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Weight Distribution of a Class of Cyclic Codes with
Arbitrary Number of Zeros

Jing Yang, Maosheng Xiong and Cunsheng Ding

Abstract

Cyclic codes have been widely used in digital communicasigstems and consume electronics as they have
efficient encoding and decoding algorithms. The weightrithistion of cyclic codes has been an important topic
of study for many years. It is in general hard to determinevileght distribution of linear codes. In this paper, a
class of cyclic codes with any number of zeros are describedtlzeir weight distributions are determined.
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. INTRODUCTION

Throughout this paper, let be a primeg = p®, r = ¢ for some integers, m > 1. Let F, be a finite
field of orderr and~ be a generator of the multiplicative grolif) := F,. \ {0}. An [n, , d]-linear code
C overF, is ax-dimensional subspace &f with minimum (Hamming) distancé. It is called cyclic if

any (co, ¢, ,¢n_1) € C implies (¢, 1, co, -+ ,Cn2) € C.
Consider the one-to-one linear map defined by
o C — R=Fz]/(z" — 1)
(Co, (G TR ,Cn_l) = Ccot+cixr+ -+ Cn_lﬂl'n_l.

ThenC is a cyclic code if and only it(C) is an ideal of the ring?. SinceR is a principal ideal ring, there
exists a unique monic polynomiglz) with least degree satisfying(C) = ¢g(z)R andg(z) | (z™ — 1).
Theng(z) is called thegenerator polynomiabf C andh(x) = (2" — 1)/g(z) is called theparity-check
polynomialof C. If h(z) hast irreducible factors oveF,, we say for simplicity such a cyclic code to
havet zeros (In the literature some authors call“the dual of a cyclic code witht zeros”.)

Denote byA; the number of codewords with Hamming weighin C. The weight enumeratoof C
with lengthn is defined by
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14+ Az 4+ A2+ -+ A, 2"

The sequencéA,, A, - -+ , A,,) is called theweight distributionof C. The study of the weight distribution
of a linear code is important in both theory and applicatioe ¢b the following:

« The weight distribution of a code gives the minimum distaaod thus the error correcting capability
of the code.

« The weight distribution of a code allows the computationtod error probability of error detection
and correction with respect to some algorithing [12].

The problem of determining the weight distribution of lineades is in general very difficult and remains
open for most linear codes. For only a few special classesvéight distribution is known. For example,
the weight distribution of some irreducible cyclic codeki®own ([1], [2], [3], [17], [8], [22]). For cyclic
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codes with two zeros the weight distribution is known in sospecial cases[([7][.[16]l [11], [25], [24],
[26], [27]). The weight distribution is also known for somgher linear and cyclic codes ([5],/[9],_[10],
[14], [15], [18], [20], [19], [23], [28], [29)).

The objectives of this paper are to describe a new class ditaymdes with arbitrary number of zeros
and to determine their weight distributions. This paper ngaaized as follows. Sectidnl Il defines this
class of cyclic codes. Sectignllll introduces some mathealabols such as group characters, cyclotomy
and Gaussian periods that will be needed later in this p&estion IV deals with the weight distribution
of the class of cyclic codes under special conditions. 884 concludes this paper.

[I. THE CLASS OF CYCLIC CODES
From now on, we make the following assumptions for the reghisf paper.
The Main Assumptions: Let r = ¢ = p*" be a prime power for some positive integersn and let
e >t > 2. Assume that
) a#0 (mod r—1)ande|(r — 1);
i) a; =a+"=tA; (modr—1),1< i<t whereA; # A; (mod e) for anyi # j and
ged(Ag — Al, A = Ae) =1;

iii) deghg,(v) =--- = deghq,(r) =m, and he,(x) # he,(z) for any 1 <i # j <t, whereh,(z) is the
minimal polynomial ofy~* overF,. |
We remark that Condition iii) can be met by a simple critersdated in Lemmal6. From what follows,
define
r—1

0 =ged(r—1,ay,a9, -+ ,a;), n=

N = ged <r_1,ae).
q—1

ed | N(g—1).

The class of cyclic codes considered in this paper is defiyed b

¢ n—1
C= {C(‘Tlax%”' 7xt) = (Trr/q (ij’yaji>> DAL, T EIFT}) (l)
j=1 i=0

whereT’r,,, denotes the trace map frol) to IF,. It follows from Delsarte’s Theorem [6] that the code
C is an[n,tm] cyclic code overF, with parity-check polynomiah(z) = h,, (z) - - - he (z). This code
C may contain many cyclic codes studied in the literature aigp cases. In particular, when= 2,
ap = &1, a; = &1 + L for positive integers, i such thate|h and h|(g — 1), the codeC has been
studied in [16], [7], [25], [25], [27], [[11].

In the definition ofC we choose integers,, as, - - - , a; from a set of arithmetic sequence with common
difference™—= L modulor — 1. This choice of these;’s allows us to compute the weight distribution of the
codeC. If the integersa; are not chosen in this way, it might be difficult to find the wsiglistribution.
The conditions in the Main Assumptions are to guaranteettietiimension ot is equal tomt.

)
and

It is easy to verify that



IIl. GROUP CHARACTERS CYCLOTOMY AND GAUSSIAN PERIODS

Let Tr, ,,, denote the trace function frofi. to IF,. An additive characterf F, is a nonzero function
¢ from I, to the set of complex numbers such thidtr + y) = ¥ (z)u(y) for any pair(z,y) € F2. For
eachb € F,, the function

Uy(c) = 2™V TP for all ¢ € F, 2)

defines an additive character Bf. Whenb = 0, ¢y(c) = 1 for all ¢ € F,, and is called therivial additive
characterof F,. Whenb = 1, the character); in (@) is called thecanonical additive characteof F,.
For anyz € F,, one can easily check the following orthogonal property ddiive characters, which we

need in the sequel,
1 1, if a=0;
=D tlar) = { 0, if acF. 3)

Letr— 1 = [L for two positive integer$ > 1 and L > 1, and lety be a fixed primitive element df,.
Define C( yi{yE) for i = 0,1,..., L — 1, where(y%) denotes the subgroup & generated byy~.
The cosetsC ) are called thecyclotomic classesf order L in F,.. The cyclotomic numbersf order L
are defined by

(, ])(L ) = (C’i(L’T) +1)N C'J(»L’T)

forall 0 <¢,7 <L-—1.

Cyclotomic numbers of order 2 are given in the following leenfd] and will be needed in the sequel.
Lemma 1. The cyclotomic numbers of order 2 are given by

e (0,027 = =50 (0, 1)@ = (1,0)27) = (1,1)®") = U if r =1 (mod 4); and

e (0,027 = (1,0)%7) = (1,1)®") = 8 (0, 1)) = <"+1 if r =3 (mod 4).

The Gaussian periodsf order L are defined by

w7 = Y ), i=01.. L1,
xECi(L’T)

where) is the canonical additive character IBf.
The values of the Gaussian periods are in general very hamhtpute. However, they can be computed
in a few cases. We will need the following lemmas whose preafs be found in[[4] and_[21].

Lemma 2. WhenL = 2, the Gaussian periods are given by

er { —1+(—1);"7n—1r1/2’ fp=1 (mod4)

Tlo —1+(—1)8‘7’”;(xﬁ)5'mr”27 if p=3 (mod 4)

(2,r) (2,r) .

andn,”’ = —1—1;

Lemma 3. Let L =3.If p=1 (mod 3), andsm =0 (mod 3), then

(3,r) —1—cyrt/3

Mo "= —=3

77(3,7”) . —1-i-§(01+9d1)7“1/3
1 - 3 ]
(3,7) _ —142(c1—9dy)rt/3
2 - 3 .

wherec; andd; are given bydp*™/3 = ¢2 4 27d?, ¢; = 1 (mod 3) and ged(cy,p) = 1.



In a special case, the so-callsdmiprimitive casethe Gaussian periods are known and are described
in the following lemmal[2], [[21].

Lemma 4. Assume thaf, > 2 and there exists a positive integg¢rsuch thaty’ = —1 (mod L), and the
j is the least such. Let = p** for some integew.
(@) If v, pand (p/ + 1)/L are all odd, then

L,r L— r— L,r T
nyy) = Sl b = P for k£ L)2.

I RE v+1 L T I T v /r
(L) — (1) ([ NG L 7)/,(C ) = Gyt l)lflfork;éo.

Mo =
In another special case, the so-caltpehdratic residue (or index 2) casthe Gaussian periods can be
also computed. The results below are fram [3][cr [8].

Lemma 5. Let3 # L = 3 (mod 4) be a prime,p be a quadratic residue modulb and % -k =sm
for some positive integet. Let i, be the ideal class number @f(v/—L) anda, b be integers satisfying
a’ + Lb? = 4pht

L—1+2hy

a=-2p— «  (mod L) (4)
b>0,ptb.

Then, the Gaussian periods of ordérare given by

5 L(PWAW(L —1) — 1)

ni” = = 2(PWA® 4 POBWL 1), if (

77( ") N-1

(Lr) _

u) =1 ()
= 2 (PWA® — pOIB®EL 4 1), if (%) = -1,

where

/L i ©)

V. THE WEIGHT DISTRIBUTIONS OF THIS CLASS OF CODES UNDER CERTAISNONDITIONS
We first provide the following criterion that guarantees @Gition iii) in the Main Assumptions.

Lemma 6. (a) Suppose that for any proper factorof m (i.e. ¢ | m and ¢ < m) we have
r—
q‘ — ¢ -1
Then Condition iii) in the Main Assumptions holds.
(b) In particular, if N < /r, then Condition iii) in the Main Assumptions is met.

L

Proof: Suppose Condition iii) does not hold, then there exists atipesntegerh < m such that
a;q" = a; (modr —1)
for somel < i,j < t. Reducing moduldr — 1)/e we obtain that
-1
). (7)

Hence(r — 1) | ae(q" — 1). Sinceged(r — 1,¢" — 1) = ¢* — 1 where? = ged(h, m), it then follows from
(@) that

a"=a |

r—1
¢ —1

ae. (8)



Hence 1 1 1 1
r— r— r— r—
g-1 % (q—l’qf—l)‘gc (q—l’ae)

Since/|m and ¢ < m, this contradicts the condition of the lemma. Thus Part §g)roved.
Part (b) of Lemmdl6 can be derived from Part (a) directly. Foy proper factor/ of m, we have
¢ < m/2. Thus ;“;_11 can not be a divisor ofV which is at most,/r because

r—1 r—1
> = 1.
¢ =17 r—1 vrt
This completes the proof of Lemna 6. [
We now consider the weight distribution of the cyclic catlgiven in (1). In order to find the Hamming
weight of the codeword(z4, - - - , z;), it suffices to consider a new codewotdz, - - - , z;) given by
¢ r—2
d(xy, .. m) = (Trr/q <Z xjvaj’)) ,
J=1 i=0
because clearly'(xy, -, z;) is the codeword:(z4, - - - , x;) repeating itsel® times and hence
wy(d(xy, -+, x
wa(e(on, -+ ) = L T)

Let ¢y (x) = exp(2mv/—1Try/,(x)/p) be the canonical additive characterlgf. Theny = ), o T'r, ,
is the canonical additive character Bf. Using the orthogonal relatiof](3), we know that the Hamming

weight of the codeword’(z1,--- ,x;) is given by

U)H<C/<.I1,‘ o 7'1:15))
r—2
1 ait att
= P 1= Y ey ™)
1=0 y€lFy
r—1 —a)i
— 7“—1— ——Zzwyv xlf}/(al al+...+xt7(at ))]
EIF*ZO
r—2
r—1)(g—1) 1 . "
R DD L L (T R,
q quIFﬁ;iO

From Condition i) of the Main Assumptions, we know that (r — 1), hence we can writé = ej + h
for0<]<——1and0<h<e—1. Denote

By =~5 for1 <7<t andg = 7. ®)
Hence
U}H(Cl(afl, ,.Z’t))
771_1 e—1
r—1)(¢g—1 1 \ e
_ ( )( ) _ ’(/)[y’}/ j’y h(xlﬁf+"'+1’tﬂf)]-

q qu]FZ 7=0 h=0
q_2 7‘;1_1 e—1

_ (r—1)<q—1) B ¢[7N{N(q 1)l+N]} h( ﬁh "|‘xtﬂf)]>



where we definedV = gcd(— ae) in Section[]). For eachX (mod “3!), we consider the number of
solutions({, j) with 0 <1< ¢ —2, 0 < j < =% — 1 such that

r—1 r—1

— =X d : 10
N@_D'+NJ (mod —) (10)
Reducing modulo—) we find that
ae r—1
—5=X d ——).
This has a unique solution fgrmodulo 77— ’” 1 , hence the number gffor 0 < j < 71 — 1 that satisfies
the equation is
(r - 1>/e _ N(g—1)
(r—=1)/N(qg—1) e
For each such solutiof, returning to Equatioi (10), we find
xr—4%y
l= N mod ¢ — 1),
- D/NG-1 | )
this means there is a unique suchith 0 <[ < ¢ — 2. Therefore
’LUH(C/(.Tl, e 7'Tt))
1=t
r—1)(qg—1 Nq—lelN
- oBleon S b (S )
h=0 X=0 =1
r—1)(g—1 N(g—1 = !
- = emh <e : Ul (Y 2,50
q q h=0 zEC(() r) =1
_ =De=) N1 = v
y s e
Here we writel"") = S 4(vz) for anyv € F, and call thesey$™" the modified Gaussian periods

zGC(N o)

since

_(N,r) r—1
Mo N
{ﬁN) p N for0<i< N -1,

,\/Z

T

where thesey(N are the classical Gaussian periods. We conclude that

e—1

wnle(er, - ) = LD q_lZ

0 wtx@
h=0 T
T=1

Thus, to compute the weight distribution of cyclic ca@eit suffices to compute the value distribution

of the sum »

T(xlv T 7xt) = Z n!(;yg :ETB}L (11)
h=0

This is in general a difficult problem. We will deal with it fsome special cases in the next two
subsections.



A. Thecase of =¢ > 2

In this case the sefA; : 1 < i < e} is a complete residue system modulpso we may take
A =0,Ay=1,---,A, = e — 1. Define 8 := j35, then3 = v("=1/¢ is ane-th root of unity inF, and
B; = B! for 1 < i < t. We now present a key observation, which enables us to cbenfréquency of
the weights in a simple and clear way. Consider the lineastaamy : FS — F¢ given by

1 1 o1
T 1 8 . 53—1 T Yo
T o €T
N ey N I N R @)
Sincel, 3, 5%, --- B! are distinct, the Vandermonde matrix
1 1 o1
1 B oo pBett
A — 1 52 Ce ﬁZ(e—l) (13)
1 get ... gl
is invertible. We then have the following observation.
Observation A: The mapy is an isomorphism fron¥¢ to F¢. Thenyy, - - - , y.—1 independently run over
F,. aszy,---,x. run overk,. [ |

Observation A means that it suffices to study the value Oigion of

T N,r) e
T(y()?‘”?y@ 1) - ZW; Ly y(]u”'?ye—l)eFr'

1) The subcase dof= ¢ and N = 1: WhenN = 1, we haveed | (¢ — 1), C\"" = () = F*, and

—(1,r) _ r—1, if v=0
T T 21, ifveFn

Hence the valud(yo, - - - ,5._:) depends only on the total number ¢§ such thaty; = 0. Denote this
number byu where0 < u < e. Then

T(yo, o Yerr) = ulr—1)+ (e —u)(—1) = ur —e,

and the number of times thét takes this value for suchy, . ..,y._1)’s is clearly (5)(r — 1) Thus,
we have the result below.

Theorem 7. Under the Main Assumptions, whéwi = 1 ande = ¢t > 2, the setC defined by[{1) is an
e-weight[n, tm, (q Lr ] cyclic code. The weight distribution 6fis Ilsted in Table]l.

TABLE |
THE WEIGHT DISTRIBUTION OFC WHEN N = 1 AND e =t > 2.

[ Weight | Frequency (0<u<e) |

@t | (O — 1" times |




Example 8. Let (¢,m, e, t) = (3,3,2,2). Let v be the generator df? with v +2v +1 = 0. Leta = 1.
ThenN =1, (a1, a2) = (1,14) and

ho, (z) = 2° 4+ 22° + 1, hg,(z) = 2° + 2% + 2.

The parity-check polynomial of is thenh(z) = 2° + 22* + 222 + 2. The codeC is a[26, 6, 9] ternary
cyclic code with weight enumeratdr+ 522° + 67628,

2) The subcase df=¢ and N > 2: In this case, we first give a general result stated in the olig
theorem.

Theorem 9. Suppose that the Gaussian periong’r) of order N have distinct values{m,nz, STt
and eachy; corresponds tar; cyclotomic classes for < i < p. (Note thatr; +---+ 7, = N.) Then the
cyclic codeC defined in[(ll) is arin, em] code over, with at most(*7*) — 1 nonzero weights. Moreover,
for any non-negative integers, u,, - - - ,u, such thatzj o u; = e, the weight distribution of is listed
in Table[Il.

TABLE I
THE WEIGHT DISTRIBUTION OFC WHEN e = t, N > 2.

| Weight | Frequency (3" u; =€) |

o
1) e! r—1\e—u Uj
(q sz uj(r —1— Nnjy) ug!ullln»uu! (=) [Ij=,7;7 times

Proof: We just need to compute the value distributionTofyo, 1, - - - ,y.—1). By Observation A,
Yo, Y1, -+ » 9 'ye_1 run over eactC™" (0 <i < N —1) independently and uniformly. Suppose among
the g'y;'s, exactlyu, of them takes o) andu, of them correspond te; cyclotomic classes with valug
for 1 < i < p respectively. Thef'(yo, y1,- -+ ,y.—1) has at most(“:e) possible values. More precisely,

it takes on the value p
B r— 1
UoTlo + Z ujn; = Uo Z ;-
j=1

with the frequency of

e\ [e—uo\ (e —uy—u o +uy\ (r—1\"" ﬁ Y times
c. T.
U U U2 Up—1 N J=1 !

Expanding the binomial coefficients, we obtain the desireakctusion. [ |

In theory, whent = e and the Gaussian periods of ord&r are known, by Theorern] 9 the weight
distribution of the cyclic cod€ might be formulated. However, the situation could be quamplicated
whene is large or the Gaussian periods have many different valveslist below some special cases in
which the weight distribution can be obtained from Theofém 9

If N = gcd(— ae) = 2, thenp, ¢, r are all odd an@|m. By Lemmal2, the Gaussian periods of order

2 take on two distinct valueg, = =£" L = _1_7,01/2 each of which corresponds tg = 7 = 1

cyclotomic class. Hence we have the following corollary.

Corollary 10. Whent = e and N = 2, the cyclic codeC of (1) is an[n, em| code overF, with at most
(“4?) — 1 nonzero weights. Moreover, the weight distributiorCoi listed in TableTl.

We remark that Theorem 6 in [[16] is a special case of Coroll@ywithe =t = N = 2,
Example 11. Let (¢, m, e, t) = (7,2,2,2). Let v be the generator df* with v> + 6y +3 = 0. Leta = 1.
ThenN =2, (a1, as) = (1,25) and

1,25)
ha, (2) = 2% 4+ 22 + 5, hey(z) = 2% + 52 + 5.



TABLE 11l
THE WEIGHT DISTRIBUTION OFC WHEN e = t, N = 2.

| Weight [ Frequency(uo + u1 +uz =e) |
(G0l + ) fualr— VD)) | o (55) "~ times |

The parity-check polynomial of is thenh(z) = z* + 622 + 4. The codeC is a [48, 4, 18] cyclic code
over F; with weight enumeratot + 4828 + 48224 4+ 576230 + 11522%2 + 5762%.

If N | (p’ + 1) for some positive integeyf, let j be the least such and let= sm/2j. From Lemma
@, the Gaussian periods of ordar take on two distinct valueg, = ——(=L-N=1r 2y = T S v
which correspond te; = 1 and, = N — 1 cyclotomic classes respectlvely Hence we have the foﬁgw

corollary.

Corollary 12. Whent = ¢ and N | (p’ + 1) for some positive integef, let j be the least such and let
v = sm/2j, Then the cyclic cod€ of (@) is an[n,em] code overF, with at most(“}?) — 1 nonzero
weights. The weight distribution @f is listed in Table 1V.

TABLE IV
THE WEIGHT DISTRIBUTION OFC IN SEMIPRIMITIVE CASE AND e = t.

| Weight | Frequency(uo + u1 + uz = €) |
[+ (D' = DY) +ualr = (D'VO] | gt (555)™ 7 (N — )™ times |

ugluglug!

We remark that Theorems 7 and 8 in [7] is a special case of @oydl2 withe = ¢ = 2.

Example 13. Let (¢, m, e, t) = (5,2, 3,3). Let v be the generator df* with v* + 4y +2 = 0. Leta = 1.
Then N = 3, (al,ag,ag) = (1, 9, 17) and

ho, (2) = 2% + 22+ 3, hey(z) = 2> + 3, hey (1) = 2* + 32 + 3.

The parity-check polynomial of is thenh(z) = 2° + 2. The codeC is a[24,6,4] cyclic code overF;
with weight enumerator

1+ 24z% + 24028 + 12802'2 + 38402 + 61442%° + 4096,

If N=3andp=1 (mod 3), then 3|m. By Lemmal3, the Gaussian periods of order 3 take on three
_ c 1/3 _ ¢ 1/3
distinct valuesy, = == p, = 13 T g = Ll LT each of which corresponds to

71 = 7o = 1 cyclotomic class, where; and d, are given by LemmEIS Hence we have the following
result.

Corollary 14. Whent = e, N =3 andp =1 (mod 3), the cyclic code& of (1) is an[n, em| code over
F, with at most(“}?) — 1 nonzero weights. Moreover, the weight distributionCofs listed in TableV,
whereno,m, 1, are defined above.

We remark that Theorem 9 inl[7] is a special case of Coroll@ywith e =t =2 and N = 3.

Example 15. Let (¢, m, e, t) = (7,3, 3, 3). Lety be the generator df} with v* +6+*+4 = 0. Leta = 1.
Then N = 3, (a1, as,a3) = (1,115 229) and

Ba, (2) = 2% + 52 + 2, hay(z) = 2% + 32+ 2, hey(7) = 2° + 62 + 2.
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TABLE V
THE WEIGHT DISTRIBUTION OFC WHENe =t, N = 3.

| Weight [ Frequency(uo + u1 + uz + us = ¢) |
| - >0 u(r—1—3n) | = (51) TR times |

deq uglugluglusg 3

The parity-check polynomial of is thenh(x) = 2 + 625 + 42 + 1. The codeC is a[342,9,90] cyclic
code overfF; with weight enumerator
14 3422% 4 3422% 4 3422108 4 3898880 4+ 77976216 + 389882192 4 77976219 +
77976229 + 380882216 4 148154422 + 44446322270 + 44446322252 + 592617628 +
8889264229 + 4444632230 + 44446322%% + 4444632231 + 1481544232,

If 34N = gcd(— ae) is a prime= 3 (mod 4), p is a quadratic residue moduly and &> | sm,

let k = £, then, according to Lemnid 5, the Gaussian periods take ee talues) = né Doy =

N ns =" which corresponds te, = 1 andr, = 73 = (IV — 1)/2 cyclotomic classes respectively.

Hence we have the following corollary.

Corollary 16. If t = ¢,3 # N =3 (mod 4) is a prime,p is a quadratic residue modulty’ and 25 | sm,
let k = 22 Then the cyclic cod€ defined in[(ll) is ar{n, em| code with at mos{“}’) — 1 nonzero
weights, and for each sétug, u1, us, u3} Of nonnegative integers witly + u; + us + uz = e, the weight
distribution ofC is listed in the Tabl& VI, wherg,, 7., n; are defined above.

TABLE VI
THE WEIGHT DISTRIBUTION OFC IN THE CASE OF INDEX2 AND e = t.

Weight | Frequency(uo +ui +us +us =e) |

| L Deto (e — 1) — K (up + uan + uans)]

times |

We remark that the main result in [11] is a special case of [Gogd18 withe =t = 2.

Example 17. Let (q,m,e,t) = (2,6,7,7). Let v be the generator oF* with 75 + 7% + 73 + v +
1 =0.Leta =1. ThenN = 7 andp = 2, which is a quadratic residue modulg. In this case,
(al,ag,ag,a4,a5,a6,a7) (1 10 19 28 37 46 55) and

(1) = 2%+ 2° + 1,
(@) =2+ ¥+ 1
(@) =20+ 2%+ 1,

The parity-check polynomial of is theni(x) = z*? + 2?! + 1. The codeC is a [63, 42, 2] cyclic code
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over F, with weight enumerator

1 +632% + 18902* + 359102° + 4847852% + 49448072' + 39558456212 4 2543043602 +
13350978902'¢ + 57854241902 4 208275270842 + 624825812522%% +
1562064531302% + 3244287872702% + 5561636353202 + 7786290894482 +
8759577256292 + 7729038755552 + 5152692503702¢ 4 2440749080702>% 4
732224724212 + 1046035320322

B. Thecase o <t <e.

In this section, we consider the case thak ¢ < e. Thet zeros of the parity-check polynomial of
C arey™™,...,v %, wherea; = a + %Aj (mod r — 1), 1 < j < t. We may assume tha&t < A; <
Ay < Ay < --- <Ay < e— 1. Note that eachu; corresponds to théA; + 1)-th column of the matrix
A defined in [(IB). This is equivalent to choosing @ ¢ sub-matrix of A, denoted as3. It is possible
to choose thesé\;’s so that anyt rows of the matrixB are linear independent ové},. The following
lemma demonstrates one way of choosing sigls.

Lemma 18. Let 2 < t < e. Collect anyt consecutive columns (modutd of A defined in[(IB) to form
matrix B. More specifically, for any such thatl < p < e, collect thep-th,(p + 1)-th, - - ,(p + ¢ — 1)-th

columns ofA to form B, wherei denotes the integer such that< i < e and: = i (mod e) for any

integeri. Then anyt rows of B are [ -linear independent.

Proof: For0 <i; <is <--- <i; < e—1, supposeB(iy,--- ,i) IS the (¢ x t)-matrix constituted by
the 7;-th, - - ,i,-th rows of B. Then,
g gt ... gialeFi=1)
. _ Bi2p 52‘2(@) . ﬁiz(P-H—l)
B(’l/l7 “ .. Zt) pr— : : :
[P ﬁit(m) . 5it(ﬂ+t—1)
Bilp 1 5i1 ... 5i1(t_1)
[izp 1 B2 ... 5i2(t—1)
/Bitp 1 .57;7: lﬂit(t—l)
Since the last matrix in the above formula is a Vandermonettixnand 1, 5, 32,--- , 3¢~! are nonzero
and distinct,B(iq, - - - ,4;) is invertible. This completes the proof of the lemma. [ |

1) The subcase af <t <eand N = 1:

Theorem 19. Under the Main Assumptions, whéh=1 and2 < t < e, and assume that anyrows of
the corresponding matri3 are linearly independent. Then the weight distribution feé tyclic codeC
defined in[(lL) is listed in TabEVIl. It is aweight[n, tm, d] code withd = D% (e — ¢ + 1),

TABLE VII
THE WEIGHT DISTRIBUTION OFC' WHEN N = 1 AND 2 < ¢ < e.

| Weight | Frequency(l < u <t) |

L e—t4u) | () Zio (D ()" = 1) times
0 once
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Proof: It suffices to compute the value distribution 8fx) for x = (z4,...,2;) € FL. For anyh

with 1 < h < ¢, define
t
Lh = {EI (xlw"?xt) EFi : szﬁzh = 0}7
1=1

and for any subseb C {0,1,...,e — 1}, define
E:=1{0,1,...,e— 1} \ E.

We also define

Np =L\ {0}, Ugp:= ] L.

helE hel

r—1, if v=0;

When N = 1, the modified Gaussian periods have two possible vaﬁ&]e@ = { 1 i vcF*

Hence by[(Ill), for any € N \ Uz, we have
T(z) = ($E)(r — 1) + (e — #E)(~1) = (#E)r —e.

So we only need to compute the order of the 8gt\ U for any £ C {0,1,...,e — 1} with #F fixed.
Since anyt rows of B are linearly independent, anll; is a vector space ovéf, minus the origin, we
have

Now suppose#E =t — u for somel < u < ¢, then #E =e—t+u, and we havet Ny = r* — 1. For
eachh € FE, for simplicity we define

E;, = NEﬂLh = NEU{h};

NV = | (NEﬂLh) - | Bn

heE heE
It then follows from the inclusion-exclusion principle tha

then clearly

u

#(NeOUe) =0 | Y # (BB B

k=1 i1,.0,€E

distinct
Since

# (E“ mEiQ ﬂ o ﬂ EZk) - # (NEU{Z1 ..... Zk}) = Tu_k - ]-7

and#FE = e — t + u, we have
- e—t+u\, ,_
i (NEﬂUE) = ;(—1)k+1< I )(7“ F1).
We conclude that
u—1
# (NE - UE) =#Ng — # (NEﬂUE> — Z(_l)k(e —]i‘l' U) (Tu—k _ 1)
k=0

The number of subset8 C {0,1,...,e — 1} such that#FE =t — u is clearly (tfu). This completes the
proof of Theoreni_19. [ |
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Remark 20. (1). Whene = t, it is easy to check that

(e f u) :Z:](—l)k (Z) (r*F—1)= (Z) (r—1)"

This is consistent with Theoref 7.
(2). Whent = 2,e > 2, Theorem 5 in[[16] is a special case of our Theoferh 19.
(3). Lemma1B justifies the usefulness of Theoferm 19.

Example 21. Let (¢, m, e, t) = (5,3,4,3). Let v be the generator df* with 43 +3y+3 =0. Leta =1
and (Al, Ag,Ag) (O, 1, ) ThenN = 1, (CLl,CLQ,a3> (1 32 63) and

ho, (2) = 2% + 2% + 2, hey(7) = 2% + 327 + 4, he,(z) = 2° + 42 + 3.
The parity-check polynomial of is thenh(z) = 29 + 32® + 427 + 25 + 2° + 42* + 2 + 222 + 4. The
codeC is a[124,9,50] cyclic code overF; with weight enumerator
1+ 7442°° + 6100827 + 18913722,

2) The subcase df <t <eand N > 2: Whent < e and N > 2, the calculation is much more
complicated, because there are more Gaussian periods ltwvileaso a general result, like Theordr 9,
could not be obtained. However, some special cases can dtedreRecently,[[25] studied the codes in
the case ok = 3,t = 2, N = 2. They used the theory of elliptic curve. Here using the idethis paper
we give another simple proof, in which we only use results yxﬂcnomic numbers of order 2.

First, takeA; = 0, A, = 1. The assumptior2 = N = gcd( 3a) |mpI|es thatp, ¢, » are odd and

2|a,2|m, 2|6 = ged(r — 1,a,a+ 5). Then = vF g =7 —1=~"7 all belong toCm Using the

relation
L1 Yo
X
1 5 (ZE;) - U1 3
1 52 Y2

we know that asey, x» run overF,, so doyy, y1, andys = —5(yo + Sy1). SO, we just need to compute
the value distribution of

T (yo, y1, —Byo — B*y1) = 77y0 "+ 77(2 ) 4+ U;ii)gylj (Yo, 11 € F,).

If any two of o, 11, yo + Sy equal to O, then all of them equal to 0.
If exact one ofyy, y1, yo + Sy1 equals to 0, then we have the following three situations

0 Yo —By
U1 ) 0 or Y1
— 3%y —Byo 0

So in this casel (yo, y1, 0 + Sy1) has two possible valueg, + 21, or 7, + 211, each of which has
frequency3(r — 1)/2.
If none of yo, y1, yo + By1 equals to 0. Substitutingy, /vy, with v}, we have

Yo 1
U1 =y | 57y
Yo + By 1+
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Sincey; and 3~ 'y, belong to the samé?i(Q””), we have the values and frequenciesl@fy, y1, yo + Sy1)
below, where the subscript= 0,1 are operated modulo 2.

Value Conditions Frequency
310, wheny, € CF7 g1 € CP7 1+ g1 e 87 £52(0,00%) times
3, wheny, € CP7 g1 € CP7 1+ g1 e Oy £5R(0,00%) times

210 +m1, whenyg € (152”"),@/1 e CP) 14y e [(0,1)30) 4 (1,007 4 (1,1)7)] times
or yy € C£2 Yy € C(zr A4y € C’fz’r);

o+ 2m, wheny, CF’”,% e 14yie ), SR(0,1)0 4 (1,000 4 (1,1)%7)] times
or yg € 052 RIS C(zr A4y € C’fz’r).
Then by Lemmall, we have the conclusion below.

Theorem 22. If e = 3,¢t = 2, N = 2, then the cyclic cod€ defined in[(L) is arn, 2m, 2(55_(]1) (r —+/1)]

code overF, with 6 nonzero weights. The weight distribution(bfs listed in Table_VTII.

TABLE VI
THE WEIGHT DISTRIBUTION OFC WHEN e = 3,t = 2, N = 2.

[ Weight | Frequency |
0 once
2(5;51) (r — /) 3(r—1) times
2(;1(;51)( +/7) 3(r—1) times

U — /r) | 2(r—1)(r —5) times
o D+ r) | 2(r—1)(r —5) times
D 1) (3r — /7) 3(r—1)? times
<q 1) (3r++/7) 3(r —1)* times

Example 23. Let (¢, m, e, t) = (7,2,3,2). Let v be the generator df* with 42 + 6y +3 = 0. Leta = 2
and (A1, Ag) = (0,1). ThenN =2, (a1, as9) = (2,18), § =2, n=24 and

ho, (z) = 2% + 62 + 4, hg,(2) = 2% + 32 + 1.

The parity-check polynomial of is thenh(x) = z* + 22° + 22 + 42 + 4. The codeC is a [24,4,12]
cyclic code ovelfF; with weight enumerator

14 72212 4+ 72216 1+ 2642 + 86422 + 864222 4 2642,

_ Note that for the case of = e — 1 > 3, we have found a general method to count the frequency of
T(yo, - ,ye_1). However, there are too many cases to consider and a lot gbutation is involved. We
leave this case for future study.

V. CONCLUSIONS

In this paper, we presented a class of cyclic cadegth arbitrary number of zeros. This construction
is an extension of earlier constructions (see for exam(lé€§ [7], [24]). In addition, we determined the
weight distribution ofC under the Main Assumptions for the following special cases:

o« t = e and the Gaussian periods of ordar are known, including the cases that = 1,2, 3,

semiprimitive case and a special index 2 case.
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o t<e, N = gcd(Z:—},ae) =1 and anyt rows of the matrixB are linearly independent ové,.
« t=2e=3andN =2 (in this case, we gave a different and simple proof from thénmesult in

[25]).
The weight distribution of the codg is still open in most cases when< e. It would be good if some
of these open cases can be settled.
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