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Abstract

We consider the problem of universal decoding for arbitrary unknown channels in the random
coding regime. For a given random coding distribution and a given class of metric decoders, we
propose a generic universal decoder whose average error probability is, within a sub–exponential
multiplicative factor, no larger than that of the best decoder within this class of decoders. Since
the optimum, maximum likelihood (ML) decoder of the underlying channel is not necessarily
assumed to belong to the given class of decoders, this setting suggests a common generalized
framework for: (i) mismatched decoding, (ii) universal decoding for a given family of channels,
and (iii) universal coding and decoding for deterministic channels using the individual–sequence
approach. The proof of our universality result is fairly simple, and it is demonstrated how some
earlier results on universal decoding are obtained as special cases. We also demonstrate how
our method extends to more complicated scenarios, like incorporation of noiseless feedback, and
the multiple access channel.

Index Terms: Universal decoding, mismatched decoding, error exponents, finite–state machines,

Lempel–Ziv algorithm, feedback, multiple access channel.
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1 Introduction

In many situations practically encountered in coded communication systems, channel uncertainty

and variability preclude the implementation of the optimum maximum likelihood (ML) decoder,

and so, universal decoders, independent of the unknown channel, are sought.

The topic of universal coding and decoding under channel uncertainty has received very much

attention in the last four decades. In [7], Goppa offered the maximum mutual information (MMI)

decoder, which decides in favor of the codeword having the maximum empirical mutual information

with the channel output sequence. Goppa showed that for discrete memoryless channels (DMC’s),

MMI decoding achieves capacity. Csiszár and Körner [3] have also studied the problem of universal

decoding for DMC’s with finite input and output alphabets. They showed that the random coding

error exponent of the MMI decoder, associated with a uniform random coding distribution over a

certain type class, achieves the optimum random coding error exponent. Csiszár [2] proved that

for any modulo–additive DMC and the uniform random coding distribution over linear codes, the

optimum random coding error exponent is universally achieved by a decoder that minimizes the

empirical entropy of the difference between the output sequence and the input sequence. In [13] an

analogous result was derived for a certain parametric class of memoryless Gaussian channels with

an unknown interference signal.

In the realm of channels with memory, Ziv [21] explored the universal decoding problem for

unknown finite–state channels with finite input and output alphabets, for which the next channel

state is a deterministic unknown function (a.k.a. the next–state function) of the channel current

state and current inputs and outputs. For codes governed by uniform random coding over a given

set, he proved that a decoder based on the Lempel–Ziv algorithm asymptotically achieves the error

exponent associated with ML decoding. In [9], Lapidoth and Ziv proved that the latter decoder

continues to be universally asymptotically optimum in the random coding error exponent sense even

for a wider class of finite–state channels, namely, those with stochastic, rather than deterministic,

next–state functions. In [5], Feder and Lapidoth furnished sufficient conditions for families of

channels with memory to have universal decoders that asymptotically achieve the random coding

error exponent associated with ML decoding. In [6], Feder and Merhav proposed a competitive

minimax criterion, in an effort to develop a more general systematic approach to the problem of
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universal decoding. According to this approach, an optimum decoder is sought in the quest for

minimizing (over all decision rules) the maximum (over all channels in the family) ratio between the

error probability associated with a given channel and a given decision rule, and the error probability

of the ML decoder for that channel, possibly raised some power less than unity.

More recently, interesting attempts (see, e.g., [11], [12], [16], [18]) were made to devise coding

and decoding strategies that avoid any probabilistic assumptions concerning the operation of the

channel. This is in the spirit of the individual–sequence approach in information theory, that was

originally developed in universal source coding [22] and later on further exercised in other problem

areas. In [11], the notion of empirical rate functions has been established and investigated (with

and without feedback) for a given input distribution and for given posterior probability function

(or a family of such functions) of the channel input sequence given the output sequence. In [16],

capacity–achieving (or “porosity–achieving”, in the terminology of [16]) universal encoders and

decoders, namely, encoder–decoder pairs with coding rates as high as the best finite–state encoder

and decoder, were devised for modulo additive channels with deterministic noise sequences and

noiseless feedback. This feedback is necessary to let the encoder adapt to the channel, which

otherwise does not access the channel output and thus cannot learn (either implicitly or explicitly)

the characteristics of the channel.

In this paper, we take a somewhat different approach. We consider the problem of universal

decoding for arbitrary unknown channels in the random coding regime. For a given random coding

distribution and a given class of metric decoders, we propose a generic universal decoder whose

average error probability is, within a sub–exponential multiplicative factor, no larger than that

of the best decoder in this class of decoders. Since the optimum, ML decoder of the underlying

channel is not necessarily assumed to belong to the given class of decoders, this setting is suitable

as a common ground for:

1. Mismatched decoding (see, e.g., [4], [8], [15]) – when the reference class of decoders is a

singleton and the ML decoder for the underlying channel is different from the unique decoder

in this singleton.

2. Universal decoding for a given family of channels (as in papers cited in the second and third

paragraphs above) – when the ML decoder for the underlying channel belongs to the given
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class of decoders.

3. Universal coding and decoding for deterministic channels using the individual–sequence ap-

proach (as in [11], [12], [16], [18]) – when the underlying channel is deterministic and the

universality is relative to a given class of coding/decoding strategies.

The proof of our universality result is fairly simple and general, and it is demonstrated how some

earlier mentioned results on universal decoding are obtained as special cases. It is based on very

simple upper and lower bounds on the probabilities of the pairwise error events, as well as on a lower

bound due to Shulman [19, Lemma A.2] on the probability of the union of pairwise independent

events, which coincides with the union bound up to a factor of 1/2.

Finally, we demonstrate how our method extends to more complicated scenarios. The first

extension corresponds to random coding distributions that allow to incorporate noiseless feedback.

This extension is fairly straightforward, but its main importance is in allowing adaptation of the

random coding distribution to the channel statistical characteristics. The second extension is to the

problem of universal decoding for multiple access channels (MAC’s) with respect to a given class of

decoding metrics. This extension is not trivial since the universal decoding metric has to confront

three different types of error events (in the case of a MAC with two senders). In particular, it turns

out that the resulting universal decoding metric is surprisingly different from those of earlier works

on universal decoding for the MAC [10], [5, Section VIII], [17], mostly because the problem setting

here is different from those of these earlier works (in the sense that the universality here is relative

to a given class of decoders while the underlying channel is arbitrary, and not relative to a given

class of channels).

The outline of the paper is as follows. In Section 2, we establish notation conventions and

we formalize the problem setting. Section 3 contains our main result and its proof, as well as a

discussion and examples. Section 4 suggests guidelines for approximating the universal decoding

metric in situations where it is hard to compute, and thereby shows how Ziv’s decoding metric [21]

falls within our framework. Finally, in Section 5, we provide extensions to the case where feedback

is available and the case of the MAC.
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2 Notation Conventions and Problem Formulation

2.1 Notation Conventions

Throughout this paper, scalar random variables (RV’s) are denoted by capital letters, their sample

values are denoted by the respective lower case letters, and their alphabets are denoted by the

respective calligraphic letters. A similar convention applies to random vectors of dimension n and

their sample values, which will be denoted with same symbols in the bold face font. The set of

all n–vectors with components taking values in a certain alphabet, will be denoted as the same

alphabet superscripted by n. Sources and channels will be denoted generically by the letter P or Q.

For example, the channel input probability distribution function will be denoted by Q(x), x ∈ X n,

and the conditional probability distribution of the channel output vector y ∈ Yn given the input

vector x ∈ X n, will be denoted by P (y|x). Information theoretic quantities like entropies and

conditional entropies, will be denoted following the standard conventions of the information theory

literature, e.g., H(X), H(X |Y ), etc. The expectation operator will be denoted by E{·} and the

cardinality of a finite set A will be denoted by |A|.

For a given sequence x ∈ X n, X being a finite alphabet, P̂x denotes the empirical distribution

on X extracted from x, in other words, P̂x is the vector {P̂x(x), x ∈ X}, where P̂x(x) is the

relative frequency of the letter x in the vector x. The type class of x, denoted Tx, is the set

of all sequences x′ ∈ X n with P̂x′ = P̂x. Similarly, for a pair of sequences (x,y) ∈ X n × Yn,

the empirical distribution P̂xy is the matrix of relative frequencies {P̂xy(x, y), x ∈ X , y ∈ Y}

and the type class Txy is the set of pairs (x′,y′) ∈ X n × Yn with P̂x′y′ = P̂xy. For a given y,

Tx|y denotes the conditional type class of x given y, which is the set of vectors {x′} such that

(x′,y) ∈ Txy . Information measures induced by empirical distributions, i.e., empirical information

measures, will be denoted with a hat and a subscript that indicates the sequence(s) from which they

are induced. For example, Ĥx(X) is the empirical entropy extracted from x ∈ X n, namely, the

entropy of a random variable X whose distribution is P̂x. Similarly, Ĥxy(X|Y ) and Îxy(X;Y ) are,

respectively, the empirical conditional entropy of X given Y , and the empirical mutual information

between X and Y , extracted from (x,y), and so on.

For two sequences of positive numbers, {an} and {bn}, the notation an
·
= bn means that

1
n log an

bn
→ 0 as n → ∞. Similarly, an

·
≤ bn means that lim supn→∞

1
n log an

bn
≤ 0, and so on.
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The functions log(·) and exp(·), throughout this paper, will be defined to the base 2, unless other-

wise indicated. The operation [·]+ will mean positive clipping, that is [x]+ = max{0, x}.

2.2 Problem Formulation

Consider a random selection of a codebook C = {x1, . . . ,xM} ⊆ X n, where M = 2nR, R being

the coding rate in bits per channel use. The marginal probability distribution function of each

codeword xi is denoted by Q(xi). It will be assumed that the various codewords are pairwise

independent.1 Let P (y|x) be the conditional probability distribution of the channel output vector

y ∈ Yn given the channel input vector x ∈ X n. We make no assumptions at all concerning the

channel.2 We will assume, throughout most of this paper, that both the channel input alphabet X

and the channel output alphabet Y are finite sets. Finally, we define a class of decoding metrics, as

a class of real functions, M = {mθ(x,y), θ ∈ Θ, x ∈ X n, y ∈ Yn}, where Θ is an index set, which

may be either finite, countably infinite, or uncountably infinite.3 The decoder associated with the

decoding metric mθ, which will be denoted by Dθ, decides in favor of the message i ∈ {1, . . . ,M}

which maximizes mθ(xi,y) for the given received channel output vector y, that is

Dθ : î = argmax1≤i≤Mmθ(xi,y). (1)

The message i is assumed to be uniformly distributed in the set {1, 2, . . . ,M}. It should be empha-

sized that the optimum, ML decoding metric for the underlying channel P (y|x), may not necessarily

belong to the given class of decoding metrics M. In other words, this is a problem of universal

decoding with possible mismatch.

The average error probability P̄e,θ(R,n), associated with the decoder Dθ, is defined as

P̄e,θ(R,n)
∆
=

1

M

M
∑

i=1

Pr
⋃

j 6=i

{

mθ(Xj,Y ) ≥ mθ(Xi,Y )

∣

∣

∣

∣

X i sent

}

, (2)

where Pr{·} designates the probability measure pertaining to the randomness of the codebook C

as well as that of the channel output given its input.

1Full independence of all codewords is allowed, but not enforced. This permits our setting to include, among other
things, ensembles of linear codes, which are well known to admit pairwise independence, but not stronger notions of
independence.

2We even allow a deterministic channel, which puts all its probabilistic mass on one vector y which is given by a
deterministic function of x.

3For example, in the uncountably infinite case, θ may designate a parameter and {mθ(x,y), θ ∈ Θ} may be a
smooth parametric family.
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While the decoder Dθ, that minimizes P̄e,θ(R,n) within the class, depends, in general, on the

unknown underlying channel P (y|x), our goal is to devise a universal decoder U , with a decoding

metric U(x,y), independent of the underlying channel P (y|x), whose average error probability

would be essentially as small as minθ P̄e,θ(R,n), whatever the underlying channel may be. By

“essentially as small”, we mean that the average error probability associated with the universal

decoder,

P̄e,u(R,n)
∆
=

1

M

M
∑

i=1

Pr
⋃

j 6=i

{

U(Xj,Y ) ≥ U(Xi,Y )

∣

∣

∣

∣

Xi sent

}

, (3)

would not exceed minθ P̄e,θ(R,n) by more than a multiplicative factor that grows sub–exponentially

with n. This means that whenever minθ P̄e,θ(R,n) decays exponentially with n, then so does

P̄e,u(R,n), and at an exponential rate at least as fast. Another (essentially equivalent) legitimate

goal is that P̄e,u(R,n) would not be larger than minθ P̄e,θ(R+∆n, n), where ∆n → 0 as n → ∞. In

the next section, we shall see that both goals are met by a conceptually simple universal decoding

metric U(x,y), which depends solely on Q and on the reference class M of competing decoding

metrics.

3 Main Result

Consider the given random coding distribution Q and the given family of decoding metrics M =

{mθ(x,y) , θ ∈ Θ}, as defined earlier. Let us define

T (x|y)
∆
=

{

x′ : ∀θ ∈ Θ mθ(x
′,y) = mθ(x,y)

}

. (4)

Our universal decoding metric is defined as

U(x,y)
∆
= −

1

n
logQ[T (x|y)]. (5)

Note that when X is a discrete alphabet, {T (x|y)} are equivalence classes for every y ∈ Yn, and

so the space X n can be partitioned into a disjoint union of them. Let Kn(y) denote the number of

equivalence classes {T (x|y)} for a given y. Also define

Kn
∆
= max

y∈Yn
Kn(y) (6)

and

∆n
∆
=

logKn

n
. (7)
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Our main result is the following theorem:

Theorem 1 Under the assumptions of Section 2, the universal decoding metric defined in eq. (5)

satisfies:

P̄e,u(R,n) ≤ 2 · 2n∆n ·min
θ∈Θ

P̄e,θ(R,n) (8)

and

P̄e,u(R,n) ≤ 2 ·min
θ∈Θ

P̄e,θ(R+∆n, n). (9)

Discussion. The theorem is, of course, meaningful when ∆n → 0 as n → ∞, which means that

the number of various equivalence classes {T (x|y)} grows sub-exponentially as a function of n,

uniformly in y. As mentioned earlier, in this case, whenever minθ∈Θ P̄e,θ(R,n) decays exponentially

with n, then P̄e,u(R,n) decays exponentially as well, and at least as fast. Consequently, the

maximum information rate pertaining to the universal decoder is at least as large as that of the best

decoder Dθ in the given class. We therefore learn from Theorem 1 that a sufficient condition for

the existence of a universal decoder is limn→∞∆n = 0. Whether this is also a necessary condition,

remains an open question at this point. Necessary and sufficient conditions for universality in the

ordinary setting have been furnished in [5] and [6].

Intuitively, the behavior of ∆n for large n is a measure of the richness of the class of decoding

metrics. The larger is the index set Θ, the smaller are the equivalence classes {T (x|y)}, and then

their total number Kn(y) becomes larger, and so does ∆n. Universality is enabled, using this

method, as long as the set Θ is not too rich, so that ∆n still vanishes as n grows without bound.

When Q is invariant within T (x|y) (i.e., x′ ∈ T (x|y) implies Q(x′) = Q(x)), we have

U(x,y) = −
1

n
logQ[T (x|y)]

= −
1

n
log[Q(x) · |T (x|y)|]

= −
1

n
[logQ(x) + log |T (x|y)|]. (10)

The choice of a distribution Q that is invariant within T (x|y) is convenient, because in most cases

it is easier to evaluate the log–cardinality of T (x|y) (or its log–volume, in the continuous case)

than to evaluate its probability under a general probability measure Q.

8



Before we turn to the proof of Theorem 1, it would be instructive to consider two simple

examples. In both of them (as well as in other examples in the sequel) Q is invariant within

T (x|y).

Example 1. Let Q be the uniform distribution across a single type class, Tx, and let M be the

class of additive decoding metrics

mθ(x,y) =
n
∑

i=1

θ(xi, yi), (11)

where {θ(x, y), x ∈ X , y ∈ Y} are arbitrary real–valued matrices. In this case, T (x|y) = Tx|y,

the conditional type class of x given y. Since the number of distinct conditional type classes is

polynomial in n, then ∆n is proportional to (log n)/n. In this case, we have

U(x,y) = −
1

n
logQ[Tx|y] (12)

= −
1

n
log[Q(x) · |Tx|y|] (13)

= Ĥx(X)− Ĥxy(X|Y ) + o(n) (14)

= Îxy(X;Y ) + o(n). (15)

and so, the proposed universal decoder essentially4 coincides with the MMI decoder. However,

since C is a constant composition code, under this particular choice of Q, Ĥxi
(X) is the same for

all i, and so, this decoder is equivalent to the decoder that selects the codeword that minimizes the

empirical conditional entropy of X given Y , namely, mini Ĥxiy(X|Y ). If, on the other hand, Q is

an i.i.d. probability distribution function, namely, Q(x) =
∏n

i=1Q(xi), then the universal decoding

metric becomes

U(x,y) = Îxy(X;Y ) +D(P̂x‖Q) + o(n), (16)

where D(P̂x‖Q) is the Kullback–Leibler divergence between P̂x and Q.

For certain classes of channels (e.g., arbitrarily varying channels), it is not difficult to derive

single–letter formulas for the maximum achievable information rates in the random coding regime,

that is, the supremum of R such that P̄e,u(R,n) → 0 as n → ∞. The main tool for this purpose is

the method of types. This concludes Example 1. ✷

4The o(n) term can be omitted with affecting the asymptotic performance.
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Example 2. Let X = Y = IR and let

Q(x) =
e−

∑

n

i=1
x2
i
/(2σ2)

(2πσ2)n/2
. (17)

Let θ = (θ1, θ2) ∈ IR2 and M be the class of decoding metrics of the form5

mθ(x,y) = θ1

n
∑

i=1

xiyi + θ2

n
∑

i=1

x2i . (18)

In principle, T (x|y) is the set of all {x′} with the same empirical power and the same empir-

ical correlation with y, as those of x. However, since in this example the sequences x and y

have continuous–valued components, some tolerance must be allowed in the empirical correlation

C(x,y) = 1
n

∑n
i=1 xiyi and empirical power, S(x) = 1

n

∑n
i=1 x

2
i , for T (x|y) to have positive proba-

bility (and positive volume), and so, T (x|y) should be redefined as the set of sequences x′, where

C(x′,y) and S(x′) are within ǫ (ǫ > 0, but small) close to C(x,y) and S(x), respectively. Using the

methods developed in [13],6 it is not difficult to show that, after omitting some additive constants

(which do not affect the decision rule), we have in this case

U(x,y) =
S(x)

2σ2
−

1

2
ln[S(x)(1 − ρ2xy)], (19)

where ρxy = C(x,y)/
√

S(x)S(y) is the empirical correlation coefficient between x and y, and

where we have used natural logarithms instead of base 2 logarithms for obvious reasons. The first

term stems from − 1
n lnQ(x) and the second term comes from the negative log–volume of T (x|y).

This concludes Example 2. ✷

Proof of Theorem 1. The pairwise average error probability, associated with mθ is lower bounded

by

Π̄e,θ(x,y)
∆
=

∑

{x′: mθ(x′,y)≥mθ(x,y)}

Q(x′) (20)

≥
∑

x′∈T (x|y)

Q(x′) (21)

= Q[T (x|y)] (22)

= exp[−nU(x,y)]. (23)

5This class of decoders is clearly motivated by the family of channels yt = axt + zt, where a is an unknown
parameter and zt is an i.i.d. Gaussian process, independent of xt.

6The details are conceptually simple but technically tedious. The interested reader is referred to [13] for a rigorous
treatment.
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On the other hand, the pairwise error probability associated with the decoding metric U is upper

bounded by

Π̄e,u(x,y)
∆
=

∑

{x′: U(x′,y)≥U(x,y)}

Q(x′) (24)

=
∑

{T (x′|y): U(x′,y)≥U(x,y)}

∑

x̃∈T (x′|y)

Q(x̃) (25)

=
∑

{T (x′|y): U(x′,y)≥U(x,y)}

Q[T (x′|y)] (26)

=
∑

{T (x′|y): U(x′,y)≥U(x,y)}

exp[−nU(x′,y)] (27)

≤
∑

{T (x′|y): U(x′,y)≥U(x,y)}

exp[−nU(x,y)] (28)

≤
∑

{T (x′|y)}

exp[−nU(x,y)] (29)

≤ 2n∆n exp[−nU(x,y)] (30)

= exp{−n[U(x,y)−∆n]}, (31)

where in the second equality we have used the fact that U(x,y) depends on x and y only via

T (x|y) and the last inequality follows from the fact that the number of different equivalence

classes {T (x′|y)} is upper bounded by Kn = 2n∆n by definition. Now, as is well known, given x

and y, the average probability of error can be upper bounded in terms of the average pairwise error

probability by the expectation of the union bound, clipped to unity, that is

P̄e,u(R,n) ≤ E
[

min
{

1, 2nRΠ̄e,u(X,Y )
}]

≤ E
[

min
{

1, 2nR exp(−n[U(X ,Y )−∆n])
}]

, (32)

where the expectation is w.r.t. the randomness of X and Y , whose joint distribution is given by

Q(x)P (y|x).

Next, we need a lower bound on P̄e,θ(R,n) in terms of Πe,θ(x,y). To this end, we invoke the

following lower bound on the probability of the union of pairwise independent events A1, . . . ,AM ,

proved by Shulman [19, p. 109, Lemma A.2]7

Pr

{

M
⋃

i=1

Ai

}

≥
1

2
·min

{

1,
M
∑

i=1

Pr(Ai)

}

. (33)

7A similar result was proved independently in [20, Lemma 1] for fully independent events with equal probabilities.
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In our case, for a given xi = x and y, the events {mθ(Xj,y) ≥ mθ(x,y)}j 6=i are pairwise inde-

pendent since we have assumed that the various codewords are pairwise independent. Thus, after

taking the expectation w.r.t. the joint distribution of (X ,Y ), we have

P̄e,θ(R,n) ≥
1

2
·E

[

min
{

1, 2nRΠ̄e,θ(X,Y )
}]

≥
1

2
·E

[

min
{

1, 2nR exp(−nU(X,Y )
}]

. (34)

Comparing now the right–most side of eq. (32) with that of eq. (34), we readily see that P̄e,u(R,n)

is upper bounded both by 2P̄e,θ(R + ∆n, n) and by 2 · 2n∆nP̄e,θ(R,n). The first upper bound is

obtained by combining ∆n and R in (32) and the second upper bound is obtained similarly, by

upper bounding the unity term (in min{1, 2n[R+∆n]Π̄e,θ(X,Y )}) by 2n∆n , which then becomes a

constant multiplicative factor of the upper bound. Since both inequalities hold for every θ, whereas

P̄e,u(R,n) is independent of θ, we have actually proved the inequalities

P̄e,u(R,n) ≤ 2 ·min
θ∈Θ

P̄e,θ(R +∆n, n) (35)

and

P̄e,u(R,n) ≤ 2 · 2n∆n ·min
θ∈Θ

P̄e,θ(R,n). (36)

This completes the proof of Theorem 1. ✷

One of the elegant points in [21] is that the universality of the proposed decoding metric, in the

random coding error exponent sense, is proved using a comparative analysis, without recourse to an

explicit derivation of the random coding error exponent of the optimum decoder. The above proof

of Theorem 1 has the same feature. However, thanks to Shulman’s lower bound on the probability

of a union of events, the proof here is both simpler and more general than in [21], in several

respects: (i) it allows a general random coding distribution Q, not just the uniform distribution,

(ii) it requires only pairwise independence and not full independence between the codewords, and

(iii) it assumes nothing concerning the underlying channel. Indeed, it will be seen shortly How

Ziv’s universal decoding metric is obtained as a special case of our approach.

We summarize a few important points:

1. We have defined a fairly general framework for universal decoding, allowing a general random

coding distribution Q, a general channel, and a a general family of decoding metrics {mθ, θ ∈

Θ}. Most of the previous works in universal decoding, mentioned in the second and the third

12



paragraphs of the Introduction, relate to the special case where the ML decoder for the given

channel is equivalent to mθ for a certain choice of θ.

2. Another special case that falls within our framework is mismatched decoding: In this case, Θ

is a singleton and the unique decoding metric mθ in this singleton is different from the ML

decoding metric of the actual channel.

3. Yet another special case is the case where the channel is deterministic. This is partially

related to the “individual channel” paradigm due to Lomnitz and Feder (see, e.g., [11], [12]

among many other papers), Misra and Weissman [16], and Shayevitz and Feder [18]. The

main difference is that here, we are not concerned with universality of the encoder, as we

simply assume a fixed random coding distribution. In the absence of feedback, there is no

hope for universal encoding.

4 Useful Approximations of the Universal Decoding Metric

In some situations, it may not be a trivial task to evaluate Q[T (x|y)], which is needed in order

to implement the proposed universal decoding metric. Suppose, however, that one can uniformly

lower bound Q[T (x|y)] = exp{−nU(x,y)} by exp{−nU ′(x,y)}, for some function U ′(x,y) which

is computable and suppose that U ′(·, ·) is not too large in the sense that it satisfies the following

condition:

max
y∈Yn

∑

x∈Xn

Q(x)2nU
′(x,y) ≤ 2n∆

′

n (37)

where ∆′
n → 0. We argue that in such a case, U ′(·, ·) can replace U(·, ·) as a universal decoding

metric and Theorem 1 remains valid.

To see why this is true, first observe that Π̄e,θ(x,y) is trivially lower bounded by exp{−nU ′(x,y)},

following (34) and the very definition of U ′(x,y) as an upper bound on U(x,y). As for the upper

bound, we have

Π̄e,u′(x,y)
∆
=

∑

{x′: U ′(x′,y)≥U ′(x,y)}

Q(x′) (38)

= exp[−nU ′(x,y)] ·
∑

{x′: U ′(x′,y)≥U ′(x,y)}

Q(x′) exp[nU ′(x,y)] (39)
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≤ exp[−nU ′(x,y)] ·
∑

{x′: U ′(x′,y)≥U ′(x,y)}

Q(x′) exp[nU ′(x′,y)] (40)

≤ exp[−nU ′(x,y)] ·
∑

x′∈Xn

Q(x′) exp[nU ′(x′,y)] (41)

≤ exp{−n[U ′(x,y)−∆′
n]}. (42)

Now, the corresponding upper bounds on P̄e,u′(R,n), in terms of minθ Pe,θ(R,n), are derived as

before, just with U replaced by U ′. The price of passing from U to U ′ might be in a slowdown

of the convergence of ∆′
n vs. ∆n. For example, U ′ might correspond to more refined equivalence

classes {T (x|y)}.

As an example of the usefulness of this result, let us refer to Ziv’s universal decoding metric for

finite–state channels [21]. In particular, let M be the class of decoding metrics corresponding to

finite–state channels, defined as follows: For a given x ∈ X n and y ∈ Yn, let s = (s1, . . . , sn) ∈ Sn

(S being a finite set), be a sequence generated recursively according to

si+1 = g(xi, yi, si), i = 1, . . . , n − 1, (43)

where s1 is some fixed initial state and g : X × Y × S → S is a certain next–state function. Now

define

mθ(x,y) =
n
∑

i=1

θ(xi, yi, si), (44)

where {θ(x, y, s), x ∈ X , y ∈ Y, s ∈ S} are arbitrary real valued parameters. Similarly as in

[21], suppose that Q(x) is the uniform distribution over X n. Then Q[T (x|y)] is proportional to

|T (x|y)|, but the problem is that here, unlike in Example 1, there is no apparent single–letter

expression8 for the exponential growth rate of |T (x|y)| in general (unless the state variable in eq.

(43) depends solely on the previous state and the previous channel output). Moreover, |T (x|y)|

depends on the next–state function g in eq. (43), which is assumed unknown. Fortunately enough,

however, |T (x|y)|, in this case, can be lower bounded [21, Lemma 1] by

|T (x|y)| ≥ 2LZ(x|y)−no(n), (45)

where LZ(x|y) denotes the length (in bits) of the conditional Lempel–Ziv code (see [21, proof of

Lemma 2], [14]) of x when y is given as side information at both encoder and decoder. Consequently,

8In a nutshell, had there been such a single–letter expression, one could have easily derived a single–letter expression
for the entropy rate of a hidden Markov process [1, Section 4.5] using the method of types.
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one can upper bound U(x,y) by

U ′(x,y) = log |X | −
LZ(x|y)

n
+ o(n) (46)

as our decoding metric. Indeed, eq. (37) is satisfied by this choice of U ′ since

∑

x
Q(x)2nU

′(x,y) =
∑

x

2nU
′(x,y)

|X |n
(47)

=
∑

x
2−LZ(x|y)+no(n) (48)

≤ 2no(n), (49)

where the last equality is Kraft’s inequality which holds since LZ(x|y) is a length function of x

for every y. This explains why Ziv’s decoder, which selects the message i with the minimum of

LZ(xi|y), is universally asymptotically optimum in the random coding exponent sense. Note that

the assumption that Q is uniform is not really essential here. In fact, Q can also be any exchangeable

probability distribution (i.e., x′ is a permutation of x implies Q(x′) = Q(x)). Moreover, if the state

variable si includes a component, say, σi, that is fed merely by {xi} (but not {yi}), then it is enough

that Q would be invariant within conditional types of x given σ = (σ1, . . . , σn). In such a case, we

would have

U ′(x.y) = −
1

n
[logQ(x) + LZ(x|y)]. (50)

5 Extensions

We now demonstrate how our method extends to more involved scenarios of communication sys-

tems. The first extension corresponds to random coding distributions that allow access to noiseless

feedback. While this extension is not complicated, it is important from the operational point of

view, because feedback allows the encoder to learn the channel and thereby to adapt the random

coding distribution to the channel statistical characteristics.

Our second extension is to the problem of universal decoding for multiple access channels

(MAC’s) with respect to a given class of decoding metrics (again, without feedback, but the exten-

sion that combines feedback is again straightforward). This extension is deliberately not provided

in full generality in the sense that we make a certain facilitating assumption on the structure of

the class of decoding metrics, in order to make the analysis simpler. The main point here is not
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the quest for full generality, but to demonstrate that this extension, even under this facilitating

assumption, is not a trivial task since the universal decoding metric has to confront three different

types of error events (in the case of a MAC with two senders): (i) the event were both messages are

decoded incorrectly, (ii) the event where only the message of sender no. 1 is decoded incorrectly, and

(iii) the event where only the message of sender no. 2 is decoded incorrectly. As a consequence, it

turns out that the resulting universal decoding metric is surprisingly different from those of earlier

works on universal decoding for the MAC [10], [5, Section VIII], [17], mostly because the problem

setting here is different (and more general) from those of these earlier works (in the sense that the

universality here is relative to a given class of decoders while the underlying channel is arbitrary,

and not relative to a given class of channels). While we are not arguing that all the universal

decoders of these previous articles are necessarily suboptimum in our scenario, we are able to prove

the universality only for our own universal decoding metric.

5.1 Feedback

In the paradigm of random coding in the presence of feedback, it is convenient to think of an

independent random selection of symbols of X along a tree whose branches are labeled by

{y1}, {y1, y2}, . . . , {y1, . . . , yn−1},

for all possible outcomes of these vectors. Accordingly, the random coding distribution Q(x) is

replaced by

Q(x|y)
∆
=

n
∏

i=1

Q(xi|x
i−1, yi−1). (51)

Thus, each message i ∈ {1, 2, . . . ,M} is represented by a complete tree of depth n and |Y|n−1

leaves. Theorem 1 and its proof remain intact with Q(·) being replaced by Q(·|y) in all places.

Thus, the universal decoding metric is redefined as

U(x,y) = −
1

n
logQ[T (x|y)|y], (52)

the expectation in eqs. (32) and (34) is redefined w.r.t.

P (x,y) =
n
∏

i=1

[Q(xi|x
i−1, yi−1)P (yi|x

i, yi−1)], (53)

and in condition (37), Q(x) is replaced by Q(x|y).
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One might limit the structure of the feedback, for example, by letting each Q(·|xi−1, yi−1)

depend on (xi−1, yi−1) only via a state variable ti fed by these two sequences, i.e.,

ti = g(ti−1, xi−1, yi−1), (54)

that is

Q(x|y) =
n
∏

i=1

Q(xi|x
i−1, yi−1) =

n
∏

i=1

Q(xi|ti). (55)

In the above example of decoding metrics corresponding to finite–state channels, one can refine

the equivalence classes to include the information about ti (see Section 4), and then Q would be

invariant within a type class Tx|y,s,t, where t = (t1, . . . , tn). In this case, the decoding metric U ′

would become

U ′(x,y) = −
1

n
[logQ(x|y) + LZ(x|y)], (56)

where Q(x|y) is understood to be defined according to eq. (55).

5.2 The Multiple Access Channel

Consider an arbitrary multiple access channel (MAC), namely, a channel with two inputs, x1 and

x2, and one output y. The two inputs are used by two different users which do not cooperate.

User no. 1 generates M1 = 2nR1 independent codewords, x1(1), . . . ,x1(M1), using a random coding

distribution Q1, and user no. 2 generates M2 = 2nR2 independent codewords, x2(1), . . . ,x2(M2),

using a random coding distribution Q2.
9

We define a class M of decoding metrics {mθ(x1,x2,y), θ ∈ Θ}. Decoder Dθ picks the pair

of messages (x1(i),x2(j)), i ∈ {1, . . . ,M1}, j ∈ {1, . . . ,M2}, which maximizes mθ(x1(i),x2(j),y).

We assume that the random coding ensemble and the class of decoders is such that for every

y, mθ(X1(i),X2(j),y) and mθ(X1(i
′),X2(j

′),y) are statistically independent whenever (i, j) 6=

(i′, j′). While this requirement is easily satisfied when the both i 6= i′ and j 6= j′ (for example, when

all codewords are drawn by independent random selection), it is less obvious for combinations of

pairs (i, j) and (i′, j′) for which either i = i′ or j = j′ (but, of course, not both). Still, this

requirement is satisfied, for example, if X1 = X2 = {0, 1, . . . ,K − 1} (or the continuous interval

9We should point out that a more general model definition should allow time–sharing, which means that the
codewords of both users should be drawn conditionally independently given a sequence s the designates the time–
sharing protocol known to all parties. This will just amount to conditioning many quantities on s. For the sake of
simplicity of the exposition, we will not add this conditioning on s.
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[0, A]), Q1 and Q2 are both uniform across the alphabet, and mθ(x1,x2,y) depends on x1 and x2

only via x1⊕x2, where ⊕ denotes addition modulo K (or addition modulo A, in the example of the

continuous case). Decoding metrics with this property are motivated by classes of multiple access

channels, P (y|x1,x2), in which the users interfere with each other additively, i.e., P (y|x1,x2) =

W (y|x1 ⊕x2). Still, the dependence of y on x1 ⊕x2 can be arbitrary. In other words, the channel

is known to depend only on the modulo 2 sum of the inputs, but the form of this dependence

may not be known. Another example where the above independence requirement is met is when

X1 = X2 = {−1,+1} and mθ depends on x1 and x2 only via their component-wise product x1 ·x2.

We now define three kinds of equivalence classes:

T (x1,x2|y) =
{

(x′
1,x

′
2) : ∀θ ∈ Θ mθ(x

′
1,x

′
2,y) = mθ(x1,x2,y)

}

(57)

T (x1|x2,y) =
{

x′
1 : ∀θ ∈ Θ mθ(x

′
1,x2,y) = mθ(x1,x2,y)

}

= {x′
1 : (x′

1,x2) ∈ T (x1,x2|y)} (58)

T (x2|x1,y) =
{

x′
2 : ∀θ ∈ Θ mθ(x1,x

′
2,y) = mθ(x1,x2,y)

}

= {x′
2 : (x1,x

′
2) ∈ T (x1,x2|y)}. (59)

We also assume, as before, that for every y, the number of different type classes {T (x1,x2|y)} is

upper bounded by 2n∆n . Next, define the following functions:

U0(x1,x2,y) = −
1

n
log {(Q1 ×Q2)[T (x1,x2|y)]} (60)

U1(x1,x2,y) = −
1

n
logQ1[T (x1|x2,y)] (61)

U2(x1,x2,y) = −
1

n
logQ2[T (x2|x1,y)]. (62)

What makes the MAC interesting, in the context of universal decoding, is that the universal decoder

has to cope with three different types of errors: (i) both messages are decoded incorrectly, (ii) the

message of user no. 2 is decoded correctly, but that of user no. 1 is not, and (iii) like (ii), but with

the roles of the users swapped. From Theorem 1 and its proof (after an obvious modification), it

is apparent that had only errors of type (i) existed, then U0 could have been a universal decoding

metric. Similarly, had only errors of type (ii) existed, then U1 could be a universal decoding metric,

and by the same token, for error of type (iii) alone, one would use U2. However, in reality, all three

types of error events might occur and we need one universal decoding metric that handles all of
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them at the same time. The question is then how to combine U0, U1 and U2 into one metric that

would work at least as well as the best decoder in the given class.

The answer turns out to be the following: Define the universal decoding metric as

U(x1,x2,y) = min {[U0(x1,x2,y)−R1 −R2], [U1(x1,x2,y)−R1], [U2(x1,x2,y)−R2]} . (63)

We argue that U(x1,x2,y) competes favorably with the best mθ in a sense analogous to that

asserted in Theorem 1. This decoding metric is different from the universal decoding metrics used

for the MAC, for example, in [17] and [10], which were based on the MMI decoder and the minimum

empirical conditional entropy (minimum equivocation) rule, respectively. It is not argued here that

these decoding rules are necessarily suboptimal in the present setting, but on the other hand, we do

not have a proof that they compete favorably with the best decoder in the class M. The remaining

part of this section is devoted to a description of the main modifications and extensions needed in

the proof of Theorem 1 in order to prove the universality of U(x1,x2,y) for the MAC.

The pairwise probability of type (i) error for an arbitrary decoder in the reference class M is

lower bounded by

P
(i)
e,θ(x1,x2,y)

∆
=

∑

{x′

1
,x′

2
: mθ(x′

1
,x′

2
,y)≥mθ(x1,x2,y)}

Q1(x
′
1)Q2(x

′
2) (64)

≥
∑

(x′

1
,x′

2
)∈T (x1,x2|y)

Q1(x
′
1)Q2(x

′
2) (65)

= (Q1 ×Q2)[T (x1,x2|y)] (66)

= 2−nU0(x1,x2,y). (67)

As for the pairwise error probability of type (ii), we have

P
(ii)
e,θ (x1,x2,y)

∆
=

∑

{x′

1
: mθ(x′

1
,x2,y)≥mθ(x1,x2,y)}

Q1(x
′
1) (68)

≥
∑

x′

1
∈T (x1|x2,y)

Q1(x
′
1) (69)

= Q1[T (x1|x2,y)] (70)

= 2−nU1(x1,x2,y). (71)

and similarly, for type (iii):

P
(iii)
e,θ (x1,x2,y) ≥ 2−nU2(x1,x2,y). (72)
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Let I be half of the set {1, 2, . . . ,M1}−{i} and let J be half of the set {1, 2, . . . ,M2}−{j} (i and

j being the correct messages of the two senders). Let A be the set of all (M1 − 1)(M2 − 1)/4 pairs

(i′, j′) ∈ Ic×J c, where both i′ 6= i and j′ 6= j. Under our above assumptions, the following is true:

given (x1(i),x2(j),y), the events

{mθ(X1(i
′),x2(j),y) ≥ mθ(x1(i),x2(j),y)}i′∈I ,

{mθ(x1(i),X2(j
′),y) ≥ mθ(x1(i),x2(j),y)}j′∈J ,

and

{mθ(X1(i
′),X2(j

′),y) ≥ mθ(x1(i),x2(j),y)}(i′,j′)∈A

are all pairwise independent. Defining the set of pairs B = A ∪ [{i} × J ] ∪ [I × {j}], the total

probability of error, associated with the decoder Dθ, is lower bounded as follows:

P̄e,θ(R1, R2, n) (73)

∆
=

1

M1M2

M1
∑

i=1

M2
∑

j=1

Pr
⋃

(i′,j′)6=(i,j)

{

mθ(X1(i
′),X2(j

′),Y ) ≥ mθ(X1(i),X2(j),Y )

∣

∣

∣

∣

(i, j) sent

}

(74)

≥
1

M1M2

M1
∑

i=1

M2
∑

j=1

Pr
⋃

(i′,j′)∈B

{

mθ(X1(i
′),X2(j

′),Y ) ≥ mθ(X1(i),X2(j),Y )

∣

∣

∣

∣

(i, j) sent

}

(75)

·
≥ Emin

{

1,
(M1 − 1)(M2 − 1)

4
· 2−nU0(X1,X2,Y )+

(M1 − 1)

2
· 2−nU1(X1,X2,Y ) +

(M2 − 1)

2
· 2−nU2(X1,X2,Y )

}

(76)

·
= Emin

{

1, 2−n[U0(X1,X2,Y )−R1−R2]+

2−n[U1(X1,X2,Y )−R1] + 2−n[U2(X1,X2,Y )−R2]
}

(77)

·
= Emin

{

1, 2−nU(X1,X2,Y )
}

(78)

= E{2−n[U(X1,X2,Y )]+}, (79)

where the second inequality is again due to Shulman [19, Lemma A.2]. Consider now the function

U(x1,x2,y) as a universal decoding metric. Then, we have the following:

P (i)
e,u(x1,x2,y)

∆
=

∑

{(x′

1
,x′

2
): U(x′

1
,x′

2
,y)≥U(x1,x2,y)}

Q1(x
′
1)Q2(x

′
2) (80)

=
∑

{T (x′

1
,x′

2
|y): U(x′

1
,x′

2
,y)≥U(x1,x2,y)}

∑

(x̃1,x̃2)∈T (x′

1
,x′

2
|y)

Q1(x̃1)Q2(x̃2) (81)
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=
∑

{T (x′

1
,x′

2
|y): U(x′

1
,x′

2
,y)≥U(x1,x2,y)}

(Q1 ×Q2)[T (x′
1,x

′
2|y)] (82)

≤
∑

{T (x′

1
,x′

2
|y): U(x′

1
,x′

2
,y)≥U(x1,x2,y)}

exp[−nU0(x
′
1,x

′
2,y)]. (83)

Similarly,

P (ii)
e,u (x1,x2,y)

∆
=

∑

{x′

1
: U(x′

1
,x2,y)≥U(x1,x2,y)}

Q1(x
′
1) (84)

=
∑

{T (x′

1
|x2,y): U(x′

1
,x2,y)≥U(x1,x2,y)}

∑

x̃1∈T (x′

1
|x2,y)

Q1(x̃1) (85)

≤
∑

{T (x′

1
,x′

2
|y): U(x′

1
,x′

2
,y)≥U(x1,x2,y)}

∑

x̃1∈T (x′

1
|x′

2
,y)

Q1(x̃1) (86)

=
∑

{T (x′

1
,x′

2
|y): U(x′

1
,x′

2
,y)≥U(x1,x2,y)}

Q1[T (x′
1|x

′
2,y)] (87)

≤
∑

{T (x′

1
,x′

2
|y): U(x′

1
,x′

2
,y)≥U(x1,x2,y)}

exp[−nU1(x
′
1,x

′
2,y)], (88)

and by the same token,

P (iii)
e,u (x1,x2,y) ≤

∑

{T (x′

1
,x′

2
|y): U(x′

1
,x′

2
,y)≥U(x1,x2,y)}

exp[−nU2(x
′
1,x

′
2,y)]. (89)

Now,

P̄e,u(R1, R2, n) (90)

=
1

M1M2

M1
∑

i=1

M2
∑

j=1

Pr







⋃

(i′,j′)6=(i,j)

U(X1(i
′),X2(j

′),Y ) ≥ U(X1(i),X2(j),Y )

∣

∣

∣

∣

(i, j) sent







(91)

·
= Emin

{

1, 2n(R1+R2)P (i)
e,u(X1,X2,Y )+

2nR1P (ii)
e,u (X1,X2,Y ) + 2nR2P

(iii)
e,U (X1,X2,Y )

}

(92)

·
= Emin











1,
∑

{T (x′

1
,x′

2
|Y ): U(x′

1
,x′

2
,Y )≥U(X1,X2,Y )}

[

2−n[U0(x′

1
,x′

2
,Y )−R1−R2]+ (93)

2−n[U1(x′

1
,x′

2
,Y )−R1] + 2−n[U2(x′

1
,x′

2
,Y )−R2]

]}

(94)

·
= Emin











1,
∑

{T (x′

1
,x′

2
|Y ): U(x′

1
,x′

2
,Y )≥U(X1,X2,Y )}

2−nU(x′

1
,x′

2
,Y )











(95)

≤ Emin











1,
∑

{T (x′

1
,x′

2
|Y ): U(x′

1
,x′

2
,Y )≥U(X1,X2,Y )}

2−nU(X1,X2,Y )











(96)
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≤ Emin











1,
∑

{T (x′

1
,x′

2
|Y )}

2−nU(X1,X2,Y )











(97)

≤ Emin
{

1, 2−n[U(X1,X2,Y )−∆n]
}

(98)

= E
{

2−n[U(X1,X2,Y )−∆n]+
}

, (99)

which is of the same exponential order as the lower bound on P̄e,θ(R,n), and hence P̄e,u(R,n) is

exponentially at least as small as minθ∈Θ P̄e,θ(R,n).

Similarly as in Section 4, suppose that U0, U1 and U2 can be uniformly upper bounded by U ′
0,

U ′
1 and U ′

2, respectively, and assume that:

max
y

∑

x1,x2

Q1(x1)Q2(x2)2
nU ′

0
(x1,x2,y)

·
≤ 1 (100)

max
x2,y

∑

x1

Q1(x1)2
nU ′

1
(x1,x2,y)

·
≤ 1 (101)

max
x1,y

∑

x2

Q2(x1)2
nU ′

2
(x1,x2,y)

·
≤ 1. (102)

Then, U ′
0, U

′
1 and U ′

2 can replace U0, U1 and U2, respectively, in the universal decoding metric,

denoted in turn by U ′, and the upper and lower bounds continue to hold with U ′ replacing U . The

lower bounds on P
(i)
e,θ(x1,x2,y), P

(ii)
e,θ (x1,x2,y), and P

(iii)
e,θ (x1,x2,y), in terms of U ′

0, U
′
1 and U ′

2,

respectively, are trivial, of course. As for the upper bounds on P
(i)
e,u′(x1,x2,y), P

(ii)
e,u′(x1,x2,y), and

P
(iii)
e,u′ (x1,x2,y), we proceed similarly as follows:

P
(i)
e,u′(x1,x2,y) =

∑

{(x′

1
,x′

2
): U ′(x′

1
,x′

2
,y)≥U ′(x1,x2,y)}

Q1(x
′
1)Q2(x

′
2) (103)

=
∑

{T (x′

1
,x′

2
|y): U ′(x′

1
,x′

2
,y)≥U ′(x1,x2,y)}

∑

(x̃1,x̃2)∈T (x′

1
,x′

2
|y)

Q1(x̃1)Q2(x̃2)(104)

=
∑

{T (x′

1
,x′

2
|y): U ′(x′

1
,x′

2
,y)≥U ′(x1,x2,y)}

2−nU ′

0
(x′

1
,x′

2
,y) ×

∑

(x̃1,x̃2)∈T (x′

1
,x′

2
|y)

Q1(x̃1)Q2(x̃2)2
nU ′

0
(x′

1
,x′

2
,y) (105)

=
∑

{T (x′

1
,x′

2
|y): U ′(x′

1
,x′

2
,y)≥U ′(x1,x2,y)}

2−nU ′

0
(x′

1
,x′

2
,y) ×

∑

(x̃1,x̃2)∈T (x′

1
,x′

2
|y)

Q1(x̃1)Q2(x̃2)2
nU ′

0
(x̃1,x̃2,y) (106)

·
≤

∑

{T (x′

1
,x′

2
|y): U ′(x′

1
,x′

2
,y)≥U ′(x1,x2,y)}

2−nU ′

0
(x′

1
,x′

2
,y) (107)
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and similar treatments hold for P
(ii)
e,u′(x1,x2,y), and P

(iii)
e,u′ (x1,x2,y). This suggests that, in the

case where the class M is based on finite–state machines,

mθ(x1,x2,y) =
n
∑

i=1

θ(x1,i, x2,i, yi, si), si+1 = g(x1,i, x2,i, yi, si) (108)

and Q1 and Q2 are uniform distributions within single type classes, one may use LZ(x1,x2|y),

LZ(x1|x2,y) and LZ(x2|x1,y) in the relevant places, i.e., the universal decoding metric would be

U ′(x1,x2,y) = min

{[

Ĥx1
(X) + Ĥx2

(X) −
LZ(x1,x2|y)

n
−R1 −R2

]

,

[

Ĥx1
(X)−

LZ(x1|x2,y)

n
−R1

]

,

[

Ĥx2
(X)−

LZ(x2|x1,y)

n
−R2

]}

. (109)

Thus, we observe that our approach suggests a systematic method to extend earlier results to more

involved scenarios, like that of the MAC.
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