, (the
index emphasizes the assumption of public feedback), ardribe the basic properties that guarantee

its correctness.
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A. The intuition behind the algorithm

Before the algorithm’s description, a brief discussiontsfiinderlying rationale will be useful. Since
each usei must decode exactly théC;| packets in its session and a packet islahit representation of
an element in¥,, the transmitter transmits appropriate linear combimetiof packets so that each user
i eventually receive$;| linearly independent combinations of the packetsCin Hence, all quantities
appearing in subsequent expressions are elemeritg ahd all linear operations are performedEip

The algorithm’s operation can be summarized as follows:tthesmitter maintains a set of virtual
queueslk)s, indexed by all non empty subsefsC A and properly initialized, as well as queu€s,
for i € N. The queues)p, contain copies of the packets that have been successfalyjvezl by user
i € N. The algorithm processes each quépe sequentially; during the processing of each quéue
the packets to be transmitted next is selected as a linear combinaticall gfackets currently stored in
Qs i.e.s =) o as(p)p, Whereas(p) are suitably chosen coefficientsiiy. Notice that, unless;(p)
is non-zero for exactly ong € Q)s, the transmitted packetis not actually stored if)s but is created
on-the-fly.

After transmittings, the transmitter gets the ACK/NACKs farfrom the receivers and (depending on
which users successfully receivall potentially adds packet into a single queu&)s/, with &’ O S,
and/or to queues)p,, for all users: that received the packet. Some additional bookkeeping,eto b
described in detail in Sectidn V1B, is also performed. Thgodthm terminates when all queuégs
have been processed, at which point each wssan decode its original packets based on the packets
contained in@p,.

A central concept in the proposed algorithm is the notiontoké&n” which is defined as follows.

Definition 2: A packets is a token for usef iff s can be written in the form

s=> v pp+c (3)
peK;

Wherebg) 2 (bgi) (p), p € Ky), cff) € F, are known to usef. We call bgi) the “coefficient vector” of
packets for users.

In words, a token for useris any packet that allowsi, upon reception of, to effectively construct a
linear equation with the packets i; as unknowns (sincbgi), c@ are known). For efficiency reasons,
this equation should ideally be linearly independent walltequations constructed by usethrough the
previously received packets (equivalenﬁﬁ) & span({bgf) : ' received byi prior to s})). In this case,

borrowing from network coding terminology, the packet isisinlered to be an “innovative” token.
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Hence, each usermust receivg;| innovative tokens in order to decode its packets, at whidhtpo
the algorithm stops. Notice that it is possible, and acyuadiry desirable for throughput purposes, for a
packet to simultaneously be a token (better yet, innovatken) for multiple users. In the context of
this paper, we introduce the related, but not identicaliomobf a “Basis token, rigorously defined in
Section IV=Q, which is needed for the proof of the algoriterobrrectness and its performance analysis.
However, we will still use the notion of “innovative” token gain some intuition into the algorithm.

An important remark that follows from the previous discossis that a token for usermay not only
be non-innovative for, but it may actually “contain” no packet intended for it,.ibéi) (p) = 0 for all
p € K;. For example, consider the case where the transmitter sepdskets = p;, wherep; € K; and
s is received by user 2 only. Using the delta Kroneckgy, notation and setting!") = (Opp, =D € K1),

cgl) =0, b§2> =0 and cg2>

= py, it is easy to see that is a token, according to Definitidd 2, for both
users 1, 2 and none other. However, packetntains no packet intended for 2, so that one could deduce
that this slot was “wasted”. Of course, this is not actudiy tase (i.e. the slot was not really “wasted”)
since user 2 gained some side information, so that the guestw becomes how to optimally exploit
the side information obtained through overhearing.

A distinctive characteristic of the proposed algorithmhattit efficiently exploits such cases (where
users receive packets that are of no direct interest to thmmnplacing the packets into proper queues
instead of discarding them. This results in better oppdtiasfor efficient packet combinations in the
future by creating simultaneous innovative tokens for ipldtusers and essentially compensating for
previously “wasted” slots. The crux of the algorithm is irethareful bookkeeping required to handle
these cases in an efficient manner and ensure that all usemgually receive the necessary number of
innovative tokens.

The following proposition, which establishes that any ineombination of tokens is a new token (not
necessarily innovative), will be useful.

Proposition 1: Consider a set of packets in a que@Qeand a set of user§ such that each packet
p € @ is a token for all users € S. Then, any linear combination = ZPEQ as(p)p of the packets in
Q is a token for alli € S, provided thata,(p) are known to all userse S.

The above proposition is easily proved by noting that eaakgi#okenp € @ for useri € S can be
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Algorithm CODE1,,;

1: initialize Qs, K}s forall S C N andi e S andQp,, Kp, for all i € \V;
2: 1+ 0;
3: for £+ 1,...,N do

4 for all (Qs with |S| = ¢ do) > arbitrary order of processing
5: while (K5(t) > 0 for at least one € S) do

6: computesuitablecoefficients(as(p),p € Qs);

7: transmit packet = > o as(p)p;

8: apply procedur@&CcTFB1 based on receiver feedback fer

9: t+—t+1,

10: end while

11 end for

12: end for

Fig. 1. Pseudocode for algorith@DDE1 5.

written asp = <., bg) (w)u + ), whence it follows

s= > D ambPw) | ut | Y asp)el? |, (4)

uelkl; \pe@ PEQ

b8 (u) cf

so thats is still a token for each € S.

B. Description of algorithmCcODE1,,,,

Algorithm CODE1,,,, is succinctly described in pseudocode form in Eig. 1. Spelfi, the transmitter
maintains a network of virtual queuéks, indexed by the non-empty subsé&t®f A/, as well asV queues
denoted as)p,, for i € N. Fig.[2 provides an illustration for 4 users, where an ovat bepresents
Qs, for the corresponding s&t appearing as the box label, a square box represents guguand the
vertical lines are used to classify the queues into “leyeds’will be explained below. The solid (dotted)
line arrows indicate potential packet movement into a qu@y€Q p,). For graphical clarity, Fid.12 only
shows the packet movements originating from queles, Qy 33; however, similar packet movements

are allowed for the other queues, as will be explained soon.
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Fig. 2. Transmitter side virtual queue network for 4 usemsctEoval box represents the queue indexed by the corresmpndi

subset of{1, 2, 3,4}, while solid and dotted line arrows indicate potential pakovement between the queues.

1) Initialization: All @ p, queues are initially empty whil@s are initialized with the unicast packets

as follows:
K if §={i},
Qs(0) = _ (5)
@ otherwise.
The performed initialization guarantees that all packéasexd in queueg)(;, are tokens for userc N
according to Definitior]2.
Additionally, the algorithm keeps track of non-negativéerer indicesKp,, K5. The former are
associated to queu€3p., for all i € A/, while the latter are associated to quedgs for all S C N,

i € S. The indicesKp, are initialized to0 for all i € A/, while K% are initialized as

Kl i S = {i},

0 otherwise.

K5(0) = (6)

The entities)s, @ p,, K5, Kp, will be dynamically updated during the algorithm’s exeout{depending
on the exact ACK/NACKSs reported by the users), which is whyplaced an explicit time dependence
in (), (8). In fact, the following note on notation will be efsil: we write K to refer to the index when
the exact instant at which the index is examined is unimpoithis is akin to using a variable name in a
programming language: although the contents of the variatay change over time, we can always refer

to the variable by name). We writk’;(t) when we specifically refer to the value of the index at time
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t. Furthermore, since the values of these indices dependepertisures that occuk’s(¢) is actually a
random variable. We will use the notatidh}s(t) (or K}s when time is unimportant) when we want to
emphasize the random nature of the indices.

For each user € V, the algorithm also keeps track of subsets, denotdﬁgéifor SCNwithieS,
andBp,, for i € N), of coefficient vectorsbgi) of tokenss for useri stored inQs, @p, (respectively).
These coefficient vector sets, which will be seen to havertigoitant property that they can be selected
so that their union forms a basis for vector spﬁé&' for all i € NV, are initialized asBp,(0) = @ for

1€ N and

Bg)(O) _ standard_basis(FgCi‘) if S ={i}, @)
1%} otherwise,

where thestandard_basis of an |K;|-dimensional vector space is the set of vectersvhich have all
components equal to zero except for thiln component, which is set to one.

2) Encoding: We define as “levet” the groups of all queue®s with |S| = ¢. The algorithm operates
in N phases so that in phagewith 1 < ¢ < N, only transmissions of linear combinations of packets
in one of the queues in levéloccur. Specifically, at phage the transmitter orders the queues in letel
according to a predetermined rule, known to all users (sayoraling to lexicographic order of the index
setS, which corresponds to the top-to-bottom ordering shownign [B). The transmitter then examines
the first, according to this order, queds and transmits a packetthat is a linear combination of all

packets inQs, i.e.

s= Y asp)p. (8)

PEQRSs

We slightly abuse parlance and say thati§ transmitted fromQs”, although it is clear that is not
actually stored inQs but is created on-the-fly. Propositibh 1 guarantees thiata token for all users
1 € S, provided that all packets € Qs are also tokens for all € S.

The exact generation method feg(p) is unimportant as long as two general criteria are met.

Criterion 1: The procedure for generating(p) is known to all users, so that they can always reproduce
the values otis(p) even when they don't receive the packefThis implies that the receivers also know
the size of all queue®s, S C N, at all times.

Criterion 2: Assume that at the beginning of slot there exist (possibly empty) sets of vectors
Bp,(t) € {bY) : p € Qp.(1)}, for all i € N, and BY (1) € {b) : p € Qz(t)}, for all T C NV

andi € Z, with the following properties (note that far= 0, these properties automatically hold by
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selectingB}(0), Bp, (0) according to[()):
BY ()| = Ki(t) and |Bp, (t)] = Kp, (1),

Bp,t)u | J BY(t) is a basis ofr/<! for all i € A, ©)
T:ICN
Ki(t)>0
and, for eachi € S with K(t) > 0, we pick anarbitrary b; Bg) (t). Then, the generating algorithm for
as(p) should return as output arfy.s(p) : p € Qs) such that the transmitted packet= > as(p)p
has a corresponding coefficient veclr&?) with the property

OyuBp, U | BY (1)~ {b} is a basis off/! for all i € S with Ki(t) >0.  (10)

IT:ICN
Ki(t)>0

The above Criteria should be interpreted as two tests thaganerating algorithm should pass, and
conformance to these criteria is what the term “suitableffiments” appearing in line 6 of Fig.]1
actually means. It is important to note that Criteridn 2 isesdially a conditional result: it requires that
the generator ofi;(p) returns an output that satisfids (Jf¥pvidedthat there exist setgg)(t), Bp,(t)
that satisfy [(®), without making any claims about thetual existence of these sets in the first place.
It will be shown later (LemmaEk] %, 6) that there actually esietng) (t), Bp,(t) that satisfy [P) and,
furthermore, there always exists(p) : p € Qs) that satisfy [(AD) forL > log, N.

Of the two Criteria, the second one is clearly the more diffieo satisfy. It will be shown that if
coefficientsas(p) are selected so as to satisfy both Criteria, all userd/iwill eventually receive a
sufficient number of packets to individually solve a linegstem that has a full rank matrix w.p. 1.
Criterion 2 can be relaxed so that the generatar,0p) returns output that satisfids (10) with probability
arbitrarily close to 1; this choice leads to a simple gereréir as(p) based on random selection. Both
variants of Criteriod2 can be satisfied by choosing a suffibidarge field sizeg; however, for ease of
presentation, we only consider the case wheré (10) is trpe .

3) Feedback-based action©nce the linear combinatios) in the form of [8), is transmitted fror®s
at slott and the transmitter receives the corresponding feedback &ll users, the following actions
(or steps), collectively referred to asTFB1, are taken (all 4 cases must be examined, since they are
not mutually exclusive). We denote with the set of users that successfully receivednd omit thet
dependence from alk}; indices.

ACTFB1 actions:

1) if no user in\ receivess, it is retransmitted.

2) ifitholdsG C S and K& =0 for all 7 € G, thens is retransmitted.
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3) for each usei € S that receives andsatisfiesk;, > 0, K} is decreased by 1 anp, is increased
by 1.
4) if s has been erased by at least one userS andit holdsG N (N — S) # &, then
« packets is added to queués g.
« for each user € S that eraseds and satisfiesK; > 0, K} is decreased by 1 anl  is

increased by 1.

No new coefficients are produced for the retransmissiongeipssl, 2. Fig[]2 presents the permissible
token movements from queu€s,;, Q 5} that occur in stepl4 okcTFB1, where, for graphical clarity,
transitions from the other queues are not shown (dashesl tiogespond to stdg 3 afcTFB1). Hence,

a packets transmitted fromQs can only be moved to a quedg;r with 7 > S (a copy of the packet is
also added to queu@p, if s was correctly received by usey.

4) Algorithm termination and decoding procedur@rocessing of@Qs (i.e. transmission of linear
combinations of packets fros) continues for as long as there exists at leastoaeS with K% > 0.
When it holdsK% = 0 for all i € S, the transmitter moves to the next quedg in level £ and repeats
the above procedure until it has processed all queues ih feWhen this occurs, phageis complete
and the algorithm moves to phaée- 1, where it processes the queues in lefel 1.

Since the session lengif = (|K;| : i € ') and the exact algorithm for generating coefficient&)
are known toall users before execution afopei,,;, begins, the presence of public feedback implies
that, at the end of each slal users individually have exactly the same feedback infoonaas the
transmitter. Hence, they can “replay” the executioncabE1l,,, in real time and iteratively compute
bgi), c. for each transmitted packet throudi (4) so that, by the tioet1,,, terminates at the end
of phaseN, each uset has received sufficiently many tokens (i.e. packets stare@.) to solve the

related system of equations and decode the packd@.in

C. Properties and correctness 6DDE1,,,,
The following two Lemmas, proved in Appendidek[A, B, respety, contain all important properties
of CODE1,,, as they follow from its construction.
Lemma 5:During the execution o€ODEL,,,;, the following statements are true:
1) Any packets that is stored in a queu@s at slot¢, with |S| > 2, is a linear combination of all
packets in queu&)z, (for some non-empty sef; C S) that has been transmitted at some prior

slot 7 < t and received (at slot) by all users in se§ — Z, and erased by all users in skt— S.
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2) Any packets stored in queu&)s can be decomposed as= Zueujes,cj as(u)u, i.e. packets is

effectively a linear combination of packets destined foerasn setS only.

3) Any packets stored inQs is a token for alli € S (and only thesé € S).

4) When transmitting a linear combinatianfrom Qs at slott, there always exist coefficients (p)

that satisfy[(1D) of Criteriohl2, provided that there exetssthat satisfy{{9) and it holds > log, N.
The relationL > log, N will be assumed for the remainder of the paper, so that akemgent results
(Theorems, Lemmas etc) are based on this assumption. Tlbevifod result essentially shows that each
useri € A is able to decode its packets by the endcobE1,,,'s execution. The result is proved by
induction, using the algorithm’s initialization and theufth statement in Lemnid 5 to establish the crucial
inductive step.

Lemma 6:Under the application o€E0ODE1,,;, the following condition is true at théeginning of
each slott: there exist vector setgg)(t) - {béi) :p € Qz(t)}, forallZ € N andi € Z, and
Bp.(t) C {bY) : p e Qp.(t)}, for all i € N, such that

o [BY(1)] = K (t) and |Bp, (1)] = Kp, (t).

e Bp, () UUz.zcn Bg)(t) is a basis oﬁFL’Ci| forall i € V.

The existence gfi‘iﬁgoabove sets motivates the following itiefin

Definition 3: A packetp is called aBasistoken for useri € N at slot¢ iff bg) € Bp,(t) U

Uzzen BY @)

Ié%g%;r?y, at the beginning of the slat,; immediately after the completion of pha$é, Lemmal6
implies (sinceK%(tend) = 0 for all ¢, Z) that Bp, (tenq) is @ basis oﬂF'f”, for all « € /. Hence, each
useri has receivedk;| linearly independent tokens (i.8asistokens) and can decode its packets on
a one-shot manner by solving the corresponding system adtems, using theéBasistokens inBp..
Since this result holds for arbitrary channel statisticspE1,,,; is, in principle, universally applicable.

In addition, no prior knowledge of channel statistics isuiegd for its execution.

D. Some further intuitive remarks

In retrospect, the combination of Lemmiak[5, 6 and their nusthof proof give a very intuitive
explanation to the algorithm’s operation, which we provitext. The setng) (t) contain the vectors
that span thesubspaceo which thebg) vector of any packet received by usei from queueQ)s at slot
t must belong in order to provide “useful” informationdi.e. allows to create an equation, w.r.t. packets
in set/C;, from the received that is linearly independent w.r.t all previously creategh&ions by user

i). This follows from the fact that, for all € A/, any vector inspan(Bg)(t)) is linearly independent

June 2, 2018 DRAFT



16

w.r.t. the vectors ir3p, (t) (i.e. the space spanned by the coefficient vectors of thengo&lzeady received
by useri), since the union of all these vector sets constitutes ashafsﬂ“l,’c”. Similarly, K(t) is the
numberof the elements of the basis E‘f,’c” that belong toBg) (t).

Furthermore, by the algorithm’s construction and Projms(, only the users € S can haveBasis
coefficient vectors corresponding to packets store@dn This is due to Lemmal5, which states that any
linear combination of packets iQs contains packets that are intended for usegsS only. Similarly,
Criterion 2 can be intuitively summarized as follows: whha algorithm processes quef)g and selects
a packets = > . as(p)p for transmission at slot, we should seleat;(p) such thats is an innovative
token forall < € S with K%(¢) > 0, providedthat there exist certain sets with specific properties 4t slo
t. The existence of these sets is guaranteed again by Léima 6.

Regarding the rationale behindc TFB1, step(B ofACTFB1 is equivalent to saying that when user
receives a “useful” token at slet(meaning that<;(¢) > 0 so that there remaiBasistokens to receive)
from @ s, this token should be added By, (with a corresponding increase f0p.), so that it becomes a
Basistoken for usel at slott+ 1. If this is not the case and there exist users, comprising set\/ — S,
who receive this packet (stép 4 af TFB1), then the packet has become a token for use$ung and
should be placed in queu@s g. This allows the token to be simultaneously received by ipleltusers
in the future and thus compensate for the current loss. Axahdilly, since uset can now recover this
token more efficiently fronQs g instead ofQs, the indicesK’%, K, ; should be modified accordingly
to account for the token transition. S{ép 2aafTFB1 merely states that the packet is retransmitted when
it is only received by userswho have already recovered from the queue all innovativertekntended
for them (i.e.Bg) is empty).

If K% becomes 0 at the end of some siptjueueQs is no longer useful for usei since all linearly
independent combinations that could be created f@gmhave either been received hyor stored in
higher level queues (due to step 4 mfTFB1) for future recovery byi. Of course, the queue is still

useful for any other userse S with Kg«(i) > 0.

E. An example of execution 6bDE1,,,;

We next provide a concrete example of executiondopE1l,,, that illustrates some of the points
mentioned in Sections TVAH, TVAC. We consider the case of 8rsisvith 10 packets destined to each
of them and stored at the transmitter. We denote the setsabiefmdestined for user 1, 2, 3 &5 =
{ug, ..., ui0}, Ko ={v1,...,v10}, K3 = {wy,..., w10}, respectively. We also introduce an upper index

notation to denote the set of users that have received a pa&:@eugzz”) denotes that packet; was
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received by users 2, 3 only.

The initialization of CODE1,,, is trivial: all packets of sef’; are placed in queu€y;,, the indices
are initialized asT{ll}(O) = T{QQ}(O) = ng}(o) = 10 (all other indices are zero) and the basis sets are
initialized angll)}(O) = Bg)}(o) = Bg)}(o) = standard_basis(F1°) (all other sets are empty). We denote
with e; the standard basis vector which has:iith component set to 1.

CODE1,,, executes Phase 1, in which the quedgs,, 2, @3y are sequentially processed in this
order. The random erasure events that occur in each slotharensin Tablelll, where R/E stands for
Received/Erased, respectively, and X denotes an unimyporédue (i.e. X can be either R or E but, in
any case, does not affect the algorithm’s actions). For @i@nthe ERE for slot 2 of)(;, denotes a

transmission that was received only by user 2. We also uséotloving conventions in Tablg I:

« for simplicity, we omit any slots in which the packet must leransmitted due to steps$ [, 2 of
ACTFB1. Hence, the slot number (1,2, etc) should not be interpratephysical time but rather as
an ordinal indicating slots in which no retransmission weguired. In other words, slots 1, 2 need
not be contiguous in time.

« due to the imposed order of processing, quebes, (03 are actually processed in slots 11-20 and

21-30, respectively. The reader should interpret the raweesponding ta) sy, @3y accordingly.

TABLE |

CODE1pu, EXECUTION. ERASURES AND QUEUE CONTENTS AT END OF PHASE.

Phase 1 execution

Slot 1 2 3 4 5 6 7 8 9 10
Q1 RXX | ERE| ERR | ERE | EER| ERR | RXX | EER | RXX ERR
Q2 REE | EER | XRX | REE | EER | XRX | RER | RER | XRX EER
Q3 ERE | REE | REE | XXR | ERE | XXR | ERE | ERE | REE RRE
Queue status at end of phase 1
Packets decoded by users  user L:u{", ul”, u{"”, user 20{?, v{*, v{?, user 3w(¥, w¥
Qq1,2) contents ul?, uf?, ol oM
Q1,3 contents ul®, u®, wl, w, w®
Qq2,3) contents o, 0 0w W w®, w?
Q{172’3} u§23)’ Ué23), ui%J)’ U;IB)’ vélB)’ wgéQ)
Basis sets at end of phase|18{},, = {e, e}, Bﬁg} = {e1, es}, Bgll)’g} = {es, es}, Bg)’g} = {e2,e3,e9}

Bw([22)-,3} = {e2, €5, €10}, Bg),s} = {e1, es,er, s}, B?l),z.,s} = {es, es, €10}
2 3
Bgl),z:s} = {er es}, Bgl),z:s} = {ew}

Bp, = {e1,er,e9}, Bp, = {es,es,e9}, Bp, = {es,e6}
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The transmitter starts processidg;, and sends the uncoded packgtin slot j. Similarly, when
queues) oy, Q3 are processed, packet w; is transmitted, respectively, in slgt This packet selection
policy complies with Criterio 2. Specifically, if, at slgt the packet.; is received by user 1, then its
corresponding>§1) vector (i.e.e;) is removed from seBgll)} and added tdp, . If u; is erased by user 1
and received by all users in s&t then vectore; is moved fromB‘({ll)} to Bg). Similar actions are taken
for packetsv;, w;.

The queue contents at the end of phase 1 are also shown in[T&dene packets have already been
decoded by their respective destinations, while the reg haen distributed among the virtual queues.
The indices at the end of phase 1 are as follos:y, = 77, 5, = 2, T}, 5y =2, T}, 3y = 3, Tfy 5 = 3,

3 _ 1 _ 2 _ 3
Tosy =4 Thas =3 T = 2 and Ty

123} = 1. For the setng), the policy of sending uncoded

packets in phase 1, combined wileTFB1, implies thath)(tl) (wheret, denotes the end of phase 1)
contains the unit basis vectors corresponding to the packeted inQs at the end of the phase.

The algorithm now executes phase 2, in which the queBgs,,, Qy 33, Q2,3 are sequentially
processed in this order. Criteribh 2 cannot be satisfied bgling uncoded packets only, so the transmitter
selects a proper linear combination of all packets in theugueurrently being processed. Hence, the

packets,, transmitted at slok of phase 2 has the form, = > as, (p)p, whereQs is the queue

PEQs
being processed at slot and as(p) satisfy Criterion[R. The erasures that occur in phase 2 aad th
correspondingrCTFB1 actions, as well as their results, are shown in Talle Il fagdie slot number
should be interpreted as ordinal instead of actual time).

The first 6 slots of phase 2 illustrate some of the finer poifthe algorithm. Specifically, in slot 1
of phase 2, the transmitted packetis only received by user 1. Since the vecbé]r), corresponding to
packets;, belongs to the span of the vectc{ds;(}) :p € Qi 23}, it follows thatbﬁ) € span(Bgll?z}(tl)),
ie. bg) € span(ez, eq4). The packets received by user 1 up to now span the spaee(Bp, (t1)) =
span({e1, ez, eq}), SO thats; brings innovative information for this user. Hen@lm}, which counts
the number of innovative tokens that user 1 has yet to redower (), »,, must be decreased by one.

In slot 2, the transmitted packej is received by users 2, 3. Using a similar argument as for Liser
in slot 1, we conclude that user 2 gains an innovative tokim:eésbg) € span({bf) P E€Quayt =
span(ey,eq) andBp, = {es, eg, e9}) and theTsz} index must be accordingly reduced. It is important
to note that, since at the time of transmissionsgft hoIdsT{le} > 0, s9 is also an innovative token for
user 1. Additionally,s, is a token for users 1, 2 (due to Lemima 5) and 3 (since user &egce), so it
is moved to queu€);; , 3. Hence, user 1 can now recover the innovative token correlpg to packet

sz from queueQy, 53y instead ofQy, 5y, so that theT{ll,z}, T{1172,3} indices are modified accordingly.
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TABLE Il

CODE1pyu, EXECUTION. ERASURES AND QUEUE CONTENTS AT END OF PHASE.

Phase 2
Processing Q1.2 Q1,3 Q12,3
Slot 1 2 3 4 5 6 7 8 9 10
Erasure event REE | ERR | RER | ERE | ERE | ERE | REE | ERR | ERR EER
Applicable ACTFB1 actions| 3 3,4 3,4 4 4 4 4 3 3 3
T{ll,z}v T{21,2} T{ll.,s}v T{31,3} T{22,3}v sz,s}
Index value atend of slot| 12 | 01 | 00 | 12 | 01 00| 23] 12] 01| o0
Queue contents at end of phase 2
Q{1,2,3} ug23)’ é23)’ ug%S)’ U$13)’ UélS)’ w%m’ 8523), SélS)' 84(12), 822), S((f), Sgl)

Basis sets foiQ (2,3}

at end of phase 2

Bil)zg} = {6376676107bg;) € span(e27e4),b§i)7bg? € span(es, eg)

1,

3%21{27:,} = {er,es, bg) € span(e1, eq), bg) € span(ez, es, e10)}

(3) _
8{1,2,3} =

{elo,bgi)7bg?,bgi) € span(eg7eg,eg)7bg) € span(ei, es, er,es)}

Packets received by 1

Uy, U7, U9, S1, §3, 7

b received by 1

e1, er, €9, bgp € span(ez, es), bg? € span(ez, es), bg) =0

Packets received by 2

U3, V6, V9, S2, S4, S5, S6, 58, S9

b received by 2

es, es, €9, b2 € span(er, eq), b = b2 = b2 =0

bg?, bgi) € span(ez, es, e10)

Packets received by 3

W4, W6, S2, 53, $8, $9, S10

b® received by 3

e, €6, b)) =blY =0, b2, 6%, b

5o s Ds1y € span(er, es, er, es)

Notice that, though, becomes a token for user 3, iti®t innovative for user 3 since it holdéf) =0.
A similar interpretation can be given for the actions in Sdby swapping the roles of users 1, 2.

In slots 4, 5, 6, the transmitted packets are only receivedid®r 2, so that step 4 GfCTFB1 is
applicable and all 3 transmitted packets are move@{p, s,. By construction of the algorithm, it also

holds bgi),bgi),bgﬁ) € span(B(l) (t1)). Since, at the beginning of slot 4, the vectors@ﬁ)g} span a

{13}

subspace of dimensidfi; y = 2 (due to Lemm&l6), it follows thdigi),bgi),bgi) are linearlydependent

1,3
eventhoughsy, s5, s¢ € Qq1,2,33- The last statement clearly demonstrates the true meahkmjsi’j’g) (t):
these sets contain the vectdrgorresponding to tokens that remain to be received by ilfem queue
Qs at slott. It is exactly due to the fact that the packets storedinare not simultaneously innovative
for all usersi € S that the setng) must be introduced in the first place.

At the end of phase 2 (denote this time fa} the indices forQy, 55, are as foIIows.T{le’:,)} = 6,

T{21,273} =4, T{5”172,3} = 5. In phase 3, the transmitter sends linear combinations|qfemkets stored in
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TABLE 1lI

CODE1pyu, EXECUTION. ERASURES AND QUEUE CONTENTS AT END OF PHASB.

Phase 3
Processing Qf1,2,3)
Slot 11 12 13 14 15 16 17
Erasure event RRR | RER | RRR | ERR | RRE | RER RRE

T{ll.,2,3}vT{21,2,3}7T€1,2,3}
Index value at end of slo 5,3,4\ 4,3,3\ 3,2,2\ 3,1,1\ 2,0,1\ 1,0,0\ 0,0,0

Queue contents at end of phase 3

Packets received by 1 U1, w7, U9, S1, S3, S7, S11, S12, S13, S15, S16, S17

b received by 1 e, er, e, bgllxbg_lg) IS span(ez,e4)7bg17) =0
b(l) b(l) b(l) b(l) b(l) b(l) b(l) b(l)

(1)
s115 Ds1a, Dsys, bsys, bsyg, bsyy € span(es, eq, €10, bsy, bs,, bsy)

Packets received by 2 V3, Vs, V9, S2, S4, S5, S6, S8, S9, S11, S13, S14, S15, S17

b® received by 2 es, €g, €9, bgi) € span(ei, es), bgi), bg) € span(ez, es, e10)

b, b, b7, b0 b € span(er, es, b, b

Packets received by 3 w4, We, S2, S3, S8, S9, S10, S11, S12, S13, S14, S16
b received by 3 es, 6,02 b b3

by, b3, b0, T BT € span(enn, BT, b8, b7, BY)

Qq1,2,3) until all T indices become zero. Talilellll shows the erasures that wztand queue contents at
the end of phase 3 (note that only step 3aafTFB1 is now applicable and the slot numbering in phase
3 continues from where phase 2 stopped). At the end of phasacB, user has collected 10 innovative

tokens (i.e. linearly independent equations) and can deiedackets by solving a linear system.

V. PERFORMANCE ANALYSIS FORCODE 1,y

In this Section, we analyze the performancecobk1,,, for arbitrary channel statistics and conclude
thatCcoDE1,,;, achieves the capacity outer bound of Lenitha 4 (i.e. achieapaaity), provided that the
users inA\ can be ordered according to a specific relation that dependshannel statistics and the
chosen rates; this provision is shown to be true for the speaise of symmetric channels, i.e. channels
which satisfy the conditioa; = ¢, for all Z, 7 with |Z| = | 7| (i.e. the probability that all users in set
7 erase a packet is a function (| only).

We also consider the case of spatially independent charfhelsc; = [],.;€;) with (one-sided)
fairness constraints, a notion first introduced[in/ [14]. Edime this notion, we assume, without loss of

generality, that it holds; > ... > ey and define a ratdR to be (one-sided) fair iff it belongs to the
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SetR fqir £ {(R1,...,RN) > 0: Ry > ... > eyRn}. We will subsequently show thatoDE1,,,;
achieves any ratd? € C°“" N R, i.e. CODEL,,;, achieves all achievable fair rates for the BPEC
channel.

The complete performance analysis fooDE1,,, is quite lengthy so, for the reader’s convenience,
we present here the main results.

—1)ISI- %1

Theorem 1:Denotef§ = ZHQS—{Z’} ” for all S € NV with i € S. For arbitrary channel

1—6/\[,

statistics, the rate region @foDE1,,;, in information bits per transmitted symbol, is given by

Rcope1,., = {R>0: max (fsR;) < L ;. (11)
i e

Outline of proof: We provide here an outline of the proof with complete demgilen in AppendiXxC.
SinceCODE1,,,;, as described in Sectign VB, is a variable-length codicigesne (i.e. the total number
of transmissiong™ required by the algorithm is a random variable, hence unknariori), we propose
the following modification to make it compatible with a fixetbbklength coding scheme that is required
by the information-theoretic rate definition of Sectioh For a given rate vectoR and fixedn, we
create, for each userc NV, a set of packet&;, where|K;| = K;(R) = [nR;], and considel; as the
intended message for userWe then applyCODE1,,;, but stop atn transmissions and declare an error
if CODE1,,; has not terminated yet (i.e. an error is declaredif> n).

Hence, the modified fixed blocklength code has a probabilitemor p,(e) = Pr(T* > n) =
Pr(T*/n > 1); furthermore, using the SLLN, we can show that/n tends to a deterministic quantity
T*(R) (the R dependence is due to the fact thatimplicitly depends onk £ [nR]) w.p. 1 asn — co.
Hence, the information-theoretic rate region achievedcbptl,,; is the set of rated?, measured in
information symbols per transmission, for whiph(e) — 0 asn — oo, which is intuitively equal to
{R : T*(R) < 1}. To compute the rate region in information bits per transiois, we use the fact
that each symbol contains bits and7*(R) is a homogeneous function of degree 1 with respect to its
argument (i.eT*(aR) = oT*(R) for anya > 0). AppendiX'C provides a detailed calculation®sf( R)
and makes the above argument rigorous. |

In order to provide a general optimality criterion foopE1,,;,, we need to define the following set.

Rord = {R > 0 : Ipermutationt s.t. VS C N it holds arg max (f};RZ> = arg min (7?(2))} . (12)
€S €S

Although the permutatiofr in (I2) may implicitly depend o (as well as on channel statistics through
fg) and should actually be written asp, we opt to simplify the notation by henceforth omitting this

dependence. In word®,,,.4 contains all rated?, whose indices can be rearranged according so that
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the relation in[(IR) is satisfied. Notice thRt,,.; is a cone set, i.eR € R,,.q impliesaR € R,,.q for all
a > 0. Hence, as long as there exists some non-Z&m R4, the setR,,.4 intersects the boundary of
Cout_

Introducing the subset dR .4

N

Rz
Dé{ReRmd:Z (@) gL}, (13)
el G OSSO}

where 7 is the permutation corresponding 8 € R,.q via (I2), we prove the following result in
Appendix[D.
Lemma 7:If R € R,,.q4, it holds

N
~e Rﬁ-—l(i)
max | fsRi) = : (14)
This implies, through Theorel 1, th&copg1,,, N Rora = D-

Theorenl]l and Lemn{d 7 now lead to the main optimality criterio
NRora = Co%NRyrqg =D

(i.e. CODE1,,, achieves any achievable rate7t),.4). Therefore, if it holdsR,,.q 2 C°“, the rate region

Theorem 2:The rate region o£ODE1,,,;, satisfies the relatioRcopz1

pub

of CODE1,,, satisfies the relatio®Rcopr1,,, = Cov =D, ie. CODE1,,; achieves capacity.

More details are provided in Appendides[d, D. Theotém 2 iespthe following result (whose proof is
given in AppendiX_E) regarding the optimality GODE1,,,.

Theorem 3:The setR,,.; satisfies the following relations: 1¥,., = {R : R > 0}, for symmetric
channels and 2)R,.q 2 Ry for spatially independent one-sided fair channels whictisisathe

conditione; > ... > ey. Hence,CODE1L,,,;, achieves capacity for symmetric channels and also achieves

all rates inR s,;,- N C°"* for spatially independent channels.

A. Incorporation of overhead

The previous analysis rests on two assumptiongublic feedback is instantaneously availableaib
users, and 2) each usee N always knows the values tbﬁ”, cff) for any packet it receives. In order
to remove the former assumption (so that each user need ooly ks own feedback), and still satisfy
the latter requirement, the feedback information must beveged to the receivers by the transmitter
at the expense of achievable rate (i.e. incorporation oftmax). In fact, the second requirement is
equivalent to the requirement that all users know the coeffisa,(p) of any generated packet even if
they don't receive it. This follows from the fact that blﬂi) are iteratively computed, throughl (4), based

on the selected(p). Hence, the second requirement is satisfied if the algorfibmgeneratinga(p)
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(see the final remarks in the proof of Lemina 5) is availableaghereceiver. This eliminates the need
for appending the coefficient vector into the packet headewas originally proposed i [22]. We next
describe a simple, not necessarily optimal, overhead selteat can be applied to the original algorithm
CODEL,,; (with or without the fixed blocklength modification) and lsatb a new algorithm, named
CODE1,,;, wWhich does not require public feedback. The latter alparittonsists of two stages, called
“pure information transmission” and “feedback recoves, is explained next.

During the pure information transmission stage, a singlerfowad bith; is reserved in each packet of
length L. Hence, the information payload contaihs- 1 bits and the linear combinations are performed
only over the information payload (i.e. we treat the seqeewicL — 1 bits as an element df,). The
transmitter executeSODE1,,,;, normallyi, by settingh; = 0 in each transmitted packet and taking
the received feedback into account accordingatrrBl. For each transmitted linear combinatien
(including retransmissions due to steps[1, 22afTFB1), the transmitter also creates an-bit group
(f1,.-.,fn), where f; is 1 or O, depending on whether or not ugereceiveds, and stores it into a
feedback log. Denoting witl™ the (random) number of time slots required &yDE1L,,, to process all
gueues, an equal number dFbit groups is created and added to the feedback log. Medamvddch user
stores the packets it receives in a single queue in a FIFO enaince, at this point, it can do nothing
more without additional information on the other users'dieack.

In principle, if each user learns the exact feedback logilltgain the same information it would have
in the case of public feedback; hence, it can “replay” thedilgm as it was executed at the transmitter
side and deduce the valueslnﬁ), cgi) for the packets; it received. Hence, the objective now becomes
to multicast the feedback log to a users in a manner that does not introduce significant ovdrhea
This is performed in the second stage of feedback recovesyhich 2 overhead bita;, ho are reserved
for each packet. WheooDE1,,; terminates (i.e. phas® is complete), the transmitter splits the entire
feedback log into packets of lengfh(so that a total of N7* /(L — 2)] packets is required, considering

the 2 bit overhead per packet; we hereafter call these “fadipackets) and broadcasts each feedback

*hased on the algorithm’s description in Secfion IV-B, thader will notice that the existence of public feedback mdgcaf
the exact decoding procedure at each user but doeaffect the transmitter’s actions in any way, since the tadleays has

access to feedback froall users.
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packet until it is received by all useHsNotice that a single feedback packet actually contains Kaete
feedback that occurred in a group dfL. — 2)/N| consecutive slots.

Each feedback packet has itg bit set to 1, so any user that receives it can distinguishoinftpure”
information packets (which haldy = 0) received during the previous phasescofbEl,,;. Furthermore,
the transmitter applies the following procedure for/bit The first transmitted feedback packet has= 0.

The transmitter keeps sending this packet wadtilsers receive it. When this occurs, the transmitter sends
the next feedback packet by flipping the bit.

The flipping of thehs bit is necessary to guard against the following case: if dlfiaek packet is not
received by all users upon its first transmission, it is retraitted so that it is possible that a user may
receive multiple copies of a “single” feedback packet (meguthat all these packets contain feedback
for the same group of slots). Without any additional prawiging, this user cannot distinguish this case
from the case of multiple feedback packets that occurredoimiguous groups of slots and happened
to experience exactly the same erasures. This problem veddly enforcing the rule of flippings
between transmission of feedback packets that correspomifferent groups of slots during theV
phases 0oCODE1 ;.

After all log packets have been successfully received, thesmitter broadcasts a final packet with
all bits (including h1, ho) set to O until it is also received by all users. This packetjolv can be
easily distinguished by previous feedback log packetsesindiffers in theh; bit, informs the receivers
that transmission of all relevant information is complefde entire overhead scheme is pictorially
demonstrated in Fid.] 3.

Assuming the order of processing@s to be known a priori, each receiver can actually “replay” the
execution ofcODE1,,,;, up to the point for which it has received the correspondiag pf the feedback
log, since it can reproduce the coefficientgp) using the same coefficient generation procedure and
linear independence checking procedure (see discussitimea¢nd of the proof of Lemmi@l 5 in the
Appendix) as the transmitter. Hence, the receiver can ereatl copies of the transmitter side queues
Qs and countersss and use[(}) to iteratively compute trbéi), cgi) values of each transmitted packet
s. The FIFO manner of storing packets at the receiver is ckusiigce it associates each received packet

to the correct ACK/NACK group. The following result now fols from Theoreml1.

%it is not necessary that any feedback packet is successtdbived by all users simultaneously. During the transionisef
the feedback log, the transmitter keeps track of which ussssive a feedback packet, say by raising a flag wheneverra use
receives a packet. Hence, the transmitter need transmitghesieedback packet only until the flags for all users havenbe

raised, at which point it starts transmitting the next fesdkbpacket (resetting all flags).
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Fig. 3. Distinguishing packets at the receivers based onheael bits.

Theorem 4:Under the overhead scheme described above, the rate refioopal,,;, measured in

information bits per transmission, for arbitrary chanrelistics satisfies the following relation

N L—1
7?’CODElpm 2 R : m%x (lejé‘) S 1 N2 9 (15)
scn € T T (=)

Wheree€, g = max;car €.

Rcope1,,, approximatesRcope:,,, Within 1 bit as L — oo, so that the overhead-induced rate loss is

minimal. An an example, folN = 10 ande,,., = 0.5 (the latter represents very poor channel conditions;
€maz 1S typically much smaller), a length df = 8000 bits leads to a rate loss of 2.5% W.Rcopgs1,,, -
Proof: The proof is similar to the proof of Theorem 1 for the case oblufeedback, with the
important difference that we must now also take into accdbet number of slots required for the
transmission of the feedback log to all users. Based on teeri¢ion of CODE1,,;, the total number of

slots7** needed by this algorithm is

14+[NT™*/(L—2)]
T =T* + > N, (16)
=1
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where the first part in the above sum (il&) is the number of slots required lyDE1,,, and the second
part is the total number of slots required to transmit thekptized feedback log (i.e.+ [NT* /(L —2)]
packets, including the termination packet), whe¥e = max;cpr N;;, with N;; the (random) number
of transmissions required until theth feedback packet is received by ugelt is clear thatNN are
geometrically distributed witlﬁ’r(Ni,l =v) = ¢/ }(1—¢;) while N, are (temporally) iid random variables.
The following relations will also be useful.

peti = ) =P U 201 ) € TP > 3ot v

iEN 1eEN 1eEN

17)
. ©° . > N
_ v—1 _
]E[Nl] = VZZIPI'(Nl > V) < ;N&mam = m
Rewriting [16) as
T Tt 1 INTY(L - 2)] 1 ”W%L‘Z” N "
— : 1 (18)
n n n 1+ [NT*/(L—2)] —

and using[(65) of AppendiX]C for the asymptotic behaviof 6fn asn — oo, and the fact thal™ — co
w.p. 1 asn — oo, so that we can invoke the SLLN for the term inside brackets,canclude that

T _ [1+ LE[N;]} T < [1 + (L_z)é\f— emam)]

L—2 n—oo n

T*(R) £ lim

n—oo n

Z max (fjé‘RZ)7
GASCN i€S
(19)
where we used(17) in the last inequality of the above exmes$Ve can now apply verbatim the
argument used in Appendix] C (Sectibn_C-B) to show that theeaable rate region o£ODE1,,;, in

information symbols per transmission, is

1%k X N2 4
Reooss,y, = {R20: T (B) <1} RZO'[H(LJ)(l—emaXJ >, mex(fsR) <1y,
(20)

GASCN
where the last set inequality is due [0](19). Eql (15) follomsmediately by noting that each transmitted
packet in the pure information transmission phase (thebf@ekipackets, although necessary for decoding,
only carry feedback information that is independent from dictual message) has an information payload
of L — 1 bits. |

VI. ACHIEVING CAPACITY FOR 3 USERS AND ARBITRARY CHANNEL STATISTICS

Althoughcobpk1l,,;, achieves the capacity outer bound of Lenirha 4 for some chatatedtics (namely,

those that satisfy conditioR,,; 2 C°“ in Theoreni D), this is not always true, i.e. for certain chenn
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statistics there exist rateR € C°“ that arenot achievable bycoDE1,,,. This is easily verified for 3
users as follows: consider the case of equal ratesRi.e= R for all i € {1,2,3} (which implies that

|KC;| = K for all 7), and assume that it holds

€] = €2 = €3, (21)

€{1,2} > €{1,3} > €{2,3}-
Considering all possible permutations ¢h 2,3} and applying Lemmél4 yields the following bound
cggt:{R1:R< ! - ! + ! >§L}. (22)

l—e  T—eng 1-e€uas

Applying (11) of Theoreni]l to the case of equal rates and u@dy produces, after some algebra,

1 2 1 1
Req,CODElpub = {Rl : R < + - + ) S L} s (23)
1-— €1 1-— 6{1’2} 1-— 6{2’3} 1-— 6{172’3}

which implies, since—1— > —1 -, that Reg copr1

' : o
ey T C Cgy"- This demonstrates the suboptimality

of CODE1L .

A more intuitive explanation for the suboptimal performaraf CODE1,,,;, under asymmetric channel
statistics for the 3-receiver case can also be given threlugliollowing argument (note that, fav¥ = 3,
the network corresponding to FId. 2 contains only queuesdtssS € {{1},{2},{3},{1,2},{1,3},{2,3},
{1,2,3}}, in addition toQp,, @p,, @p,). Assume that in phase 2 aODE1,,;, the order in which the
queues are processed{is, 2},{1,3},{2,3}. When the transmitter sends linear combinations of packets
from Q, oy, it is quite possible that the indicdé{lm}, K{2172} do not become zero simultaneously. Say
it happens that, at some slatit holds K%l,z}(t) =0 and K{zm} (t) > 0. By construction,CODE 1,
will continue to transmit linear combinations froMy; ,, until Kfm} also become$. However, this
introduces a degree of inefficiency, as evidenced in [Step ZcafB1.

Specifically, if a transmitted packetis only received by user 1, stép 2 will foreeto be retransmitted
until some user other than 1 receives it, essentially “wgstihis slot. We claim that there exists potential
for improvement at this point, by mixing the packetsin, 5, with the packets irQy; , 3. Clearly, the
first two statements in Lemnia 5 are still true, so that eachedeatored in eithe€)(; oy Or Q123 is a
token for both users 1,2. Combining this fact with Proposifll, any linear combination of the packets
in Q1,2), Qi,2,3) is @ token. In fact, since it will be later shown that it is Isfibssible to define sets
Bg) (t), Bp,(t) so that Lemmal6 holds, a proper selectionagfp) allows s to become aBasistoken,
in the next slot, for both 1,2 (provided that it hoI@é{le} > 0). Hence, even if the packet is received

only by 1, the slot is not wasted, since 1 recoveBasistoken.
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Unfortunately, the previous reasoning implies that the fl always combining packets from a single
gueue must be discarded if the objective is to achieve cgpdwr N > 3, it is not even clear what
structure a capacity achieving algorithm should have. Hewnefor N = 3, we present the following
algorithm, namedcODE2,,,,, which achieves capacity for arbitrary channels, assurpirglic feedback
is available.

CODEZ2,,, operates in phases as follows. Phase t@bE2,,, is identical to phase 1 afODE1L,,,;,
with the transmitter acting according to the rulesibTFB1 (note that step]2 ckCTFB1 cannot occur in
this phase ot0DE2,,,;). In phase 2 o£0ODE2,,;, the transmitter orders the level 2 quedgs according
to an arbitrary rule and sequentially processes éa¢lvy transmitting linear combinations fro@s until
it holds K5 = 0 for at least oneuseri € S. When this occurs, the transmitter moves to the next level 2
qgueue. Again, the steps ARCTFB1 are applied. When all level 2 queues have been processddsaek
queue@s has at most one surviving user index (meaning séraeS with K% > 0). For convenience,
we denote this time instant with; and define the survival numbefu(i) of indexi € {1,2,3} as
Su(i) = {S : |S| = 2, K&(t3) > 0}|. In words, Su(i) is equal to the number of level 2 queues which
contain unrecovereBasistokens for usei at timets. Clearly, Su(i) is a random variable that depends
on the prior erasure events (hence, the dot accent) andiesafis< Su(i) < 2 for all i € {1,2,3}. The

transmitter now distinguishes cases as follows:

1) if it holds Su(i) = 0 for all i € {1,2,3}, CODE2,,,;, reverts toCODE1,,;, starting at phase 3.

2) if it holds Su(i) = 1 for all i € {1,2,3}, CODE2,,, reverts toCODE1,,;, and continues processing
eachQs queue in level 2 until allK} become zero.

3) otherwise, there exists at least one pair of usgisuch thatSu(i) = 0, Su(j) > 0. In this case,
simple enumeration reveals that all possible configuratifsu(l) for I € {1,2,3} fall in exactly
one of the following 4 categories:

a) there exist distinct usefs$, j*, k* € {1,2,3} such thatSu(i*) = 0, Su(j*) = 1, Su(k*) = 2.
b) there exist distinct users, j*, k* € {1,2,3} such thatSu(i*) = 0, Su(5*) = Su(k*) = 1.

c) there exist distinct users, j*, k* € {1,2,3} such thatSu(i*) = Su(j*) = 0 andSu(k*)
d) there exist distinct users, j*, k* € {1,2,3} such thatSu(i*) = Su(j*) = 0 and Su(k*)

2.
1.

To provide some concrete examples, Eig. 4 contains 4 pessisifigurations (each belonging, from
left to right, to one of the above categories), where cireles used to denote surviving indices.
The valueqi*, j*, k*) for each configuration ar€3, 2,1), (2,1,3), (3,2,1), (3,2, 1), respectively.

We hereafter concentrate on case 3 of the above list, sisesda 2 revert taODE1,,,,;,. The transmitter
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Fig. 4. Possible states of innovative token indidé§ for the level 2 queues at epoch.

now constructs the s@¢,, = {Q- ;1 Su(i*) =0, K{i*’j}(@) > 0} consisting of all level 2 queues that
contain a surviving index and an index* with Su(i*) = 0. Relative order withinQ, is unimportant.
A subphase, called 2.1, is now initiated, in which the follogvactions are performed:

« the transmitter processes each quélg. ;; in Q¢, and transmits a packet which is a linear
combination of all packets in queuék;- ;; and Qy; 23 (“and” denotes grouping in this context
and should not be interpreted in the Boolean sense). Théiderfsa,(p) are selected such that
is a Basistoken forj as well asi* (for the latter case, this is true if it holds’}iz’g} > 0). It will
be proved in AppendikIF that this selection is always possibepending on the received feedback,
the following actions, collectively referred to ag&TFB2, are taken.

ACTFB2 actions:

1) if s is erased by all users,is retransmitted.
2) if s is received only byi* when it hoIdsK};*m’g} =0, s is retransmitted.
3) if j receivess, Kfl i is decreased by 1 anllp, is increased by 1.
4) if i* receivess andit holds K, , 5 > 0, K7, , 5, is decreased by 1 anlip; is increased by
1.
5) if j erasess andk € {1,2,3} — {i*, j} receives it,s is added taQ; 5 3y, Kil it is decreased
by 1 andK?lm} is increased by 1.
Notice that, apart from stép 4) in the above list TFB2 is similar toACTFB1. The above procedure
is repeated until it holdf('gi* = 0, at which point the next queue i@, is processed. The above
procedure is repeated until all queuesQn, have been processed.
« once all queues iR, have been processed, the transmitter computes the nevs\afle: (i) for
i € {1,2,3} and construct®)¢, from scratch. IfQ¢, = @, CODE2,,;, reverts toCODE1,,,;, starting

at phase 3, otherwise it repeats the above procedure verlatithe newQ, . It can be easily
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verified that at most 2 iterations of this procedure will befgened until it holdsQ,,, = @.

As a final comment, stepl 2 dfCTFB2 is similar to sted R ofACTFB1 so one could argue that
CODE2,,; still performs inefficiently. However, by construction @, , it is easy to verify that if,
during the combination of)y;- ;1 € Qg, With Qg1 23, Kﬁ,zi’»} becomes) beforeri*vj} does, then*
has no moreBasistokens to recover (i.e. it hold&> = 0 for all S C N). Hence,i* cannot gain any
more linearly independent tokens by combinig;- ;, with Q5 3y and no efficiency is lost.

To provide a concrete example for the last statement, cendie application of subphase 2.1 to the
leftmost configuration in Fig.14. It hold®¢, = {Q{1 3}, Q2,31 } and the transmitter starts combining
Q1,33 With @y 2 31 until K7, ., becomed). If it happens that<}, , ,, becomed) before K7, ,,, then 3
has indeed recovered dlasistokens so that, even if stép 2 occurs, no efficiency gain isiples The
same conclusion is reached by examining the 3 other cagsgshown in Figl14. Hence, at the end of
subphase 2.1, it hold&; = 0 for all i € S with |S| = 2 and CODEZ2,,, reverts toCODE1,,,;, starting at
phase 3.

The properties and achievable rate regiorcobt2,,, can be determined by an approach similar to
that of CODE1,,,. Specifically, the correctness aODE2,,;, is proved in AppendiXF, where a slight
modification of Lemmal5 is used to show that Lenima 6 is stik tfor CODE2,,,,. This guarantees that
at the end ofcobpE2,,;, all 3 users have received the required number of lineadgpendent tokens
and can decode their packets. The performance analysisoor2,,, is identical toCODEL,,,,, up to
time t5. From this point on, the number of tokens produced duringctimabination of the queues @,
with Q1 2 31 must be carefully computed. The computation is relativélgightforward but lengthy, and
is deferred to Appendix]G. The final result is:

Theorem 5:CODE2,,;, achieves the capacity outer bound @f, for L > 2. In case only private
feedback is available, we can construct algorithobe2,,;, based onCODE2,,,, using the overhead
scheme employed iQODE1,,;. The final result is that the rate region @DE2,,; asymptotically differs

from the capacity outer bound by 1 bit &s— oco.

VIlI. CONCLUSIONS

This paper presented 2 coding algorith@spke1l,,;, andCODE2,,;, which achieve (assuming public
feedback) an outer bound of the feedback capacity regioheofVt-user broadcast erasure channel with
N unicast sessions for the following cases, respectivelarhitrary N and channel statistics that satisfy
the general condition in Theordr 2 (this includes symmetniannels as a special case), and 2) arbitrary

channel statistics, faV = 3. If public feedback is not available, a simple overhead sehean be applied
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on top of each algorithm, leading to a rate region that asgtigatly differs from the outer bound by 1
bit as L — co. The main characteristic of the algorithms is the introghuciof virtual queues to store
packets, depending on received feedback, and the appsopniaing of the packets, without requiring
any knowledge of channel statistics, to allow for simultanereception of innovative packets by multiple
users.

Since only an outer bound to the capacity region is knownNor> 4 and arbitrary channels, the
search for capacity achieving algorithms far > 4 is an obvious future research topic. It is expected
that such algorithms cannot be constructed through minalifinations ofCODE1,,,,;, as was the case with
CODEZ2,,, and may possibly require complete knowledge of channgéstas. If this is the case, adaptive
algorithms that essentially “learn” the relevant statistinay be appropriate. Suboptimal algorithms with

guaranteed performance bounds in the spirit_of [13] may bé&sof interest.

APPENDIX A

PROOF OFLEMMA [§

By construction ofCODE1,,,;, the only way a packet can be stored in queu@s, with |S| > 2, is
during step ¥ oRACTFB1 (since, excluding packets that are received by a tise§ and moved to queue
Q@ p,, no packets are moved between que@gsin the other steps akCTFB1). Thus, the execution of
stepl4 implies that is a linear combination of packets in some quédge, with & £ 7, C S, ands is
received byall users inS — Z, and erased bwll users in\' — S. This completes the proof of the first
statement.

For the second statement of the Lemma, we note that the @lgosi operation implies that any
transmitted packet is decomposed as = ZueujeN,Cj as(u)u (the algorithm essentially sends linear
combinations of linear combinations etc.). Furthermore,a@n combine the initialization afODE1,,,;
(for queues)s with |S| = 1) with the first statement in Lemnia 5 (proved in the previousgeaph) to
show, via strong induction off| = 2, ..., N, that, for allS C N and any packet stored inQs, it holds
as(u) =0 for all w € K; with j ¢ S. Specifically, anys € Qs must have entere@s during sted ¥ of
ACTFBI, so that it holdss = Zpest as(p)p, whereZs C S. Using the strong induction hypothesis for

Zs, we know that any € Qz, is written asp = ap(uw)u. Combining the last two expressions,

ucUjer,

we conclude that any packetstored inQs can be written as

s = Z as (u)ua (24)

uEU;jecskC;

for suitableas(u), and the second statement is also proved.
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To prove the third statement of the Lemma, we apply strongdtidn on|S

, starting with|S| = 1.
Due to the initialization ofCODE1,,;, any packets stored inQy; belongs to sef(;, so thats is a
(trivial) token for useri and no other user. We now consider angtored in queu&)s with |S| > 1, and
use the first statement of the Lemma to wiite- 3, as(p)p, whereZ, C S. This also implies that
s was received by all users in s&t— Z;, so thats is a token for all users in the sét— Z,. Combining
the inductive hypothesis for s&t with Proposition L, we conclude thatis a token for alli € Z; as
well, so thats is a token for alli € S. To show thats is not a token for any ¢ S, we combine the fact
that s is a linear combination of packets destined for users inugset, ; only (second statement of the
Lemma) with the fact that was erased by all useisz S (first statement of Lemma). Hencecannot
be a token for any ¢ S.

Before we prove the fourth statement in Lemhbla 5, we need t@bhksih some intermediate results.
The following Proposition is easily proved by consideriing tunion bound for the probabilities of the
complementary events.

Proposition 2: For any eventsi;, with j = 1,...,m, it holds
m
Pr(n,4;) > Y Pr(4;) —m+1.
j=1

The following result will be crucial in proving Lemnid 5.

Lemma 8:Let {vy,...,v)} be a basis set of the vector spé@% and consider a subspatewith
dimension/ > 1, which contains the sefvi,...,vx}, with 1 < K < [. Then, the subspadd N
span({va,...,vp}) has dimension at mosgt— 1, and/ — span({vs,...,vy} iS @ non-empty set.
Additionally, for any vectoru € U — span({vs, ..., v}, the set{u,vs,..., v} is a basis off M.

Proof: We use contradiction to show thdim(i/ N span({ve,...,va}) < I — 1. Specifically,
assume thadim(U N span({ve,...,va}) = I. Then there exists a s¢by, ..., v;} which forms a basis
of U Nspan({va,...,va}). Therefore{vy,...,0;} CUNspan({vs,...,vr}) iS a basis ol as well,

since it is a linearly independent set of cardinalitthat is contained in the subspadeof dimensioni.

The basis property fa¥ now implies thatw, € span({v1,...,?;}) and, sincev; € span({va,...,v})
for1 < </, italso holdsv; € span({ve,...,va}). This contradicts the assumption tHat;, ..., vy}
are linearly independent and proves the desired resultitiddelly, sincev, ¢ span({vs,...,vap}), it

also holdshv; € U — span({va,..., v }) for all A € F, — {0}, so that/ — span({vs,...,vi}) # 2.
In order to show thafu, v, ..., vy} is a basis o} for anyu € U—span({vs,...,va}), it suffices

to show that{u, v, ..., v} is alinearly independent set. Indeed, pick any U/ —span({ve, ..., v })
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and assume that there existc; € F, such that

M
au + E c;v; = 0.
=2

Then it must holdv = 0, since the case # 0 implies thatu € span({va,...,va}), which is impossible
by the selection ofu. The conditionae = 0 now implies¢; = 0, due to the linear independence of
{va,..., v}, SO that{u,vs,..., v} is also linearly independent and the proof is complete. =
The last intermediate result we need before proving thettiostatement in Lemmal] 5 is provided
below.
Lemma 9:Let v;, with j = 1,...,k, be vectors in[F{IVf. DenoteV = span({v;},j =1,...,k) and
[ =dim(V), with > 1. Leta;, with j = 1,.. . k, be independent random variables uniformly distributed

in F, and construct the random vector= Z;?:l a;v;. Then,v is uniformly distributed inV, i.e.
Prlv=e)=— VeeV.

Additionally, let {by,...,bys} be a basis oFf]” and assume thdthy,...,bx} CVforl < K < M.

It then holds

. . 1
Pr ({v,bs,..., by} is basis ofF}') > 1 — .

Proof: SinceV has dimensiori, we can pickl vectorsv; (out of thek available) as a basis far;

without loss of generality, we can permute vector indiceshsd the basis set i§vq,...,v;}. Hence,

v can be written aw = Y_'_ ojv; + g, whereg = °b_ | a;v; is a random vector independent
from Zé.:l a;v;. Furthermore, any vectoe € V can be written uniquely, through the basis set, as

_ N
e =) ;_;¢v;. It now holds

l
Pr(’u:e):ZPr Zaj'vj—i-g:e g=r|Pr(g=r)
j=1

l
:ZPr Zaj'vj:e—r g=r|Pr(g=r)
j=1

rey (25)
l l
=Y Pr{ > awi=) (¢j—rjv; | Prig=r)
rev j=1 j=1
, 1 1
=Y P foy=ej—r})Prlg=r)=> —Prg=r7)=,
rey rey q q

where we used the independenc§§y:1 a;v; from g to remove the conditional probability and exploited

the facts thafvi,...,v;} is a basis set foi’ and«; are independent and uniformly distributedig.
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To prove the second part, we note that

Pr ({v,b,... by} basis OfIE‘éw) =1—Pr(v € span({ba,...,br})). (26)
For notational convenience, denotéd = span({bs,...,bu}). It now holds
1
Pr(v e M) = Z Pr(v =7r)= 5 |MnV|, (27)
remMny q

where the last equality is due to the uniform distributiorvoh V. For all vector spaces over a finite field,

it also holdg MNY| = ¢dimMNV) < (dim(V)=1 — (=1 ‘where the inequality is due to Lemifia 8. Inserting

this inequality into [(2l7) produceBr(v € M) < 1/q, whence the desired result follows immediatel.
We are now in position to prove the fourth statement of Lerhin8gecifically, recalling the notation

of Criterion[2, we assume that there exist sB{8(¢), Bp, (t) such thatB3 £ Bp, (t) U zzcar BY (¢)
Ki(t)>0
is a basis oﬂFL’Ci‘ for all i € N. Assuming thatCODE1,,,; is currently processing)s, define the set

Rs(t) = {ieS: Ki(t) >0}. We need to show that if, for eache Rs(t), we pick an arbitrary
vectorb; € Bg) (t), then there exists a coefficient vectoy = (as(p),p € Qs) such that the vectors
b\ = > pe0s as(p)bgf), corresponding to the combination= 3 ,_as(p)p, satisfy the following
condition
B UBpmU | BY ()~ {bi} is basis of /S vie Rs(t). (28)
T:ICN
Ki(t)>0
The proof is via a standard probabilistic argument. Speificconsider the case where coefficients
a, are iid randomly generated according to a uniform distitbuin F,. For a given usei € Rs(t),
define the eventd; £ {{bg)} UB — {b;} is basis oﬂF‘q’C?“}, whence it follows from Lemmal9 that
Pr(4;) > 1 —1/q. Applying Propositiori R to the event;cr ) A; yields

1 Rs(t N
Pr (Niersn4i) > [Rs(t)] <1 - 5) —Rst)|+1>1- % >1- e (29)

Selectingg > N (sinceq can be as large &, the conditiong > N can be satisfied if. > log, N)
results in a strictly positive probability, which implidsat there exist some vectdrg) that simultaneously
satisfy [28) for alli € Rs(t). This completes the proof of the fourth statement in Leriiina 5.

The previous analysis suggests the following alternajpgr@ach to an exhaustive search for generating
as(p) in accordance with Criterioh] 2. If the set%(zi), Bp, are actually stored at the transmitter and
receivers, and since Lemrha 5 ensures thatgfor NV, there exist coefficients,(p) which satisfy [(1D)
of Criterion[2, thera,(p) can be generated randomly and uniformlyFip (so that [2B) holds) followed
by an explicit check by the transmitter whether the gendrate:torsbgi) indeed satisfy[(28). If((28) is
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violated for at least onée Rs(t), new coefficients are repeatedly created until the contiscsatisfied
for all i € Rs(t). Only then is the packetactually transmitted, using the most recent coefficients) .

The average number of trials required to find the suitabléficaents is easily computed 4% — N/q) .

APPENDIX B

PROOF OFLEMMA [G

Proof is by induction ort. At the beginning of slot = 0, we can satisfy all conditions by choosing for
eachi € NV as follows:Bp,(0) = &, Bg)(o) =@ for Z # {i} and Bg)}(o) = standard_basis (FL’C‘)
We now assume that the inductive hypothesis is true at thanhieg of slot¢ and the queue currently
being processed i§s. We constructRs(t) = {i € S : K4(t) > 0} and further assume w.l.o.g. that
Rs(t) # @ since, in the opposite casepDEL,,;, will skip processing@s and continue to the next
queue. Lemma@]5 now guarantees that, due to the validity ofhypethesis (i.e. the existence Bg) (1),
3%')) at the beginning of slot, we can select vectors; € Bg) (t), for eachi € Rs(t), and coefficients
as(p) for the next packet to be transmitted fromQs so that [(ID) of Criteriori]2 is satisfied for all
i € Rs(t).

For eachi € N'— Rs(t), it either holdsi ¢ S ori € S, K5(t) = 0. In both cases, by construction of
ACTFB1, the transmission of does not change any of th€%, Kp, indices. Hence, at the beginning of
slott + 1, we can selecﬁg)(t +1) = Bg)(t), forall Z C NV, andBp,(t + 1) = Bp,(t) so that, for all
i € N'—Rs(t), the inductive hypothesis holds for+ 1 as well. We now concentrate are Rs(t) and
consider the following mutually exclusive cases:

« if i receivess, ACTFB1 forcess to be added t@)p, andKfS to be decreased by one, whilép, is
increased by one. Accordingly, we sel&i) (t+1) = Bg) (t)—{b;} andBp, (t+1) = Bp, (t)u{bgi)},
while all other setsﬁg) remain unaffected. Lemma 5 now implies that the union of ttw Bets at
slot¢ + 1 form a basis oﬂFl{C”.

« if 7 erasess and all users in a maximal s6tC N — S receives, thean is decreased by one and
K% g is increased by one, according A@TFB1. We now seIecBg) (t+1) = Bg) (t) — {b;} and
B‘g&g(t+ 1) = g&g(t) U {bgi)} while all other sets remain unchanged. Lenirha 5 again imghiats
the new sets form a basis fﬁff” att+ 1.

« if i erases and the only users that receivéoelong to a sef C S, no K%, Kp, indices are affected

so that no sets need be changed. In this case, the inductpahasis holds trivially at + 1.

Since the above list contains all possible cases, we coacthat the hypothesis is true at the beginning

of slot¢ 4+ 1 and the proof is complete.

June 2, 2018 DRAFT



36

APPENDIX C

PROOF OFTHEOREM([II
A. Some auxiliary results

We first need to establish some additional notation andrirgefate results. Denote withg = {Z; =
0, Vi € G} the event thaall users in setj receive the transmitted packet, whence it follows from De

Morgan’s law that

Rg= | (BunRgw), (30)
HADHCG

where¢ stands for set complement atil denotes a union of disjoint sets. For completeness, we define
Es = Ry = Q) (the sample space). Introducing the quanfityg £ Pr(Es N Rg) for all disjoint
S,G C N, we can usel(30) to convert the expressitniEs) = Pr(Es N Rg) + Pr(Es N RE) into
Pr(Es) = Pr(EsNRg)+ Y Pr(EssuNRgw) e psg=es— Y, psomg-n (31)
H#DHCG H#DHCG
Evaluating the last relation for arbitraty andG = {j}, with j ¢ S, yields

PS.{j} = €5 — €suj}- (32)
The following result provides a general expressionfgl.
Lemma 10:For any non-empty disjoint set$, G C N/, it holds

psg = (1) Mesi. (33)
HCG

Proof: Proof is by strong induction ofG|. Specifically, for arbitraryS and |G| = 1 (say,G = {j}),
(33) becomes

psr= Y. (~D)Mesupy = (—1)%su0 + (1) esugsy (34)
HC {5}

which is identical to[(32). We now assume thail(33) is truedirS andall G with |G| =1,...,l and
show that[(3B) is still true foall S andall G with |G| = I + 1. Specifically, we can writ&f = {i} UG
where: ¢ G and |G| = [, so that we only need to show

?
Ps g = Ps,guliy = Z (1) ™lesup. (35)
HCGU{i}
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Since any subset. of G U {i} is either a subset of (and therefore does not containor (exclusive

or) # containsi and a, possibly empty, subsgtof G, the sum in[(3b) can be written as

, i
Ps,gufi} = Z (—D)Mesup + Z (—1)‘H|+1€su{i}uql

HCG y
= Z (_1)|H| [ESUH - Gsu{i}u?{] .
HCH
However, it also holds
Ds,gu{i}y = Pr(EsnN R{i} NRg) =Pr(EsN Rg) — Pr(EsN E{Z-} N Rg) 37)
= Pr(Es N Rg) — Pr(Esypy N Rg) = ps.g — Psufi} o
Since |G| <[, the inductive hypothesis holds fpk g, psuyiy,g, whence we conclude that
psg= Y (=) Mesin,
HCG (38)
PSULiYG = Z (—D)™esypyun-
HCG
Inserting [(38) in[(37) immediately produces the RHS[of (36)l ¢he proof is complete. [ |

An immediate consequence of Lemimd 10 is the following result

Corollary 1: For anyS C N with ¢ € S, the probability that a transmitted packet is receiesdctly

by all users inS — {i} (and none other) is given by
PN—s—{ihs—(i = Y. (DM is—ppun
HCS—{i}

For the next auxiliary result, we need to introduce somehgirrinotation. Consider some given
R > 0 and the application of the originalopE1,,, (i.e. without the fixed blocklength modification) for
K = [nR] packets. We hereafter use consistently a dot accent tocékplienote a random variable.
We denote witf[f;fs the number of slots (viewed as a random variable due to théorarerasures) it
takes undeCODE1,,, for index K5 to become 0 during the processing of quéle while T§ (resp.T™)
denotes the number of slots it takes undepEtl,,, to process queu@s (resp.all queues). Hence, it

holds

Ts =max T,
e )

1€S

"= Y Ts

GASCN

(39)

Due to the random erasures, the time-varying imﬂ'@g!(t) is a random process. We denote with

the time when processing of que@s; begins and define the random varialé'@: Kg(fs) so that, by
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the algorithm’s initialization, it holds}%:ii} = K; w.p. 1. By construction oEODE1,,;, when queu&)s

is processed at slatby transmitting a linear combinatios) index ng(t) is reduced by one (assuming
that K5(t) > 0) only if s is received by at least one user in 8ét- (S — {i}) (i.e. received by eithei

or at least one user iV — S). Denoting WithNgl the number of slots in the time interval between the

(I — 1)-th and thel-th reduction of indexK’; during the processing as, it clearly follows th
ks
Trs = Z N&,, (40)
=1
whereNg’l are iid geometric random variables wiﬂ’r(]\'fél = v) = (a%)""1(1 — k), whereal =
N =(S-{i})-

Assuming that packet is transmitted fromQs at slot¢ and K}s(t) is reduced by 1 at the end of the
slot, exactly one of the following two mutually exclusiveesis occurs: eithes is successfully received
by i (w.p. 11_‘—55) or s is not received byi but is received by all users in s&t— S (and erased by all
users in\' — T), so that it is placed in queu@, with 7 O S, due to stehl4 oACTFB1. The latter

case occurs with probabilitgﬁ;af, where
S

Pfs-rr =PN—(T-{i}),T-S" (42)

Note that the above events occprovided that K};(t) > 0 is actually decreased by 1, so that the
corresponding probabilities are actually conditionallyadoilities. This is the reason for the appearance
of the term(1 — a%) in the denominator of both probabilities.

We denote Wich')gJ D S the index set of the queue to which the transmitted packetmoved after
the [-th reduction of indefos, with 1 <[ < k:fs during the processing af)s. Obviously, this is a
random variable (hence, the dot) that depends on the exastrexs that occurred during the slot of the

i

[-th reduction. From the previous discussion, it ho]lﬁ&ff)fg,l =T) = %=z forall 7 > S and the total

i
1—ajs

number of tokens for userthat were moved int@)+ during the processing dps is

ki
ks =) IDs; =T] (42)
=1
where ‘
g 1 wp. Be=r
I|D5,=7] = 1o (43)
0 wp.1-— ’{Sﬁg

3for consistency, we assume that tiih reduction of K& occurs atfs, i.e. when processing aps begins.
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Step[4 ofaCcTFB1 now implies the following recursion for al§ with |S| > 2

kg
5= > Ks= Y YI|PL, =] (44)
o#ICS PALCS I=1
i€S €S
which captures the property thfhg (i.e. the value ofK’; at the beginning of processir@s) is equal to
the cumulative number of tokens for ugethat were moved t@)s during the prior processing of queues

Q7, for Z C S. Rewriting [44) as
ks _ Z k1 Z Ni
n n i ! [Dz’l S} ’ (45)

we now state the next result.
Lemma 11:Under the application of0oDE1,,, for K = [nR], with R > 0, it holds for allS C

andi e S
lim - = k5 ae.
n—oo M

46
T ) (46)

lim —— = —  a.e.

n—00 ka‘ 1— a‘ZS
wherek’ > 0 are deterministic quantities defined through the recunsietion
4 ket
ks = —L  pyos-{s-z VS:[S[>2, (47)
Q,;Cs L —en—@-fp)
i€

and the initial conditiork@} = R;.
Proof: Proof is by strong induction ofS|. For |S| = 1, the initialization of the algorithm implies
thatk},, = K; = [nR;], whence we conclude that,, /n — R; a.e. asn — oco. Additionally, it holds

T}y = 2251 Ni;y, so that the SLLN vyields
K y . 1
ZN&}J — }E[N%Z}] = 1_7% a.e. asn — oo, (48)

1
K
sincel%:ii} — 00 a.e. as1 — 0.

. 1
Tie = 3
iy =1

We now assume tha (6) is true for &lwith |S| < m. Applying (Z8) to anyS with |S| = m + 1,
taking a limit asn — oo and using the inductive hypothesis for @llC S (since it holds|Z| < m) and
the SLLN (sincel'c% — o0 a.e. as — oo and the indicator functions are iid random variables), wear

at

i i y i |
e " Z (nl_fgo n ) T, S Z k1 1—_ab ak S (49)
G#ICS S£ICS
€S 1€S
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Using [41) to substitute fop’ . 5, as, (@9) reduces to[{47) for alf with |S| = m + 1, so that the
induction is complete for the first equation [n 146). To prakie second equation if_(46) for &l with

|S| = m + 1, we follow a procedure similar to the case|6f = 1 so that

ks T* s
.* .. "S 1 . . . .
Tis = N&; = k == > Ni, - E[N§] = — acasn— o, (50)
=1 S S 1=1 S
This proves the second equation [(n](46) and completes thaf.pro [ |
Using Lemmd_1Ill and rewriting (B9) as
& = max <2—5> = max (Z—S k—8> )
n i€S n i€S kfs n
(51)

R

" GASCN n’
we can take a limit as — oo, use [46) and exploit the continuity afax to pass the limit through it
and arrive at the following Corollary.

Corollary 2: Under the application ofODE1,,,;, it holds

T% k'
lim =& = Inax< S ) a.e.

n—oo N i€S 1-— afs
. , 52
e " (52)
lim — = max | 7 a.e.
n—oo 1 OASCN €S —ag

The last auxiliary result is an explicit solution df {47) ¢af with the initial conditionk;ii} = R;)

which, introducing the variable

. ki
fE= 5 : (53)
ST Ri(1—en_(s—qp)
is cast into the more convenient form
, 1 ,
fs=———"—"— JroNn—(s-1it).s—z VS:|S|>2, (54)
1 —en—(s-{ip) @;I:CS )

i€T
with an initial condition off{ii} = ﬁ The following Lemma provides an explicit representatiéryp

and shows thaf? is identical to the quantity’} introduced in Theorerfl 1.

Lemma 12:For any setS C N with i € S, it holds

, _1)\IH
= Y (=1) . (55)

nes— gy LT WS
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Proof: The following equivalent expression can be derived from beafil0.

psg= Y (=D)Mesip = > (=)™ (1= (1 - esum))

HCG HCG

=N (DM ST DML —esip) = S (D)L esun),

HCG HCG HCG

(56)

where we used the binomial theorem to compite,;(—1)*! = 3219 (19)(~1)" = (1 - )9 = 0,
We initially manipulate[(5|4) by substituting for_s_y),.s—z through [56), which yields
fo=———— Y D DA = e s pipmn)- (57)

1= ev—(s-qp (i}CIcs HCS-T
Extracting the{ = @ term from the summation ovéi yields

f6= T Sl —envmiseg)+ Y DT = evss—gapon)
N=(8-11) (yczes GAHCS—T
1 7
Z fi t T Z Z fr(=1)P (1 - EN—(S—{i}))UH )
(i)CZCS N=S={1}) gupycs—{i) {iyczCsS—H

(58)
where we changed the order of summation in the second sunedash line. Moving the first sum in

the RHS of the last expression to the LHS produces

Y et ¥ (1)”*1(1%(5@}))%)[ > f%]’ (59)

{iyczcs L= en—-th) g micsiq {i}CICS—H
which provides a new recursion w.r.t. the tedmy;, 7 I

For a fixedi, we can use induction off| to show the following relation

> fi= —, VS, VieS. (60)
(iyczCcs T N5
Indeed, for|S| = 1, which impliesS = {i}, (€0) yleldsf{Z , Which is identical to the initial

condition of [54). We now assume that{60) is true for &lvith |S| < [ and show that it is also true
for all S with |S| =1+ 1. Specifically, for anyS with |S| =1+ 1, (589) becomes
, 1 1
fr=r—77" (=D — e s—apyum)
{z'};gs L= ev—s-1ip Q#H%—{i} WS — e v —(s—anon
B 1
L—eys—ip)

(61)

where we used the inductive hypothesis for the tedms, 753 f%, since|Z| < |S — H| <l when

‘H # @, and applied the binomial theorem. This completes the ifidin@nd proves.(80).
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We denote withp; = pn—z,z the probability that a packet is received by exactly the sigeZ (and

none other), whence we deduce the following relation

> pr="Pr ( U (Ex—zn Rz)) = Pr(En-s) = exn-s, (62)
7Ccs 7Cs

which is true forany S C A. Hence, it also holdgzgs_{i} PT = ex—(s—{i})» SO that the following is

true for allS and: € S

Z PT = EN—(S—{i})
TCS—{i}

: 1
> i =

ICS—{i} 1= en—(s—ip)

(63)

along with the initial condition®gs = €y, ffl.} = 1/(1 —ey). The second equation in_(63) is essentially
a rewrite of [&D).

We now make the crucial observation thafl(63) allows for aasse recursive computation g¢&,
ps based on the corresponding initial condition. Since they alifference between the two recursions
is the RHS term (the recursion fg¥, f%u{i} usesen—(s—fip), (1 — 6/\/_(3_{2‘}))_1- respectively), we
conclude that any relation that holds fgy also holds forf%u{i} via a substitutione_(s_gi1) —

(1-— eN_(S_{,-}))‘l. Combining the last statement with Corolldry 1 (which pd®s an expression for

Ps—{iy), Yields

s = I(s-{ipu{iy = 7
S T L T s ahon

which completes the proof. [ |

B. Proof of Theorerll

We are now in position to finally prove Theoréin 1. Through angeeof variabled’ = (S —{i}) —H,
(B5) can also be written a& = Do HCS—{i} (G b f&. Additionally, using Lemm&12 an@(53)

to substitute fork% in (52) yields

_ 3 FL(1 — €nr(s—1i N
TR 2 tim TS = max (fs( N-(s {D)) — max (fiR,)

1—6N7H/

n—o0o N ieS 1— afs €S
(65)

Tk . T* sk £
T*(R) = 7}1_{207 = Z Ts(R) = Z max (fsRi),

PASCN PASCN
where we also use (41) to substitute &ir. We now show that the achievable region@¥DE1,,, in

information symbols per transmission, is given by
Reovet,., = {R:T"(R) < 1}. (66)
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The reader can verify thal (66) readily yields1(11) throu@E
bol/packet containd. bits. Hence, it remains to provie (66), which is equivalenpttoving the following

))( considering the fact that each sym-

statements: 1) anf? such that/™*(R) < 1 is achievable bycODE1,,;, and 2) noR with T*(R) > 1 is
achievable byCODE1,,,;,.

To prove the first part of(86), consider afy # 0 with 7*(R) < 1 and apply the fixed blocklength
version ofCODE1,,, (i.e. stop aftem transmissions), witl' = [nR]. By construction of the modified
CODE1,,, @n error occurs iff™* > n. Hence, the probability of error for the modifiebDEL,,,;, is

pnle) = Pr(T* >n) = Pr <T—* > 1) =Pr <T—* ~T*(R) > 1— T*(R)) . (67)

n n

Letting n — oo, the relationT*(R) < 1 implies, through[(&7), thap,(e) — 0, since the LHS of the
inequality in the last event in_(67) goes @oasn — oo, while the RHS is strictly positive. This proves
the first part of[(66). A similar argument can be used to shawiH(r) > 1 implieslim,,_, p,(e) = 1,

which proves the second part 6f {66).

APPENDIXD

PROOF OFLEMMA [[1IAND THEOREMI[Z
Consider an arbitranR € R4 and define the set
Bi(j) = {k € N 7 (k) = j}, (68)

where7 is the permutation corresponding B via (I12). Additionally, there exists the functional invers
7~ of 7 (since7 is a bijection on\), which is a permutation o as well. In fact, the introduction

of #—1 allows us to rewrite[(88) as
®z(j) = {71 (7). 7 G+ 1), 7N, (69)
which can be proved by standard bidirectional set inclusibpnow holds

N N
> max (F5R:) =3 > fsRi=Y_Ri > 59, (o)
S 7j=1

N =1 S:l:argmaxigs(f}éRi) Siﬁfl(j):argmaxies(ﬁRi)

where the last equality follows from the substitutibe: 7~1(j). Since R € R,.q, (I2) now implies

{S :arg max <f§R2> = ﬁ_l(j)} = {S caT(G) = argmin(fr(i))} , (71)
i€s i€S
so that the inner sum in the RHS &f{70) becomes
3 jT 5 j - 1 — (™
S:7—1(j)=arg min, ¢ (7(4)) SH{A-1(j)}CSCPx(5) N=(@z)—{71 ()}
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where the first equality follows from the fact that, by coostion, all setsS appearing in the summation
of (Z2) satisfy the relation

{771} c S C{k e N 7(k) = 7(7'(5)} = ©2()), (73)

and the second equality follows from (60).

The definition of®;(j) now implies

N = (@z(5) = {7 (DY) = {k e N s 7(k) < j} = {771 (1),..., 7 ()}, (74)
which can again be proved by bidirectional set inclusiosetting [7#) into[(7R) and_(70) finally yields
Ny N Ri1(j)
max ( fsR; | = I ; (75)
Szg/:\/’ i€S ( > ]2231 1-— E[7-1(1),.... 7~ 1(j)}

which completes the proof of Lemnia 7.

Regarding Theored 2, we can prove tiatops1.., N1 Rora = CONRorq by Showing thatR copgy ., N

pub

C Cout).

pub

Rord 2 CONR,,q (the inclusion in the other direction follows trivially fno the factRcopg1

pub

Indeed, pick anyR € C°“* N R,,.4. Since R € C°“*, Lemmal4 implies that it holds

N
max Z Bt <L (76)
TeP N '

i=1 1= E{n(1),...,m(i

whereP is the set of all possible permutations 8f so thatP includes bothi and7~'. Hence, [(7B)
also holds for the specific permutatian(corresponding to the chosdR), which implies through[{75)
and Theoreni]l thaR € Rcopr1

Since R also belongs taR,,,.4, it follows thatRcopg1.., N Rorg 2

pub® pub

C“' N Rorq. This completes the proof of the first statement in Thedreém 2.
The second statement of Theorgim 2 now follows from the faattttre assumptio®,,,.; 2 C°“* (which
mRord = COUt ﬁ,Rfm"d =D

= C°“ = D. Hence,CODEL1,,; achieves capacity in this case.

also impliesR,,q 2 Rcope1,.,) transforms the established relati®ope:

pub

into RCODEI

pub

APPENDIX E

PROOF OFTHEOREM[3

For symmetric channels, we introduce the notaﬁgm = ¢z for all Z C N with a given|Z|. It then
holdsé; > ... > €y, which in turn impliesﬁ > .. > ﬁ A simple index exchange argument in
Lemmal# reveals that® can be written as

N R- ..
cout = {Rzo:z o gL}, (77)

i=1

wherer is the permutation opV that rearrange® in non-decreasing order, i.8; 11y > ... > Rz (n.
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By definition of symmetric channels, it also holds
15|—1

i —1)ISI=IH|-1 Sl =1\ (=1 |S|—m—1
fS:Z<>_:Z<H )L

HOS— (i) 1 —env—yny m 1 —€en—m

m=0
where we used the fact that there ex§t ) subsets# of S — {i} with cardinality m. Hence, fZ is
independent of, so that for allR > 0 it holds
argmax (f4R;) = argmax (R;) = argmin (7()), (78)
1€S €S €S
where the last equality is due to the definitionmofHence, it holdsk,,.; = {R : R > 0} since we can
select, for each? > 0, the permutationt = 7 to satisfy [I2). SinceéR,,q4 2 C°“!, CODE1,,; achieves
capacity for symmetric channels and its rate region is glver{71).
In the case of one-sided fair spatially independent chanmed must show that any vect® € R ¢,

i.e. any vector which satisfies

€] 2 ... 2 €N,
(79)

ety > ... > enyRn,
also belongs t®,, 4, i.e. there exists a permutatiansuch that it holdsrg maxies(ngi) = argmin;g(7())
for all S C V. In fact, we will show that the required permutatiéns the identity permutation; in other
words, we will prove that{{79) implieg:R; > ngj for all 4,7 € S with ¢ < j.

Consider an arbitrary sef C A and leti,j € S. Using LemmaIR and exploiting the spatial

independence, we compufé as

4 —1)IHI —1)IHI —1)IHI
fiz 30 (1) .S (1) . (1)

HCS— 1) I —ew—(s—{ip)un HeS— (i) 1 —en—seiey HCs i) 1 — en—s€i€jen_(j

JEH jEH (80)
_1)H 1A+
_ Z 1_(EN)S“HJF Z (—1)

HCS—{i.j} I HCS—{i,5}

1 —en_seicjen

For an arbitrary sef, definems = min {k € S}, so that it suffices to showig"” R,,,; > ngZ- for all

S andi € S. Since it holds, byIIII9)f2};;5 >

<, we will prove the desired inequalitffz= > i by
s 1 /
? i .
proving the stronger inequality— > fTSS or equivalently
ms fs

? .
€fs° > emsfs, VS, i€S. (81)
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We now concentrate ofi (B1) and manipulate it through (80)réalyce the equivalent relation

— e ? .
—1)IHI €ms — € > _1)IHI €ms _ €
2 et T e T
HCS—{i,ms} s HCS—{i,ms} s
— ¢ ? —€)(1 — en—s€ien — EN—SEmsEH)
RN -1 [H| Ems — €i > -1 [H| (ems el)( s .
N vy S DR e s e | Py
HCS—{i,ms} s HCS—{i,ms} S
(82)
Using the fact that,,, > ¢; and the following equality
1- EN-SEGEH — EN-SEms€H 1 — 6.%\/’—563'[67:67”5 (83)

(1 —en_see)(1 — en_semen (1 —en—seien)(1 — ex—semsen)’
we can write an equivalent expression[fo] (82) as
”

T (=n™ LY (e N s HEi€ms Lo, (@)

HCS Time) 1 — en_SEms i HCS Tme) (1 —en—s€ien)(l — en—s€ms€r)

where we also used the identiEHgS_{Z.MS}(—1)|H| =0.
We now observe that the first term @f {84) is equal to the nagatiee quantityfg_{ms} so that, in

order to prove[(84), it suffices to prove the second terni_if) (84e non-negative, namely

2 2 .
Z (1)l N—5HEi€ms é 0. (85)
HCSToms) (1 —env—s€ien)(1 — en—semsen)
Eqg. (83) is now a special case of the following general result
Lemma 13:For any0 < a1, as < 1, it holds
2
S (-1 [licn & > 0. (86)

HCS (1 - Hie?—[ 62') (1 -2 Hie?—[ 62')
Proof: Using the geometric serigs;° 2! = 1/(1—=2), forall0 < z < 1, and setting: = oy [];4 €

andz = az [[;cy € Yields

[y @ | k 2
iet Ci « € o € €
(1= Tliep ) (1 — 02 Iliep ) ; Z ( 1 216_7[{ ) ( 2 216_7[{ ) (g‘ ) (87)

_ iia ok H €l+k+2
=0 k 1€EH
Multiplying @7) with (—1)I*l, summing over allX C S and using the identity [,cs(1 — =) =

> cs(—1)M T, i (which is easily proved by induction of§|) now produces

LHSof@B):iiaﬁa’;Z(—1)|H|Heﬁ+k+2 Zzala’gﬂ TRy >0, (88)

1=0 k=0 HCS ieH 1=0 k=0 =
which is the desired result. [ ]
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APPENDIXF

CORRECTNESS OFCODEZ2,,

The following result is a close analogue to Leminha 5.
Lemma 14:Consider a slot in subphase 2.1 afODE2,,,;,, when queues)y;- ;1 € Qg, andQyy 2.3}

are combined, and a packet= ) as(p)p is transmitted. Assume that at the beginning

PEQ iv,j3UQ (12,3}
of the slot (i.e. before any packet transmission), theretesétng) (t) C {bg) :pe g}, forall ZC N

and! € Z, and Bp, (t) = {bﬁ,l) :p € @Qp,} such thatBp, (t) U z.zcn Bg) is a basis oﬂFL’Cl| for all
KL(t)>0

I € N. DefineRy;- j(t) = {l e {i*,j}: Kii*7j}(t) >0V K€1,273}(t) > 0} and, for each € Ry;- j,(t),

pick a vectorb; as follows

{1,2,3}
arbitrary bg) € B?Z) j}(t) otherwise

. { arbitrarybg) e BY (t) if Su(l) =0,
=

Then there exist coefficients (p) such that the se@bgl)} UBp,y YU z.zcv Bg) (t) is a basis oi[FlIKLI
KL(t)>0
for all I € Ry j(t).
Proof: The proof is essentially a repetition of the proof of Lenimhdh® main ingredients being the

application of Lemmal9 to show that

Pr| (80 uBp,(t)U | ) BY (1)~ {b} is basis of S | >1 - L
T:ICN q
KL(t)>0

for all I € Ry;-51(t), and a standard probabilistic argument whexép) are selected iid uniformly in
F,. m

Lemmal14 can now be used to show that Leniha 6 is also trueddE2,,;,. This is again proved
by induction on each slat In fact, sinceCODE2,,,, is identicalto CODE1,,, up tot; (the time where
each level 2 queue has at most one surviving index), it falohat the inductive hypothesis is true for
all slotst < ¢35, so we only need to apply induction for> ¢5. Due to the queue mixing in subphase 2.1,
the proof of Lemma&lé must be modified as follows.

Proof of Lemmé16 forroDpE2,,,: Assume that the inductive hypothesis holds at the beginafng
slot ¢ > t3 and we are currently combinin@;- j; € Qg, With Q5 33. We pick the coefficients for
the packets to be transmitted at slat according to Lemma~14 and distinguish the following mutgall
exclusive cases for ea¢he Ry;- j1(t) (for | ¢ Ry;- 1 (t), the hypothesis holds far+ 1 without changing
anyB(l), i.e. we simply selecBg)(t +1) = Bg) (1))
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« if I receivess and it holdsSwu(l) = 0, ACTFB2 requires than‘K‘l{1 23} is decreased by 1 anllp, is
increased by 1. We 5651{273}(75 +1) = B§?7273}(t) — {b;} and Bp, (t + 1) = Bp, (t) U {b} while

all other sets remain unchanged. Lenimé& 14 implies that thesets form a basis dFl]’Cl‘ at slot
t+1.

o if [ receivess and it hoIdsSu(l) > 0, then, according taCTFB2, K@ i is decreased by one and

Kp, increased by 1. The hypothesis still holds for usend slott + 1 by settingBp,(t + 1) =
Bp,(t) U {bgl)} and Bg) j}(t +1) = Bg) j}(t) — {b;}, while all other sets remain unchanged.

o if [ erasess andk € {1,2,3} — {i*, j} receives it,CODE2,,, requiresKii* o be decreased by 1

andKiLz,:,)}
5O

l 1 1 1
oy 0 = oy and B, oy (4 1) = B,y ()L (8},

« in all other cases, né(ll, Kp, indices change, so that seﬁ%), Bp, remain the same as in slat

increased by one. The inductive hypothesisat is still true by settingﬁg)* j}(t+ 1) =

and the hypothesis is trivially true at slot- 1.

Since the above list contains all possible cases, the iivdubypothesis always holds for dlle N in

slot¢ 4+ 1 and the proof is complete. [ |

APPENDIX G

PROOF OFTHEOREM[E

Consider a vectoR and assume without loss of generality tifat> 0. As in the analysis ofODE1L,,,
we consider a modified version with a fixed blocklengtivhere the transmitter creates sets of packets
K; with |[IC;| = K;(R) = [nR;]|, for i € {1,2,3}, and transmits: symbols. An error is declared if
CODEZ2,,; has not terminated by the-th transmission. The proof is similar to that of Theorgmnithie
sense that the total number of sl@ts required bycopE2,,;, is computed as a random variable and it is
seen thafl™* /n tends to a deterministic quantif§*(R) w.p. 1 asn — oo, so that the achievable region
of CODE2,,; is {R : T*(R) < 1}. Having found an exact expression {6t (R), simple algebra reveals
the latter region to be identical to the outer bound of Lenina 4

We denoteN = {1, 2,3} while T§ is the (random) number of time slots it takesDE2,,,;, t0 process
queueQs, so thatT™ = Zgﬁg\/ Tg. SinceCODE2,,,;, is identical toCODE1,,, until the end of phase
2 (i.e. when each level 2 queue has at most one non#&eimdex), we conclude that all level 1 queues
are processed identically ttoDE1,,,;, so that Corollary ]2 implies, through the appropriate stigins

) T3 2 Ry + Ry + R3
1 S_: 7‘, g = ———— €. 89
Jm > =D fyR ar € (89)

S:[S|=1 ieN
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We now make the following crucial observation regarding dleeision taken by opE2,,,, at the end

of phase 2 (denoted a$). Depending on the exact values $%.(i), the following cases exist:

o if Su(i) =0 for all i € NV, or Su(i) = 1 for all i € N/, CODE2,,,; continues mimickingcODE 1,5
until the end of the algorithm. In this case, the asymptogibdvior ong is obviously still governed
by Corollary[2.

« otherwise,CODE2,,, deviates fromCODE1,,,; by further processing each level 2 que@g in
subphase 2.1 mentioned in Secfion VI. An inspection ofath®FB2 procedure indicates that, during
the combining of a level 2 queu@s with Q,, the actions regarding indices}; areidentical to
ACTFB1 (in fact, the only difference betweexCTFB1 andACTFB2 lies in the handling of indices
K},). Since each level 2 queue is still processed until allftsndices become zero, we conclude
that, if we denote witl’¢ the total number of slots required for the processingc@f during phase
2 and subphase 2.1, Corollafy 2 still holds. However, the valué'(gi,f at the beginning of phase 3
will be different than the corresponding value undemkl,,; due to the interjection of subphase
2.1.

Denote with#; the beginning of phase 3, equivalently the end of phase 2 bpase 2.1 (if the

latter occurred). SinceODE2,,;, again mimicsCODEL,,,;, during phase 3, Corollaryl 2 implies, under

the obvious substitutions, that

T Ki(t 1
lim ~& = max llim ( i 3)> ] a.e., (90)
n—oo n ieN |n—o0 n 1—¢
provided that the rightmost limit exists w.p. 1 (this will sbown later). It then follows that
T* X T
lim — = ) l im ¥ qe.
R negUsh) + In = e o1
S:|8|<L2

so that we hereafter concentrate on the computation of #tdiait, which clearly depends on the specific
decision att;.

Denote withT;S the number of slots it takeSODE1,,,;, (Or CODE2,,, if we consider both phase 2
and subphase 2.1) to process a level 2 quggentil K% becomes 0. It clearly holdB% = max;cs TZ*S

if we also definel’; = min;es 775, we can combine Lemnfalll and Corollaly 2 to deduce

_ Tl Ny

FUA im 25 — min (FLR)  ae. 92
ST M T USR) e 2

in addition to
=% A . 'TS ri
Tis = Jm == = sk
. (93)

* A IS £

T —nh_{réo = max (fsR;) a.e.,
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which we already used if_(P1).

We next find an expression fdks(t3), for all S with |S| = 2, since this will affect the branching
decision made byobE2,,, atts. The following relation is true for allS with |S| = 2 and describes

the total decrease of eadti index of a level 2 queue in the intervgl ¢3].

73
K§(t5) = K5(t7) — Y _I[K} reduced by 1 during-th slot of processing)s in phase 2 (94)
=1
Dividing by n and using[(9R) we conclude that
Ky ¢ 2 lim Ks(t3) = [ lim Kst)) _ lim —£ | Pr(K% reduced by 1 during pro@s)

= f5Ri(1 — en_(s—qap) — min (f6R)(1 - en—(s—gip) a-e.VS:|S|=2,
where we used Lemnialll (which is still applicablefgtfor the asymptotic behavior dﬁ’g(t’{)/n. The
subscript2 emphasizes that the quantity refers to a limit of a randomakée att?.

For S = {i,j}, (@8) can be written as

Kt (t3) ) N o +
: {ZJ} 2 X _ 7
Y R g = i Bi— g R] A =evg) ae, (96)
which motivates us to define
. ~ s +
P (B) = [flp B = fly R (97)

where[z]t £ max(z,0) and we explicitly state thé? dependence oﬂij}. The binary relatiori > j

is introduced to denote the inequaliﬁf R; > ffij}Rj (equivalently,rf'{z.j} > 0) which, using the

.5}
definition of fg can be expanded to
Py .y 1 1 1 1
[ ; j, ) . i — : — . 98
Tapf > Tty = R <1 —ev_gy - €N> > <1 —ev_gy 1- €N> 9)
. . .o £ ) Aj ) s £ o Aj ) .
We also writei > j iff f{m}RZ > f{i’j}R] and: =< j if f{i,j}RZ = f{i’j}R] (note that all relations-,

=, =< implicitly depend onR), whence the following result follows.
Lemma 15:Consider anyR > 0 and distincti, j,k € N. If i = j andj = k, then: = k. Similarly,
if i = j andj > k, theni > k.
Proof: We prove by contradiction only the first part since the second follows similarly. We

assume that > ¢, so that it holds
. iy 1 1 1 1
1 i J i R _ . _
Taatt = Fants < <1 —ev-gjy - w) >4 <1 —en_gy  1- 6N> ’

" . 1 1 1 1
i R.> fF & R; - > -
Tl 2 T e £ <1 —env—fky L 6N> = fik <1 —ev—gip - 6/\/) - ©9

) N 1 1 1 1
k > fi R - = R - '
Ty B 2 fip B < By (1 —ev—qp 1- 6N> = <1 —ev-gy - EN)
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The terms in parentheses above are non-negative by comstruin fact, the terml_eii{_} — s

positive, since otherwise we would conclude thas strictly larger than a non-negative number. We can
then use a similar reasoning and the fact tRat- 0 to show that all terms in parentheses are positive.
Hence, we can multiply the 3 equations by sides and arrive ainé&radiction that a number is strictly
larger than itself. |

Using the notation of{43), we can find the valuesf;, at t; as

[nR;]
Ko (th) = Z DG =N+ Y ZI{DSl (100)
SZESl 1
[S|=

where the first, second term is the number of tokens movedgyhase 1, 2, respectively. Using a

procedure similar to Lemnialll, we can find

i . KZ th TT
SuEeS
o= (101)
= flgBipgy -y + Y min (fsR)pin-s.
fslﬁg

Any variation of K}, betweent} (end of phase 2) ant} (beginning of phase 3) undeODE2,,; can
only be due to subphase 2.1 or the continuation of processimy 2 queues iSu(l) = 1 for all [ € .

Hence we conclude:

K (t3) if Su(l) =0 VieN,
Kigls) = { Evlt)+ ZS:Z‘GS 2y D, =N if Su(l)=1 VieN,
1 .S ~T{ + T:-Tr s + .
Kje(ts) + ZS ’65 2 H[Ds,l] ZS zeS >2 D s, otherwise
(102)

where]I[D;fl] £ [[K}, increased during-th slot of processing)s in subphase 2]iwith a similar defi-
nition for I[D s, s, (replacing increased with decreased).

At this point, it is convenient to consider the following twvommplementary cases and individually
examine each of them.

o it holds rg = 0 for all S with |S| =2 and! € S. Equivalently, it holds =< j =< k.

« it holdsr > 0 for at least ond € S with |S| = 2.

1) The case =< j < k: Equations[(9R),[{33) imply that

T5-1T7s Trs — T}

lim —= = lim ——= =0 a.e, (103)

n—00 n n—00 n
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so that, examining all 3 cases [n (102), we conclude that
lim 7/\/( 3) = lim 7N(t2)

Jm —= Jm —= a.e., (1204)
which implies, through[(30)[(91), thatoDE1,,,;, andCODE2,,;, have the same asymptotic performance
(meaning thatl™(R) = lim,_,, 7*/n is the same function under both algorithms) for Bllsuch that

i =< j = k. Hence, defining the sek £ {R>0:ixj =<k}, we concludeRcope1,,, N R =

Rcoprz,., N R. Furthermore, it holdR C R,.q, whereR,,, was defined in[{12), so that

CoNR =C™ NRpra NR = Reovet,u, N Rora MR € Reovez, ., N R, (105)

pub

where the last set equality is due to Theofdm 2. Henc®E2,,;, achieves all rates i N R.

2) The case’s > 0 for at least onel € S with |S| = 2. Let S = {i,j} and assume} > 0, so
that: = j. Then, two mutually exclusive cases exist according to Lafdh (in the following,i, 7, j are
distinct):

o it holds k£ = ¢, so thatk = j.

o it holdsi > k.

In the first case, it follows from((96) that it holds w.p. 1

li_)IIl M >0, lim I UV AL 0, (106)
n—oo n n—oo n

KEF o (t3) K. ()
lim —CR2 g gy R (107)
n—o00 n n—00 n

so that, but the definition of limit, there exists some such that for alln > n; it holds Su(z’) >
1, Su(k) > 1, Su(j) = 0. In the second casd, (106) is still true and it also holds

Kb (¢ Kk (t%

lim 7{%}( ) >0, lim 7{Z’k}( 2)

Jim . Jim - =0, (108)
which implies via a similar argument that there exists sameuch thatSu(i) = 2, Su(j) < 1, Su(k) <
1, for all n > ns.

Hence, in both cases there exists a sufficiently largsuch that for all, > ng, the first two branches

in (I02) are excluded. Hence, it holds

tim 20 |, Bt > (fs ~ min (stl)> PLiyN-S

n—00 n Nn—00
S:esS

5|=2
(109)

June 2, 2018 DRAFT



53

which can also be written as

. . ~ o . +
Ki (i Ki(t3 : :
lim TA) |y, B ) > Ik > Opggn—s — Y Irs=0/1—¢)| .  (110)
e " e " S:eS S:eS
|S|=2 |S|=2

It is now a matter of case distinction, depending on the @bfe-l, and simple algebra to verify that

CODE2,,; also achieves all rates ¥ N R¢, so that it achievego,

REFERENCES

[1] T. Cover, “Broadcast channelslEEE Trans. Inform. Theoryol. 18, no. 1, pp. 2-14, January 1972.
[2] P. Bergmans, “Random coding theorem for broadcast aanmith degraded componentsEEE Trans. Inform. Theory
vol. 19, no. 2, pp. 197-207, March 1973.
[3] A. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. E$fr¢Capacity of wireless erasure networkdEE Trans. Inform.
Theory vol. 52, no. 3, pp. 789-804, March 2006.
[4] R. Ahlswede, C. Ning, S. Li, and R. Yeung, “Network infoation flow,” IEEE Trans. Inform. Theoryol. 46, no. 4, pp.
1204-1216, July 2000.
[5] L. Keller, E. Drinea, and C. Fragouli, “Online broaddast with network coding,” inProc. 4th Workshop on Network
Coding, Theory and Application2008.
[6] P. Sadeghi, D. Traskov, and R. Koetter, “Adaptive netwooding for broadcast channels,” Proc. 5th Workshop on
Network Coding, Theory and Applicatigniune 2009, pp. 80—86.
[7] C. Wang, “On the capacity of wireless 1-hop intersessietwork coding — a broadcast packet erasure channel apptoac
in Proc. International Symposium on Information Theory ()SUune 2010, pp. 1893-1897.
[8] P. Larsson and N. Johansson, “Multi-user ARQ,"Rroc. Vehicular Technology Conferendday 2006, pp. 2052—2057.
[9] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. @aoft, “XORs in the air: practical wireless network codfhg
IEEE/ACM Trans. Networkingvol. 16, no. 3, pp. 497-510, June 2008.
[10] E. Rozner, A. lyer, Y. Mehta, L. Qiu, and M. Jafry, “ER:fiefent retransmission scheme for wireless LANs,”Rroc.
ACM CoNEXT December 2007.
[11] L. Georgiadis and L. Tassiulas, “Broadcast erasurencbhwith feedback — capacity and algorithms,” Rroc. 5th
Workshop on Network Coding Theory and Applicatiohisne 2009, pp. 54-61.
[12] Y. Sagduyu and A. Ephremides, “On broadcast stabiétyion in random access through network coding,Pioc. Annual
Allerton ConferenceSeptember 2006.
[13] ——, “On broadcast stability of queue-based dynamievoek coding over erasure channellEEE Trans. Inform. Theory
vol. 55, no. 12, pp. 5463-5478, December 2009.
[14] C.-C. Wang, “Capacity of 1-td¢ broadcast packet erasure channels with channel outpubdekd in Proc. 48th Annual
Allerton ConferenceOctober 2010. [Online]. Available: http://arxiv.org&h010.2436v1
[15] T. Cover and J. Thomaglements of information theargnd ed. John Wiley, 2006.
[16] A. E. Gamal, “The feedback capacity of degraded brosidchannels,"EEE Trans. Inform. Theoryol. 24, no. 3, pp.
379-381, May 1978.
[17] L. Ozarow and S. Leung-Yan-Cheong, “An achievable aagand outer bound for the gaussian broadcast channel with
feedback,”IEEE Trans. Inform. Theorywol. 30, no. 4, pp. 667-671, July 1984.

June 2, 2018 DRAFT


http://arxiv.org/abs/1010.2436v1

54

[18] S. Vishwanath, G. Kramer, S. Shamai, S. Jafar, and Ad€nith, “Capacity bounds for gaussian vector broadcastratla,”
in DIMACS Workshop on Signal Processing for Wireless TrarsonisOctober 2002, pp. 107-122.

[19] R. Liu and H. Poor, “Secrecy capacity region of a mutipigenna gaussian broadcast channel with conditionalagess
IEEE Trans. Inform. Theoryol. 55, no. 3, pp. 1235-1249, March 2009.

[20] A. Dana and B. Hassibi, “The capacity region of multiphgout erasure broadcast channels,” Rmoc. International
Symposium on Information Theory (ISI'Beptember 2005, pp. 2315-2319.

[21] L. Czap, V. Prabhakaran, S. Diggavi, and C. Fragoulird®icasting private messages securely,Pioc. International
Symposium on Information Theory (ISITuly 2012.

[22] P. Chou, Y. Wu, and K. Jain, “Practical network codingy’Proc. Annual Allerton Conferenc®ctober 2003, pp. 54-61.

June 2, 2018 DRAFT



	I Introduction
	II System model and definitions
	III Capacity outer bound
	IV A class of codes
	IV-A The intuition behind the algorithm
	IV-B Description of algorithm CODE1pub
	IV-B1 Initialization
	IV-B2 Encoding
	IV-B3 Feedback-based actions
	IV-B4 Algorithm termination and decoding procedure

	IV-C Properties and correctness of CODE1pub
	IV-D Some further intuitive remarks
	IV-E An example of execution of CODE1pub

	V Performance analysis for CODE1pub
	V-A Incorporation of overhead

	VI Achieving capacity for 3 users and arbitrary channel statistics
	VII Conclusions
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Theorem ??
	C-A Some auxiliary results
	C-B Proof of Theorem ??

	Appendix D: Proof of Lemma ?? and Theorem ??
	Appendix E: Proof of Theorem ??
	Appendix F: Correctness of CODE2pub
	Appendix G: Proof of Theorem ??
	G-1 The case ijk
	G-2 The case rlS>0 for at least one lS with 69640972 S86418188 =2


	References

