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Weight Distribution of a Class of Cyclic Codes with
Arbitrary Number of Zeros

Jing Yang, Maosheng Xiong and Cunsheng Ding

Abstract

Cyclic codes have been widely used in digital communicationsystems and consume electronics as they have
efficient encoding and decoding algorithms. The weight distribution of cyclic codes has been an important topic
of study for many years. It is in general hard to determine theweight distribution of linear codes. In this paper, a
class of cyclic codes with any number of zeros are described and their weight distributions are determined.

Index Terms

Cyclic codes, Gaussian periods, linear codes, weight distribution.

I. INTRODUCTION

Throughout this paper, letp be a prime,q = ps, r = qm for some integerss,m > 1. Let Fr be a finite
field of orderr andγ be a generator of the multiplicative groupF∗

r := Fr \ {0}. An [n, κ, d]-linear code
C overFq is a κ-dimensional subspace ofFn

q with minimum (Hamming) distanced. It is called cyclic if
any (c0, c1, · · · , cn−1) ∈ C implies (cn−1, c0, · · · , cn−2) ∈ C.

Consider the one-to-one linear map defined by

σ : C → R = Fq[x]/(x
n − 1)

(c0, c1, · · · , cn−1) 7→ c0 + c1x+ · · ·+ cn−1x
n−1.

ThenC is a cyclic code if and only ifσ(C) is an ideal of the ringR. SinceR is a principal ideal ring, there
exists a unique monic polynomialg(x) with least degree satisfyingσ(C) = g(x)R and g(x) | (xn − 1).
Then g(x) is called thegenerator polynomialof C andh(x) = (xn − 1)/g(x) is called theparity-check
polynomialof C. If h(x) hast irreducible factors overFq, we say for simplicity such a cyclic codeC to
havet zeros. (In the literature some authors callC “the dual of a cyclic code witht zeros”.)

Denote byAi the number of codewords with Hamming weighti in C. The weight enumeratorof C
with lengthn is defined by

1 + A1z + A2z
2 + · · ·+ Anz

n.

The sequence(A0, A1, · · · , An) is called theweight distributionof C. The study of the weight distribution
of a linear code is important in both theory and application due to the following:

• The weight distribution of a code gives the minimum distanceand thus the error correcting capability
of the code.

• The weight distribution of a code allows the computation of the error probability of error detection
and correction with respect to some algorithms [12].

The problem of determining the weight distribution of linear codes is in general very difficult and remains
open for most linear codes. For only a few special classes theweight distribution is known. For example,
the weight distribution of some irreducible cyclic codes isknown ([1], [2], [3], [17], [8], [22]). For cyclic
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codes with two zeros the weight distribution is known in somespecial cases ([7], [16], [11], [25], [24],
[26], [27]). The weight distribution is also known for some other linear and cyclic codes ([5], [9], [10],
[14], [15], [18], [20], [19], [23], [28], [29]).

The objectives of this paper are to describe a new class of cyclic codes with arbitrary number of zeros
and to determine their weight distributions. This paper is organized as follows. Section II defines this
class of cyclic codes. Section III introduces some mathematical tools such as group characters, cyclotomy
and Gaussian periods that will be needed later in this paper.Section IV deals with the weight distribution
of the class of cyclic codes under special conditions. Section V concludes this paper.

II. THE CLASS OF CYCLIC CODES

From now on, we make the following assumptions for the rest ofthis paper.

The Main Assumptions: Let r = qm = psm be a prime power for some positive integerss,m and let
e > t > 2. Assume that

i) a 6≡ 0 (mod r − 1) and e|(r − 1);
ii) ai ≡ a+ r−1

e
∆i (mod r − 1), 1 6 i 6 t, where∆i 6≡ ∆j (mod e) for any i 6= j and

gcd(∆2 −∆1, . . . ,∆t −∆1, e) = 1;
iii) deg ha1(x) = · · · = deg hat(x) = m, and hai(x) 6= haj (x) for any 1 6 i 6= j 6 t, whereha(x) is the

minimal polynomial ofγ−a over Fq. �

We remark that Condition iii) can be met by a simple criterionstated in Lemma 6. From what follows,
define

δ = gcd(r − 1, a1, a2, · · · , at), n =
r − 1

δ

and

N = gcd

(

r − 1

q − 1
, ae

)

.

It is easy to verify that
eδ | N(q − 1).

The class of cyclic codes considered in this paper is defined by

C =







c(x1, x2, · · · , xt) =
(

Trr/q

(

t
∑

j=1

xjγ
aj i

))n−1

i=0

: x1, · · · , xt ∈ Fr







, (1)

whereTrr/q denotes the trace map fromFr to Fq. It follows from Delsarte’s Theorem [6] that the code
C is an [n, tm] cyclic code overFq with parity-check polynomialh(x) = ha1(x) · · ·hat(x). This code
C may contain many cyclic codes studied in the literature as special cases. In particular, whent = 2,
a0 = q−1

h
, a1 = q−1

h
+ r−1

e
for positive integerse, h such thate|h and h|(q − 1), the codeC has been

studied in [16], [7], [25], [26], [27], [11].
In the definition ofC we choose integersa1, a2, · · · , at from a set of arithmetic sequence with common

differencer−1
e

modulor−1. This choice of theseai’s allows us to compute the weight distribution of the
codeC. If the integersai are not chosen in this way, it might be difficult to find the weight distribution.
The conditions in the Main Assumptions are to guarantee thatthe dimension ofC is equal tomt.
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III. GROUP CHARACTERS, CYCLOTOMY AND GAUSSIAN PERIODS

Let Trr/p denote the trace function fromFr to Fp. An additive characterof Fr is a nonzero function
ψ from Fr to the set of complex numbers such thatψ(x+ y) = ψ(x)ψ(y) for any pair(x, y) ∈ F2

r. For
eachb ∈ Fr, the function

ψb(c) = e2π
√
−1Trr/p(bc)/p for all c ∈ Fr (2)

defines an additive character ofFr. Whenb = 0, ψ0(c) = 1 for all c ∈ Fr, and is called thetrivial additive
characterof Fr. When b = 1, the characterψ1 in (2) is called thecanonical additive characterof Fr.
For anyx ∈ Fr, one can easily check the following orthogonal property of additive characters, which we
need in the sequel,

1

r

∑

x∈Fr

ψ(ax) =

{

1, if a = 0;
0, if a ∈ F∗

r.
(3)

Let r− 1 = lL for two positive integersl > 1 andL > 1, and letγ be a fixed primitive element ofFr.
DefineC(L,r)

i = γi〈γL〉 for i = 0, 1, ..., L− 1, where〈γL〉 denotes the subgroup ofF∗
r generated byγL.

The cosetsC(L,r)
i are called thecyclotomic classesof orderL in Fr. Thecyclotomic numbersof orderL

are defined by

(i, j)(L,r) =
∣

∣

∣
(C

(L,r)
i + 1) ∩ C(L,r)

j

∣

∣

∣

for all 0 6 i, j 6 L− 1.
Cyclotomic numbers of order 2 are given in the following lemma [4] and will be needed in the sequel.

Lemma 1. The cyclotomic numbers of order 2 are given by
• (0, 0)(2,r) = (r−5)

4
; (0, 1)(2,r) = (1, 0)(2,r) = (1, 1)(2,r) = (r−1)

4
if r ≡ 1 (mod 4); and

• (0, 0)(2,r) = (1, 0)(2,r) = (1, 1)(2,r) = (r−3)
4

; (0, 1)(2,r) = (r+1)
4

if r ≡ 3 (mod 4).

The Gaussian periodsof orderL are defined by

η
(L,r)
i =

∑

x∈C(L,r)
i

ψ(x), i = 0, 1, ..., L− 1,

whereψ is the canonical additive character ofFr.
The values of the Gaussian periods are in general very hard tocompute. However, they can be computed

in a few cases. We will need the following lemmas whose proofscan be found in [4] and [21].

Lemma 2. WhenL = 2, the Gaussian periods are given by

η
(2,r)
0 =

{

−1+(−1)s·m−1r1/2

2
, if p ≡ 1 (mod 4)

−1+(−1)s·m−1(
√
−1)s·mr1/2

2
, if p ≡ 3 (mod 4)

and η(2,r)1 = −1− η
(2,r)
0 .

Lemma 3. Let L = 3. If p ≡ 1 (mod 3), and sm ≡ 0 (mod 3), then










η
(3,r)
0 = −1−c1r1/3

3

η
(3,r)
1 =

−1+ 1
2
(c1+9d1)r1/3

3

η
(3,r)
2 =

−1+ 1
2
(c1−9d1)r1/3

3
.

wherec1 and d1 are given by4ps·m/3 = c21 + 27d21, c1 ≡ 1 (mod 3) and gcd(c1, p) = 1.
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In a special case, the so-calledsemiprimitive case, the Gaussian periods are known and are described
in the following lemma [2], [21].

Lemma 4. Assume thatL > 2 and there exists a positive integerj such thatpj ≡ −1 (mod L), and the
j is the least such. Letr = p2jv for some integerv.

(a) If v, p and (pj + 1)/L are all odd, then

η
(L,r)
L/2 = (L−1)

√
r−1

L
, η

(L,r)
k = −

√
r+1
L

for k 6= L/2.

(b) In all other cases,

η
(L,r)
0 = (−1)v+1(L−1)

√
r−1

L
, η

(L,r)
k = (−1)v

√
r−1

L
for k 6= 0.

In another special case, the so-calledquadratic residue (or index 2) case, the Gaussian periods can be
also computed. The results below are from [3] or [8].

Lemma 5. Let 3 6= L ≡ 3 (mod 4) be a prime,p be a quadratic residue moduloL and L−1
2

· k = sm
for some positive integerk. Let hL be the ideal class number ofQ(

√
−L) and a, b be integers satisfying







a2 + Lb2 = 4phL

a ≡ −2p
L−1+2hL

4 (mod L)
b > 0, p ∤ b.

(4)

Then, the Gaussian periods of orderL are given by










η
(L,r)
0 = 1

L
(P (k)A(k)(L− 1)− 1)

η
(L,r)
u = η1 =

−1
L
(P (k)A(k) + P (k)B(k)L+ 1), if

(

u
L

)

= 1

η
(L,r)
u = η−1 =

−1
L
(P (k)A(k) − P (k)B(k)L+ 1), if

(

u
L

)

= −1,

(5)

where 









P (k) = (−1)k−1p
k
4
(L−1−2hL)

A(k) = Re(a+b
√
−L

2
)k

B(k) = Im(a+b
√
−L

2
)k
/√

L.

(6)

IV. THE WEIGHT DISTRIBUTIONS OF THIS CLASS OF CODES UNDER CERTAINCONDITIONS

We first provide the following criterion that guarantees Condition iii) in the Main Assumptions.

Lemma 6. (a) Suppose that for any proper factorℓ of m (i.e. ℓ | m and ℓ < m) we have

r − 1

qℓ − 1
∤ N.

Then Condition iii) in the Main Assumptions holds.
(b) In particular, if N 6

√
r, then Condition iii) in the Main Assumptions is met.

Proof: Suppose Condition iii) does not hold, then there exists a positive integerh < m such that

aiq
h ≡ aj (mod r − 1)

for some1 6 i, j 6 t. Reducing modulo(r − 1)/e we obtain that

aqh ≡ a (mod
r − 1

e
). (7)

Hence(r− 1) | ae(qh − 1). Sincegcd(r− 1, qh − 1) = qℓ − 1 whereℓ = gcd(h,m), it then follows from
(7) that

r − 1

qℓ − 1

∣

∣

∣

∣

ae. (8)
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Hence
r − 1

qh − 1
= gcd

(

r − 1

q − 1
,
r − 1

qℓ − 1

) ∣

∣

∣

∣

gcd

(

r − 1

q − 1
, ae

)

= N.

Sinceℓ|m and ℓ < m, this contradicts the condition of the lemma. Thus Part (a) is proved.
Part (b) of Lemma 6 can be derived from Part (a) directly. For any proper factorℓ of m, we have

ℓ 6 m/2. Thus r−1
qℓ−1

can not be a divisor ofN which is at most
√
r because

r − 1

qℓ − 1
>

r − 1√
r − 1

=
√
r + 1.

This completes the proof of Lemma 6.
We now consider the weight distribution of the cyclic codeC given in (1). In order to find the Hamming

weight of the codewordc(x1, · · · , xt), it suffices to consider a new codewordc′(x1, · · · , xt) given by

c′(x1, . . . , xt) =

(

Trr/q

(

t
∑

j=1

xjγ
aj i

))r−2

i=0

,

because clearlyc′(x1, · · · , xt) is the codewordc(x1, · · · , xt) repeating itselfδ times and hence

wH(c(x1, · · · , xt)) =
wH(c

′(x1, · · · , xt))
δ

.

Let ψq(x) = exp(2π
√
−1Trq/p(x)/p) be the canonical additive character ofFq. Thenψ = ψq ◦ Trr/q

is the canonical additive character ofFr. Using the orthogonal relation (3), we know that the Hamming
weight of the codewordc′(x1, · · · , xt) is given by

wH(c
′(x1, · · · , xt))

= r − 1−
r−2
∑

i=0

1

q

∑

y∈Fq

ψq[yTrr/q(x1γ
a1i + · · ·+ xtγ

ati)]

= r − 1− r − 1

q
− 1

q

∑

y∈F∗

q

r−2
∑

i=0

ψ[yγai(x1γ
(a1−a)i + · · ·+ xtγ

(at−a)i)]

=
(r − 1)(q − 1)

q
− 1

q

∑

y∈F∗

q

r−2
∑

i=0

ψ[yγai(x1γ
r−1
e

∆1i + · · ·+ xtγ
r−1
e

∆ti)]

From Condition i) of the Main Assumptions, we know thate | (r − 1), hence we can writei = ej + h
for 0 6 j 6 r−1

e
− 1 and0 6 h 6 e− 1. Denote

βτ = γ
r−1
e

∆τ for 1 6 τ 6 t, andg = γa. (9)

Hence

wH(c
′(x1, · · · , xt))

=
(r − 1)(q − 1)

q
− 1

q

∑

y∈F∗

q

r−1
e

−1
∑

j=0

e−1
∑

h=0

ψ[yγaejγah(x1β
h
1 + · · ·+ xtβ

h
t )].

=
(r − 1)(q − 1)

q
− 1

q

q−2
∑

l=0

r−1
e

−1
∑

j=0

e−1
∑

h=0

ψ[γN{ r−1
N(q−1)

l+ ae
N

j}gh(x1β
h
1 + · · ·+ xtβ

h
t )],
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where we definedN = gcd( r−1
q−1

, ae) in Section II. For eachX (mod r−1
N

), we consider the number of
solutions(l, j) with 0 6 l 6 q − 2, 0 6 j 6 r−1

e
− 1 such that

r − 1

N(q − 1)
l +

ae

N
j ≡ X (mod

r − 1

N
). (10)

Reducing modulo r−1
N(q−1)

, we find that

ae

N
j ≡ X (mod

r − 1

N(q − 1)
).

This has a unique solution forj modulo r−1
N(q−1)

, hence the number ofj for 0 6 j 6 r−1
e

− 1 that satisfies
the equation is

(r − 1)/e

(r − 1)/N(q − 1)
=
N(q − 1)

e
.

For each such solutionj, returning to Equation (10), we find

l ≡ x− ae
N
j

(r − 1)/N(q − 1)
(mod q − 1),

this means there is a unique suchl with 0 6 l 6 q − 2. Therefore

wH(c
′(x1, · · · , xt))

=
(r − 1)(q − 1)

q
− N(q − 1)

eq

e−1
∑

h=0

r−1
N

−1
∑

X=0

ψ[γNXgh(

t
∑

τ=1

xτβ
h
τ )]

=
(r − 1)(q − 1)

q
− N(q − 1)

eq

e−1
∑

h=0

∑

z∈C(N,r)
0

ψ[zgh(
t
∑

τ=1

xτβ
h
τ )]

=
(r − 1)(q − 1)

q
− N(q − 1)

eq

e−1
∑

h=0

η̄
(N,r)

gh·
t∑

τ=1
xτβh

τ

.

Here we writeη̄(N,r)
v =

∑

z∈C(N,r)
0

ψ(vz) for any v ∈ Fr and call thesēη(N,r)
v the modified Gaussian periods,

since
{

η̄
(N,r)
0 = r−1

N

η̄
(N,r)

γi = η
(N,r)
i for 0 6 i 6 N − 1,

where theseη(N,r)
i are the classical Gaussian periods. We conclude that

wH(c(x1, · · · , xt)) =
(r − 1)(q − 1)

qδ
− N(q − 1)

eqδ

e−1
∑

h=0

η̄
(N,r)

gh·
t∑

τ=1
xτβh

τ

.

Thus, to compute the weight distribution of cyclic codeC, it suffices to compute the value distribution
of the sum

T (x1, · · · , xt) :=
e−1
∑

h=0

η̄
(N,r)

gh·
∑t

τ=1 xτβh
τ
. (11)

This is in general a difficult problem. We will deal with it forsome special cases in the next two
subsections.
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A. The case oft = e > 2

In this case the set{∆i : 1 6 i 6 e} is a complete residue system moduloe, so we may take
∆1 = 0,∆2 = 1, · · · ,∆e = e − 1. Defineβ := β2, thenβ = γ(r−1)/e is an e-th root of unity inFr and
βi = βi−1 for 1 6 i 6 t. We now present a key observation, which enables us to count the frequency of
the weights in a simple and clear way. Consider the linear transformϕ : Fe

r → Fe
r given by

ϕ









x1
x2
...
xe









=













1 1 · · · 1
1 β · · · βe−1

1 β2 · · · β2(e−1)

...
...

...
1 βe−1 · · · β(e−1)2





















x1
x2
...
xe









=









y0
y1
...
ye−1









. (12)

Since1, β, β2, · · ·βe−1 are distinct, the Vandermonde matrix

A :=













1 1 · · · 1
1 β · · · βe−1

1 β2 · · · β2(e−1)

...
...

...
1 βe−1 · · · β(e−1)2













(13)

is invertible. We then have the following observation.

Observation A: The mapϕ is an isomorphism fromFe
r to Fe

r. Theny0, · · · , ye−1 independently run over
Fr asx1, · · · , xe run overFr. �

Observation A means that it suffices to study the value distribution of

T̃ (y0, · · · , ye−1) :=
e−1
∑

h=0

η̄
(N,r)

ghyh
, ∀(y0, · · · , ye−1) ∈ Fe

r.

1) The subcase oft = e andN = 1: WhenN = 1, we haveeδ | (q − 1), C(1,r)
0 = 〈γ〉 = F∗

r, and

η̄(1,r)v =

{

r − 1, if v = 0
−1, if v ∈ F∗

r.

Hence the valuẽT (y0, · · · , ye−1) depends only on the total number ofi’s such thatyi = 0. Denote this
number byu where0 6 u 6 e. Then

T̃ (y0, · · · , ye−1) = u(r − 1) + (e− u)(−1) = ur − e,

and the number of times that̃T takes this value for such(y0, . . . , ye−1)’s is clearly
(

e
u

)

(r − 1)e−u. Thus,
we have the result below.

Theorem 7. Under the Main Assumptions, whenN = 1 and e = t > 2, the setC defined by (1) is an
e-weight [n, tm, (q−1)r

δeq
] cyclic code. The weight distribution ofC is listed in Table I.

TABLE I
THE WEIGHT DISTRIBUTION OFC WHEN N = 1 AND e = t > 2.

Weight Frequency (0 6 u 6 e)
(q−1)r
δeq

· u
(

e
u

)

(r − 1)u times
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Example 8. Let (q,m, e, t) = (3, 3, 2, 2). Let γ be the generator ofF∗
r with γ3 + 2γ + 1 = 0. Let a = 1.

ThenN = 1, (a1, a2) = (1, 14) and

ha1(x) = x3 + 2x2 + 1, ha2(x) = x3 + x2 + 2.

The parity-check polynomial ofC is thenh(x) = x6 + 2x4 + 2x2 + 2. The codeC is a [26, 6, 9] ternary
cyclic code with weight enumerator1 + 52z9 + 676z18.

2) The subcase oft = e andN > 2: In this case, we first give a general result stated in the following
theorem.

Theorem 9. Suppose that the Gaussian periodsη(N,r)
i of orderN haveµ distinct values{η1, η2, · · · , ηµ},

and eachηi corresponds toτi cyclotomic classes for1 6 i 6 µ. (Note thatτ1 + · · ·+ τµ = N .) Then the
cyclic codeC defined in (1) is an[n, em] code overFq with at most

(

µ+e
e

)

−1 nonzero weights. Moreover,
for any non-negative integersu0, u1, · · · , uµ such that

∑µ
j=0 uj = e, the weight distribution ofC is listed

in Table II.

TABLE II
THE WEIGHT DISTRIBUTION OFC WHEN e = t,N > 2.

Weight Frequency (
∑µ

j=0 uj = e)

(q−1)
δeq

µ
∑

j=1

uj(r − 1−Nηj)
e!

u0!u1!···uµ!

(

r−1
N

)e−u0
∏µ

j=1 τ
uj

j times

Proof: We just need to compute the value distribution ofT̃ (y0, y1, · · · , ye−1). By Observation A,
y0, gy1, · · · , ge−1ye−1 run over eachC(N,r)

i (0 6 i 6 N−1) independently and uniformly. Suppose among
the giyi’s, exactlyu0 of them takes on0 andui of them correspond toτi cyclotomic classes with valueηi
for 1 6 i 6 µ respectively. TheñT (y0, y1, · · · , ye−1) has at most

(

µ+e
e

)

possible values. More precisely,
it takes on the value

u0η̄0 +

µ
∑

j=1

ujηj = u0
r − 1

N
+

µ
∑

j=1

ujηj .

with the frequency of
(

e

u0

)(

e− u0
u1

)(

e− u0 − u1
u2

)

· · ·
(

uµ−1 + uµ
uµ−1

)(

r − 1

N

)e−u0 µ
∏

j=1

τ
uj

j times.

Expanding the binomial coefficients, we obtain the desired conclusion.
In theory, whent = e and the Gaussian periods of orderN are known, by Theorem 9 the weight

distribution of the cyclic codeC might be formulated. However, the situation could be quite complicated
whene is large or the Gaussian periods have many different values.We list below some special cases in
which the weight distribution can be obtained from Theorem 9.

If N = gcd( r−1
q−1

, ae) = 2, thenp, q, r are all odd and2|m. By Lemma 2, the Gaussian periods of order

2 take on two distinct valuesη1 = −1+r1/2

2
, η2 = −1−r1/2

2
, each of which corresponds toτ1 = τ2 = 1

cyclotomic class. Hence we have the following corollary.

Corollary 10. Whent = e andN = 2, the cyclic codeC of (1) is an[n, em] code overFq with at most
(

e+2
2

)

− 1 nonzero weights. Moreover, the weight distribution ofC is listed in Table III.

We remark that Theorem 6 in [16] is a special case of Corollary10 with e = t = N = 2.

Example 11. Let (q,m, e, t) = (7, 2, 2, 2). Let γ be the generator ofF∗
r with γ2 +6γ+3 = 0. Let a = 1.

ThenN = 2, (a1, a2) = (1, 25) and

ha1(x) = x2 + 2x+ 5, ha2(x) = x2 + 5x+ 5.
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TABLE III
THE WEIGHT DISTRIBUTION OFC WHEN e = t,N = 2.

Weight Frequency(u0 + u1 + u2 = e)
(q−1)
δeq

[u1(r +
√
r) + u2(r −

√
r)] e!

u0!u1!u2!

(

r−1
2

)u1+u2 times

The parity-check polynomial ofC is thenh(x) = x4 + 6x2 + 4. The codeC is a [48, 4, 18] cyclic code
overF7 with weight enumerator1 + 48z18 + 48z24 + 576z36 + 1152z42 + 576z48.

If N | (pj + 1) for some positive integerj, let j be the least such and letv = sm/2j. From Lemma
4, the Gaussian periods of orderN take on two distinct valuesη1 =

−1−(−1)v(N−1)r1/2

N
, η2 =

−1+(−1)vr1/2

2
,

which correspond toτ1 = 1 andτ2 = N−1 cyclotomic classes respectively. Hence we have the following
corollary.

Corollary 12. Whent = e andN | (pj + 1) for some positive integerj, let j be the least such and let
v = sm/2j, Then the cyclic codeC of (1) is an [n, em] code overFq with at most

(

e+2
2

)

− 1 nonzero
weights. The weight distribution ofC is listed in Table IV.

TABLE IV
THE WEIGHT DISTRIBUTION OFC IN SEMIPRIMITIVE CASE AND e = t.

Weight Frequency(u0 + u1 + u2 = e)
(q−1)
δeq

[u1(r + (−1)v(N − 1)
√
r) + u2(r − (−1)v

√
r)] e!

u0!u1!u2!

(

r−1
2

)u1+u2 (N − 1)u2 times

We remark that Theorems 7 and 8 in [7] is a special case of Corollary 12 with e = t = 2.

Example 13. Let (q,m, e, t) = (5, 2, 3, 3). Let γ be the generator ofF∗
r with γ2 +4γ+2 = 0. Let a = 1.

ThenN = 3, (a1, a2, a3) = (1, 9, 17) and

ha1(x) = x2 + 2x+ 3, ha2(x) = x2 + 3, ha3(x) = x2 + 3x+ 3.

The parity-check polynomial ofC is thenh(x) = x6 + 2. The codeC is a [24, 6, 4] cyclic code overF5

with weight enumerator

1 + 24z4 + 240z8 + 1280z12 + 3840z16 + 6144z20 + 409624.

If N = 3 andp ≡ 1 (mod 3), then3|m. By Lemma 3, the Gaussian periods of order 3 take on three

distinct valuesη1 = −1−c1r1/3

3
, η2 =

−1+ 1
2
(c1+9d1)r1/3

3
, η3 =

−1+ 1
2
(c1−9d1)r1/3

3
, each of which corresponds to

τ1 = τ2 = 1 cyclotomic class, wherec1 and d1 are given by Lemma 3. Hence we have the following
result.

Corollary 14. Whent = e, N = 3 and p ≡ 1 (mod 3), the cyclic codeC of (1) is an[n, em] code over
Fq with at most

(

e+3
3

)

− 1 nonzero weights. Moreover, the weight distribution ofC is listed in Table V,
whereη0, η1, η2 are defined above.

We remark that Theorem 9 in [7] is a special case of Corollary 14 with e = t = 2 andN = 3.

Example 15. Let (q,m, e, t) = (7, 3, 3, 3). Let γ be the generator ofF∗
r with γ3+6γ2+4 = 0. Let a = 1.

ThenN = 3, (a1, a2, a3) = (1, 115, 229) and

ha1(x) = x3 + 5x+ 2, ha2(x) = x3 + 3x+ 2, ha3(x) = x3 + 6x+ 2.
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TABLE V
THE WEIGHT DISTRIBUTION OFC WHEN e = t,N = 3.

Weight Frequency(u0 + u1 + u2 + u3 = e)
(q−1)
δeq

∑3
j=1 uj(r − 1− 3ηj)

e!
u0!u1!u2!u3

(

r−1
3

)u1+u2+u3 times

The parity-check polynomial ofC is thenh(x) = x9 + 6x6 + 4x3 + 1. The codeC is a [342, 9, 90] cyclic
code overF7 with weight enumerator

1 + 342z90 + 342z96 + 342z108 + 38988180 + 77976z186 + 38988z192 + 77976z198 +

77976z204 + 38988z216 + 1481544z270 + 4444632z276 + 4444632z282 + 5926176288 +

8889264z294 + 4444632z300 + 4444632z306 + 4444632z312 + 1481544z324.

If 3 6= N = gcd( r−1
q−1

, ae) is a prime≡ 3 (mod 4), p is a quadratic residue moduloN and N−1
2

| sm,

let k = 2sm
N−1

, then, according to Lemma 5, the Gaussian periods take on three valuesη1 = η
(N,r)
0 , η2 =

η
(N,r)
1 , η3 = η

(N,r)
−1 , which corresponds toτ1 = 1 andτ2 = τ3 = (N − 1)/2 cyclotomic classes respectively.

Hence we have the following corollary.

Corollary 16. If t = e, 3 6= N ≡ 3 (mod 4) is a prime,p is a quadratic residue moduloN and N−1
2

| sm,
let k = 2sm

N−1
. Then the cyclic codeC defined in (1) is an[n, em] code with at most

(

e+3
3

)

− 1 nonzero
weights, and for each set{u0, u1, u2, u3} of nonnegative integers withu0 + u1 + u2 + u3 = e, the weight
distribution ofC is listed in the Table VI, whereη1, η2, η3 are defined above.

TABLE VI
THE WEIGHT DISTRIBUTION OFC IN THE CASE OF INDEX2 AND e = t.

Weight Frequency(u0 + u1 + u2 + u3 = e)
(q−1)

q
[ e−u0

δe
(r − 1)− N

δe
(u1η1 + u2η2 + u3η3)]

e!
u0!u1!u2!u3

(

r−1
N

)e−u0
(

N−1
2

)u2+u3 times

We remark that the main result in [11] is a special case of Corollary 16 with e = t = 2.

Example 17. Let (q,m, e, t) = (2, 6, 7, 7). Let γ be the generator ofF∗
r with γ6 + γ4 + γ3 + γ +

1 = 0. Let a = 1. ThenN = 7 and p = 2, which is a quadratic residue moduloN . In this case,
(a1, a2, a3, a4, a5, a6, a7) = (1, 10, 19, 28, 37, 46, 55) and

ha1(x) = x6 + x5 + x3 + x2 + 1,

ha2(x) = x6 + x5 + 1,

ha3(x) = x6 + x5 + x2 + x+ 1,

ha4(x) = x6 + x3 + 1,

ha5(x) = x6 + x5 + x4 + x+ 1,

ha6(x) = x6 + x+ 1,

ha7(x) = x6 + x4 + x3 + x+ 1.

The parity-check polynomial ofC is thenh(x) = x42 + x21 + 1. The codeC is a [63, 42, 2] cyclic code
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overF2 with weight enumerator

1 + 63z2 + 1890z4 + 35910z6 + 484785z8 + 4944807z10 + 39558456z12 + 254304360z14 +

1335097890z16 + 5785424190z18 + 20827527084z20 + 62482581252z22 +

156206453130z24 + 324428787270z26 + 556163635320z28 + 778629089448z30 +

875957725629z32 + 772903875555z34 + 515269250370z36 + 244074908070z38 +

73222472421z40 + 10460353203z42.

B. The case of2 6 t < e.

In this section, we consider the case that2 6 t 6 e. The t zeros of the parity-check polynomial of
C are γ−a1 , . . . , γ−at, whereaj ≡ a + r−1

e
∆j (mod r − 1), 1 6 j 6 t. We may assume that0 6 ∆1 <

∆2 < ∆3 < · · · < ∆t 6 e − 1. Note that eachaj corresponds to the(∆j + 1)-th column of the matrix
A defined in (13). This is equivalent to choosing ane × t sub-matrix ofA, denoted asB. It is possible
to choose these∆i’s so that anyt rows of the matrixB are linear independent overFq. The following
lemma demonstrates one way of choosing such∆i’s.

Lemma 18. Let 2 6 t 6 e. Collect anyt consecutive columns (moduloe) of A defined in (13) to form
matrix B. More specifically, for anyρ such that1 6 ρ 6 e, collect theρ̄-th,(ρ+ 1)-th,· · · ,(ρ+ t− 1)-th
columns ofA to form B, where ī denotes the integer such that1 6 ī 6 e and ī ≡ i (mod e) for any
integer i. Then anyt rows ofB are Fq-linear independent.

Proof: For 0 6 i1 < i2 < · · · < it 6 e− 1, supposeB(i1, · · · , it) is the(t× t)-matrix constituted by
the i1-th,· · · ,it-th rows ofB. Then,

B(i1, · · · it) =











βi1ρ̄ βi1(ρ+1) · · · βi1(ρ+t−1)

βi2ρ̄ βi2(ρ+1) · · · βi2(ρ+t−1)

...
...

...
βitρ̄ βit(ρ+1) · · · βit(ρ+t−1)











=









βi1ρ

βi2ρ

. . .
βitρ



















1 βi1 · · · βi1(t−1)

1 βi2 · · · βi2(t−1)

...
...

...
1 βit · · · βit(t−1)











Since the last matrix in the above formula is a Vandermoned matrix and 1, β, β2, · · · , βe−1 are nonzero
and distinct,B(i1, · · · , it) is invertible. This completes the proof of the lemma.

1) The subcase of2 6 t 6 e andN = 1:

Theorem 19. Under the Main Assumptions, whenN = 1 and 2 6 t 6 e, and assume that anyt rows of
the corresponding matrixB are linearly independent. Then the weight distribution of the cyclic codeC
defined in (1) is listed in Table VII. It is at-weight [n, tm, d] code withd = (q−1)r

δeq
(e− t+ 1).

TABLE VII
THE WEIGHT DISTRIBUTION OFC WHEN N = 1 AND 2 6 t 6 e.

Weight Frequency(1 6 u 6 t)
(q−1)r
δeq

· (e− t+ u)
(

e
t−u

)
∑u−1

k=0(−1)k
(

e−t+u
k

)

(ru−k − 1) times
0 once
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Proof: It suffices to compute the value distribution ofT (x) for x = (x1, . . . , xt) ∈ Ft
r. For anyh

with 1 6 h 6 t, define

Lh :=

{

x = (x1, . . . , xt) ∈ Ft
r :

t
∑

i=1

xiβ
h
i = 0

}

,

and for any subsetE ⊂ {0, 1, . . . , e− 1}, define

Ē := {0, 1, . . . , e− 1} \ E.
We also define

NE :=
⋂

h∈E
Lh \ {0}, UE :=

⋃

h∈E
Lh.

WhenN = 1, the modified Gaussian periods have two possible valuesη̄
(1,r)
v =

{

r − 1, if v = 0;
−1, if v ∈ F∗

r.
Hence by (11), for anyx ∈ NE \ UĒ , we have

T (x) = (#E)(r − 1) + (e−#E)(−1) = (#E)r − e.

So we only need to compute the order of the setNE \ UĒ for anyE ⊂ {0, 1, . . . , e− 1} with #E fixed.
Since anyt rows ofB are linearly independent, andNE is a vector space overFr minus the origin, we
have

NE = ∅ if #E > t.

Now suppose#E = t− u for some1 6 u 6 t, then#Ē = e− t+ u, and we have#NE = ru − 1. For
eachh ∈ Ē, for simplicity we define

Eh := NE

⋂

Lh = NE
⋃
{h},

then clearly
NE

⋂

UĒ =
⋃

h∈Ē

(

NE

⋂

Lh

)

=
⋃

h∈Ē

Eh.

It then follows from the inclusion-exclusion principle that

#
(

NE

⋂

UĒ

)

=
u
∑

k=1

(−1)k+1







∑

i1,...,ik∈Ē
distinct

#
(

Ei1

⋂

Ei2 · · ·
⋂

Eik

)






.

Since
#
(

Ei1

⋂

Ei2

⋂

· · ·
⋂

Eik

)

= #
(

NE
⋃
{i1,...,ik}

)

= ru−k − 1,

and#Ē = e− t + u, we have

#
(

NE

⋂

UĒ

)

=

u
∑

k=1

(−1)k+1

(

e− t+ u

k

)

(ru−k − 1).

We conclude that

#(NE − UĒ) = #NE −#
(

NE

⋂

UĒ

)

=
u−1
∑

k=0

(−1)k
(

e− t + u

k

)

(ru−k − 1).

The number of subsetsE ⊂ {0, 1, . . . , e− 1} such that#E = t− u is clearly
(

e
t−u

)

. This completes the
proof of Theorem 19.
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Remark 20. (1). Whene = t, it is easy to check that
(

e

e− u

) u−1
∑

k=0

(−1)k
(

u

k

)

(ru−k − 1) =

(

e

u

)

(r − 1)u.

This is consistent with Theorem 7.
(2). Whent = 2, e > 2, Theorem 5 in [16] is a special case of our Theorem 19.
(3). Lemma 18 justifies the usefulness of Theorem 19.

Example 21. Let (q,m, e, t) = (5, 3, 4, 3). Let γ be the generator ofF∗
r with γ3 + 3γ + 3 = 0. Let a = 1

and (∆1,∆2,∆3) = (0, 1, 2). ThenN = 1, (a1, a2, a3) = (1, 32, 63) and

ha1(x) = x3 + x2 + 2, ha2(x) = x3 + 3x2 + 4, ha3(x) = x3 + 4x2 + 3.

The parity-check polynomial ofC is thenh(x) = x9 + 3x8 + 4x7 + x6 + x5 + 4x4 + x3 + 2x2 + 4. The
codeC is a [124, 9, 50] cyclic code overF5 with weight enumerator

1 + 744z50 + 61008z75 + 1891372z100.

2) The subcase of2 6 t 6 e and N > 2: When t 6 e andN > 2, the calculation is much more
complicated, because there are more Gaussian periods to deal with, so a general result, like Theorem 9,
could not be obtained. However, some special cases can be treated. Recently, [25] studied the codes in
the case ofe = 3, t = 2, N = 2. They used the theory of elliptic curve. Here using the idea in this paper
we give another simple proof, in which we only use results on cyclotomic numbers of order 2.

First, take∆1 = 0,∆2 = 1. The assumption2 = N = gcd( r−1
q−1

, 3a) implies thatp, q, r are odd and

2|a, 2|m, 2|δ = gcd(r − 1, a, a+ r−1
3
). Thenβ = γ

r−1
3 , g = γa,−1 = γ

r−1
2 all belong toC(2,r)

0 . Using the
relation





1 1
1 β
1 β2





(

x1
x2

)

=





y0
y1
y2



 ,

we know that asx1, x2 run overFr, so doy0, y1, andy2 = −β(y0 + βy1). So, we just need to compute
the value distribution of

T̃ (y0, y1,−βy0 − β2y1) = η̄(2,r)y0
+ η̄(2,r)y1

+ η̄
(2,r)
y0+βy1

, (y0, y1 ∈ Fr).

If any two of y0, y1, y0 + βy1 equal to 0, then all of them equal to 0.
If exact one ofy0, y1, y0 + βy1 equals to 0, then we have the following three situations





0
y1

−β2y1



 ,





y0
0

−βy0



 or





−βy1
y1
0



 .

So in this caseT̃ (y0, y1, y0 + βy1) has two possible values̄η0 + 2η0 or η̄0 + 2η1, each of which has
frequency3(r − 1)/2.

If none of y0, y1, y0 + βy1 equals to 0. Substitutingβy1/y0 with y′1, we have




y0
y1

y0 + βy1



 = y0





1
β−1y′1
1 + y′1



 .
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Sincey′1 andβ−1y′1 belong to the sameC(2,r)
i , we have the values and frequencies ofT̃ (y0, y1, y0 + βy1)

below, where the subscripti = 0, 1 are operated modulo 2.

V alue Conditions Frequency

3η0, wheny0 ∈ C
(2,r)
0 , y′1 ∈ C

(2,r)
0 , 1 + y′1 ∈ C

(2,r)
0 ; (r−1)

2
(0, 0)(2,r) times;

3η1, wheny0 ∈ C
(2,r)
1 , y′1 ∈ C

(2,r)
0 , 1 + y′1 ∈ C

(2,r)
0 ; (r−1)

2
(0, 0)(2,r) times;

2η0 + η1, wheny0 ∈ C
(2,r)
0 , y′1 ∈ C

(2,r)
i , 1 + y′1 ∈ C

(2,r)
i+1 ,

(r−1)
2

[(0, 1)(2,r) + (1, 0)(2,r) + (1, 1)(2,r)] times;
or y0 ∈ C

(2,r)
1 , y′1 ∈ C

(2,r)
1 , 1 + y′1 ∈ C

(2,r)
1 ;

η0 + 2η1, wheny0 ∈ C
(2,r)
1 , y′1 ∈ C

(2,r)
i , 1 + y′1 ∈ C

(2,r)
i+1 ,

(r−1)
2

[(0, 1)(2,r) + (1, 0)(2,r) + (1, 1)(2,r)] times;
or y0 ∈ C

(2,r)
0 , y′1 ∈ C

(2,r)
1 , 1 + y′1 ∈ C

(2,r)
1 .

Then by Lemma 1, we have the conclusion below.

Theorem 22. If e = 3, t = 2, N = 2, then the cyclic codeC defined in (1) is an[n, 2m, 2(q−1)
3δq

(r −√
r)]

code overFq with 6 nonzero weights. The weight distribution ofC is listed in Table VIII.

TABLE VIII
THE WEIGHT DISTRIBUTION OFC WHEN e = 3, t = 2, N = 2.

Weight Frequency

0 once
2(q−1)
3qδ

(r −
√
r) 3

2
(r − 1) times

2(q−1)
3qδ

(r +
√
r) 3

2
(r − 1) times

(q−1)
qδ

(r −
√
r) 1

8
(r − 1)(r − 5) times

(q−1)
qδ

(r +
√
r) 1

8
(r − 1)(r − 5) times

(q−1)
qδ

(3r −
√
r) 3

8
(r − 1)2 times

(q−1)
qδ

(3r +
√
r) 3

8
(r − 1)2 times

Example 23. Let (q,m, e, t) = (7, 2, 3, 2). Let γ be the generator ofF∗
r with γ2 + 6γ + 3 = 0. Let a = 2

and (∆1,∆2) = (0, 1). ThenN = 2, (a1, a2) = (2, 18), δ = 2, n = 24 and

ha1(x) = x2 + 6x+ 4, ha2(x) = x2 + 3x+ 1.

The parity-check polynomial ofC is thenh(x) = x4 + 2x3 + 2x2 + 4x + 4. The codeC is a [24, 4, 12]
cyclic code overF7 with weight enumerator

1 + 72z12 + 72z16 + 264z18 + 864z20 + 864z22 + 264z24.

Note that for the case oft = e − 1 > 3, we have found a general method to count the frequency of
T̃ (y0, · · · , ye−1). However, there are too many cases to consider and a lot of computation is involved. We
leave this case for future study.

V. CONCLUSIONS

In this paper, we presented a class of cyclic codesC with arbitrary number of zeros. This construction
is an extension of earlier constructions (see for examples [16], [7], [24]). In addition, we determined the
weight distribution ofC under the Main Assumptions for the following special cases:

• t = e and the Gaussian periods of orderN are known, including the cases thatN = 1, 2, 3,
semiprimitive case and a special index 2 case.
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• t 6 e, N = gcd( r−1
q−1

, ae) = 1 and anyt rows of the matrixB are linearly independent overFq.
• t = 2, e = 3 andN = 2 (in this case, we gave a different and simple proof from the main result in

[25]).
The weight distribution of the codeC is still open in most cases whent < e. It would be good if some

of these open cases can be settled.
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