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Successive Refinement with Decoder

Cooperation and its Channel Coding Duals
Himanshu Asnani†, Haim Permuter∗ and Tsachy Weissman†

Abstract

We study cooperation in multi terminal source coding models involving successive refinement.

Specifically, we study the case of a single encoder and two decoders, where the encoder provides a common

description to both the decoders and a private description to only one of the decoders. The decoders

cooperate via cribbing, i.e., the decoder with access only to the common description is allowed to observe,

in addition, a deterministic function of the reconstruction symbols produced by the other. We characterize

the fundamental performance limits in the respective settings of non-causal, strictly-causal and causal

cribbing. We use a new coding scheme, referred to as Forward Encoding and Block Markov Decoding,

which is a variant of one recently used by Cuff and Zhao for coordination via implicit communication.

Finally, we use the insight gained to introduce and solve some dual channel coding scenarios involving

Multiple Access Channels with cribbing.

Index Terms

Block Markov Decoding, Conferencing, Cooperation, Coordination, Cribbing, Double Binning, Duality,

Forward Encoding, Joint Typicality, Successive Refinement.

I. INTRODUCTION

Cooperation can dramatically boost the performance of a network. The literature abounds with models

for cooperation, when communication between nodes of a network is over a noisy channel. In multiple

access channels, the setting of cribbing was introduced by Willems and Van der Muelen in [1], where

one encoder obtains the channel input symbols of the other encoder (referred to as “crib”) and uses it
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for coding over a multiple access channel (MAC). This was further generalized to deterministic function

cribbing (where an encoder obtains a deterministic function of the channel input symbols of another

encoder) and to cribbing with actions (where one encoder can control the quality and availability of the

“crib” by taking cost constrained actions) by Permuter and Asnani in [2]. Cooperation can also be modeled

as information exchange among the transmitters and receivers via rate limited links, generally referred to

as conferencing in the literature. Such a model was introduced in the context of the MAC by Willems

in [3], and subsequently studied by by Bross, Lapidoth and Wigger [4], Wiese et al. [5], Simeone et al.

[6], and Maric, Yates and Kramer [7]. Cooperation has also been modeled via conferencing/cribbing in

cognitive interference channels, such as the settings in Bross, Steinberg and Tinguely [8] and Prabhakaran

and Vishwanath [9]-[10]. We refer to Ng and Goldsmith [11] for a survey of various cooperation strategies

and their fundamental limits in wireless networks.

ENCODER DECODER 1 DECODER 2

T12(T1) ∈ {1 : 2nR12}Xn T1(X
n) ∈ {1 : 2nR1}

X̂n
1 (T1), D1 X̂n

2 (T12), D2

Fig. 1. Cascade source coding setup.

ENCODER 

DECODER 1

DECODER 2

X̂n
2 (T2, T12), D2

Xn

X̂n
1 (T1), D1

T1(X
n) ∈ {1 : 2nR1}

T2(X
n) ∈ {1 : 2nR2}

T12(T1) ∈ {1 : 2nR12}

Fig. 2. Triangular source coding setup.
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In multi terminal source coding, cooperation is generally modeled as a rate limited link such as in the

cascade source coding setting of Yamamoto [12], Cuff, Su and El Gamal [13], Permuter and Weissman

[14], Chia, Permuter and Weissman [15], as well as the triangular source coding problems of Yamamoto

[16], Chia, Permuter and Weissman [15]. In cascade source coding (Fig. 1), Decoder 1 sends a description

(T12) to Decoder 2, which does not receive any direct description from the encoder, while in triangular

source coding (Fig. 2), Decoder 1 provides a description (T12) to Decoder 2 in addition to the direct

description (T2) from the encoder.

The contribution of this paper is to introduce new models of cooperation in multi terminal source coding,

inspired by the cribbing of Willems and Van der Muelen [1] and by the implicit communication model

of Cuff and Zhao [17]. Specifically, we consider cooperation between decoders in a successive refinement

setting (introduced in Equitz and Cover [18]). In successive refinement, a single encoder describes a

common rate to both the decoders and a private rate to only one of the decoders. We generalize this model

to accommodate cooperation among the decoders as follows :

ENCODER DECODER 1

DECODER 2

X̂n
2 (T0, T12), D2

T1(X
n) ∈ {1 : 2nR1}

T0(X
n) ∈ {1 : 2nR0}

X̂n
1 (T0, T1), D1

T12(T0, T1)

∈ {1 : 2nR12}

Xn

Fig. 3. Successive refinement, with decoders cooperating via conferencing.

1) Cooperation via Conferencing : One such cooperation model considered is that shown in Fig. 3, where

the encoder provides a common description (T0) to both the decoders and a refined description (T1)

to Decoder 1, Decoder 1 cooperates with Decoder 2 by providing an additional description (T12)

which is the function of its own private description (T1), as well as the common description (T0).

This setting is inspired by the conferencing problem in channel coding described earlier. The region

of achievable rates and distortions for this problem is given by,

R0 +R1 ≥ I(X; X̂1, X̂2) (1)

R0 +R12 ≥ I(X; X̂2), (2)
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for some joint probability distribution PX,X̂1,X̂2
such that E[di(Xi, X̂i)] ≤ Di, for i = 1, 2, where

di refers to the distortion function and Di are the distortion constraints, as is formally explained

in Section II. The direct part of this characterization, namely that this region is achievable, follows

standard arguments that generalize those used in the original successive refinement problem [18] (cf.

Appendix A).

ENCODER DECODER 1

DECODER 2

X̂2,i(T0, Ẑ
d
1 ), D2

Xn T1(X
n) ∈ {1 : 2nR1}

T0(X
n) ∈ {1 : 2nR0}

X̂n
1 (T0, T1), D1

Ẑ1,i = g(X̂1,i)

Fig. 4. Successive refinement, with decoders cooperating via cribbing. d = n, d = i− 1 and d = i respectively correspond to
non-causal, strictly-causal and causal cribbing.

2) Cooperation via Cribbing : The main setting analyzed in this paper is shown in Fig. 4. A single

encoder describes a common message T0 to both decoders and a refined message T1 to only Decoder

1. Instead of cooperating via a rate limited link, as in Fig. 3, Decoder 2 “cribs” (in the spirit of

Willems and Van der Muelen [1]) a deterministic function g of the reconstruction symbols of Decoder

1, non-causally, strictly-causally, or causally. Note a trivial g function corresponds to the original

successive refinement setting characterized in Equitz and Cover [18]. The goal is to find the optimal

encoding and decoding strategy and to characterize the optimal encoding rate region which is defined

as the set of achievable rate tuples (R0, R1) such that the distortion constraints are satisfied at both

the decoders. Cuff and Zhao [17], considered the problem of characterizing the coordination region

(non-causal, strictly causal and causal coordination) in our setting of Fig. 4, for a specific function, g,

such that g(X̂1) = X̂1 and for a specific rate tuple (R0, R1) = (0,∞), that is Decoder 1 has access

to the source sequence Xn while Decoder 2 uses the reconstruction symbols of Decoder 1 (non-

causally, strictly-causally or causally) to estimate the source. We use a new source coding scheme

which we refer to as Forward Encoding and Block Markov Decoding, and show that it achieves the

optimal rate region for strictly causal and causal cribbing. It draws on the achievability ideas (for
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causal coordination) introduced in Cuff and Zhao [17]. This scheme operates in blocks, where in

the current block, the encoder encodes for the source sequence of the future block, (hence the name

Forward Encoding) and the decoders rely on the decodability in the previous block to decode in the

current block (hence the name Block Markov Decoding). More details about this scheme are deferred

to Section III.

The general motivation for our work is an attempt to understand fundamental limits in source coding

scenarios involving the availability of side information in the form of a lossily compressed version of the

source. This is a departure from the standard and well studied models where side information is merely a

correlated “noisy version” of the source, and is challenging because the effective ‘channel’ from source to

side information is now induced by a compression scheme. Thus, rather than dictated by nature, the side

information is now another degree of freedom in the design. There is no shortage of practical scenarios

that motivate our models.

One such scenario may arise in the context of video coding, as considered by Aaron, Varodayan and

Girod in ([19]). Consider two consecutive frames in a video file, denoted by Frame 1 and Frame 2,

respectively. The video encoder starts by encoding Frame 1, and then it encodes the difference between

Frame 1 and Frame 2. Decoder 1 represents decoding of Frame 1, while Decoder 2 uses the knowledge

of decoded Frame 1 (via cribbing) to estimate the next frame, Frame 2.

Our problem setting is equally natural for capturing noncooperation as it is for capturing cooperation,

by requiring the relevant distortions to be bounded from below rather than above (which, in turn, can be

converted to our standard form of an upper bound on the distortion by changing the sign of the distortion

criterion). For instance, Decoder 1 can represent an end-user with refined information (common and private

rate) about a secret document, the source in our problem, while Decoder 2 has a crude information about the

document (via the common rate). Decoder 1 is required to publicly announce an approximate version of the

document, but due to privacy issues would like to remain somewhat cryptic about the source (as measured

in terms of distortion with respect to the source) while also helping (via conferencing or cribbing) Decoder

2 to better estimate the source. For example, Decoder 1 can represent a Government agency required by

law to publicly reveal features of the data, while on the other hand there are agents who make use of this

publicly announced information, along with crude information about the source that they too, not only the
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government, are allowed to access, to decipher or get a good estimate of the classified information (the

source).

The contribution of this paper is two-fold. First, we introduce new models of decoder cooperation in

source coding problems such as successive refinement, where decoders cooperate via cribbing, and we

characterize the fundamental limits on performance for these problems using new classes of schemes for

the achievability part. Second, we leverage the insights gained from these problems to introduce and solve

a new class of channel coding scenarios that are dual to the source coding ones. Specifically, we consider

the MAC with cribbing and a common message, where there are two encoders who want to communicate

messages over the MAC, one has access to its own private message, there is a common message between

the two encoders, and the encoders cooperate via cribbing (non-causally, strictly causally or causally).

The paper is organized as follows. Section II gives a formal description of the problem and the main

results. Section III presents achievability and converses, with non-causal, causal and strictly-causal cribbing.

Some special cases of our setting and numerical examples, are studied in Section IV. Channel coding duals

are considered in Section V. Finally, the paper is concluded in Section VI.

II. PROBLEM DEFINITIONS AND MAIN RESULTS

We begin by explaining the notation to be used throughout this paper. Let upper case, lower case, and

calligraphic letters denote, respectively, random variables, specific or deterministic values which random

variables may assume, and their alphabets. For two jointly distributed random variables, X and Y , let

PX , PXY and PX|Y respectively denote the marginal of X , joint distribution of (X,Y ) and conditional

distribution of X given Y . Xn
m is a shorthand for the n−m+ 1 tuple {Xm, Xm+1, · · · , Xn−1, Xn}. We

impose the assumption of finiteness of cardinality on all alphabets, unless otherwise indicated.

In this section we formally define the problem considered in this paper (cf. Fig. 4). The source sequence

Xi ∈ X , i = 1, 2, ... is drawn i.i.d. ∼ PX . Let X̂1 and X̂2 denote the reconstruction alphabets, and di :

X × X̂i → [0,∞), for i = 1, 2 denote single letter distortion measures. Distortion between sequences is

defined in the usual way,

di(x
n, x̂ni ) =

1

n

n∑
j=1

di(xj , x̂i,j), for i = 1, 2. (3)
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Definition 1. A (2nR0 , 2nR1 , n) rate-distortion code consists of the following,

1) Encoder, f0,n : X n → {1, ..., 2nR0}, f1,n : X n → {1, ..., 2nR1}.

2) Decoder 1, g1,n : {1, ..., 2nR0} × {1, ..., 2nR1} → X̂ n1 .

3) Decoder 2 (depending on d in Fig. 4, the decoder mapping changes as below),

gnc2,i : {1, ..., 2nR0} × X̂ n1 → X̂2 non-causal cribbing, d = n (4)

gsc2,i : {1, ..., 2nR0} × X̂ i−11 → X̂2 strictly-causal cribbing, d = i− 1, (5)

gc2,i : {1, ..., 2nR0} × X̂ i1 → X̂2 causal cribbing, d = i (6)

∀ i = 1, ..., n.

Definition 2. A rate-distortion tuple (R0, R1, D1, D2) is said to be achievable if ∀ ε > 0, ∃ n and

(2nR0 , 2nR1 , n) rate-distortion code such that the expected distortion for decoders are bounded as,

E
[
di(X

n
i , X̂

n
i )
]
≤ Di + ε, i = 1, 2. (7)

Definition 3. The rate-distortion region R(D1, D2) is defined as the closure of the set to all achievable

rate-distortion tuples (R0, R1, D1, D2).

Our main results for this setting are presented in the Table I. Note that in all the rate regions in the

table, we use the notation {a}+ for max(a, 0), and we omit the distortion condition E[di(Xi, X̂i] ≤ Di,

i = 1, 2 for the sake of brevity. These results will be derived later in Section III. As another contribution,

in Section V, we establish duality between the problem of successive refinement with cribbing decoders

and communication over multiple access channels with cribbing encoders and a common message. We

establish a complete duality between the settings (in a sense that is detailed in Section V) and rate regions

of one can be obtained from those of the other by listed transformations.

Lemma 1 (Equivalence to Cascade Source Coding with Cribbing Decoders). The setup in Fig. 4 is

equivalent to a cascade source coding setup with cribbing decoders as in Fig. 5 in the following way :

fix a distortion pair (D1, D2) and let R(D1, D2) denote the rate region for the problem of successive

refinement with cribbing with achievable rate pairs (R0, R1). Let R̃(D1, D2) denote the closure of

rate pairs, (R0, R0 + R1) and Rcascade(D1, D2) denote the rate region for the problem of cascade
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R(D1, D2) Perfect Cribbing Deterministic Function
g(X̂1) = X̂1 Cribbing

Non-Causal (Theorem 1) (Theorem 2)
(d = n) R0 +R1 ≥ I(X; X̂1, X̂2) R0 +R1 ≥ I(X; X̂1, X̂2)

R0 ≥ {I(X; X̂1, X̂2)−H(X̂1)}+ R0 ≥ {I(X; Ẑ1, X̂2)−H(Ẑ1)}+
(p.m.f.) : P (X, X̂1, X̂2) (p.m.f.) : P (X, X̂1, X̂2)1{Ẑ1=g(X̂1)}

Strictly-Causal (Theorem 3) (Theorem 4)
(d = i− 1) R0 +R1 ≥ I(X; X̂1, X̂2) R0 +R1 ≥ I(X; X̂1, X̂2)

R0 ≥ {I(X; X̂1, X̂2)−H(X̂1|X̂2)}+ R0 ≥ {I(X; Ẑ1, X̂2)−H(Ẑ1|X̂2)}+
(p.m.f.) : P (X, X̂1, X̂2) (p.m.f.) : P (X, X̂1, X̂2)1{Ẑ1=g(X̂1)}

Causal (Theorem 5) (Theorem 6)
(d = i) R0 +R1 ≥ I(X; X̂1, U) R0 +R1 ≥ I(X; X̂1, U)

R0 ≥ {I(X; X̂1, U)−H(X̂1|U)}+ R0 ≥ {I(X; Ẑ1, U)−H(Ẑ1|U)}+
(p.m.f.) : P (X, X̂1, U)1{X̂2=f(U)} (p.m.f.) : P (X, X̂1, U)1{Ẑ1=g(X̂1),X̂2=f(X̂1,U)}

|U| ≤ |X | |X1|+ 4 |U| ≤ |X | |X1|+ 4

TABLE I
MAIN RESULTS OF THE PAPER

source coding with cribbing (closure of achievable rate pairs (R12, R1)). We then have the equivalence,

R̃(D1, D2) = Rcascade(D1, D2).

Proof: Proof is similar to the proof of Theorem 3 in Vasudevan, Tian and Diggavi [20]. We state it

in Appendix B for quick reference.

We use certain standard techniques such as Typical Average Lemma, Covering Lemma and Packing

Lemma which are stated and established in [21]. Herein, we state them for the sake of quick reference.

For typical sets we use the definition as in chapter 2 of [21]. Henceforth, we omit the alphabets from the

notation of typical set when it is clear from context, e.g. T nε (X, X̂2) is denoted by T nε .

Lemma 2 (Typical Average Lemma, Chapter 2, [21]). Let xn ∈ Tnε . Then for any nonnegative function
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ENCODER DECODER 1 DECODER 2

X̂2,i(T12, Ẑ
d
1 ), D2

Xn T1(X
n) ∈ {1 : 2nR1}

X̂n
1 (T1), D1

Ẑ1,i = g(X̂1,i)

T12(T1) ∈ {1 : 2nR12}

Fig. 5. Cascade source coding with cribbing decoders, d = n, d = i − 1 and d = i respectively correspond to non-causal,
strictly-causal and causal cribbing.

g(x) on X ,

(1− ε)E[g(X)] ≤ 1

n

n∑
i=1

g(xi) ≤ (1 + ε)E[g(X)]. (8)

Lemma 3 (Covering Lemma, Chapter 3, [21]). Let (U,X, X̂) ∼ p(u, x, x̂). Let (Un, Xn) ∼ p(un, xn) be

a pair of arbitrarily distributed random sequences such that P{(Un, Xn) ∈ Tnε } → 1 as n→∞ and let

X̂n(m),m ∈ A, where |A| ≥ 2nR, be random sequences, conditionally independent of each other and

of Xn given Un, each distributed according to
∏n
i=1 pX̂|U (x̂i|ui). Then, there exists δ(ε) → 0 such that

P{(Un, Xn, X̂n(m)) /∈ Tnε ∀ m ∈ A} → 0 as n→∞ , if R > I(X; X̂|U) + δ(ε).

Lemma 4 (Packing Lemma, Chapter 3, [21]). Let (U,X, Y ) ∼ p(u, x, y). Let (Ũn, Ỹ n) ∼ p(ũn, ỹn) be

a pair of arbitrarily distributed random sequences (not necessarily according to
∏n
i=1 pU,Y (ũi, ỹi)). Let

Xn(m),m ∈ A, where |A| ≤ 2nR, be random sequences, each distributed according to
∏n
i=1 pX̂|U (x̂i|ui).

Assume that Xn(m),m ∈ A, is pairwise conditionally independent of Ỹ n given Ũn, but is arbitrarily

dependent on other Xn(m) sequences. Then, there exists δ(ε) → 0 such that P{Ũn, Xn, Ỹ n(m)) ∈

Tnε ∀ m ∈ A} → 0 as n→∞ , if R < I(X;Y |U) + δ(ε).

III. SUCCESSIVE REFINEMENT WITH CRIBBING DECODERS

In this section we analyze the main settings considered in this paper and derive rate regions. In the

various subsections to follow we will respectively study the problem of successive refinement with non-

causal, strictly causal and causal cribbing. For clarity, in each subsection, we will first study the setting of
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“perfect” cribbing where Ẑ1,i = g(X̂1,i) = X̂1,i and then generalize it to cribbing with any deterministic

function g.

A. Non-causal Cribbing

ENCODER DECODER 1

DECODER 2

X̂2,i(T0, X̂
n
1 ), D2

Xn T1(X
n) ∈ {1 : 2nR1}

T0(X
n) ∈ {1 : 2nR0}

X̂n
1 (T0, T1), D1

Fig. 6. Successive refinement, with decoders cooperating via (perfect) non-causal cribbing.

1) Perfect Cribbing:

Theorem 1. The rate region R(D1, D2) for the setting in Fig. 6 with perfect (non-causal) cribbing is

given as the closure of the set of all the rate tuples (R0, R1) such that,

R0 +R1 ≥ I(X; X̂1, X̂2) (9)

R0 ≥ {I(X; X̂1, X̂2)−H(X̂1)}+, (10)

for some joint probability distribution PX,X̂1,X̂2
such that E[di(X, X̂i)] ≤ Di, for i = 1, 2.

Proof:

Achievability :

“Double Binning” scheme

Before delving into the details, we first provide a high level understanding of the achievability scheme.

Consider the simplified setup where R0 = 0, that is only Decoder 1 has access to the description of the

source, and Decoder 2 gets the reconstruction symbols of Decoder 1 (“crib”). The intuition is to reveal

a lossy description of source to the Decoder 2 through the “crib”. So we first generate 2nI(X;X̂2) X̂n
2

codewords, and index them as 2nI(X;X̂2) bins. In each bin, we generate a superimposed codebook of

2nI(X;X̂1|X̂2) X̂n
1 codewords. Thus total rate of R1 = I(X; X̂2)+ I(X; X̂1|X̂2) = I(X; X̂1, X̂2) is needed
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to describe X̂n
1 to Decoder 1. Decoder 2 knows X̂n

1 via the crib, it then needs to infer the unique bin

index which was sent, as then it would infer X̂n
2 . The only issue to verify is that the X̂n

1 codeword known

via cribbing should not lie in two bins. We upper bound the probability of occurrence of such an event by

2n(I(X;X̂1,X̂2)−H(X̂1)), as there are overall 2nI(X;X̂1,X̂2) X̂n
1 codewords, and the probability that a particular

X̂n
1 lies in two bins is 2−nH(X̂1). This event has a vanishing probability so long as I(X; X̂1, X̂2) < H(X̂1).

Thus the achieved rate region is R1 ≥ I(X; X̂1, X̂2) such that the constraint I(X; X̂1, X̂2) ≤ H(X̂1) and

distortion constraints are satisfied.

The general coding scheme when R0 > 0 is depicted in Fig. 7 and has a “doubly-binned” structure.

Non-zero R0 helps reduce R1 by providing an extra dimension of binning. We first generate 2nI(X;X̂2)

X̂n
2 codewords, the indexes of which are the rows (or horizontal bins), and then in each row, we generate

2nI(X;X̂1|X̂2) X̂n
1 codewords. For each row, these X̂n

1 codewords are then binned uniformly into 2nR0

vertical bins, which are the columns of our “doubly-binned” structure. Thus each bin is “doubly-indexed”

(row and column index) and has a uniform number of 2n(I(X;X̂1|X̂2)−R0) X̂n
1 codewords (as in Fig. 7).

Note that this extra or independent dimension of vertical binning was not there when R0 = 0. Intuition is

that column indexing with common rate R0 is independent or orthogonal to the row indexing, and hence

it helps to reduce the private rate R1. The column or vertical bin index is described to both the decoders

via common rate R0 and thus R1 reduces to I(X; X̂1, X̂2)−R0 to describe X̂n
1 to Decoder 1. Here again,

from knowledge of the crib, X̂n
1 and the column index, Decoder 2, infers the unique row index, which

now will require I(X; X̂1, X̂2)−R0 ≤ H(X̂1).

We now describe the achievability in full detail.

• Codebook Generation : Fix the distribution PX,X̂1,X̂2
, ε > 0 such that E[d1(X, X̂1)] ≤ D1

1+ε and

E[d2(X, X̂2)] ≤ D2

1+ε . Generate codebook CX̂2
consisting of 2nI(X;X̂2) X̂n

2 (mh) codewords generated

i.i.d ∼ PX̂2
, mh ∈ [1 : 2nI(X;X̂2)]. For each mh, first generate a codebook CX̂1

(mh) consisting of

2nI(X;X̂1|X̂2) X̂n
1 codewords generated i.i.d. ∼ PX̂1|X̂2

, then bin them all uniformly in 2nR0 vertical

bins B(mv), mv ∈ [1 : 2nR0 ] and in each bin index them accordingly with l ∈ [1 : 2n(I(X;X̂1|X̂2)−R0)].

As outlined earlier, mh corresponds to the row or horizontal index and mv corresponds to the column

or vertical index in our “doubly-binned” structure, while l indexes X̂n
1 codewords within a “doubly-

indexed” bin. Thus for each row and column index pair, (mh,mv), there are 2n(I(X;X̂1|X̂2)−R0) X̂n
1
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Bin

Doubly−Indexed

}

}

} codewords

codewords

codewords

2n(I(X;X̂1|X̂2)−R0) X̂n
1 codewords in each “doubly-indexed ” bin.

X̂n
2 (1)

X̂n
2 (mh)

X̂n
2 (2

nI(X;X̂2))

B(1) B(mv) B(2nR0)

2nI(X;X̂1|X̂2) X̂n
1

2nI(X;X̂1|X̂2) X̂n
1

2nI(X;X̂1|X̂2) X̂n
1

Fig. 7. “Double Binning” - achievability scheme for the non-causal perfect cribbing.

codewords. X̂n
1 can therefore be indexed by the triple (mh,mv, l). The codebooks are revealed to the

encoder and both the decoders.

• Encoding : Given source sequence Xn, first the encoder finds mh from CX̂2
such that (Xn, X̂n

2 (mh)) ∈

T nε . Then the encoder finds pair (mv, l) such that (Xn, X̂n
1 (mh,mv, l), X̂

n
2 (mh)) ∈ T nε . Thus

X̂n
1 (mh,mv, l) ∈ B(mv). Encoder describes column or vertical bin index mv as R0 to both the

decoders, and the tuple (mh, l) to the Decoder 1 as rate R1. Thus

R1 ≥ I(X; X̂2) + I(X; X̂1|X̂2)−R0 = I(X; X̂1, X̂2)−R0. (11)

• Decoding : Decoder 1 knows all the indices (mh,mv, l), and it constructs X̂n
1 = X̂n

1 (mh,mv, l).

Decoder 2 receives X̂n
1 from the non-causal cribbing and it also knows the column index mv through
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rate R0. It then checks inside the column or vertical bin of index mv, to find the unique row or

horizontal bin index mh such that X̂n
1 = X̂n

1 (mh,mv, l̃) for some l̃ ∈ [1 : 2n(I(X;X̂1|X̂2)−R0)]. The

reconstruction of the Decoder 2 is then X̂n
2 = X̂n

2 (mh).

• Distortion Analysis : Consider the following events :

1)

E1 = No X̂n
2 is jointly typical to a given Xn (12)

=

{
(Xn, X̂n

2 (mh)) /∈ T nε ,∀ mh ∈ [1 : 2nI(X;X̂2)]

}
. (13)

The probability of this event vanishes as there are 2nI(X;X̂2) X̂n
2 codewords. (cf. Covering

Lemma, Lemma 3).

2)

E2 = No X̂n
1 is jointly typical to a typical pair (Xn, X̂n

2 ) (14)

=

{
(Xn, X̂n

2 (mh)) ∈ T nε
}

∩
{
(Xn, X̂n

1 (mh,mv, l), X̂
n
2 (mh)) /∈ T nε ,∀ mv ∈ [1 : 2nR0 ],

∀ l ∈ [1 : 2n(I(X;X̂1|X̂2)−R0)]

}
.

(15)

The probability of this event vanishes as corresponding to each mh there are 2nI(X;X̂1|X̂2) X̂n
1

codewords, (cf. Covering Lemma, Lemma 3). Without loss of generality, now suppose that

encoder does the encoding, (mh,mv, l) = (1, 1, 1). Decoder 2 receives X̂n
1 via non-causal

cribbing. The next two events are with respect to Decoder 2.

3)

E3 = X̂n
1 does not lie in bin indexed by mh = 1 and mv = 1 (16)

=

{
X̂n

1 6= X̂n
1 (1, 1, l̃),∀ l̃ ∈ [1 : 2n(I(X;X̂1|X̂2)−R0)]

}
. (17)

But the probability of this event goes to zero, because due to our encoding procedure, X̂n
1 =
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X̂n
1 (1, 1, 1).

4)

E4 = X̂n
1 lies in a bin with row index, m̂h 6= 1 and column index mv = 1. (18)

=

{
X̂n

1 = X̂n
1 (m̂h, 1, l̃), m̂h 6= 1 for some l̃ ∈ [1 : 2n(I(X;X̂1|X̂2)−R0)]

}
.

(19)

Since X̂n
1 = X̂n

1 (1, 1, 1), this event is equivalent to finding X̂n
1 lying in two different rows or

horizontal bins, but with the same column or vertical bin index (mv = 1). The probability of

a single X̂n
1 codeword occurring repeatedly in two horizontal bins indexed with different row

index is 2−nH(X̂1), while knowing the column index, mv, total number of X̂n
1 codewords with a

particular column index are, 2n(I(X;X̂1,X̂2)−R0), so the probability of event E4 vanishes so long

as,

I(X̂1; X̂1, X̂2)−R0 < H(X̂1). (20)

Thus consider the event, E = E1 ∪E2 ∪E2 ∪E4, using the rate constraints from Eq. (11) and Eq. (30),

the probability of the event vanishes if,

R0 +R1 ≥ I(X; X̂1, X̂2) (21)

R0 ≥ {I(X; X̂1, X̂2)−H(X̂1)}+. (22)

We will now bound the distortion. Assume without loss of generality that, di(·, ·) ≤ Dmax, for i = 1, 2.

For both the decoders, (i = 1, 2),

E
[
d(Xn, X̂n

i )
]

= P (E)E
[
d(Xn, X̂n

i )|E
]
+ P (Ec)E

[
d(Xn, X̂n

i )|Ec
]

(23)

(a)

≤ P (E)Dmax + (1 + ε)E[d(X, X̂i)] (24)

≤ P (E)Dmax +Di, (25)

where (a) is via typical average lemma (cf. Typical Average Lemma 2). Proof is completed by letting

n→∞ when P (E)→ 0.
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Converse : Converse for this setting follows by substituting Ẑ1 = X̂1 in the converse for the deterministic

function cribbing in the next subsection.

Note 1 (Joint Typicality Decoding). Note that here our decoding for Decoder 2 relies on finding a unique

bin index in which X̂n
1 (obtained via cribbing) lies, and there is an error if two different bins have the same

X̂n
1 . An alternative based on joint typicality decoding can also be used to achieve the same region as follows

: Decoder 2 receives X̂n
1 via non-causal cribbing and it also knows the column index mv through rate R0.

It then finds the unique row or horizontal bin index mh such that (X̂n
1 , X̂

n
1 (mh,mv, l̃), X̂

n
2 (mh)) ∈ T nε

for some l̃ ∈ [1 : 2n(I(X;X̂1|X̂2)−R0)]. The reconstruction of the Decoder 2 is then X̂n
2 = X̂n

2 (mh). We

analyze the following two events, assuming without loss of generality that encoder does the encoding

(mh,mv, l) = (1, 1, 1).

•

Ed,1 = Decoder 2 finds no jointly typical X̂n
1 indexed by mh = 1 and mv = 1 (26)

=

{
(X̂n

1 , X̂
n
1 (1, 1, l̃), X̂

n
2 (1)) /∈ T nε ,∀ l̃ ∈ [1 : 2n(I(X;X̂1|X̂2)−R0)]

}
. (27)

But the probability of this event goes to zero, because due to our encoding procedure, with high proba-

bility, (Xn, X̂n
1 (1, 1, 1), X̂

n
2 (1)) ∈ T nε . As X̂n

1 = X̂n
1 (1, 1, 1) this implies, (X̂n

1 , X̂
n
1 (1, 1, 1), X̂

n
2 (1)) ∈

T nε .

•

Ed,2 = Decoder 2 finds a jointly typical X̂n
1 codeword in row with index, m̂h 6= 1. (28)

=

{
(X̂n

1 , X̂
n
1 (m̂h, 1, l̃), X̂

n
2 (m̂h)) ∈ T nε , m̂h 6= 1 for some l̃ ∈ [1 : 2n(I(X;X̂1|X̂2)−R0)]

}
.

(29)

By Lemma 4 (Packing Lemma , substitute, |A| = 2n(I(X;X̂1,X̂2)−R0), U = φ,X = (X̂2, X̂1), Y = X̂1),

probability of this event goes to zero with large n, if

I(X̂1; X̂1, X̂2)−R0 ≤ I(X̂1; X̂1, X̂2) = H(X̂1). (30)

Thus we obtain the same constraint with the joint typicality decoding for Decoder 2. In all the subsections
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to follow, for Decoder 2, joint typicality decoding can also be used as an alternative to the decoding that

will be described.

2) Deterministic Function Cribbing:

Theorem 2. The rate region R(D1, D2) for the setting in Fig. 8 with deterministic function (non-causal)

cribbing is given as the closure of the set of all the rate tuples (R0, R1) such that,

R0 +R1 ≥ I(X; X̂1, X̂2) (31)

R0 ≥ {I(X; Ẑ1, X̂2)−H(Ẑ1)}+, (32)

for some joint probability distribution PXPẐ1,X̂2|XPX̂1|Ẑ1,X̂2,X
such that E[di(X, X̂i)] ≤ Di, for i = 1, 2.

ENCODER DECODER 1

DECODER 2

Ẑ1,i = g(X̂1,i)

Xn

T0(X
n) ∈ {1 : 2nR0}

T1(X
n) ∈ {1 : 2nR1} X̂n

1 (T0, T1), D1

X̂2,i(T0, Ẑ
n
1 ), D2

Fig. 8. Successive refinement, with decoders cooperating via (deterministic function) non-causal cribbing.

Proof:

Achievability : The scheme is similar to the achievability in the previous section, where cribbing was

perfect, with some minor differences. We give an outline here and highlight the differences, deferring the

complete proof to Appendix C. The codebook here also has a “doubly-binned” structure as in Fig. 7,

the difference being that each “doubly-indexed” bin has a uniform number of Ẑn1 codewords instead of

X̂n
1 . So first 2nI(X;X̂2) X̂n

2 codewords are generated, for each of them, 2nI(X;Ẑ1|X̂2) Ẑn1 codewords are

generated, which are then vertically binned uniformly into 2nR0 vertical bins (columns). Then for each

Ẑn1 , 2nI(X;X̂1|Ẑ1,X̂2) X̂n
1 codewords are generated. Here also, the column index is described as R0 and the

remaining indices are described as R1, which hence is equal to I(X; X̂1, Ẑ1, X̂2)−R0 = I(X; X̂1, X̂2)−
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R0. Decoder 1 can, as usual, construct its estimate since it knows all the indices, Decoder 2, infers the

row index from the deterministic function crib, Ẑn1 and knowledge of the column index. The decodability

of a unique row index depends on the fact that there should not be the same Ẑn1 codeword in two rows.

This requires (as we saw in the previous section), I(X; Ẑ1, X̂2)−R0 ≤ H(Ẑ1).

Converse : Assume we have a (2nR0 , 2nR1 , n) code (as per Definition 4) achieving respective distortions

D1 and D2. Denote T1 = f1,n(X
n) and T0 = f2,n(X

n). Consider,

H(Ẑn1 , T0) ≥ I(Xn; Ẑn1 , T0) (33)

(a)
= I(Xn; Ẑn1 , X̂

n
2 , T0) (34)

≥ I(Xn; Ẑn1 , X̂
n
2 ) (35)

=

n∑
i=1

I(Xi; Ẑ
n
1 , X̂

n
2 |Xi−1) (36)

(b)
=

n∑
i=1

I(Xi; Ẑ
n
1 , X̂

n
2 , X

i−1) (37)

≥
n∑
i=1

I(Xi; Ẑ1,i, X̂2,i) (38)

= n

n∑
i=1

1

n
I(Xi; Ẑ1,i, X̂2,i) (39)

(c)
= nI(XQ; Ẑ1,Q, X̂2,Q|Q) (40)

(d)
= nI(XQ; Ẑ1,Q, X̂2,Q, Q) (41)

≥ nI(XQ; Ẑ1,Q, X̂2,Q) (42)

H(Ẑn1 , T0) ≤ H(Ẑn1 ) +H(T0) (43)

≤
n∑
i=1

H(Ẑ1,i) + nR0 (44)

= nH(Ẑ1,Q|Q) + nR0 (45)

≤ nH(Ẑ1,Q) + nR0 (46)

n(R0 +R1) = H(T0, T1) (47)

= H(T0, T1)−H(T0, T1|Xn) (48)
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= I(Xn;T0, T1) (49)

(e)
= I(Xn;T0, T1, X̂

n
1 , X̂

n
2 ) (50)

=

n∑
i=1

I(Xi;T0, T1, X̂
n
1 , X̂

n
2 |Xi−1) (51)

(f)
=

n∑
i=1

I(Xi;T0, T1, X̂
n
1 , X̂

n
2 , X

i−1) (52)

≥
n∑
i=1

I(Xi; X̂1,i, X̂2,i) (53)

= n

n∑
i=1

1

n
I(Xi; X̂1,i, X̂2,i) (54)

= nI(XQ; X̂1,Q, X̂2,Q|Q) (55)

= nI(XQ; X̂1,Q, X̂2,Q, Q) (56)

≥ nI(XQ; X̂1,Q, X̂2,Q), (57)

where (a) follows from the fact that X̂n
2 is a function of (T0, Ẑ

n
1 ), (b) follows from the independence of

Xi and Xi−1, and (c) follows by defining Q ∈ [1 : n] as a uniformly distributed time sharing random

variable independent of the source, (d) follows from the independence of Q with the source process, (e)

follows as (X̂n
1 , X̂

n
2 ) is a function of (T0, T1) and finally (f) follows similarly from the independence of

Xi and Xi−1. Finally, we bound the distortion as,

Di ≥ E
[
d(Xn, X̂n

i )
]

(58)

= E

[
1

n

n∑
i=1

d(Xi, X̂i)

]
(59)

= E[d(XQ, X̂i,Q)]. (60)

The proof is completed by noting that the joint distribution of (XQ, X̂1,Q, X̂2,Q) is the same as that of

(X, X̂1, X̂2).

Note 2. Due to the structure of our problem, i.e., Ẑ1 = g(X̂1), it is easy to prove the Markov relation,

(X, X̂2) − X̂1 − Ẑ1, hence the distribution mentioned in the statement of the theorem, can equivalently

be factorized as, PXPX̂1,X̂2|X1{Ẑ1=g(X̂1)}, (which is the form stated in Table I). This applies similarly for

theorems to follow, and we omit this explanation henceforth.
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B. Strictly-Causal Cribbing

1) Perfect Cribbing:

Theorem 3. The rate region R(D1, D2) for the setting in Fig. 9 with perfect cribbing (strictly causal) is

given by the closure of the set of all the rate tuples (R0, R1) such that,

R0 +R1 ≥ I(X; X̂1, X̂2) (61)

R0 ≥ {I(X; X̂1, X̂2)−H(X̂1|X̂2)}+, (62)

for some joint probability distribution PX,X̂1,X̂2
such that E[di(X, X̂i)] ≤ Di, for i = 1, 2.

ENCODER DECODER 1

DECODER 2

X̂2,i(T0, X̂
i−1
1 ), D2

Xn T1(X
n) ∈ {1 : 2nR1}

T0(X
n) ∈ {1 : 2nR0}

X̂n
1 (T0, T1), D1

Fig. 9. Successive refinement, with decoders cooperating via (perfect) strictly-causal cribbing.

Proof:

Achievability :

We will show the achievability of the following region instead,

R0 +R1 ≥ I(X; X̂1, U) (63)

R0 ≥ {I(X; X̂1, U)−H(X̂1|U)}+, (64)

for some joint probability distribution PX,X̂1,U
1{X̂2=f(U)}. Note that the rate region in the theorem will

then be obtained by simply taking U = X̂2. Here we deliberately present our encoding scheme with an

auxiliary random variable as this will be used (with minor changes) to derive the achievable region for the

case of causal cribbing discussed in the next subsection.
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“Forward Encoding” and “Block Markov Decoding” scheme :

We use a new scheme that we refer to as “Forward Encoding” and “Block Markov Decoding”. We first

briefly give an overview of the coding scheme and for simplicity consider the case when common rate

R0 = 0. Thus the source description is available only to Decoder 1, while Decoder 2 has access to the

reconstruction symbols of Decoder 1, but only strictly-causally. Hence in principle we cannot deploy a

scheme to operate in one block as was done for non-causal cribbing. We need to use a scheme to operate in

multiple (large number) of blocks, and use an encoding procedure where X̂n
1 of the previous block carries

information about the source sequence of the current block. In this way due to strictly causal cribbing,

in the current block, Decoder 2 will know all the reconstruction symbols of Decoder 1 from the previous

block, which will contain information about the source for the current block. This is the main idea and is

operated as follows : in each block, first we generate 2nI(X;U) Un codewords, and for each Un codeword,

we generate 2nI(X;U) bins and in each bin 2nI(X;X̂1|U) X̂n
1 codewords are generated. In each block, Un is

jointly typical with the source sequence in the current block and the bin index describes the Un sequence

jointly typical with the source sequence of the future block. This bin index carries information about

the source in the future block. Hence, we address encoding as “Forward Encoding”. Decoding is “Block

Markov Decoding”, as it assumes both decoders have currently decoded the Un sequence of the previous

block. The bin index and index of the X̂n
1 codewords is described as R1 which hence is taken to be

I(X;U) + I(X; X̂1|U) = I(X; X̂1, U). Due to cribbing, Decoder 2 knows the X̂n
1 of the previous block

and aims to find the bin index in which it lies. And as we argued in previous sections, this is possible if

I(X; X̂1, U) ≤ H(X̂1|U).

The general scheme when R0 > 0 is depicted in Fig. 10. The additional step which we add to the

description above (for R0 = 0) is to bin in an extra dimension, i.e., with respect to each Un sequence we

generate a “doubly-binned” codebook (as in the achievability of non-causal cribbing, cf. Fig. 7). The row

index encodes Un sequences of the future block and X̂n
1 codewords for each row are uniformly binned

into 2nR0 columns. The column index is the common description to both decoders, so R1 reduces to

I(X; X̂1, U)−R0, and the decodability of Decoder 2 requires the condition I(X; X̂1, U)−R0 ≤ H(X̂1|U).

We now explain this coding scheme in detail and how it helps establish the achievable region when the

cooperation between the decoders is via strictly causal cribbing.
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1) Codebook Generation : The scheme does compression in blocks. Fix the number of blocks to be B.

In each block, n source symbols are compressed. Fix a joint probability distribution, PU,X,X̂1,X̂2
=

PU,X,X̂1
1{X̂2=f(U)} for some function f and ε > 0 such that E[d1(X, X̂1)] ≤ D1

1+ε and E[d2(X, X̂2)] ≤
D2

1+ε .

Now in each block we generate codebook as follows. First we generate a codebook CU (b) =

{un(b,m) ∼
∏n

i=1 PU (ui(b,m)),m = [1 : 2nI(X;U)]} for each block b ∈ [1 : B]. For each un(b,m),

we create 2nI(X;U) horizontal bins or rows B(mh) which are indexed as mh ∈ [1 : 2nI(X;U)]. In

each bin we generate a codebook 2nI(X;X̂1|U) X̂n
1 codewords which are then binned again into

2nR0 vertical bins or columns, B(mv) uniformly, mv ∈ [1 : 2nR0 ] and index them accordingly by

l ∈ [1 : 2n(I(X;X̂1|U)−R0)]. Thus X̂n
1 can be equivalently indexed as the tuple (b,m,mh,mv, l). Hence

for each un as explained earlier we have a “doubly-binned” structure, mh denotes the row index and

mv denotes the column index. The codebooks are then revealed to both the encoder and decoders.

2) Encoding : XnB is known to the encoder. From now on additional subscripts will stand for block

index, eg. mh,2 means the row index in block 2, or mv,2 means the column index in block 2. Also

additional scripts in parenthesis would denote the sequence in a block, eg. Xn(b) will stand for the

source sequence in block b, X̂n
1 (b) stands for reconstruction of Decoder 1 in block b. Encoding is

as follows :

a) For the first block, b = 1, assume m1 = 1. Encoder then finds index m2, such

that (Xn(2), Un(2,m2)) ∈ T nε . The encoder then looks in the codebook CU (1) to

find Un(1,m1). Then it looks in the row or horizontal bin indexed by mh,1 = m2

corresponding to the found Un(1,m1), and finds the index tuple (mv,1, l1) such that

(X̂n
1 (1,m1,mh,1,mv,1, l1), X

n(1), Un(1,m1)) ∈ T nε . As found X̂n
1 ∈ B(mv,1), the index tuple

(mh,1, l1) is described as R1 and mv,1 is described as R0.

b) In the block b (∈ [2 : B − 1]) encoder knows mb from encoding procedure in previous block

such that (Xn(b), Un(b,mb)) ∈ T nε . It then finds index mb+1 such that (Xn(b + 1), Un(b +

1,mb+1)) ∈ T nε . Now the encoder identifies the codeword, Un(b,mb), from the codebook

CU (b), looks in the corresponding row or horizontal bin indexed as mh,b = mb+1 and finds the

index tuple (mv,b, lb) such that (X̂n
1 (b,mb,mh,b,mv,b, lb), X

n(b), Un(b,mb)) ∈ T nε . As found
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BLOCK bBLOCK 1 BLOCK B

A typical X̂n
1 indexed by tuple (b,m,mh,mv, l)

un(1, 1)

un(1,m)

un(b, 1)

un(b,m) un(B,m)

un(B, 1)

un(1, 2nI(X;U)) un(b, 2nI(X;U)) un(B, 2nI(X;U))

2nI(X;U)

bins B(mh)

2nR0 bins B(mv)

2nR0 bins B(mv)

2nR0 bins B(mv)

2nR0 bins B(mv)

2nR0 bins B(mv)

2nR0 bins B(mv)

2nR0 bins B(mv)

2nR0 bins B(mv)

2nR0 bins B(mv)

2nI(X;U)

2nI(X;U)

2nI(X;U)

2nI(X;U) 2nI(X;U)

2nI(X;U)

2nI(X;U)2nI(X;U)

bins B(mh)

bins B(mh)

bins B(mh)

bins B(mh)

bins B(mh)

bins B(mh)

bins B(mh)

bins B(mh)

2n
I
(X

;U
)
u
n

co
de

w
or

ds

Each ”doubly” indexed bin has 2n(I(X;X̂1|U)−R0) X̂n
1 codewords

Fig. 10. “Forward Encoding” and “Block Markov Decoding” - achievability scheme for the strictly-causal perfect cribbing.

X̂n
1 ∈ B(mv,b), the index tuple (mh,b, lb) is described as R1 and mv,b is described as R0.

c) In the last block b = B, the encoder knows mB from encoding procedure in the previous

block. Fix mB+1 = 1. Encoder identifies Un(B,mB) from the codebook CU (B), looks in the

corresponding row or horizontal bin mh,B = mB+1 and finds the index tuple (mv,B, lB) such

that (X̂n
1 (B,mB,mh,B,mv,B, lB), X

n(B), Un(B,mB)) ∈ T nε . As found X̂n
1 ∈ B(mv,B), the

index tuple (mh,B, lB) is described as R1 and mv,B is described as R0.

Hence the encoding has a “Forward Encoding” interpretation, as we encoded the source sequence of

the future block as the row or horizontal bin index of the “doubly-binned” codebook in the present
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block. As at each block b, R1 encodes for (mh,b, lb), thus

I(X;U) + I(X; X̂1|U)−R0 ≤ R1. (65)

3) Decoding : Decoding for both the decoders is as follows :

Decoder 1

a) For the first block b = 1, Decoder 1 knows m1 = 1, and since it knows the index (mh,1,mv,1, l1)

it identifies X̂n
1 (1) = X̂n

1 (1,m1,mh,1,mv,1, l1) as its source estimate for the first block.

b) For the block b (∈ [2 : B]), Decoder 1 knows mb from the index sent by the encoder in the

(b − 1) block (as mh,b−1 = mb) and since it knows the index (mh,b,mv,b, lb) for the current

block, it identifies X̂n
1 (b) = X̂n

1 (b,mb,mh,b,mv,b, lb), as its source estimate.

Decoder 2

a) For the first block b = 1, Decoder 2 assumes m̂1 = 1 and generates its estimate X̂n
2 (1) =

f(Un(1, m̂1)).

b) For the block b (∈ [2 : B]), Decoder 2 has already estimated m̂b−1 in b − 1 block. It

also knows X̂n
1 (b − 1)(because of strictly causal cribbing) and mv,b−1 through R0. It then

looks into the vertical bin with index mv,b−1 in the codebook corresponding to the codeword

Un(b− 1, m̂b−1), and finds a unique row or horizontal bin index m̂h,b−1 such that X̂n
1 (b−1) =

X̂n
1 (b − 1, m̂b−1, m̂h,b−1,mv,b−1, l̃b−1) for some l̃b−1 ∈ [1 : 2n(I(X;X̂1|U)−R0)]. But note that

estimating m̂h,b−1 is equivalent to estimating m̂b, because of our forward encoding procedure,

thus Decoder 2 constructs its source estimate for the block b as X̂n
2 (b) = f(Un(b, m̂b)).

Decoding has a “Block Markov Decoding” interpretation as we see that the decoding for both

decoders relies on what was successfully decoded in the previous block.

4) Rate Region and Bounding Distortion : We assume without loss of generality, di(·, ·) ≤ Dmax <∞,

i = 1, 2. In the encoding and decoding scheme, m1 was chosen to be a fixed value, deterministically

chosen prior to the compression, agreed upon by both encoders and decoders. Hence, for both the

decoders distortion in general will not be met for the first block, however we are generous enough

to allow for maximum distortion for the first block, which will eventually have insignificant impact

on total distortion as the number of blocks becomes large. Consider the following encoding and
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decoding events which will help to bound the distortion at Decoder 1 and Decoder 2. Suppose in

block b − 1 and b, index tuples (mh,b−1, lb−1) and (mh,b, lb) are described by the encoder to the

Decoder 1, and that mh,b−1 = mb and mh,b = mb+1, ∀ b = [2 : B].

a) Encoding Events :

•

Ee,1(b) = No Un sequence is jointly typical with source in block b (66)

=

{
(Xn(b), Un(b, m̃b)) /∈ T nε ∀ m̃b ∈ [1 : 2nI(X;U)]

}
, (67)

for b = [2 : B]. By Covering Lemma 3, the probability of this event goes to zero as there are

2nI(X;U) Un codewords Similarly, P (Ee,1(b+ 1))→ 0. Suppose, (Xn(b), Un(b,mb)) ∈ T nε

and (Xn(b+ 1), Un(b+ 1,mb+1)) ∈ T nε , thus row index in block b is mh,b = mb+1.

•

Ee,2(b) = No X̂n
1 sequence is jointly typical with the typical pair (X,U) in block b

= Ece,1(b) ∩ Ece,1(b+ 1)

∩
{
(X̂n

1 (b,mb,mh,b, m̃v,b, l̃b), X
n(b), Un(b,mb)) /∈ T nε ∀ tuples (m̃v,b, t̃b)

}
,

(68)

for b = [1 : B], where,

Ece,1(b) =

{
(Xn(b), Un(b,mb)) ∈ T nε

}
(69)

Ece,1(b+ 1) =

{
(Xn(b+ 1), Un(b+ 1,mb+1)) ∈ T nε

}
. (70)

By Covering Lemma 3, this event has vanishing probability as for every row index there are,

2nI(X;X̂1|U) X̂n
1 codewords.

b) Decoding Events : Decoder 1 can perfectly construct the X̂n
1 (b) sequences in the block b.

Decoder 2 in block b knows X̂n
1 (b − 1). For the Decoder 2, for b ∈ [2 : B], assume it has

decoded correctly the message, m̂b−1 = mb−1 in the b − 1 block and the encoder sends the

row index mh,b−1 = mb in the block b − 1 to Decoder 1. Also Decoder 2 knows mv,b−1
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through R0. Decoder 2 needs to find an estimate m̂h,b−1, or equivalently an estimate of m̂b (as

mh,b−1 = mb). Consider the following events :

•

Ed,1 = X̂n
1 (b− 1) does not lie in row with index, mh,b−1 = mb and column index mv,b−1

=

{
X̂n

1 (b− 1) = X̂n
1 (b− 1,mb−1,mh,b−1,mv,b−1, l̃b−1)

}
, (71)

∀ l̃ ∈ [1 : 2n(I(X;X̂1|X̂2)−R0)]. But the probability of this event goes to zero, because due to

our encoding procedure, X̂n
1 (b− 1) = X̂n

1 (b− 1,mb−1,mh,b−1,mv,b−1, lb−1).

•

Ed,2 = X̂n
1 (b− 1) lies in a row with index, m̂h,b−1 6= mb and column index mv,b−1

=

{
X̂n

1 (b− 1) = X̂n
1 (b− 1,mb−1, m̂h,b−1,mv,b−1, l̃b−1), m̂h,b−1 6= mb

}
, (72)

for some l̃ ∈ [1 : 2n(I(X;X̂1|X̂2)−R0)]. This event is equivalent to finding X̂n
1 (b − 1)

corresponding to Un(b − 1,mb−1) lying in two different rows or horizontal bins, but with

the same column or vertical bin index (mv,b−1). The probability of a single X̂n
1 codeword

(corresponding to a Un codeword) occurring repeatedly in two horizontal bins indexed with

different row index is 2−nH(X̂1|U), while knowing the column index, total number of X̂n
1

codewords with a particular column index are, 2n(I(X;X̂1,X̂2)−R0), so the probability of event

Ed,2 vanishes so long as,

I(X̂1; X̂1, X̂2)−R0 < H(X̂1|U). (73)

Thus consider the event E(b) = Ee,1(b) ∪ Ee,2(b) ∪ Ed,1(b) ∪ Ed,2(b). We have,

P (E(b)) ≤ P (Ee,1(b)) + P (Ee,2(b)) + P (Ed,1(b)) + P (Ed,2(b)), (74)

which vanishes to zero with large n, for each block b = [2 : B], if [from Eq. (65), Eq. (73)], if,

R0 +R1 ≥ I(X; X̂1, U) (75)

R0 ≥ {I(X; X̂1, U)−H(X̂1|U)}+. (76)
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We will now bound the distortion. The distortion for both the decoders in the first block is bounded

above by Dmax. Consider the block b = [2 : B] for Decoder 1,

E
[
d1(X

n(b), X̂n
1 (b))

]
= P (E(b))E

[
d1(X

n(b), X̂n
1 (b))|E(b)

]
+ P (Ec(b))E

[
d1(X

n(b), X̂n
1 (b))|Ec(b)

]
(77)

(a)

≤ P (E(b))Dmax + P (Ec(b))(1 + ε)E[d1(X, X̂1)] (78)

≤ P (E(b))Dmax + P (Ec(b))D1, (79)

where (a) follows from Typical Average Lemma 2, as given Ec(b), (Xn(b), X̂n
1 (b)) ∈ T nε . Thus as

n→∞, P (E(b))→ 0, hence the distortion is bounded by D1 in block b. Similarly for Decoder 2,

E
[
d2(X

n(b), X̂n
2 (b))

]
= P (E(b))E

[
d2(X

n(b), X̂n
2 (b))|E(b)

]
+P (Ec(b))E

[
d2(X

n(b), X̂n
2 (b))|Ec(b)

]
(80)

(b)

≤ P (E(b))Dmax + P (Ec(b))(1 + ε)E[d2(X, X̂2)] (81)

≤ P (E(b))Dmax + P (Ec(b))D2, (82)

where (b) follows from Typical Average Lemma 2, as given Ec(b), (Xn(b), Ûn2 (b,mb)) ∈ T nε , and

since X̂n
2 (b) = f(Un(b,mb)), (Xn(b), X̂n

2 (b)) ∈ T nε . Thus the distortion is bounded by D2 in block

b. The total normalized distortion in B blocks for Decoder 1 and Decoder 2 is bounded above by

1
BDmax +

B−1
B D1 and 1

BDmax +
B−1
B D2 respectively. Proof is completed by letting, B →∞.

Converse : Converse in this subsection is skipped and follows from the converse of deterministic function

cribbing of the next subsection, by the substitution Ẑ1 = X̂1.

2) Deterministic Function Cribbing:

Theorem 4. The rate region R(D1, D2) for the setting in Fig. 11 with deterministic function cribbing

(strictly causal) is given as the closure of the set of all the rate tuples (R0, R1) such that,

R0 +R1 ≥ I(X; X̂1, X̂2) (83)

R0 ≥ {I(X; Ẑ1, X̂2)−H(Ẑ1|X̂2)}+, (84)
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for some joint probability distribution PXPẐ1,X̂2|XPX̂1|Ẑ1,X̂2,X
such that E[di(X, X̂i)] ≤ Di, for i = 1, 2.

ENCODER DECODER 1

DECODER 2

Ẑ1,i = g(X̂1,i)

Xn T1(X
n) ∈ {1 : 2nR1}

T0(X
n) ∈ {1 : 2nR0}

X̂n
1 (T0, T1), D1

X̂2,i(T0, Ẑ
i−1
1 ), D2

Fig. 11. Successive refinement, with decoders cooperating via (deterministic function) strictly-causal cribbing.

Proof:

Achievability :

The extension to deterministic function cribbing from perfect cribbing follows similarly to the case of

noncausal cribbing in Section III-A2. We omit the details of achievability and describe the key idea.

Here also, achievability is first proved with auxiliary random variable U and the following region will be

achieved,

R0 +R1 ≥ I(X; X̂1, U) (85)

R0 ≥ {I(X; Ẑ1, U)−H(Ẑ1|U)}+, (86)

for some joint probability distribution PXPẐ1,U |XPX̂1|Ẑ1,U,X
1{X̂2=f(U)} such that E[di(X, X̂i)] ≤ Di, for

i = 1, 2. The codebook structure remains almost the same, just that instead of (uniformly) binning X̂n
1

into vertical 2nR0 bins, as done in the setting of the previous subsection with perfect cribbing, we bin Ẑn1

codewords and X̂n
1 codewords are then generated on the top of each Ẑn1 codewords. Encoding changes

accordingly and Decoder 2 tries to infer the row index from the deterministic crib which it obtains from

Decoder 1.

Converse : Assume we have a (2nR0 , 2nR1 , n) distortion code (as per Definition 4) such that

(R0, R1, D1, D2) tuple is feasible (as per Definition 2). Denote T1 = f1,n(X
n) and T0 = f2,n(X

n).
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Identify the auxiliary random variable Ui = (T0, Ẑ
i−1
1 ) :

H(Ẑn1 , T0) ≥ I(Xn; Ẑn1 , T0) (87)

=

n∑
i=1

I(Xi; Ẑ
n
1 , T0|Xi−1) (88)

(a)
=

n∑
i=1

I(Xi; Ẑ
n
1 , T0, X

i−1) (89)

≥
n∑
i=1

I(Xi; Ẑ
i
1, T0) (90)

=

n∑
i=1

I(Xi; Ẑ1,i, Ui) (91)

≥ nI(XQ; Ẑ1,Q, UQ) (92)

H(Ẑn1 , T0) =

n∑
i=1

H(Ẑi,1|T0, Ẑi−11 ) +H(T0) (93)

≤
n∑
i=1

H(Ẑi,1|Ui) + nR0 (94)

≤ nH(Ẑ1,Q|UQ) + nR0, (95)

where (a) follows from the independence of Xi with Xi−1 and Q ∈ [1 : n] is similarly defined

an independent (of source) uniformly distributed time sharing random variable. As argued in previous

subsection of perfect cribbing, we lower bound n(R0 + R1) with nI(X; X̂1,Q, UQ). Note that as

X̂2,Q = f(UQ), for some function f . Lastly we bound the distortion for both decoders as we did in

previous section and note that the joint distribution of (XQ, X̂1,Q, X̂2,Q) is the same as (X, X̂1, X̂2) to

derive the rate region with auxiliary random variable. It is easy to see that in inequalities (91) and (94),

we can replace Ui with X̂2,i and this helps to provide converse for the region without auxiliary random

variable provided in the theorem.

C. Causal Cribbing

1) Perfect Cribbing:

Theorem 5. The rate region R(D1, D2) for the setting in Fig. 9 with perfect causal cribbing that is X̂2,i
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is a function of (T0, X̂i
1), is given as the closure of the set of all the rate tuples (R0, R1) such that,

R0 +R1 ≥ I(X; X̂1, U) (96)

R0 ≥ {I(X; X̂1, U)−H(X̂1|U)}+, (97)

for some joint probability distribution PX,X̂1,U
1{X̂2=f(U,X̂1)} such that E[di(X, X̂i)] ≤ Di, for i = 1, 2

and |U| ≤ |X | |X1|+ 4.

Proof: The achievability remains the same as in strictly causal cribbing, in terms of encoding and

decoding operations at Decoder 1. For Decoder 2, the only change is in constructing X̂n
2 (b) for each block,

which in this case is constructed as, X̂n
2,i(b) = f(Ui(b,mb), X̂1,i). The steps in the converse are exactly

the same as in the strictly causal cribbing case, except that this time we identify X̂2,Q = f(UQ, X̂1,Q).

The cardinality bounds on U follow standard arguments as in [21] : U should have |X | |X1| − 1 elements

to preserve the joint probability distribution PX,X̂1
, one element to preserve the markov chain, (X, X̂1)−

U − X̂2, two elements to preserve the mutual information quantities, I(X; X̂1, U) and {I(X; X̂1, U) −

H(X̂1|U)}+ and finally two more elements to preserve the distortion constraints.

2) Deterministic Function Cribbing:

Theorem 6. The rate region R(D1, D2) for the setting in Fig. 11 with deterministic function cribbing but

with causal cribbing, that is, X̂2,i is a function of (T0, X̂i
1), is given as the closure of the set of all the

rate tuples (R0, R1) such that,

R0 +R1 ≥ I(X; X̂1, U) (98)

R0 ≥ {I(X; Ẑ1, U)−H(Ẑ1|U)}+, (99)

for some joint probability distribution PXPẐ1,U |XPX̂1|Ẑ1,U,X
1{X̂2=f(U,Ẑ1)} such that E[di(X, X̂i)] ≤ Di,

for i = 1, 2 and |U| ≤ |X | |X1|+ 4.

Proof: The achievability remains the same as in strictly causal deterministic function cribbing, in

terms of encoding operation and decoding operation at Decoder 1. For the Decoder 2, only change is in

constructing X̂n
2 (b) for each block, it is constructed as, X̂n

2,i(b) = f(Ui(b,mb), Ẑ1,i). The steps in converse

are exactly the same as in strictly causal cribbing case except that we identify, X̂2,Q = f(UQ, Ẑ1,Q).
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IV. SPECIAL CASES

In this section, we study some special cases of our setting and also compute certain numerical examples.

A. The Case R0 = 0

ENCODER DECODER 1

DECODER 2

Ẑ1,i = g(X̂1,i)

Xn X̂n
1 (T ), D1T (Xn) ∈ {1 : 2nR}

X̂2,i(Ẑ
d
1 ), D2

Fig. 12. Special case of successive refinement with cribbing decoders, when the common rate is zero. Here again d = n, d = i−1
and d = i respectively stand for non-causal, strictly-causal and causal cribbing.

One special yet important case of the setting studied in previous sections, is that when R0 = 0 as shown

in Fig. 12. Here the encoder describes the source to only Decoder 1, while Decoder 2 attempts to find the

reconstruction of the source within some distortion via cribbing reconstruction symbols of the Decoder 1,

non-causally, causally or strictly causally. Table II provides the minimum achievable rate (R = R(D1, D2))

for various cases, derived when R0 = 0, using Theorem 1 through 6. Distortion constraints are omitted

for brevity.

B. Null g function

Our expressions reduce to the successive refinement rate region (cf. Equitz and Cover [18]), when g is

a trivial function. To see this consider rate region for non-causal cribbing with deterministic cribbing (cf.

Theorem 2), as given below,

R0 +R1 ≥ I(X; X̂1, X̂2) (100)

R0 ≥ {I(X; Ẑ1, X̂2)−H(Ẑ1)}+, (101)
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R(D1, D2) Non-Causal (d = n) Strictly-Causal (d = i− 1) Causal (d = i− 1)

Deterministic min I(X; X̂1, X̂2) min I(X; X̂1, X̂2) min I(X; X̂1, U)

Function s.t. I(X; Ẑ1, X̂2) ≤ H(Ẑ1) s.t. I(X; Ẑ1, X̂2) ≤ H(Ẑ1|X̂2) s.t. I(X; Ẑ1, U) ≤ H(Ẑ1|U)
Cribbing

(p.m.f.) : P (X, X̂1, X̂2)× (p.m.f.) : P (X, X̂1, X̂2) (p.m.f.) : P (X, X̂1, U)×
1{Ẑ1=f(X̂1)} 1{Ẑ1=f(X̂1)} 1{Ẑ1=f(X̂1),X̂2=f(Ẑ1,U)}

TABLE II
RESULTS FOR THE SUCCESSIVE REFINEMENT WITH CRIBBING DECODERS, WHEN COMMON RATE, R0 = 0.

If g is null, Ẑ1 is constant and hence the region reduces to,

R0 +R1 ≥ I(X; X̂1, X̂2) (102)

R0 ≥ I(X; X̂2), (103)

for some joint probability distribution PX,X̂1,X̂2
such that E[di(X, X̂i)] ≤ Di, for i = 1, 2, which is also

derived in Equitz and Cover [18].

C. Numerical Examples

We provide an example illustrating the rate regions of non-causal and strictly causal cribbing. Along

with them, the region without cribbing is also compared. The rate regions for these three cases from the

theorems in the paper are shown in the Table III. Distortion constraints are omitted for brevity.

We plot for a specific example (cf. setting in Fig. 4 with perfect cribbing) with a bernoulli source

X ∼ Bern(0.5), binary reconstruction alphabets and hamming distortion. We consider a particular distortion

tuple (D1, D2). Due to symmetry of the source, for the optimal distribution, it is easy to argue that,

PX̂1,X̂2|X(x̂1, x̂2|x) = PX̂1,X̂2|X(x̂1, x̂2|x), where x stands for complement of x. Thus all the expressions

can be written in terms of variables p1 = PX̂1,X̂2|X(0, 0|0), p2 = PX̂1,X̂2|X(0, 1|0), p3 = PX̂1,X̂2|X(1, 0|0)

and p4 = PX̂1,X̂2|X(1, 1|0), p4 = 1 − p1 − p2 − p3. However it is also easy to see that the distortion

constraints are satisfied with equality, otherwise one can reduce the rate region slightly and still be under
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Non-Causal Cribbing Strictly-Causal Cribbing No Cribbing

R0 +R1 ≥ I(X; X̂1, X̂2) R0 +R1 ≥ I(X; X̂1, X̂2) R0 +R1 ≥ I(X; X̂1, X̂2)

R0 ≥ {I(X; X̂1, X̂2)−H(X̂1)}+ R0 ≥ {I(X; X̂1, X̂2)−H(X̂1|X̂2)}+ R0 ≥ I(X; X̂2)

(p.m.f.) : P (X, X̂1, X̂2) (p.m.f.) : P (X, X̂1, X̂2) (p.m.f.) : P (X, X̂1, X̂2)

TABLE III
COMPARING RATE REGIONS FOR THE EXAMPLE CONSIDERED, FOR NON-CAUSAL CRIBBING, STRICTLY CAUSAL CRIBBING

AND NO CRIBBING.

distortion constraint. The distortion constraints thus yield,

E[d(X, X̂1)] = p4 + p3 = D1 (104)

E[d(X, X̂2)] = p2 + p4 = D2, (105)

which implies, p2 = 1−D1−p1, p3 = 1−D2−p1, p4 = p1+D1+D2−1. Thus the equivalent probability

distribution space over which the closure of rate regions is evaluated (such that distortion is satisfied) is

equivalent to, P = {p1 ∈ [1 − D1 − D2,min{1 − D1, 1 − D2, 2 − D1 − D2}], p2 = 1 − D1 − p1, p3 =

1−D2− p1, p4 = p1 +D1 +D2− 1}. The various entropy and mutual information expressions appearing

in the rate regions of non-causal, strictly causal and no cribbing (cf. Table III) can then be expressed as,

I(X; X̂1, X̂2) = H2

([p1 + p4
2

p2 + p3
2

p2 + p3
2

p1 + p4
2

])
−H2([p1 p2 p3 p4]) (106)

H(X̂1) = 1 (107)

H(X̂1|X̂2) = H2

([
p1 + p4 p2 + p3

])
(108)

I(X; X̂2) = 1−H2

([
p1 + p3 p2 + p4

])
, (109)

where H2(·) stands for the binary entropy of the probability vector. Note the only variable of optimization

is effectively p1. Fig. 13 shows the rate regions for (D1, D2) = (0.05, 0.1). Note that the region for no

cribbing is smaller than that of strictly causal cribbing which is smaller than that of non-causal cribbing,
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Fig. 13. Rate regions for non-causal, strictly causal and no cribbing in successive refinement setting of Fig. 4. Source is Bern(0.5)
and (D1, D2) = (0.05, 0.1). The curve is tradeoff curve between R1 and R0 and the rate regions lie to the right of the respective
tradeoff curves.

as expected. We can also analytically compute the expression of corner points A,B,C,D in Fig. 13. Let

h2(α) = −α logα−(1−α) log(1−α) ∀ α ∈ [0, 1]. Consider independent bernoulli random variables ZD1
∼

Bern(D1) and ZD2
∼ Bern(D2). R0 for point D is evaluated by putting R1 = 0 in rate region for non-causal

cribbing and this equals minP I(X; X̂1, X̂2). We will now show that minP I(X; X̂1, X̂2) = 1 − h2(D1).

Consider, minP I(X; X̂1, X̂2) ≥ minP I(X; X̂1) ≥ minP(1 − H(X̂1|X)) ≥ 1 − h2(D1), where the last

two inequalities follow respectively as X̂1 is Bern(0.5) and that D1 is the hamming distortion between

X̂1 and X . As D2 > D1, this lower bound is indeed achieved if X̂2 = X̂1 = X ⊕ ZD1
. Similarly for

point A, R1 is obtained by substituting R0 = 0 in the expression of rate region for non-causal cribbing

and this again equals 1− h2(D1). R0 corresponding to points B and C is obtained by putting R1 =∞ in

the expressions of rate regions of strictly-causal and no cribbing. Let us first consider point B and observe

that R0 equals minP{I(X; X̂1, X̂2)−H(X̂1|X̂2)}+. We show that this equals 1− h2(D1)− h2(D2). To

see this, consider, minP{I(X; X̂1, X̂2)−H(X̂1|X̂2)}+ = minP{H(X̂2)−H(X̂1, X̂2|X)}+ ≥ minP{1−
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H(X̂1|X) − H(X̂1|X)}+, where the last inequality follows as X̂2 is Bern(0.5). Since X̂1 and X̂2 are

within hamming distortion D1 and D2 to X respectively, we have minP{I(X; X̂1, X̂2)−H(X̂1|X̂2)}+ ≥

1 − h2(D1) − h2(D2), where the equality holds for X̂1 = X ⊕ ZD1
and X̂2 = X + ZD2

. Similarly for

point C, it can be shown R0 equals minP I(X; X̂2) = 1− h2(D2).

V. DUAL CHANNEL CODING SETTING

In this section we establish duality between cribbing decoders in the successive refinement problem and

cribbing encoders in the MAC problem with a common message. The duality between rate-distortion and

channel capacity was first mentioned by Shannon, [22] and was further developed for the case of side

information by Pradhan et. al., [23] and by Chiang and Cover, [24]. Additional duality has been shown by

Yu, [25] for a class of broadcast channels and multiterminal source coding problems, and by Shirazi et.

al., [26] for the case of increased partial side information. The duality between source and channel coding

with action dependent side information was shown in Kittichokechai et al. in [27]. Recently, Gupta and

Verdú, [28] have shown operational duality between the codes of source coding and of channel coding

with side information.

To make the notion of duality clearer and sharper, we consider coordination problems in source coding

[29] and for channel coding we consider a new kind of problems which we refer to as channel coding

with restricted code distribution. In the (weak) coordination problem [29] the goal is to generate a joint

typical distribution of the sources and the reconstruction (or actions) rather than a distortion constraint

between the source and its reconstruction. Similarly, we define a channel coding problem where the code

is restricted to a specific type. The achievability proofs for coordination and channel capacity with restricted

code distribution are the same as that of rate-distortion and channel capacity, respectively, since the codes

in all achievability proofs are generated randomly with specific distribution. The converse is also similar

except in the last step where we need to justify the constraint of having a code with a specific type. For

this purpose we invoke [29, Property 2] that is stated as follows :

Lemma 5 (Equivalence of type and time-mixed variables [29]). For a collection of random sequences Xn,

Y n, and Zn, the expected joint type EPXn,Y n,Zn is equal to the joint distribution of the time-mixed variables

(XQ, YQ, ZQ), where Q is a r.v. uniformly distributed over the integers {1, 2, 3, ..., n} and independent of

(Xn, Y n, Zn).
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The duality principle between source coding and channel coding with cribbing appears later in Table

IV. According to those principles, the standard successive refinement source coding problem which

was introduced in [18] is dual to the MAC with one common message and one private message [30].

Furthermore, the successive refinement source coding with cribbing decoders is dual to the MAC with one

common message and one private message and cribbing encoders. To show the duality, let us investigate

the capacity of the MAC with common message and cribbing encoders and compare it to the achievable

region of the successive refinement problem with cribbing.

A. MAC with cribbing encoders and a common message

We consider here the problem of MAC with partial cribbing encoders where there is one private message

m1 ∈ {1, 2, ..., 2nR1} known to Encoder 1 and one common message m0 ∈ {1, 2, ..., 2nR0} known to both

encoders that needs to be sent to the decoder, as shown in Fig. 14 . We assume that Encoder 2 cribs

the signal from Encoder 1, namely, Encoder 2 observes a deterministic function of the output of Encoder

1. We consider here three cases, noncausal, strictly-causal and causal cribbing and we show in the next

subsection their duality to the successive refinement problem.

Definition 4. A (2nR0 , 2nR1 , n, P (x1, x2)) partial cribbing MAC, with one private and one common message

and a code restricted to a distribution P (x1, x2), has,

1) Encoder 1, g1 : {1, ..., 2nR0} × {1, ..., 2nR1} → X n1 .

2) Encoder 2, ∀ i = 1, ..., n. (depending on d in Fig. 4, the decoder mapping changes as below),

gnc2,i : {1, ..., 2nR0} × Zn1 → X2 non-causal cribbing, d = n (110)

gsc2,i : {1, ..., 2nR0} × Z i−11 → X2 strictly-causal cribbing, d = i− 1, (111)

gc2,i : {1, ..., 2nR0} × Z i1 → X2 causal cribbing, d = i. (112)

3) Decoder, f : Yn → {1, ..., 2nR0} × {1, ..., 2nR1}.

An error occurs if the one of the messages was incorrectly decoded or if the joint type of the output

and input to the channel deviates from the required one. Hence, the probability of error is defined for any
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integer n and δ > 0 such as

Pe(n),δ = Pr
{
(M̂0(Y

n), M̂1(Y
n)) 6= (M0,M1) AND ‖PXn

1 ,X
n
2 ,Y

n(x, y, z)− P (x1, x2)P (y|x1, x2)‖TV ≥ δ
}
,

(113)

where PXn
1 ,X

n
2 ,Y

n(x, y, z) is the joint type of the input and output of the channel and ‖ · ‖TV is the total

variation between two probability mass functions, i.e., half the L1 distance between them, given by

‖p(x, y, z)− q(x, y, z)‖TV ,
1

2

∑
x,y,z

|p(x, y, z)− q(x, y, z)|.

A pair rate (R0, R1) is achievable if for any δ > 0 there exists a sequence of codes such that Pe(n),δ → 0

as n → ∞. The capacity region is defined in the standard way for MAC as in [31, Chapter 15.3], as

the union of all achievable rate pairs. Let us define three regions Rnc,Rsc and Rc, which correspond to

noncausal, strictly-causal, and causal cases.

Rnc(P ) ,

 R1 ≤ I(Y ;X1|X2, Z1) +H(Z1)

R0 +R1 ≤ I(Y ;X1, X2),
(114)

Rsc(P ) ,

 R1 ≤ I(Y ;X1|X2, Z1) +H(Z1|X2)

R0 +R1 ≤ I(Y ;X1, X2).
(115)

Rc(P ) ,
⋃

P (u|x1)1x2=f(u,z1)

 R1 ≤ I(Y ;X1|U,Z1) +H(Z1|U)

R0 +R1 ≤ I(Y ;X1, U),
(116)

where the union is over joint distributions that preserve the constraint P (x1, x2). Since x2 = f(u, z1), note

that I(Y ;X1, U) = I(Y ;X1, X2). The next theorem states that the regions defined above, Rnc(P ),Rsc(P )

and Rc(P ) are the respective capacity regions.

Theorem 7 (MAC with common message and cribbing encoders). The capacity regions of MAC with

common message, restricted code distribution P (x1, x2) and non-causal, strictly-causal and causal cribbing

that is depicted in Fig. 14 are Rnc(P ),Rsc(P ) and Rc(P ), respectively.

The achievability and the converse proof of the theorem is presented in the Appendix. In the coding

scheme of the achievability proof, we use block Markov coding, backward decoding and rate splitting
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similar to the techniques used in Willems and Van der Muelen [1] and Permuter and Asnani [2]. The

converse uses the standard Fano’s inequalities and the identification of an auxiliary random variable.

B. Duality results between successive refinement and MAC with a common message

SOURCE CODING CHANNEL CODING
Source encoder Channel decoder
Encoder input Xi Decoder input Yi
Encoder output Decoder output
M ∈ {1, 2, .., 2nR} M ∈ {1, 2, .., 2nR}
Encoder function Decoder function
f : X n 7→ {1, 2, ..., 2nR} f : X n 7→ {1, 2, .., 2nR}
Source decoder input Channel encoder input
M ∈ {1, 2, .., 2nR} M ∈ {1, 2, .., 2nR}
Decoder output X̂n Encoder output Xn

Cribbing decoders Ẑi(X̂i) Cribbing encoders Zi(Xi)

Noncausal cribbing decoder Noncausal cribbing encoder
fi : {1, 2, ..., 2nR} × Ẑn 7→ X̂i fi : {1, 2, ..., 2nR} × Zn 7→ Xi

Strictly-causal cribbing decoder Strictly-causal cribbing encoder
fi : {1, 2, ..., 2nR} × Ẑi−1 7→ X̂i fi : {1, 2, ..., 2nR} × Zi−1 7→ Xi

Causal cribbing decoder Causal cribbing encoder
fi : {1, 2, ..., 2nR} × Ẑi 7→ X̂i fi : {1, 2, ..., 2nR} × Zi 7→ Xi

Auxiliary r.v. U Auxiliary r.v. U
Constraint Constraint
P (x, x̂1, x̂2), P (x) is fixed P (y, x1, x2), P (y|x1, x2) is fixed
Joint distribution P (x, x̂1, x̂2, u) Joint distribution P (y, x1, x2, u)

TABLE IV
PRINCIPLES OF DUALITY BETWEEN SOURCE CODING AND CHANNEL CODING

Now that we have the capacity regions of the MAC with common message and of successive refinement

we explore the duality of the regions. From a first glance at the regions of MAC with common message

and of successive refinement, their duality may go unnoticed. However, the corner points of the regions

are dual according to the principles presented in Table IV and as seen in Fig. 14.

Tables VII-VI presents the corner points of the capacity region of the MAC with partial cribbing and

common message and compare them to the corner points of the successive refinement (SR) rate region
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SUCCESSIVE REFINEMENT

ENCODER  1

ENCODER  2

DECODER

ENCODER DECODER  1

DECODER  2

X Y

MAC WITH COMMON MESSAGE

AND CRIBBING ENCODERS
WITH CRIBBING DECODERS

XnM1

Y n

PY |X1,X2

T1

Ẑ1 = g(X̂1)Z1 = g(X1)

R1R1

M0

X1,i(M0,M1)

X2,i(M0, Z
n
1 )

M̂0(Y
n)

M̂1(Y
n)

T0

X̂n
1 (T0, T1)

X̂n
2 (T0, Ẑ

n
1 )

I(Y;X1,X2) R0 I(X; X̂1, X̂2) R0

{I(Y;X2,Z1)−H(Z1)}+ {I(X; X̂2, Ẑ1)−H(Ẑ1)}+

Fig. 14. Duality between the cribbing decoders in successive refinement problem and the cribbing encoders in the MAC problem
with a common message, non-causal case. Table IV represents how the expression of rate and capacity regions of the two problems
are related. In the figure, for a fixed joint probability distribution, we plot the rate and capacity regions, and we observe that the
corner points are dual to each other. Point Y corresponds to (R0, R1) = (0, I(X; X̂1, X̂2) − {I(X; X̂2, Z1) −H(Z1)}+) and
Point X corresponds to (R0, R1) = (0, I(Y ;X1, X2)− {I(Y ;X2, Z1)−H(Z1)}+).

Corner points (R0, R1) of the noncausal (d = n)
MAC (I(Y ;X1, X2), 0)

Eq. (114) ({I(Y ;X2, Z1)−H(Z1)}+, I(Y ;X1, X2)− {I(Y ;X2, Z1)−H(Z1)}+)
SR (I(X; X̂1, X̂2), 0)

Theorem 2 ({I(X; X̂2, Z1)−H(Z1)}+, I(X; X̂1, X̂2)− {I(X; X̂2, Z1)−H(Z1)}+)

TABLE V
THE CORNER POINTS OF THE NONCAUSAL CASE.

with partial cribbing encoders. Note that applying the dual rules X1 ↔ X̂1, X2 ↔ X̂2, Y ↔ X , and

≥↔≤, we obtain duality between the corner points of the capacity region of MAC with common message

and the rate region of the successive refinement setting.
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Corner points (R,R1) of the strictly causal case (d = i− 1)
MAC (I(Y ;X1, X2), 0),

Eq. (115) ({I(Y ;X2, Z1)−H(Z1|X2)}+, I(Y ;X1, U)− {I(Y ;X2, Z1)−H(Z1|X2)}+)
SR (I(X; X̂1, X̂2, 0)

Theorem 4 ({I(X; X̂2, Z1)−H(Z1|X̂2)}+, I(X; X̂1, X̂2)− {I(X; X̂2, Z1)−H(Z1|X̂2)}+)

TABLE VI
THE CORNER PONTS OF THE STRICTLY CAUSAL CASE.

Corner points (R,R1) of the causal case (d = i)
MAC (I(Y ;X1, U), 0), where X2 = f(U,Z1)

Eq. (116) ({I(Y ;U,Z1)−H(Z1|U)}+, I(Y ;X1, U)− {I(Y ;U,Z1)−H(Z1|U)}+)
SR (I(X; X̂1, U, 0) where X̂2 = f(U,Z1)

Theorem 6 ({I(X;U,Z1)−H(Z1|U)}+, I(X; X̂1, U)− {I(X;U,Z1)−H(Z1|U)}+)

TABLE VII
THE CORNER POINTS OF THE CAUSAL CASE.

C. Duality between MAC with conferencing encoders and successive refinement with conferencing decoders

In the previous subsection we saw that there is a duality between the problem of MAC with one common

message and one private message with cribbing encoders to successive refinement with cribbing decoders.

Now we show that the duality also exists if the cooperation between the encoders/decoders is through a

limited rate (conferencing) link as shown in Fig. 15.

Theorem 8. The capacity region of MAC with one common message at rate R0 known to both encoders,

one private message at rate R1 known to Encoder 1, and a limited rate link from Encoder 1 to Encoder

2 at rate R12 with a restricted code distribution P (x1, x2) is

R0 +R1 ≤ I(X1, X2;Y )

R1 ≤ I(X1;Y |X2) +R12. (117)

This theorem can be proved using the result of conferencing MAC [32] where C21 =∞, and choosing

U = X2. It is also possible to prove the theorem directly. The achievability part of Theorem 8 follows
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easily if R1 ≤ R12, then the conferencing link can be used to convey message M1, thus both the encoders

have a common knowledge of both the messages, so R0 + R1 ≤ I(X1, X2;Y ) is achievable. If rate

R12 ≤ R1, then the conferencing can be used to increase the common message rate to R0 + R12 and

decrease the private message rate to R1 − R12. The converse can be proved using the fact that nR1 =

H(M1) = H(M1|M0) ≤ H(M12|M0) +H(M1|M0,M12), and then bounding H(M12|M0) ≤ nR12 using

the fact that the cardinality of M12 is 2nR12 and bounding H(M1|M0,M12) ≤ nI(X1Q;YQ|X2Q) using

Fano’s inequality and the fact that the channel is memoryless.

Finally, one can note a duality between the MAC with one common message and one private message

and conferencing encoders to the successive refinement with conferencing decoders. In particular, Table

VIII presents the corner points of the achievability regions of the two problems from which the duality

rules X1 ↔ X̂1, X2 ↔ X̂2, Y ↔ X , emerge.

ENCODER  1

ENCODER  2

DECODER

ENCODER DECODER  1

DECODER  2

AND CONFERENCING ENCODERS
WITH CONFERENCING DECODERS

MAC WITH COMMON MESSAGE
SUCCESSUVE REFINEMENT

M12(M0,M1)

Xn

Y n

PY |X1,X2

T1M1

I(X; X̂1, X̂2)

R1

Xn
2 (M0,M12)

M0

Xn
1 (M0,M1)

M̂0(Y
n)

M̂1(Y
n)

R1

I(Y;X1,X2) R0 R0

T0

X̂n
1 (T0, T1)

X̂n
2 (T0, T12)

{I(Y;X2)−R12}+ {I(X; X̂2)−R12}+

min{I(X1,X2;Y), I(Y;X1|X2) +R12} min{I(X̂1, X̂2;X), I(X; X̂1|X̂2) +R12}

T12(T0, T1)

Fig. 15. Duality between the conferencing decoders in successive refinement problem and the conferencing encoders in the MAC
problem with a common message, non-causal case. In the figure, for a fixed joint probability distribution, we plot the rate and
capacity regions, and we observe that the corner points are dual to each other.
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Corner points (R0, R1) of the conferencing case
MAC (I(Y ;X1, X2), 0)

Theorem 8 (min(I(Y ;X1, X2), I(Y ;X1|X2) +R12), {I(Y ;X2)−R12}+)
SR (I(X; X̂1, X̂1), 0)

Eq. (1)-(2) (min(I(X; X̂1, X̂2), I(X; X̂1|X̂2) +R12), {I(X; X̂2)−R12}+)

TABLE VIII
THE CORNER POINTS OF THE ACHIEVABILITIES OF THE MAC WITH ONE COMMON MESSAGE AND ONE PRIVATE MESSAGE

AND CONFERENCING ENCODERS AND OF SUCCESSIVE REFINEMENT WITH CONFERENCING DECODERS.

VI. CONCLUSION

In this paper, we introduced new models of cooperation in multi terminal source coding. The setting of

successive refinement with single encoder and two decoders was generalized to incorporate cooperation

between the users via (a) conferencing, or (b) cribbing. A new scheme,“Forward Encoding” and “Block

Markov Decoding” was used to derive the rate regions for strictly-causal and causal cribbing. Certain

numerical examples are presented and show how cooperation via cribbing can boost the rate region.

Finally, we introduce dual channel coding problems, and establish duality between successive refinement

with cribbing decoders and communication over the MAC with common message and cribbing encoders.
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APPENDIX A

SUCCESSIVE REFINEMENT WITH CONFERENCING DECODERS, FIG. 3

Consider Fig. 3, here Decoder 1 cooperates with Decoder 2 by providing an additional description T12

to it. The rate region is given by,

R0 +R1 ≥ I(X; X̂1, X̂2) (118)

R0 +R12 ≥ I(X; X̂2), (119)

for some joint probability distribution PX,X̂1,X̂2
such that E[di(Xi, X̂i)] ≤ Di, for i = 1, 2. We will briefly

describe the proof as they are based on standard arguments used throughout the paper.

Achievability : We provide the achievability under two cases,

• Case 1 : R1 ≤ R12, here we describe T1 through T12, thus both the decoders know (T0, T1) and

hence the following region is achievable,

R1 ≤ R12 (120)

R0 +R1 ≥ I(X; X̂1, X̂2), (121)
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for a joint probability distribution PX,X̂1,X̂2
such that distortion constraints are satisfied. The region

is equivalent to, (call it Region 1)

R1 ≤ R12 (122)

R0 +R1 ≥ I(X; X̂1, X̂2) (123)

R0 +R12 ≥ I(X; X̂2). (124)

• Case 2 : R1 > R12, here T1 is described as a tuple (T ′1, T
′′
1 ) of rate (R1 − R12, R12), and T ′′1 is

described via the conferencing link. Thus this problem is similar to original successive refinement

problem, where encoder has a private rate R1 − R12 and a common rate R0 + R12, and hence the

following region (call Region 2) is achievable (follows from the achievability of Equitz and Cover

[18]),

R1 > R12 (125)

R0 +R1 ≥ I(X; X̂1, X̂2) (126)

R0 +R12 ≥ I(X; X̂2), (127)

for a joint probability distribution PX,X̂1,X̂2
such that distortion constraints are satisfied.

We finish the proof of achievability by combining Region 1 and Region 2. Converse follows from standard

cutset bound arguments and is omitted.

APPENDIX B

PROOF OF LEMMA 1

The proof is done by proving set inclusions in two directions as done for Theorem 3 in [20]. First we

prove, R̃(D1, D2) ⊆ Rcascade(D1, D2). Suppose a pair (R̃0, R̃0 + R̃1) ∈ R̃(D1, D2). This implies there

exists a (2nR̃0 , 2nR̃1 , n) code (cf. Definition 2), for the setting of successive refinement with cribbing (Fig.

4), such that distortion constraints D1 + ε and D2 + ε are met at the decoders. We can use this code to

generate a code of rates R1 = R̃0+ R̃1 and R12 = R̃0, for our cascade setting with cribbing (Fig. 5), with

exactly same distortions at the decoders. This proves one direction.

For the other direction, i.e., Rcascade(D1, D2) ⊆ R̃(D1, D2), assume, (R12, R1) ∈ Rcascade(D1, D2),
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which means there exist codes with rates (R12, R1) with decoders incurring distortions, D1+ε and D2+ε.

Assume the messages sent on first and second link in our cascade problem be T1 and T12 respectively.

T12 is a function of T1, and we have

nR12 ≥ H(T12) (128)

nR1 ≥ H(T1) = H(T1, T12) = H(T12) +H(T1|T12). (129)

Using this code, we now will construct a code for successive refinement setting with cribbing decoders.

Specifically, we consider encoding in B blocks where each block is of length n. Denote by T12(i) and

T1(i) the messages which are transmitted in the cascade source coding setting in ith block. Note that the

tuple {T12(1), · · · , T12(B)} can be communicated to both decoders in the successive refinement setting

with vanishing probability of error, with a rate R0 =
1
nH(T12), with large number of blocks, and similarly

the tuple (T1(1), · · · , T1(B)) can be communicated to Decoder 1 with rate (using Slepian Wolf Coding as

(T12(i), T1(i)) are independent) R1 =
1
nH(T1|T12). Thus Decoder 1 and Decoder 2 will know exactly the

same (T12, T1) and T12 respectively as they would know in cascade setting. Since the cribbing structure

(Decoder 2 gets the crib from Decoder 1 non-causally, strictly-causally and causally) is same in cascade

source coding and successive refinement setting, decoders will be able to achieve same distortion levels,

(D1, D2). This implies, ( 1nH(T12),
1
nH(T1|T12)) ∈ R(D1, D2) or ( 1nH(T12),

1
nH(T1)) ∈ R̃(D1, D2),

which implies by Eq. (128)-(129), that (R0, R1) ∈ R̃(D1, D2).

APPENDIX C

PROOF OF ACHIEVABILITY IN THEOREM 2

We describe in detail the achievablility in Theorem 2.

• Codebook Generation : Fix the distribution PXPẐ1,X̂2|XPX̂1|X,Ẑ1,X̂2
, ε > 0 such that E[d1(X, X̂1)] ≤

D1

1+ε and E[d2(X, X̂2)] ≤ D2

1+ε . Generate codebook CX̂2
consisting of 2nI(X;X̂2) X̂n

2 (mh) codewords

generated i.i.d ∼ PX̂2
, mh ∈ [1 : 2nI(X;X̂2)]. For each mh, generate a codebook CẐ1

(mh) consisting

of 2nI(X;Ẑ1|X̂2) Ẑn1 codewords generated i.i.d. ∼ PẐ1|X̂2
. We then bin these generated Ẑn1 codewords

for each mh, in 2nR0 vertical bins, B(mv), mv ∈ [1 : 2nR0 ] and index them accordingly with

l ∈ [1 : 2n(I(X;Ẑ1|X̂2)−R0)]. Ẑn1 codewords can be indexed equivalently as the tuple (mh,mv, l). For



46

each Ẑn1 (mh,mv, l) codeword, generate a codebook, CX̂1
(mh,mv, l) consisting of 2nI(X;X̂1|Ẑ1,X̂2)

X̂n
1 (mh,mv, l, k) codewords generated i.i.d. ∼ PX̂1|Ẑ1,X̂2

, k ∈ [1 : 2nI(X;X̂1|Ẑ1,X̂2)]. Thus the

generation of codebooks is similar to that in perfect cribbing, except here we generate one more

layer, of Ẑ1 codewords. Also we bin Ẑn1 codewords instead of X̂n
1 . Here, mh and mv correspond to

the row and column index of the “doubly-indexed” bin which contains Ẑn1 codeword and for each Ẑn1

codeword, a codebook of X̂n
1 codebook is generated.

• Encoding : Given source sequence Xn, encoder finds the index mh ∈ [1 : 2nI(X;X̂2)] from codebook

CX̂2
such that (Xn, X̂n

2 (mh)) ∈ T nε . The encoder then finds the index tuple (mv, l) from the CẐ1
(mh)

codebook, such that (Xn, Ẑn1 (mh,mv, l), X̂
n
2 (mh)) ∈ T nε . Encoder then finds the index k from the

CX̂1
(mh,mv, l) codebook, such that (Xn, X̂n

1 (mh,mv, l, k), Ẑ
n
1 (mh,mv, l), X̂

n
2 (mh)) ∈ T nε . Thus

Ẑn1 ∈ B(mv). mv is described as R0 and the index triple, (mh, l, k) is described as R1, thus

R1 ≥ I(X; X̂2) + I(X; Ẑ1|X̂2)−R0 + I(X; X̂1|Ẑ1, X̂2)

or, R0 +R1 ≥ I(X; Ẑ1, X̂1, X̂2) = I(X; X̂1, X̂2), (130)

as Ẑ1 = g(X̂1).

• Decoding : Using the indices sent by encoder, Decoder 1 constructs X̂n
1 = X̂n

1 (mh,mv, l, k). Decoder

2 gets Ẑn1 and column index mv, and infers the unique index mh such that Ẑn1 = Ẑn1 (mh,mv, l̃) for

some l̃ ∈ [1 : 2n(I(X;Ẑ1|X̂2)−R0)].

• Distortion Analysis : Consider the following events :

–

E0 = Encoder cannot find (X̂n
2 , Ẑ

n
1 , X̂

n
1 ) jointly typical with given source Xn (131)

But the probability of this event vanishes by Covering Lemma, Lemma 3 as there are 2nI(X;X̂2)

X̂n
2 codewords, for each X̂n

2 codeword there are 2nI(X;Ẑ1|X̂2) Ẑn1 codewords and finally for each

Ẑn1 codeword there are 2nI(X;X̂1|Ẑ1,X̂2) X̂n
1 codewords . Without loss of generality, now suppose

that (mh,mv, l, k) = (1, 1, 1, 1) was sent by the encoder.



47

–

E1 = Ẑn1 does not lie in bin with row index mh = 1 and column index mv = 1 (132)

=

{
Ẑn1 6= Ẑn1 (1, 1, l̃), for any l̃ ∈ [1 : 2n(I(X;Ẑ1|X̂2)−R0)]

}
. (133)

But the probability of this event goes to zero, because of our encoding procedure, as Ẑn1 =

Ẑn1 (1, 1, 1).

–

E2 = Ẑn1 lies in bin with row index m̂h 6= 1 and column index mv = 1. (134)

=

{
Ẑn1 = Ẑn1 (m̂h, 1, l̃), m̂h 6= 1, for some l̃ ∈ [1 : 2n(I(X;Ẑ1|X̂2)−R0)]

}
.

(135)

Using similar argument as in the case of perfect cribbing, probability of this event goes to zero

with large n, if

I(X; X̂1, X̂2)−R0 ≤ I(Ẑ1; Ẑ1, X̂2) = H(Ẑ1). (136)

Thus consider the event, E = E0 ∪ E1 ∪ E2, using Eq. (130) and Eq. (136), probability of this event

goes to zero with large n if,

R0 +R1 ≥ I(X; X̂1, X̂2) (137)

R0 ≥ {I(X; Ẑ1, X̂2)−H(Ẑ1)}+. (138)

Distortion is bounded as in other sections.

APPENDIX D

PROOF OF THEOREM 7, MAC WITH CRIBBING ENCODERS AND COMMON MESSAGE

Proof of achievability of Theorem 7, noncausal case: The main idea of the achievability proof is to

split message m1 into two parts m′1 and m′′1 with rates R′1 and R′′1 respectively, such that R1 = R′1 +R′′1 .

Message m′1 is transmitted to Encoder 1 through the cribbing signal Zn1 , while m′′1 remains as a private

message to Encoder 1.
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Code design: For the given joint distribution P (x1, x2) generate 2nR
′
1 codewords zn1 distributed i.i.d.

according to P (z1). For each codeword zn1 generate 2nR0 codewords xn2 according to P (x2|z1). For each

codewords pair (zn1 , x
n
2 ) generate 2nR

′′
1 xn1 codewords according to P (x1|z1, x2).

Encoding and decoding:

• Encoder 1: maps (m′1,m
′′
1,m0) to (zn1 (m

′
1), x

n
2 (z

n
1 ,m0), x

n
1 (x

n
2 , z

n
1 ,m

′′
1)), and transmits

xn1 (x
n
2 , z

n
1 ,m

′′
1).

• Encoder 2: transmits xn2 (z
n
1 ,m0).

• Decoder: looks for (m̂0, m̂
′
1, m̂

′′
1) such that

(zn1 (m̂
′
1), x

n
2 (z

n
1 , m̂0), x

n
1 (x

n
2 , z

n
1 , m̂

′′
1), y

n) ∈ T (n)
ε . (139)

Error analysis: Without loss of generality let’s assume that the message that is sent is m0 = 1,m′1 = 1,

and m′′1 = 1.

• Let E0 be the event that (xn1 (1), x
n
2 (1), y

n) /∈ T (n)
ε . Clearly, Pr{E0} → 0 by the law of large numbers.

Hence, for the rest of the events we can assume that (xn1 (1), x
n
2 (1)) ∈ T

(n)
ε .

• Let E1,j be the event that zn1 (1) = zn1 (j). And let E1 be the event that there exists an j 6= 1 such

that zn1 (1) = zn1 (j). Following from the definition E1 = ∪j≥1E1,j . Let’s bound the probability of E1

using the union bound and the fact that Pr{Eb,j} ≤ 2−n(H(Z1)−ε).

Pr{E1} = Pr{∪j≥1E1,j} (140)

≤
∑
i≥2

Pr{E1,j} (141)

≤
∑
i≥2

2−n(H(Z1)−ε) (142)

= 2n(R
′
1−H(Z1)+ε), (143)

hence, if

R′1 < H(Z1), (144)

Pr{E1} → 0 as n→∞.
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• Let Ei,j,k be the event probability that for m̂′1 = i, m̂0 = j, and m̂′′1 = k

(zn1 (m̂
′
1), x

n
2 (z

n
1 , m̂0), x

n
1 (x

n
2 , z

n
1 , m̂

′′
1), y

n) ∈ T (n)
ε . (145)

Let E3 be the event that exists an (i, j, k) 6= (1, 1, 1) such that Ei,j,k occurs.

Pr{E3} ≤ Pr{
⋃

i≥2,j≥1,k≥1
Ei,j,k}+ Pr{

⋃
i=1,j≥2,k≥1

Ei,j,k}+ Pr{
⋃

i=1,j=1,k≥2
Ei,j,k}. (146)

Now let’s bound each term. Consider the first term in the RHS of (146)

Pr{
⋃

i≥2,j≥1,k≥1
Ei,j,k} ≤

2nR′
1 ,2nR0 ,2nR′′

1∑
i=2,j=1,k=1

2−n(I(Z1,X1,X2;Y )−ε)

≤ 2n(R0+R′
1+R

′′
1−I(Z1,X1,X2;Y )+ε), (147)

hence if

R0 +R1 < I(X1, X2;Y ), (148)

then the probability above goes to zero. Consider the second term in the RHS of (146)

Pr{
⋃

i=1,j≥2,k≥1
Ei,j,k} ≤

2nR0 ,2nR′′
1∑

j=2,k=1

2−n(I(X1,X2;Y |Z1)−ε)

≤ 2n(R0+R′′
1−I(X1,X2;Y |Z1)+ε), (149)

hence if

R0 +R′′1 < I(X1, X2;Y |Z1), (150)

then the probability above goes to zero.

Consider the third term in the RHS of (146)

Pr{
⋃

i=1,j=1,k≥2
Ei,j,k} ≤ 2n(R

′′
1−I(X1;Y |Z1,X2)+ε), (151)

hence if

R′′1 < I(X1;Y |Z1, X2), (152)

then the probability above goes to zero.
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Gathering (144), (148), (150) and (152) we obtain

R′1 < H(Z1) (153)

R0 +R1 < I(X1, X2;Y ) (154)

R0 +R′′1 < I(X1, X2;Y |Z1) (155)

R′′1 < I(X1;Y |Z1, X2). (156)

Using Fourier−Motzkin elimination [33] we obtain

R0 +R1 < I(X1, X2;Y ) (157)

R0 +R1 < I(X1, X2;Y |Z1) +H(Z1) (158)

R1 < I(X1;Y |Z1, X2) +H(Z1). (159)

Since I(X1, X2;Y ) ≤ I(X1, X2;Y |Z1) + H(Z1) the second inequality in (187) is redundant and

therefore the region

R0 +R1 < I(X1, X2;Y )

R1 < I(X1;Y |Z1, X2) +H(Z1). (160)

is achievable.

Proof of converse for the non causal case: Let (2nR0 , 2nR1 , n) be a non causal cribbing MAC code as

defined in Def. 4 with a probability of error P (n)
e . Consider,

R0 +R1 = H(M0,M1) (161)

= I(M0,M1;Y
n) +H(M0,M1|Y n) (162)

(a)

≤ I(Xn
1 , X

n
2 ;Y

n) + nεn (163)
(b)

≤
n∑
i=1

I(X1,i, X2,i;Yi) + nεn (164)

(c)

≤ nI(X1,Q, X2,Q;YQ|Q) + nεn (165)

≤ nI(X1,Q, X2,Q;YQ) + nεn, (166)
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where (a) follows from Fano’s inequality where εn = ( 1n + R0 + R1)P
(n)
e , step (b) follows from the

memoryless nature of the MAC and (c) follows from denoting Q as uniform random variable over the

alphabet {1, 2, ..., n}. Now consider

R1 = H(M1) (167)

= H(M1|M0) (168)
(a)

≤ I(M1;Y
n|M0) + nεn (169)

≤ I(Xn
1 , Z

n
1 ;Y

n|Xn
2 ) + nεn (170)

= I(Zn1 ;Y
n|Xn

2 ) + I(Xn
1 ;Y

n|Xn
2 , Z

n
1 ) + nεn (171)

(b)

≤
n∑
i=1

H(Z1,i) + I(X1,i;Yi|X2,i, Z1,i) + nεn (172)

(c)

≤
n∑
i=1

H(Z1,Q|Q) + I(X1,Q;YQ|X2,Q, Z1,Q, Q) + nεn (173)

≤
n∑
i=1

H(Z1,Q) + I(X1,Q;YQ|X2,Q, Z1,Q) + nεn, (174)

where the justification for (a), (b) and (c) follows from similar arguments as steps (a), (b) and (c) for

bounding R0 + R1. Since the rate pair is achievable, the code type is arbitrary close to the restricted

distribution P (x1, x2) and using Lemma 5 we conclude that the distribution of X1,Q, X2,Q is arbitrary

close to the restricted distribution P (x1, x2). Finally, by denoting Z1 = ZQ, X1 = X1,Q, X2 = X2,Q and

Y = YQ and taking into account that P (n)
e is going to zero as n→∞ we obtain that the region Rnc(P )

upper bound the capacity region.

Proof of achievability of Theorem 7, strictly causal case: The main idea of the achievability proof is

to combine the rate splitting idea that we used in the noncausal case with the Markov block coding. We

assume that the transmission is done in a block of size nB where B is the number of subblocks and each

subblock is of length n. Let m0,b,m1,b be the messages sent in block b. Similarly to the noncausal case,

split message m1,b into two parts m′1,b and m′′1,b with rates R′1 and R′′1 respectively, such that R1 = R′1+R
′′
1 .

Message m′1,b is transmitted to Encoder 1 through the cribbing signal, while m′′1,b remains as a private

message to Encoder 1. Because of the causality, the the message m′1,b is known to Encoder 2 only at the

end of block b.
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Code design: For fixed a joint distribution P (x1, x2) generate 2n(R0+R′
1) codewords xn2 each associated

with the pair of messages (m0,b,m
′
1,b−1). For each codeword xn2 generate 2nR

′
1 codewords zn1 according

to conditional distribution P (z1|x2) associated with m′1,b. For each codeword pair (zn1 , x
n
2 ) generate 2nR

′′
1

codewords xn1 according to conditional distribution P (x1|z1, x2) associated with m′′1,b.

Encoding and decoding:

• Encoder 1: In block b maps (m′1,b−1,m
′
1,b,m

′′
1,b,m0,b) to (xn2 (m0,b,m

′
1,b−1), z

n
1 (m

′
1,b, x

n
2 ), x

n
1 (m

′′
1,b, x

n
2 , z

n
1 )),

and transmits xn1 (m
′′
1,b, x

n
2 , z

n
1 )).

• Encoder 2: Transmits xn2 (m0,b,m
′
1,b−1). Message m′1,b−1 is known to Encoder 2 since at the end of

block b− 1, zn1 (m
′
1,b−1, x

n
2 ) and xn2 are known.

• Decoder: Does backward decoding. We assume that when decoding block b message m′1,b is known

and it looks for tuple (m̂0,b, m̂
′
1,b−1, m̂

′′
1,b) such that

(xn2 (m̂0,b, m̂
′
1,b−1), z

n
1 (m

′
1,b, x

n
2 ), x

n
1 (m̂

′′
1,b, x

n
2 , z

n
1 ), y

n) ∈ T (n)
ε . (175)

Error analysis: Without loss of generality let’s assume that the message that is sent is m0,b = 1,m′1,b =

1,m′1,b−1 = 1, and m′′1,b = 1.

• Let E0 be the event that (xn1 (1), x
n
2 (1)) /∈ T

(n)
ε . Clearly, Pr{E0} → 0 by the law of large numbers.

Hence, for the rest of the events we can assume that (xn1 (1), x
n
2 (1)) ∈ T

(n)
ε .

• Let E1 be the event that in block b − 1 there exists an j 6= 1, such that zn1 (1) = zn1 (j) for some

codeword xn2 . Similar to the analysis for the noncausal case

Pr{E1} = 2n(R
′
1−H(Z1|X2)+ε), (176)

hence, if

R′1 < H(Z1|X2), (177)

Pr{E1} → 0 as n→∞.

• Let Ei,j,k be the event probability that for m̂′1,b−1 = i, m̂0,b = j, and m̂′′1,b = k, given that m′1,b is
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known correctly from pervious subblock decoding:

(xn2 (m̂0,b, m̂
′
1,b−1), z

n
1 (m

′
1,b, x

n
2 ), x

n
1 (m̂

′′
1,b, x

n
2 , z

n
1 ), y

n) ∈ T (n)
ε . (178)

Let E3 be the event that exists an (i, j, k) 6= (1, 1, 1) such that Ei,j,k occurs.

Pr{E3} ≤ Pr{
⋃

(i,j) 6=(1,1),k≥1

Ei,j,k}+ Pr{
⋃

(i,j)=(1,1),k≥2

Ei,j,k}. (179)

Now let’s bound each term. Consider the first term in the RHS of (179)

Pr{
⋃

(i,j) 6=(1,1),k≥1

Ei,j,k} ≤ 2n(R0+R1−I(Z1,X1,X2;Y )+ε), (180)

hence if

R0 +R1 < I(X1, X2;Y ) (181)

then the probability above goes to zero. Consider the second term in the RHS of (179)

Pr{
⋃

(i,j)=(1,1),k≥2

Ei,j,k} ≤ 2n(R
′′
1−I(X1;Y |Z1,X2)+ε), (182)

hence if

R′′1 < I(X1;Y |Z1, X2), (183)

then the probability above goes to zero.

Gathering (177), (181), and (183) we obtain

R′1 < H(Z1|X2) (184)

R0 +R1 < I(X1, X2;Y ) (185)

R′′1 < I(X1;Y |Z1, X2). (186)

Using Fourier−Motzkin elimination

R0 +R1 < I(X1, X2;Y ) (187)

R1 < I(X1;Y |Z1, X2) +H(Z1|X2). (188)
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is achievable.

Proof of converse for the strictly causal case: Let (2nR1 , 2nR0 , n) be a strictly causal cribbing MAC code

as defined in Def. 4 with a probability of error P (n)
e . Following the exact same steps as in the converse of

the noncausal case in (189) we obtain

R0 +R1 ≤ nI(X1,Q, X2,Q;YQ) + nεn. (189)

Following the exact same first four steps as in converse of the non causal case to bound R1, (167) we

obtain

R1 ≤ I(Zn1 ;Y
n|Xn

2 ) + I(Xn
1 ;Y

n|Xn
2 , Z

n
1 ) + nεn (190)

≤
n∑
i=1

H(Z1,i|X2,i) + I(X1,i;Yi|X2,i, Z1,i) + nεn (191)

≤
n∑
i=1

H(Z1,Q|X2,Q) + I(X1,Q;YQ|X2,Q, Z1,Q) + nεn, (192)

Since the rate pair is achievable, the code type is arbitrary close to the restricted distribution P (x1, x2)

and using Lemma 5 we conclude that the distribution of X1,Q, X2,Q is arbitrary close to the restricted

distribution P (x1, x2). Finally, by denoting Z1 = ZQ, X1 = X1,Q, X2 = X2,Q and Y = YQ and taking

into account that P (n)
e is going to zero as n → ∞ we obtain that the region Rnc(P ) upper bound the

capacity region.

Proof of achievability of Theorem 7, causal case: In this proof we show how the causal case achievability

follows directly from the proof of the strictly causal case with one modification: instead of codewords xn2

we generate codewords un, and the input to the channel is x2,i = f(ui, x1,i). This is possible since Encoder

2 observes causally the signal from Encoder 1. By replacing X2 with U in Rsc(P ) and applying x2,i =

f(ui, z1,i) and taking into account the equality I(Y ;X1, U) = I((Y ;X1, U, f(Z1, U)) = I(Y ;X1, X2) we

obtain the region Rc(P ) .

Proof of converse for the causal case: Let (2nR0 , 2nR1 , n) be a partial strictly causal cribbing MAC code

as defined in Def. 4 with a probability of error P (n)
e . Following the exact same steps as in the converse of

the noncausal case in (189) we obtain

R0 +R1 ≤ nI(X1,Q, X2,Q;YQ) + nεn, (193)
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Now consider

R1 = H(M1) (194)

= H(M1|M0) (195)
(a)

≤ I(M1;Y
n|M0) + nεn (196)

≤ I(Xn
1 , Z

n
1 ;Y

n|M0) + nεn (197)

= I(Zn1 ;Y
n|M0) + I(Xn

1 ;Y
n|M0, Z

n
1 ) + nεn (198)

(b)

≤
n∑
i=1

I(Z1,i;Y
n|M0, Z

i−1) + I(X1,i;Yi|X2,i,M0, Z
n
1 , X

i−1) + nεn (199)

(c)

≤
n∑
i=1

H(Z1,i|M0, Z
i−1) + I(X1,i;Yi|X2,i,M0, Z

i−1
1 ) + nεn (200)

≤
n∑
i=1

H(Z1,Q|UQ) + I(X1,Q;YQ|X2,Q, UQ) + nεn, (201)

where (a) follows from Fano’s inequality where εn = ( 1n +R1)P
(n)
e , step (b) follows from the memoryless

of the MAC and (c) follows from denoting Ui , (M0, Z
i−1
1 ) and Q as uniform random variable over the

alphabet {1, 2, ..., n}. Note that indeed X2,i = f(M0, Z
i−1
1 , X1,i) and therefore X2,Q = f(UQ, X2,Q). Rest

of the steps for the completion of proof follow similar arguments as in non causal and strictly causal case.
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