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Statistical Beamforming on the Grassmann

Manifold for the Two-User Broadcast Channel

Vasanthan Raghavan⋆, Stephen V. Hanly, Venugopal V. Veeravalli

Abstract

A Rayleigh fading spatially correlated broadcast setting with M = 2 antennas at the transmitter and

two-users (each with a single antenna) is considered. It is assumed that the users have perfect channel

information about their links whereas the transmitter has only statistical information of each user’s link

(covariance matrix of the vector channel). A low-complexity linear beamforming strategy that allocates

equal power and one spatial eigen-mode to each user is employed at the transmitter. Beamforming

vectors on the Grassmann manifold that depend only on statistical information are to be designed at

the transmitter to maximize the ergodic sum-rate deliveredto the two users. Towards this goal, the

beamforming vectors are first fixed and a closed-form expression is obtained for the ergodic sum-rate in

terms of the covariance matrices of the links. This expression is non-convex in the beamforming vectors

ensuring that the classical Lagrange multiplier techniqueis not applicable. Despite this difficulty, the

optimal solution to this problem is shown to be the solution to the maximization of an appropriately-

defined average signal-to-interference and noise ratio (SINR) metric for each user. This solution is the

dominant generalized eigenvector of a pair of positive-definite matrices where the first matrix is the

covariance matrix of the forward link and the second is an appropriately-designed “effective” interference

covariance matrix. In this sense, our work is a generalization of optimal signalling along the dominant

eigen-mode of the transmit covariance matrix in the single-user case. Finally, the ergodic sum-rate
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for the general broadcast setting withM antennas at the transmitter andM -users (each with a single

antenna) is obtained in terms of the covariance matrices of the links and the beamforming vectors.

Index Terms

Adaptive signalling, broadcast channel, information rates, MISO systems, multi-user MIMO, precoding,

spatial correlation.

I. INTRODUCTION

The last fifteen years of research in wireless communications has seen the emergence of

multi-antenna signalling as a viable option to realize highdata-rates at practically acceptable

reliability levels. While initial work on multi-antenna design was primarily motivated by the

single-user paradigm [1]–[5], more recent attention has been on the theory and practice of multi-

user multi-antenna communications [6]–[9]. The focus of this paper is on a broadcast setting

that typically models a cellular downlink. We study the multiple-input single-output (MISO)

broadcast problem where a central transmitter withM antennas communicates withM users in

the cell, each having a single antenna. Under the assumptionof perfect channel state information

(CSI) at both the transmitter and the user ends, significant progress has been made over the last

few years on understanding optimal signalling that achieves the sum-capacity [10]–[15] as well

as the capacity region [16] of the multi-antenna broadcast channel. The capacity-achievingdirty-

paper codingscheme [17] pre-nulls interference from simultaneous transmissions by other users

to a specific user and hence results in a multiplexing gain ofM .

Nevertheless, the high implementation complexity associated with dirty-paper coding [18]

makes it less attractive in standardization efforts for practical systems. The consequent search

for low-complexity signalling alternatives that are within a fixed power-offset1 of the dirty-paper

coding scheme has resulted in an array of candidate linear (as well as non-linear) precoding

techniques [19]–[27]. In particular, a linear beamformingscheme that is developed as a general-

ization of the single-user beamforming scheme has attracted significant attention in the literature.

Specifically, a scheme where the transmitter allocates one eigen-mode to each user and shares

the power budget equally among all the users is the focus of this work.

If perfect CSI is available at both the ends, instantaneous nulls can be created in the interference

sub-space of each user (or interference can be zeroforced) and thus this scheme remains order-

optimal with respect to the dirty-paper coding scheme [23].However, the practical utility of the

linear beamforming scheme is dependent on how gracefully its performance degrades with the

1Two schemes are within a fixed power-offset if the differencein power level necessary to achieve a fixed rate with the two

schemes stays bounded independent of the rate.
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quality of CSI at the transmitter. This is because while reasonably accurate CSI can be obtained

at the user end via pilot-based training schemes, CSI at the transmitter requires either channel

reciprocity or reverse link feedback, both of which put an overwhelming burden on the operating

cost [9]. In the extreme (and pessimistic) setting of no CSI at the transmitter, the multiplexing

gain reduces to1 (that is, it is lost completely relative to the perfect CSI case).

In practice, the channel evolves fairly slowly on a statistical scale and it is possible to learn

the spatial statistics2 of the individual links at the transmitter with minimal cost. With only

statistical information at the transmitter, the interference cannot be nulled out completely and

a low-complexity decoder architecture that treats interference as noise is often preferred. Initial

works assume an identity covariance matrix for all the userscorresponding to anindependent

and identically distributed(i.i.d.) fading process in the spatial domain [6]–[9]. However, this

model cannot be justified in practical systems that are oftendeployed in environments where the

scattering is localized in certain spatial directions or where antennas are not spaced wide apart

due to infrastructural constraints [28].

While signalling design for the single-user setting under avery general spatial correlation

model is now well-understood [1]–[5], the broadcast case where the channel statistics vary

across users and different users experience different covariance matrices has not received much

attention. In particular, [29] studies the problem where all the users share a common non-i.i.d.

transmit covariance matrix and captures the impact of this common covariance matrix on the

achievable rates. In [30], the authors show that second-order spatial statistics can be exploited

to schedule users that enjoy better channel quality and hence improve the overall performance

of an opportunistic beamforming scheme. In the same spirit,it is shown in [31] and [32] that

second-order moments of the channel in combination with instantaneous norm (or weighted-

norm) feedback is sufficient to extract almost all of the multi-user diversity gain in a broadcast

setting. Spatial correlation is exploited to reduce the feedback overhead of a limited feedback

codebook design in [33]–[36].

Summary of Main Contributions: With this background, the main focus of this paper is to fill

some of the gaps in understanding the information-theoretic limits of broadcast channels with

low-complexity signalling schemes (such as linear beamforming) under practical assumptions

on CSI and decoder architecture. We study the simplest non-trivial version of this problem

corresponding to the two-user (M = 2) case. We design optimal beamforming vectors on

the Grassmann manifold3 G(2, 1) to maximize the ergodic sum-rate achievable with the linear

2With a Rayleigh (or a Ricean) fading model for the MISO channel, the complete statistical information of the link is captured

by the covariance matrix (or the mean vector and the covariance matrix) of the vector channel.

3Informally, G(M, 1) denotes the space of allM -dimensional unit-norm beamforming vectors modulo the phase of the first

element of the vector. A more formal definition is provided inSec. II (Def. 1).
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beamforming scheme.

The first step to this goal is the computation of the ergodic sum-rate in closed-form. For

this, we develop insight into the structure of the density function of the weighted-norm of

beamforming vectors isotropically distributed onG(2, 1). Exploiting this knowledge, we derive

an explicit expression for the ergodic sum-rate in terms of the covariance matrices of the users

and the beamforming vectors. This expression can be rewritten in terms of a certain generalized

“distance” measure between the beamforming vectors. As a result of this complicated non-linear

dependence, the sum-rate is non-convex in the beamforming vectors thus precluding the use of the

classical Lagrangian approach to convex optimization. Instead, a first-principles based technique

is developed where the beamforming vectors are decomposed along an appropriately chosen

(in general, non-orthogonal) basis. Exploiting this decomposition structure, we obtain an upper

bound for the ergodic sum-rate, which we show is tight for a specific choice of beamforming

vectors (see Theorems 2 and 3). This optimal choice is the dominant generalized eigenvector4 of a

pair of covariance matrices, with one of them being the covariance matrix of the forward link and

the other an appropriately-designed “effective” interference covariance matrix. The generalized

eigenvector structure is the solution to maximizing an appropriately-defined average signal-to-

interference and noise ratio (SINR) metric for each user and thus generalizes our intuition from

the single-user case [1]–[5]. Table I in the Conclusions section (Sec. VI) summarizes the structure

of the optimal beamforming vectors under different signal-to-noise ratio (SNR) assumptions.

While a generalized eigenvector solution has been obtainedin the perfect CSI case for the

multiple-input multiple-output (MIMO) broadcast problem[26], [37] and the MIMO interference

channel problem in the low-interference regime [38], to thebest of our knowledge, its appearance

in the statistical setting is a first. A closely-related workof ours [39] reports the optimality of the

generalized eigenvector solution for the statistical beamformer design in the MISO interference

channel setting with two antennas. We also extend our intuition to the weighted ergodic sum-

rate maximization problem [40] and conjecture on the structure of the optimal beamforming

vectors. Numerical results justify our conjecture and the intuition behind it. Finally, closed-form

expression for the ergodic sum-rate in terms of the covariance matrices of the links and the

beamforming vectors are obtained in the generalM-user case.

Organization: This paper is organized as follows. With Section II explaining the background of

the problem, ergodic rate expressions in terms of the covariance matrices of the links and beam-

forming vectors are obtained in Section III for theM = 2 case. The non-convex optimization

problem of ergodic sum-rate maximization is the main focus of Section IV with the low- and

4A generalized eigenvector generalizes the notion of an eigenvector to a pair of matrices. A more technical definition is

provided in Sec. IV (Def. 2). The dominant eigenvector is theeigenvector corresponding to the dominant eigenvalue. Under the

assumption that the eigenvector is unit-norm, it is unique on G(M, 1).
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the high-SNR extremes providing insight for the development in the intermediate-SNR regime.

The focus shifts to weighted ergodic sum-rate maximizationin Section V. In addition, sum-rate

expressions are generalized to the generalM-user case and concluding remarks are provided in

Section VI. Most of the proofs/details are relegated to the Appendices.

Notation: We use upper- and lower-case bold symbols for matrices and vectors, respectively.

The notationsΛ andU are usually reserved for eigenvalue and eigenvector matrices whereasI

is reserved for the identity matrix (of appropriate dimensionality). Thei-th diagonal element of

Λ is denoted byΛi while the i-th element of a vectorx is denoted byx(i). At times, we also

useλ1, λ2, · · · to denote the eigenvalues of a Hermitian matrix, and these eigenvalues are often

arranged in decreasing order asλ1 ≥ λ2 ≥ · · · . The Hermitian transpose and inverse operations

of a matrix are denoted by(·)H and (·)−1 while the trace operator is denoted byTr(·). The

two-norm of a vector is denoted by the symbol‖ · ‖. The operatorE[·] stands for expectation

while the density function of a random variable is denoted bythe symbolp(·). The symbolsC

andR+ stand for complex and positive real fields, respectively.X ∼ CN (µ, σ2) indicates that

X is a complex Gaussian random variable with meanµ and varianceσ2.

II. SYSTEM SETUP

We consider a broadcast setting that models a MISO cellular downlink with M antennas

at the transmitter andM users, each with a single antenna. We denote theM × 1 vector

channel between the transmitter and useri as hi, i = 1, · · · ,M . While different multi-user

communication strategies can be considered [19]–[27], as motivated in Sec. I, the focus here

is on a linear beamforming scheme where the information-bearing signalsi meant for useri

is beamformed from the transmitter with theM × 1 unit-norm vectorwi. We assume thatsi
is unit energy and the transmitter divides its power budget5 of ρ equally across all the users.

Equal power allocation is popular in current-generation cellular standards where low-complexity

schemes are preferred. The received symbolyi at useri is written as

yi =

√
ρ

M
· hH

i

(
M∑

i=1

wisi

)
+ ni, i = 1, · · · ,M (1)

whereρ is the transmit power andni denotes theCN (0, 1) complex Gaussian noise added at

the receiver.

Initial works on the broadcast problem assume thathi is ergodic and it evolves over time and

frequency in an i.i.d. fashion, and is spatially i.i.d. While the above assumption can be justified in

the time and frequency axes with a frame-based and multi-carrier signalling approach (common

5The practically motivated power-control problem where different powers could be allocated to the different users is a related

problem, but it is not studied here.
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in current-generation systems), it cannot be justified along the spatial axis. This is because the

channel variation in the spatial (antenna) domain cannot bei.i.d. unless the antennas at the

transmitter end are spaced wide apart and the scattering environment connecting the transmitter

with the users is sufficiently rich [28]. With this motivation, the main emphasis of this work

is on understanding the impact of the users’ spatial statistics on the performance of a linear

beamforming scheme.

We assume a Rayleigh fading6 (zero mean complex Gaussian) model for the channel, which

implies that the complete spatial statistics are describedby the second-order moments of{hi}.

For the MISO model, the channelhi of useri can be written as

hi = Σ
1/2
i hiid, i (2)

wherehiid, i is anM × 1 vector with i.i.d.CN (0, 1) entries andΣi , E
[
hih

H
i

]
is the transmit

covariance matrix corresponding to useri. Note that (2) is the most general statistical model for

hi under the MISO assumption. WithΣi = I for all users, (2) reduces to the i.i.d. downlink

model well-studied in the literature [6]–[9].

Under the assumption of Gaussian inputs{si}, the instantaneous information-theoretic7 rate,

Ri, achievable by useri with the linear beamforming scheme using a mismatched8 decoder [41]

is given by

Ri = log

(
1 +

ρ
M

· |hH
i wi|2

1 + ρ
M

·∑j 6=i |hH
i wj |2

)
(3)

= log

(
1 +

ρ

M
·

M∑

j=1

|hH
i wj|2

)

︸ ︷︷ ︸
Ii, 1

− log

(
1 +

ρ

M
·
∑

j 6=i

|hH
i wj |2

)

︸ ︷︷ ︸
Ii, 2

. (4)

With the spatial correlation model assumed in (2), we can write Ii, 1 as

Ii, 1 = log

(
1 +

ρ

M
· hH

iid, iΣ
1/2
i

(
M∑

j=1

wjw
H
j

)
Σ

1/2
i hiid, i

)
(5)

= log
(
1 +

ρ

M
· hH

iid, iViΛiV
H
i hiid, i

)
, (6)

where we have used the following eigen-decomposition in (6):

ViΛiV
H
i = Σ

1/2
i

(
M∑

j=1

wjw
H
j

)
Σ

1/2
i (7)

Λi = diag
(
[Λi, 1, · · · , Λi,M ]

)
, Λi, 1 ≥ · · · ≥ Λi,M ≥ 0. (8)

6While more general fading models such as Ricean or Nakagami-m models can be considered, this paper focuses on the

Rayleigh model alone.

7All logarithms are to basee and all rate quantities are assumed to be in nats/s/Hz in this work.

8Here, the decoding rule is different from the optimal decoding rule due to the presence of multi-user interference.
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Similarly, we can writeIi, 2 as

Ii, 2 = log
(
1 +

ρ

M
· hH

iid, i Ṽi Λ̃i Ṽ
H
i hiid, i

)
(9)

Ṽi Λ̃i Ṽ
H
i = Σ

1/2
i

(
∑

j 6=i

wjw
H
j

)
Σ

1/2
i (10)

Λ̃i = diag
(
[Λ̃i, 1, · · · , Λ̃i,M ]

)
, Λ̃i, 1 ≥ · · · ≥ Λ̃i,M ≥ 0. (11)

The goal of this work is to maximize the throughput conveyed from the transmitter to the

users by the choice of beamforming vectors. Specifically, the metric of interest is the ergodic

sum-rate,Rsum, achievable with the linear beamforming scheme:

Rsum ,

M∑

i=1

E [Ri] . (12)

For this, note that the achievable rate in (3) is invariant totransformations of the formwi 7→ ejθwi

for any θ. Coupled with the unit-norm assumption forwi, the space over which optimization is

performed is precisely defined as follows.

Definition 1 (Stiefel and Grassmann Manifolds [42]): The uni-dimensional complex Stiefel

manifold St(M, 1) refers to the unit-radius complex sphere inM-dimensions and is defined as

St(M, 1) =
{
x ∈ C

M : ‖x‖ = 1
}
. (13)

The uni-dimensional complex Grassmann manifoldG(M, 1) consists of the set of one-dimensional

subspaces ofSt(M, 1). Here, a transformation of the formx 7→ ejθx (for any θ) is treated as

invariant by considering all vectors of the formejθx (for someθ) to belong to the one-dimensional

sub-space spanned byx.

The optimization objective is then to understand the structure of the beamforming vectors,

{wi, opt}, that maximizeRsum:

wi, opt = arg max
wi ∈G(M,1)

Rsum, i = 1, · · · ,M. (14)

In (14), the candidate beamforming vectors,{wi}, depend only on the long-term statistics of

the channel, which (as noted before) in the MISO setting is the set of all transmit covariance

matrices,{Σi}.

Towards the goal of computingRsum, we decomposehiid, i into its magnitude and directional

components ashiid, i = ‖hiid, i‖ · ĥiid, i. It is well-known [1] that‖hiid, i‖2 can be written as

‖hiid, i‖2 =
1

2

2M∑

j=1

χ2
j (15)
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whereχ2
j is a standard (real) chi-squared random variable andĥiid, i is a unit-norm vector that

is isotropically distributed [42], [43] onG(M, 1). Thus, we can rewriteIi, 1 andIi, 2 as

Ii, 1 = log
(
1 +

ρ

M
· ‖hiid, i‖2 · ĥH

iid, iViΛiV
H
i ĥiid, i

)
(16)

Ii, 2 = log
(
1 +

ρ

M
· ‖hiid, i‖2 · ĥH

iid, i Ṽi Λ̃i Ṽ
H
i ĥiid, i

)
. (17)

Since the magnitude and directional information of an i.i.d. random vector are independent [43],

E [Ii, 1] andE [Ii, 2] can be further written as

E [Ii, 1] = E‖hiid, i‖

[
E

ĥiid, i

[
log
(
1 +

ρ

M
· ‖hiid, i‖2 · ĥH

iid, iΛi ĥiid, i

)]]
(18)

E [Ii, 2] = E‖hiid, i‖

[
E

ĥiid, i

[
log
(
1 +

ρ

M
· ‖hiid, i‖2 · ĥH

iid, i Λ̃i ĥiid, i

)]]
, (19)

where we have also used the fact that a fixed9 unitary transformation of an isotropically distributed

vector onG(M, 1) does not alter its distribution.

III. RATE CHARACTERIZATION: TWO-USER CASE

We now restrict attention to the special case of two-users (M = 2) and focus on computing

the ergodic information-theoretic rates given in (18) and (19) in closed-form. The following

theorem computes the ergodic rates as a function of the covariance matrices of the two links

(Σ1 andΣ2), and the choice of beamforming vectors (w1 andw2).

Theorem 1:The ergodic information-theoretic rate achievable at useri (wherei = 1, 2) with

linear beamforming in the two-user case is given as

E [Ri] = E [Ii, 1]− E [Ii, 2] =
Λi, 1h

(
ρΛi, 1

2

)
−Λi, 2h

(
ρΛi, 2

2

)

Λi, 1 −Λi, 2
− h

(
ρΛ̃i, 1

2

)
(20)

whereh(•) is a monotonically increasing function defined as

h(x) , exp

(
1

x

)
E1

(
1

x

)
, x ∈ (0,∞) (21)

with E1(x) =
∫∞

x
e−t

t
dt denoting the Exponential integral [44]. The correspondingeigenvalues

(cf. (7) and (10)) can be written in terms ofΣi and the beamforming vectors as follows:

Λi, 1 =
Ai +Bi +

√
(Ai − Bi)2 + 4C2

i

2
(22)

Λi, 2 =
Ai +Bi −

√
(Ai −Bi)2 + 4C2

i

2
(23)

Λ̃i, 1 = Bi, (24)

9Note that the unitary transformation is independent of the channel realization when the beamforming vectors are dependent

only on the long-term statistics of the channel.
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whereAi = w
H
i Σiwi, Bi = w

H
j Σiwj andCi = |wH

i Σiwj| with j 6= i and{i, j} = 1, 2.

Proof: SinceE [Ri] = E [Ii, 1] − E [Ii, 2], we start by computingE [Ii, 1]. From (18), we

have

E [Ii, 1] = EX

[∫
Λi, 1

y=Λi, 2

log
(
1 +

ρ

2
· xy
)
pi(y)dy

]
(25)

whereX stands for the random variableX = ‖hiid, i‖2, x is a realization ofX andpi(y) denotes

the density function of

ĥ
H
iid, iΛi ĥiid, i =

2∑

j=1

Λi, j

∣∣∣ĥiid, i(j)
∣∣∣
2

, (26)

evaluated aty with Λi, 2 ≤ y ≤ Λi, 1. That is, a closed-form computation ofE [Ii, 1] requires the

density function of weighted-norm of vectors isotropically distributed onG(2, 1). In Lemma 1

of Appendix A, we show that

pi(y) =
1

Λi, 1 −Λi, 2

, Λi, 2 ≤ y ≤ Λi, 1. (27)

Using this information along with the chi-squared structure of ‖hiid, i‖2 (see (15)), we have

E [Ii, 1] =
1

Λi, 1 −Λi, 2
·
∫ ∞

x=0

xe−x

∫
Λi, 1

y=Λi, 2

log
(
1 +

ρ

2
xy
)
dy dx. (28)

Integrating out they variable, we have

E [Ii, 1] =
1

ρ
2
(Λi, 1 −Λi, 2)

·
∫ ∞

x=0

(
1 +

ρ

2
Λi, 1x

)
· log

(
1 +

ρ

2
Λi, 1 x

)
· e−xdx

− 1
ρ
2
(Λi, 1 −Λi, 2)

·
∫ ∞

x=0

(
1 +

ρ

2
Λi, 2 x

)
· log

(
1 +

ρ

2
Λi, 2x

)
· e−xdx− 1. (29)

Following a routine computation using the list of integral table formula [45,4.337(2), p. 572],

we have the expression forE [Ii, 1]. Particularizing this expression to the case ofE [Ii, 2] in (19)

with Λ̃i, 2 = 0 results in the rate expression as in the statement of the theorem. To complete

the proposition, an elementary computation of the eigenvalues of the associated2× 2 matrices

in (7) and (10) results in their characterization.

The increasing nature ofh(•), defined in (21), is illustrated in Fig. 1. Towards the goal of

obtaining physical intuition on the structure of the optimal beamforming vectors, it is of interest

to obtain the limiting form of the ergodic rates in the low- and the high-SNR extremes.

A. Low-SNR Extreme

Proposition 1: The ergodic rateE [Ri] can be bounded as

1− ρClow ≤ E [Ri]
ρ
2
(Λi, 1 +Λi, 2 − Bi)

≤ 1 + ρCup (30)
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Fig. 1. The behavior ofh(x) for x satisfying0 < x ≤ 25.

for some positive constantsCup andClow (not provided here for the sake of brevity) that depend

only on the eigenvaluesΛi, 1,Λi, 2 and Λ̃i, 1. Thus, asρ → 0, we have

E [Ri]

ρ

ρ→0→ 1

2
(Λi, 1 +Λi, 2 −Bi) (31)

=
Ai

2
=

w
H
i Σiwi

2
. (32)

Proof: We need the following bounds on the Exponential integral [44, 5.1.20, p. 229]:

x

1 + 2x
≤ 1

2
log
(
1 + 2x

)
≤ h(x) ≤ log

(
1 + x

)
≤ x (33)

where the extremal inequalities are established by using the fact that

x

x+ 1
≤ log(1 + x) ≤ x. (34)

Using these bounds, it is straightforward to see that the relationship in (30) holds. Note that

both the upper and lower bounds converge to the same value asρ → 0, which results in the

simplification in (32).

In the low-SNR extreme, the system is noise-limited, hence the linear scaling of E [Ri] with ρ.
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B. High-SNR Extreme

Proposition 2: As ρ → ∞, we have

E [Ri]
ρ→∞→ Λi, 1 log (Λi, 1)−Λi, 2 log (Λi, 2)

Λi, 1 −Λi, 2
− log (Bi) (35)

=
Ai +Bi

2
√
(Ai −Bi)

2 + 4C2
i

· log


Ai +Bi +

√
(Ai −Bi)

2 + 4C2
i

Ai +Bi −
√

(Ai − Bi)
2 + 4C2

i




+
1

2
log

(
AiBi − C2

i

B2
i

)
(36)

with Ai, Bi andCi as in Theorem 1.

Proof: The following asymptotic expansion [44,5.1.11, p. 229] of the Exponential integral

is useful in obtaining the limiting form ofE [Ri] asρ → ∞:

E1(x) = log

(
1

x

)
+

∞∑

k=1

(−1)k+1xk

k · k! − γ (37)

x→0→ log

(
1

x

)
+ x− γ (38)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Using the limiting valueof E1(x) to

approximateE [Ri], we have the expression in (35). ExpandingΛi, 1 andΛi, 2 in terms ofAi, Bi

andCi, we have the expression in (36).

Unlike the low-SNR extreme,E [Ri] is not a function ofρ here. The dominating impact of

interference (due to the fixed nature of the beamforming vectors that are not adapted to the

channel realizations) and the consequent boundedness ofE [Ri] in (35) asρ increases should

not be surprising.

IV. SUM-RATE OPTIMIZATION : TWO-USER CASE

We are now interested in understanding the structure of the optimal choice of beamforming

vectors(w1, opt,w2, opt) that maximizeRsum as a function ofΣ1, Σ2 and ρ. This problem is

difficult, in general. To obtain insight, we first consider the low- and the high-SNR extremes

before studying the intermediate-SNR regime.

For simplicity, let us assume an eigen-decomposition forΣ1 andΣ2 of the form

Σ1 = U diag([λ1(Σ1), λ2(Σ1)]) U
H , (39)

Σ2 = Ũ diag([λ1(Σ2), λ2(Σ2)]) Ũ
H , (40)

where U = [u1(Σ1), u2(Σ1)], Ũ = [u1(Σ2), u2(Σ2)], and λ1(Σi) ≥ λ2(Σi), i = 1, 2. In

particular, we assume that bothΣ1 andΣ2 are positive-definite, that is,λ2(Σi) > 0.
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A. Low-SNR Extreme

Proposition 3: In the low-SNR regime, from Prop. 1 we see that the maximization ofE [Ri]

involves optimizing overwi alone. Thus, we have

wi, opt = arg max
wi

Rsum = arg max
wi

w
H
i Σiwi = ejνi u1(Σi) (41)

for some choice ofνi ∈ [0, 2π), i = 1, 2. The resulting ergodic sum-rate satisfies

lim
ρ→0

Rsum

ρ
=

1

2
·
[
λ1(Σ1) + λ1(Σ2)

]
. (42)

In the low-SNR extreme, the optimal solution is such that the transmitter signals to a given

user along the dominant statistical eigen-mode of that user’s channel and ignores the other

user’s channel completely. This is a solution motivated by the single-user viewpoint where the

optimality of signalling along the dominant statistical eigen-mode of the forward channel is well-

known [1]–[5]. This solution is not surprising since in the noise-limited regime, the broadcast

channel is well-approximated by separate single-user models connecting the transmitter to each

receiver.

B. High-SNR Extreme

DefineΣ (and its corresponding eigen-decomposition) as

Σ , Σ
− 1

2

2 Σ1 Σ
− 1

2

2 = V diag ([η1 η2]) V
H (43)

whereV = [v1 v2] andη1 ≥ η2. Note thatΣ is positive-definite (η2 > 0) since bothΣ1 andΣ2

are positive-definite. The main result of this section is as follows.

Theorem 2:In the high-SNR extreme, the ergodic sum-rate is maximized by the following

choice of beamforming vectors:

w1, opt = ejν1 · Σ
− 1

2

2 v1

‖Σ− 1

2

2 v1‖
, w2, opt = ejν2 · Σ

− 1

2

2 v2

‖Σ− 1

2

2 v2‖
(44)

for some choice ofνi ∈ [0, 2π), i = 1, 2. The optimal ergodic sum-rate satisfies

lim
ρ→∞

Rsum =
κ1 log (κ1)

κ1 − 1
+

log (κ2)

κ2 − 1
(45)

where

κ1 ,
η1τ2
η2τ1

, κ2 ,
τ2
τ1
, (46)

τ1 = v
H
1 Σ

−1
2 v1, τ2 = v

H
2 Σ

−1
2 v2, τ3 = v

H
1 Σ

−1
2 v2. (47)
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Proof: The first step in our proof is to rewrite the high-SNR rate expression in a form that

permits further analysis. This is done in Appendices B and C.With the definition of{v1,v2}
as in (43), sinceΣ2 is full-rank, we can decomposew1 andw2 as

w1 =
αΣ

− 1

2

2 v1 + βΣ
− 1

2

2 v2

‖αΣ
− 1

2

2 v1 + βΣ
− 1

2

2 v2‖
(48)

w2 =
γΣ

− 1

2

2 v1 + δΣ
− 1

2

2 v2

‖γΣ− 1

2

2 v1 + δΣ
− 1

2

2 v2‖
(49)

for some choice of{α, β, γ, δ} with α = |α|ejθα (similarly, for other quantities) satisfying

|α|2 + |β|2 = |γ|2 + |δ|2 = 1. In Appendix D, we show that the ergodic sum-rate optimization

over the six-dimensional parameter space{|α|, |γ|, θα, θβ, θγ , θδ} results in the choice as in the

statement of the theorem.

Many remarks are in order at this stage.

Remarks:

1) Recall the definition of a generalized eigenvector:

Definition 2 (Generalized eigenvector [46]): A generalized eigenvectorx (with the cor-

responding generalized eigenvalueσ) of a pair of matrices(A, B) satisfies the relationship

Ax = σBx. (50)

In the special case whereB is invertible, a generalized eigenvector of the pair(A, B) is

also an eigenvector ofB−1
A. If A andB are also positive-definite, then all the generalized

eigenvalues are positive. While a unit-norm generalized eigenvector (or an eigenvector) is

not unique onSt(M, 1), it is unique onG(M, 1).

We decompose{w1,w2} in (48)-(49) along the basis10
{
Σ

− 1

2

2 v1,Σ
− 1

2

2 v2

}
instead of the

more routine basis
{
v1,v2

}
. The reason for this peculiar choice is as follows. It turns out

thatΣ
− 1

2

2 v1 andΣ
− 1

2

2 v2 are the dominant generalized eigenvectors (correspondingto the

largest generalized eigenvalue) of the pairs(Σ1, Σ2) and (Σ2, Σ1), respectively. For this

claim, we use (43) to note that

Σ
−1
2 Σ1 = Σ

− 1

2

2

(
Σ

− 1

2

2 Σ1Σ
− 1

2

2

)
Σ

1

2

2 = MDM
−1 (51)

Σ
−1
1 Σ2 =

(
Σ

−1
2 Σ1

)−1
= MD

−1
M

−1 (52)

whereM = Σ
− 1

2

2 V andD = diag
(
[η1 η2]

)
. This means that we can write

w1, opt = ejν1 · u1

(
Σ

−1
2 Σ1

)
(53)

w2, opt = ejν2 · u2

(
Σ

−1
2 Σ1

)
(54)

10Note thatΣ2 is a full-rank matrix and hence, the vectorsΣ
−

1

2

2
v1 andΣ

−

1

2

2
v2 form a non-orthogonal basis (in general),

whereas
{

v1,v2

}

is orthonormal.
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where u1(•) and u2(•) are the dominant and non-dominant eigenvectors, respectively.

Using the generalized eigenvector structure, it is easy to see that

u1

(
Σ

−1
2 Σ1

)
= u2

(
Σ

−1
1 Σ2

)
(55)

u2

(
Σ

−1
2 Σ1

)
= u1

(
Σ

−1
1 Σ2

)
(56)

and thus

w1, opt = ejν1 · u1

(
Σ

−1
2 Σ1

)
(57)

w2, opt = ejν2 · u1

(
Σ

−1
1 Σ2

)
. (58)

2) Given that the transmitter has only statistical information of the two links, a natural

candidate for beamforming in the high-SNR extreme is the solution to the maximization of

an appropriately-defined averageSINR metric for each user. Motivated by the fact (see (3))

that the instantaneous sum-rate for thei-th user (Ri) is an increasing function of|hH
i wi|2

whereasRj (for j 6= i) is a decreasing function of|hH
j wi|2, we define an “average”SINR

metric as follows:

SINRi ,
E
[
|hH

i wi|2
]

E
[
|hH

j wi|2
] = w

H
i Σiwi

wH
i Σjwi

. (59)

The optimization problem of interest is to maximizeSINRi which has the generalized

eigenvector structure as solution [47]:

arg max
wi :wH

i wi=1

SINRi = ejνi u1

(
Σ

−1
j Σi

)
, j 6= i, {i, j} = 1, 2. (60)

It follows that if user i selfishly maximizes (its own)SINRi metric, then the set of

such beamforming vectors maximize the ergodic sum-rate in the high-SNR regime. In

this sense, the solution to the broadcast problem mirrors and generalizes the single-user

setting, where the optimality of signalling along the statistical eigen-modes of the channel

is well-understood [1]–[5]. Further, while optimal beamformer solutions in terms of the

generalized eigenvectors are obtained in the perfect CSI case of the broadcast setting for

the beamforming design problem [26], [37] and the interference channel problem [38], to

the best of our knowledge, this solution in the statistical case is a first. A similar result

is obtained in a related work of ours [39] on statistical beamforming vector design for

the interference channel case. Since the generalized eigenvector solution has an intuitive

explanation, it is of interest to obtain useful insights on the optimality of this solution in

more general multi-user settings.

3) The ergodic sum-rate in (45) is increasing inκ1 and thus inη1
η2

. We now observe that

ill-conditioning of Σ1 is necessary and sufficient to ensure thatη1
η2

is large. For this, we
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use standard eigenvalue inequalities for product of Hermitian matrices [47] to see that

χ1

χ2
=

λ1(Σ1) · λ2(Σ
−1
2 )

λ2(Σ1) · λ1(Σ
−1
2 )

≤ η1
η2

≤ λ1(Σ1) · λ1(Σ
−1
2 )

λ2(Σ1) · λ2(Σ
−1
2 )

= χ1 · χ2 (61)

whereχi =
λ1(Σi)
λ2(Σi)

, i = 1, 2. In other words, the more ill-conditionedΣ1 is, the larger the

high-SNR statistical beamforming sum-rate asymptote is (andvice versa).

On the other hand, the ergodic sum-rate in (45) is not monotonic in τ1
τ2

. Nevertheless,

it can be seen that as a function ofτ1
τ2

, it has local maxima asτ1
τ2

→ 0 and τ1
τ2

→ ∞,

and a minimum atτ1
τ2

= 1. The more well-conditionedΣ2 is, the more closerτ1
τ2

is to

1 and hence, the high-SNR statistical beamforming sum-rate asymptote is minimized.If

Σ2 is ill-conditioned, the value taken byτ1
τ2

depends on the angle between the dominant

eigenvectors ofΣ2 andΣ. If the two eigenvectors are nearly parallel,τ1
τ2

is close to zero

and if they are nearly perpendicular,τ1
τ2

is very large. In either case, the high-SNR statistical

beamforming sum-rate asymptote is locally maximized.

The conclusion from the above analysis is that among all possible channels, the ergodic

sum-rate is maximized (or minimized) whenΣ1 andΣ2 are both ill- (or well-)conditioned.

In other words, if both the users encounter poor scattering (that leads to an ill-conditioning

of their respective covariance matrices), their fading is spatially localized. The transmitter

can simultaneously excite these spatial localizations without causing a proportional increase

in the interference level of the other user thus resulting ina higher ergodic sum-rate. On

the other hand, rich scattering implies that fading is spatially isotropic for both the users.

Any spatially localized excitation for one user will cause an isotropic interference level at

the other user thus resulting in a smaller ergodic sum-rate.

4) A special case that is of considerable interest is whenΣ1 andΣ2 have the same set of

orthonormal eigenvectors. This would be a suitable model for certain indoor scenarios

where the antenna separation for the two users is the same [28]. Denoting (for simplicity)

the set of common eigenvectors byu1 andu2, we can decomposeΣ1 andΣ2 as

Σ1 =
[
u1,u2

]
diag

(
[λ1, λ2]

) [
u1,u2

]H
, (62)

Σ2 =
[
u1,u2

]
diag

(
[µ1, µ2]

) [
u1,u2

]H
. (63)

We re-use the notationsχ1 andχ2 to denote

χ1 ,
λ1

λ2
and χ2 ,

µ1

µ2
. (64)

Without loss in generality, we can assume thatχ1 ≥ 1. Two scenarios11 arise depending

on the relationship betweenχ1 andχ2: i) χ1 ≥ χ2, and ii) χ1 < χ2.

11These possibilities arise because even though the set of eigenvectors ofΣ1 andΣ2 are the same, there is no specific reason

to expect the dominant eigenvector ofΣ1 to also be a dominant eigenvector ofΣ2. Observe that the first case subsumes the

setting whereµ1 = µ2 = µ andΣ2 = µI.
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Theorem 3: In the high-SNR extreme, the ergodic sum-rate is maximized by the following

choice of beamforming vectors:

w1, opt = ejν1 u1, w2, opt = ejν2 u2 if χ1 ≥ χ2,

w1, opt = ejν2 u2, w2, opt = ejν1 u1 if χ1 < χ2

(65)

for some choice ofνi ∈ [0, 2π), i = 1, 2. The optimal ergodic sum-rate satisfies

lim
ρ→∞

Rsum =





χ1 · log(χ1)
χ1−1

+ log(χ2)
χ2−1

if χ1 ≥ χ2

χ2 · log(χ2)
χ2−1

+ log(χ1)
χ1−1

if χ1 < χ2.
(66)

Proof: While Theorem 2 can be particularized to this special case easily, we pursue an

alternate proof technique in Appendix E that exploits the comparative relationship between

τ1 and τ2 (which is possible in the special case) and the fact thatτ3 = 0.

A comparison of the proof techniques of Theorems 2 and 3 is presented in Appendix F.

5) Some remarks on the optimization set-up of this paper are necessary. The proofs of Theo-

rems 2 and 3 require us to consider a six-dimensional optimization over the parameter space

of {|α|, |γ|, θα, θβ , θγ, θδ}. As a result, any geometric interpretation of the optimization is

impossible. A naive approach to the six-dimensional optimization problems in this paper

is to adopt the method of matrix differentiation calculus. For this approach to work, we

need to show that both the set over which optimization is doneas well as the optimized

function are convex, neither of which is true in our case. Specifically, neitherG(2, 1) nor

St(2, 1) are convex sets. It also turns out that the ergodic sum-rate is neither convex nor

concave12 over the set of beamforming vectors, even over a locally convex domain or an

extended convex domain (like the interior of the sphere).

6) The approach adopted in Appendices D and E overcomes thesedifficulties, and it consists

of two steps. In the first step, we produce an upper bound to theergodic sum-rate that is

independent of the optimization parameters. In the second step, we show that this upper

bound can be realized by a specific choice of beamforming vectors thereby confirming

that choice’s optimality. This approach seems to be the mostnatural (and first principles-

based) recourse to solving the non-convex optimization problem at hand. An alternate

approach to optimize the ergodic sum-rate is non-linear optimization theory [48]. But this

approach is fraught with complicated Hessian calculationsand technical difficulties such

as distinguishing between local and global extrema.

12It is possible that some function of the ergodic sum-rate maybe convex. But we are not aware of any likely candidate that

could work.
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C. Intermediate-SNR Regime: Candidate Beamforming Vectors

While physical intuition on the structure of the optimal ergodic sum-rate maximizing beam-

forming vectors has been obtained in the low- and the high-SNR extremes, the essentially

intractable nature of the Exponential integral in the ergodic rate expressions of Theorem 1 means

that such a possibility at an arbitrarySNR is difficult. Nevertheless, the single-user set-up [49],

[50] suggests that the optimal beamforming vectors (that determine the modes that are excited)

and the power allocation across these modes can be continuously parameterized by a function

of the SNR. Motivated by the single-user case, a desirable quality fora “good” beamforming

vector structure ({wi, cand(ρ), i = 1, 2}) at an arbitrarySNR of ρ is that the limiting behavior of

such a structure in the low- and the high-SNR extremes should be the solutions of Prop. 3 and

Theorem 2. That is,

lim
ρ→0

wi, cand(ρ) = ejνi u1(Σi), (67)

lim
ρ→∞

wi, cand(ρ) = ejνi
Σ

− 1

2

2 vi

‖Σ− 1

2

2 vi‖
, i = 1, 2, (68)

where the above limits are seen as manifold operations [42] on G(2, 1).
A natural candidate that meets (67) and (68) is the followingchoice parameterized byα(ρ)

andβ(ρ) satisfying{α(ρ), β(ρ)} ∈ [0,∞) andνi ∈ [0, 2π), i = 1, 2:

w1, cand(ρ) = ejν1 · Dom.eig.
((

α(ρ)Σ2 + I
)−1

Σ1

)
(69)

w2, cand(ρ) = ejν2 · Dom.eig.
((

β(ρ)Σ1 + I
)−1

Σ2

)
(70)

where the notationDom.eig(•) stands for the unit-norm dominant eigenvector operation. These

vectors can be seen to be solutions to the following optimization problems:

arg max
wi :wiHwi=1

SINRi = wi, cand(ρ), i = 1, 2 (71)

where

SINR1 =
w

H
1 Σ1w1

wH
1 w1 + α(ρ)wH

1 Σ2w1

(72)

SINR2 =
w

H
2 Σ2w2

wH
2 w2 + β(ρ)wH

2 Σ1w2
. (73)

The choice in (69)-(70) is a low-dimensional mapping fromG(2, 1)× G(2, 1) to R+ × R+ thus

considerably simplifying the search space for candidate beamforming vectors. It must be noted

that while the search space is simplified, the generalized eigenvector operation is a non-linear

mapping [46] inα(ρ) andβ(ρ).
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D. Numerical Studies

We now study the ergodic sum-rate performance withw1 and w2 as in (69)-(70) via two

numerical examples. In the first study, we consider a system (note thatTr(Σ1) = Tr(Σ2) =

M = 2) with

Σ1 =


 1.7745 −0.5178 + 0.0247i

−0.5178− 0.0247i 0.2255


 , (74)

Σ2 =


 1.2522 −0.8739− 0.2711i

−0.8739 + 0.2711i 0.7478


 . (75)

Fig. 2(a) shows the ergodic sum-rate as a function ofρ for four schemes. For the first scheme,

for everyρ, an optimal choice{α⋆(ρ), β⋆(ρ)} is obtained from the search spaceα(ρ)× β(ρ) ∈
[0,∞)× [0,∞) as follows:

{α⋆(ρ), β⋆(ρ)} = arg max
{α(ρ), β(ρ)}

E [R1] + E [R2]

s.t. w1 = w1, cand(ρ), w2 = w2, cand(ρ). (76)

The performance of the beamforming vectors withα⋆(ρ) and β⋆(ρ) for every ρ is plotted

along with the performance of the candidate obtained via a numerical (Monte Carlo) search

over G(2, 1)× G(2, 1). As motivated in the prior discussion, while we expect the performance

with {α⋆(ρ), β⋆(ρ)} to be good, it is surprising that this choice is indeed optimal. Further, the

performance of a set of beamforming vectors withα(ρ) = β(ρ) = 0 andα(ρ) = 100, β(ρ) = 15

(fixed for all ρ in (69)-(70)) are also plotted. Observe that these two sets approximate the low-

and the high-SNR solutions of Prop. 3 and Theorem 2, respectively.

In the second study, we consider a system (again, note thatTr(Σ1) = Tr(Σ2) = M = 2) with

Σ1 =


 1.3042 0.0543− 0.2540i

0.0543 + 0.2540i 0.6958


 , (77)

Σ2 =


 1.1161 −0.2195 + 0.4340i

−0.2195− 0.4340i 0.8839


 . (78)

Fig. 2(b) plots the performance of the proposed scheme, the low- and the high-SNR solutions in

addition to the candidate obtained via a numerical search over G(2, 1)×G(2, 1). As before, the

low- and the high-SNR solutions are optimal in their respective extremes while the candidate

{α⋆(ρ), β⋆(ρ)} is optimal across allρ.

Note that in Fig. 2(a) there exists anSNR-regime where both the low- and the high-SNR

solutions are sub-optimal. In contrast, in Fig. 2(b), the high-SNR solution essentially coincides

with the numerical search for allρ whereas at the low-SNR extreme, the performance of the
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Fig. 2. Performance of proposed scheme withΣ1 andΣ2: (a) as in (74)-(75), (b) as in (77)-(78).

low-SNR solution is as expected. We now explain why the high-SNR solution performs as well

as{α⋆(ρ), β⋆(ρ)} for all ρ. For this, we need to understand the behavior of the angle between

the proposed set of beamforming vectors in (69)-(70) and thelow-SNR solution as a function of

α andβ. In Fig. 3(b), we plotcos (Angle1(α(ρ))) as a function ofα(ρ) andcos (Angle2(β(ρ)))

as a function ofβ(ρ) where

cos (Angle1(α(ρ))) =

∣∣∣∣
(
Dom.eig.

((
α(ρ)Σ2 + I

)−1
Σ1

))H
Dom.eig. (Σ1)

∣∣∣∣ (79)

cos (Angle2(β(ρ))) =

∣∣∣∣
(
Dom.eig.

((
β(ρ)Σ1 + I

)−1
Σ2

))H
Dom.eig. (Σ2)

∣∣∣∣ . (80)

From Fig. 3(b), we note that the chordal distance13 between the low- and the high-SNR solutions

is small (on the order of0.05). Also, observe that there is a quick convergence of (69)-(70)

as α (or β) increases to the high-SNR solution and hence the high-SNR solution is a good

approximation to the choice{α⋆(ρ), β⋆(ρ)} over a largeSNR range. On the other hand, from

Fig. 3(a), we see that the chordal distance between the low- and the high-SNR solutions is large

(on the order of0.90), which translates to the sub-optimality gap in Fig. 2(a).

While we are unable to prove the optimality structure of the proposed scheme in the intermediate-

SNR regime, motivated by our numerical studies, we make the following conjecture.

Conjecture 1: In the intermediate-SNR regime, the ergodic sum-rate is maximized by the

13In short, the chordal distance is the square-root of the difference of1 and the square of the quantity computed in (79)

(or (80)). See (136) for more details.
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Fig. 3. Angle1 and Angle2, defined in (79)-(80), as a function ofα andβ for the setting in: (a) (74)-(75), (b) (77)-(78).

following choice of beamforming vectors:

w1, opt = ejν1 · Dom.eig.
((

α⋆(ρ)Σ2 + I
)−1

Σ1

)
(81)

w2, opt = ejν2 · Dom.eig.
((

β⋆(ρ)Σ1 + I
)−1

Σ2

)
(82)

for some choice ofνi ∈ [0, 2π), i = 1, 2. The notationDom.eig(•) stands for the unit-norm

dominant eigenvector operation and

{α⋆(ρ), β⋆(ρ)} = arg max
{α(ρ), β(ρ)}

E [R1] + E [R2]

s.t. w1 = w1, cand(ρ), w2 = w2, cand(ρ). (83)

V. ERGODIC SUM-RATE: GENERALIZATIONS

We studied the structure of ergodic sum-rate maximizing beamforming vectors in Sec. IV. In

this section, we consider more general problems of this nature.

A. MaximizingE [Ri]

Consider a system where the Quality-of-Service metric of one user significantly dominates that

of the other user. For example, one user is considerably moreimportant to the network operator

than the other. The relevant metric to optimize in this scenario is not the ergodic sum-rate, but

the rate achievable by the more important user. In this setting, we have the following result.
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Proposition 4: The optimal choice of the pair(w1, opt,w2, opt) that maximizesE [Ri] is:

i) Low-SNR Extreme:

wi, opt = ejν1 u1 (Σi) and wj, opt = any vector on G(2, 1), j 6= i (84)

ii) High-SNR Extreme:

wi, opt = ejν1 u1 (Σi) and wj, opt = ejν2 u2 (Σi) , j 6= i (85)

for some choice ofνi ∈ [0, 2π), i = 1, 2.

Proof: See Appendix G.

With the above choice of beamforming vectors,E [Ri] can be written as

E [Ri]
ρ→∞→ χi log(χi)

χi − 1
(86)

whereχi =
λ1(Σi)
λ2(Σi)

. From (86), it is to be noted thatE [Ri] increases asχi increases. That is,

the more ill-conditionedΣi is, the larger the high-SNR statistical beamforming rate asymptote

is (and vice versa). This should be intuitive as our goal is only to maximizeE [Ri] and the

beamforming vectors in (85) achieve that goal.

B. Weighted Ergodic Sum-Rate Maximization

In a system where the Quality-of-Service metrics of the two users are comparable (but not

the same), the relevant metric to optimize is the weighted-sum of ergodic rates achievable by

the two users [40]. Specifically, the objective function here is

Rweighted = ζ1E [R1] + ζ2E [R2] (87)

for some choice of weightsζ1 and ζ2 satisfying (without loss in generality){ζ1, ζ2} ∈ [0, 1].

Note thatE [Ri] is a special case of this objective function withζ1 = 1, ζ2 = 0 or ζ1 = 0, ζ2 = 1.

Maximizing Rweighted to obtain a closed-form characterization of the optimal beamforming

vectors seems hard in general. Motivated by the study for thesum-rate in the intermediate-SNR

regime in Sec. IV, we now consider a set of candidate beamforming vectors that produce known

optimal structures in special cases. For this, it is important to note that no choice ofα(ρ) and

β(ρ) in (69)-(70) can produce the beamforming vectors in (85). A candidate set of beamforming

vectors that not only produces the special (extreme) cases in the ergodic sum-rate setting, but

also (85) is the following choice parameterized by four quantities, {α(ρ), β(ρ), γ(ρ), δ(ρ)} ∈
[0,∞):

w1,weighted, cand(ρ) = ejν1 · Dom.eig.
((

α(ρ)Σ2 + I
)−1 (

γ(ρ)Σ1 + I
))

(88)

w2,weighted, cand(ρ) = ejν2 · Dom.eig.
((

β(ρ)Σ1 + I
)−1 (

δ(ρ)Σ2 + I
))

(89)
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where the notationDom.eig(•) stands for the usual unit-norm dominant eigenvector operation.

As before, (88)-(89) corresponds to a low-dimensional map from {G(2, 1)}4 to {[0,∞)}4 and

thus a simplification in the search for a good beamformer structure.
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Fig. 4. Weighted ergodic sum-rate of proposed scheme withΣ1 andΣ2 as in (74)-(75).

We now study the performance of the proposed beamforming vectors in (88)-(89) for the

system withΣ1 andΣ2 as in (74)-(75). Two sets of weights are considered: i)ζ1 = 1, ζ2 = 0.5

and ii) ζ1 = 0.2, ζ2 = 0.8. Fig. 4 plots the performance of two schemes. The first scheme

corresponds to a Monte Carlo search overG(2, 1), whereas the second scheme corresponds to

the use of an optimal choice{α⋆(ρ), β⋆(ρ), γ⋆(ρ), δ⋆(ρ)} (for everyρ) with

{α⋆(ρ), β⋆(ρ), γ⋆(ρ), δ⋆(ρ)}

= arg max
{α(ρ), β(ρ), γ(ρ), δ(ρ)}

E [R1] + E [R2]

s.t. w1 = w1,weighted, cand(ρ), w2 = w2,weighted, cand(ρ). (90)

As can be seen from Fig. 4, the proposed scheme in (88)-(89) performs as well as the Monte

Carlo search for both sets of weights. Numerical studies suggest that similar performance is seen

across all possibleΣ1 andΣ2, and all possible weightsζ1 and ζ2. Motivated by these studies,

we pose the following conjecture.

Conjecture 2: In the intermediate-SNR regime, the weighted ergodic sum-rate,Rweighted, is



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, APRIL 2011 23

maximized by the following choice of beamforming vectors:

w1 = ejν1 · Dom.eig.
((

α⋆(ρ)Σ2 + I
)−1 (

γ⋆(ρ)Σ1 + I
))

(91)

w2 = ejν2 · Dom.eig.
((

β⋆(ρ)Σ1 + I
)−1 (

δ⋆(ρ)Σ2 + I
))

(92)

for some choice ofνi ∈ [0, 2π), i = 1, 2 and where{α⋆(ρ), β⋆(ρ), γ⋆(ρ), δ⋆(ρ)} are as in (90).

C. Rank-Deficient Case

Following up on Remark 3 in Sec. IV-B, we now consider the extreme case where both14
Σ1

andΣ2 are rank-deficient in more detail.

Proposition 5: The ergodic information-theoretic rate achievable at useri is

E [Ri] = h
(ρ
2
λ1

(
Σi

) (
|u1

(
Σi

)H
wi|2 + |u1

(
Σi

)H
wj|2

))
− h

(ρ
2
λ1

(
Σi

)
|u1

(
Σi

)H
wj |2

)
,

j 6= i, i = 1, 2 (93)

whereh(•) is as in (21) and the eigen-decomposition ofΣi is

Σi = λ1

(
Σi

)
· u1

(
Σi

)
u1

(
Σi

)H
, i = 1, 2. (94)

Proof: While Theorem 1 (as stated) is explicitly dependent on bothΣ1 andΣ2 being of full

rank and is hence not directly applicable in this extreme setting, much of the analysis follows

through. The key to the proof is that all the results in Appendix A (Lemmas 1 and 2) also hold

when some of the diagonal entries ofΛi are zero. In fact, this fact is implicitly used to compute

E [Ii,2] in Theorem 1.

D. Three-User Case:M = 3

We now consider the task of generalizing Theorem 1 to the three-user (M = 3) case.

Proposition 6: The ergodic information-theoretic rate achievable at useri (wherei = 1, 2, 3)

with linear beamforming in the three-user case is

E [Ri] = E [Ii, 1]−E [Ii, 2]

=
Λ

2
i, 1 · h

(
ρΛi, 1

3

)

(Λi, 1 −Λi, 2) (Λi, 1 −Λi, 3)
−

Λ
2
i, 2 · h

(
ρΛi, 2

3

)

(Λi, 1 −Λi, 2) (Λi, 2 −Λi, 3)
+

Λ
2
i, 3 · h

(
ρΛi, 3

3

)

(Λi, 1 −Λi, 3) (Λi, 2 −Λi, 3)

+
Λ̃

2
i, 1 · h

(
ρΛ̃i, 1

3

)

(
Λ̃i, 1 − Λ̃i, 2

)(
Λ̃i, 1 − Λ̃i, 3

) −
Λ̃

2
i, 2 · h

(
ρΛ̃i, 2

3

)

(
Λ̃i, 1 − Λ̃i, 2

)(
Λ̃i, 2 − Λ̃i, 3

) +
Λ̃

2
i, 3 · h

(
ρΛ̃i, 3

3

)

(
Λ̃i, 1 − Λ̃i, 3

)(
Λ̃i, 2 − Λ̃i, 3

)

(95)

14The case when only one of theΣi is rank-deficient can be studied along analogous lines and nodetails are provided.
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where h(•) is as in (21). The eigenvalue matricesΛi = diag
(
[Λi, 1, Λi, 2, Λi, 3]

)
and Λ̃i =

diag
(
[Λ̃i, 1, Λ̃i, 2, Λ̃i, 3]

)
are defined as in (7) and (10), and can be obtained in terms of the

beamforming vectors and the covariance matrices by solvingthe associated cubic equations.

Proof: The proof is tedious, but follows along the lines of Theorem 1. The first step is in

characterizingpi(y), which is done in Lemma 2 of Appendix A. We can then generalize(28)

using (121) as

E [Ii, 1] =
I1

(Λi, 1 −Λi, 2) (Λi, 1 −Λi, 3)
+

I2

(Λi, 1 −Λi, 3) (Λi, 2 −Λi, 3)
(96)

I1 =

∫ ∞

x=0

x2e−x

∫
Λi, 1−Λi, 2

y=0

y log
(
1 +

ρ

3
Λi, 1x− ρ

3
xy
)
dy dx (97)

I2 =

∫ ∞

x=0

x2e−x

∫
Λi, 2−Λi, 3

y=0

y log
(
1 +

ρ

3
Λi, 3x+

ρ

3
xy
)
dy dx. (98)

These integrals are cumbersome, but straightforward to compute using [45,4.337(2), 4.337(5),

p. 572]. The result is the expression in the statement of the proposition.

E. GeneralM-User Case

As can be seen from Appendix A (Lemma 2), the expression forpi(y) becomes more compli-

cated asM increases. Without a recourse topi(y), closed-form expressions for the ergodic sum-

rate of the linear beamforming scheme can be obtained using arecent advance in [31], [32] that

allows the computation of the density function of weighted-sum of standard central chi-squared

terms (generalizedchi-squared random variables). For example, ifΛi = diag
(
[Λi, 1, · · · , Λi,M ]

)

andΛi,j, j = 1, · · · ,M are distinct15, we have

E [Ii, 1] =

M∑

k=1

M∏

j=1, j 6=k

Λi,k

Λi,k −Λi,j
· h
(
ρΛi,k

M

)
. (99)

For E [Ii, 2], we replace
{
Λi,k

}
with

{
Λ̃i,k

}
. It can be checked that these expressions match

with the expressions in this paper for theM = 2 and M = 3 settings. Nevertheless, it is

important to note that the formulas in (95) and (99) are in terms of the eigenvalue matrices

{Λi, Λ̃i, i = 1, · · · ,M}, which become harder (and impossible forM ≥ 5) to compute in

closed-form as a function of the beamforming vectors and thetransmit covariance matrices asM

increases. Tractable approximations to the ergodic sum-rate and beamforming vector optimization

based on such approximations are necessary, which is the subject of ongoing work.

15More complicated expressions can be obtained in case{Λi,j} are not distinct. These expressions can be derived in a

straightforward manner using the results in [31].
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VI. CONCLUDING REMARKS

This paper considered the design of statistical beamforming vectors in a MISO broadcast

setting to maximize the ergodic sum-rate. The approach pursued here for the simplest non-trivial

problem with two-users is as follows: first, the beamformingvectors are fixed and ergodic rate

expressions are computed in closed-form in terms of the covariance matrices of the links and

the beamforming vectors. The optimization of this non-convex function results in a general-

ized eigenvector structure for the optimal beamforming vectors, the solution to maximizing an

appropriately-definedSINR metric for each user. This structure generalizes the single-user setup

where the dominant eigen-modes of the transmit covariance matrix of the links are excited. The

main results of this paper are presented in Table I for different SNR (ρ) assumptions where we

useu1(•) andu2(•) to denote the dominant and sub-dominant eigenvectors of thematrix under

consideration.

Possible extensions of this work include unifying the special case of Theorem 3 with the

general case of Theorem 2, and proving Conjectures 1 and 2. Developing intuition in the three-

user case as well as tractable approximations in the generalM-user (M > 2) case critically

depend on exploiting the functional structure of the ergodic sum-rate expression. The generalized

eigenvector solution has been seen in other multi-user scenarios as well, for example, the

interference channel problem with two antennas [39]. Generalizing the theme developed in the

broadcast setting to the interference channel setting, theRayleigh case to the Ricean case, and

the perfect CSI case to the case where only statistical information is available are all important

tasks.

Table I: Structure of Optimal Beamforming Vectors

Objective Function: arg max
w1,w2

E [Ri] , i = 1, 2 arg max
w1,w2

E [R1] + E [R2]

ρ → 0

wi, opt = u1 (Σi) w1, opt = u1 (Σ1)

wj, opt = any vector on G(2, 1), w2, opt = u1 (Σ2)

j 6= i (See Prop. 4) (See Prop. 3)

ρ intermediate

w1, opt = u1

(
(α⋆(ρ)Σ2 + I)−1

Σ1

)

– w2, opt = u1

(
(β⋆(ρ)Σ1 + I)−1

Σ2

)

{α⋆(ρ), β⋆(ρ)} ≥ 0, chosen

appropriately (See Conjecture 1)

ρ → ∞
wi, opt = u1 (Σi) w1, opt = u1

(
Σ

−1
2 Σ1

)

wj, opt = u2 (Σi) , w2, opt = u1

(
Σ

−1
1 Σ2

)

j 6= i (See Prop. 4) (See Theorems 2 and 3)
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APPENDIX

A. Density Function of Weighted-Norm of Isotropically Distributed Unit-Norm Vectors

Towards computingE[Ii, 1], we generalize the technique expounded in [51] where the surface

area (that is required) to be computed is treated as a differential element of a corresponding solid

volume (at a specific radius value), and the volume of the necessary solid object is calculated

using tools from higher-dimensional integration (geometry). In this direction, we have

pi(x)dx , P
(
ĥ
H
iid, iΛi ĥiid, i ∈ [x, x+ dx]

)
(100)

pi(x) =
∂

∂x
P
(
ĥ
H
iid, iΛi ĥiid, i ≤ x

)
(101)

with

P
(
ĥ
H
iid, iΛi ĥiid, i ≤ x

)
= 1− Area (x, 1)

Area (1)
(102)

where

Area (x, y) , Area
(
ĥ
H
iid, iΛi ĥiid, i ≥ x, ‖ĥiid, i‖2 = y

)
and (103)

Area (y) , Area
(
‖ĥiid, i‖2 = y

)
(104)

denote the area of a (unit radius) spherical cap carved out bythe ellipsoid
{
ĥiid, i : ĥ

H
iid, iΛi ĥiid, i = x

}
(105)

and the area of a (unit radius) complex sphere, respectively. The volume of the objects desired

in the computation ofpi(x) are

Vol
(
x, r2

)
, Vol

(
ĥ
H
iid, iΛi ĥiid, i ≥ x, ‖ĥiid, i‖2 ≤ r2

)
(106)

=

∫ r2

y=0

Area (x, y) dy, (107)

Vol(r2) , Vol
(
‖ĥiid, i‖2 ≤ r2

)
=

∫ r2

x=0

Area(x)dx. (108)

Thus, we have

Area (x, 1) =
∂

∂r2
Vol
(
x, r2

) ∣∣∣
r=1

, (109)

Area (x) =
∂

∂r2
Vol(r2)

∣∣∣
r=1

and hence, (110)

pi(x) = −
∂2

∂xr2
Vol (x, r2)

∣∣∣
r=1

∂
∂r2

Vol (r2)
∣∣∣
r=1

. (111)
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It is important to realize that computingVol (x, r2) is non-trivial even in the simplest case

of M = 2. This is because every additional dimension to the complex ellipsoid corresponds to

addition of two real dimensions, thus rendering a geometricvisualization impossible. For exam-

ple, with M = 2, we have the intersection of two four-dimensional real objects. Nevertheless,

the following lemma captures the complete structure ofpi(x) whenM = 2.

Lemma 1: If M = 2, the random variablêhH
iid, iΛi ĥiid, i is uniformly distributed in the interval

[Λi, 2, Λi, 1].

Proof: First, note that it follows from [51, Lemma 2] that

Vol(r2) =
πMr2M

M !
. (112)

For computingVol (x, r2), we follow the same variable transformation as in [51]. We set ĥiid, i(k) =

rk exp(jφk) for k = 1, 2. The ellipsoid is contained completely in the sphere of radius r if r is

such thatr ≥
√

x
Λi, 2

, whereas the sphere is contained completely in the ellipsoid if r ≤
√

x
Λi, 1

.

In the intermediate regime forr, a non-trivial intersection between the two objects is observed

and one can compute the volume by performing a two-dimensional integration as follows:

Vol
(
x, r2

)
=

∫∫

A

r1r2φ1φ2dr1dr2dφ1dφ2 (113)

= (2π)2 ·
∫∫

B

r1dr1r2dr2 (114)

= (2π)2 ·
∫ r⋆

0

r2dr2

∫ U

L

r1dr1 (115)

where

A =
{
r1, r2 : r21Λi, 1 + r22Λi, 2 ≥ x, r21 + r22 ≤ r2

}

and
{
φ1, φ2 : [0, 2π)

}
, (116)

B =
{
r1, r2 : r21Λi, 1 + r22Λi, 2 ≥ x, r21 + r22 ≤ r2

}
, (117)

L =

√
x− r22Λi, 2

Λi, 1

, U =
√
r2 − r22, r⋆ =

r2Λi, 1 − x

Λi, 1 −Λi, 2

. (118)

Trivial computation establishes the following:

Vol
(
x, r2

)
=





0, r ≤
√

x
Λi, 1

π2

2
· (r2 Λi, 1−x)

2

Λi, 1·(Λi, 1−Λi, 2)
,
√

x
Λi, 1

≤ r ≤
√

x
Λi, 2

π2

2
·
(
r4 − x2

Λi, 1 Λi, 2

)
, r ≥

√
x

Λi, 2
.

(119)

Another trivial computation using (111) results in

pi(x) =
1

Λi, 1 −Λi, 2

. (120)
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That is, ĥH
iid, iΛi ĥiid, i is uniformly distributed in its range.

The structure ofpi(x) gets more complicated asM increases. We now provide its structure in

theM = 3 andM = 4 cases without proof.

Lemma 2:With M = 3, the density functionpi(x) is of the form:

pi(x) =





0, x ≤ Λi, 3

2 (x−Λi, 3)

(Λi, 1−Λi, 3) (Λi, 2−Λi, 3)
, Λi, 3 ≤ x ≤ Λi, 2

2 (Λi, 1−x)

(Λi, 1−Λi, 2) (Λi, 1−Λi, 3)
, Λi, 2 ≤ x ≤ Λi, 1

0, x ≥ Λi, 1.

(121)

With M = 4, the density functionpi(x) takes the form:

pi(x) =





0, x ≤ Λi, 4

3 (x−Λi, 4)
2

(Λi, 1−Λi, 4) (Λi, 2−Λi, 4) (Λi, 3−Λi, 4)
, Λi, 4 ≤ x ≤ Λi, 3

3
(Λi, 1−Λi, 3) (Λi, 2−Λi, 4)

· L0, Λi, 3 ≤ x ≤ Λi, 2

3 (Λi, 1−x)2

(Λi, 1−Λi, 2) (Λi, 1−Λi, 3) (Λi, 1−Λi, 4)
, Λi, 2 ≤ x ≤ Λi, 1

0, x ≥ Λi, 1

(122)

where

L0 =
(x−Λi, 3) (Λi, 2 − x)

Λi, 2 −Λi, 3

+
(x−Λi, 4) (Λi, 1 − x)

Λi, 1 −Λi, 4

. (123)
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Fig. 5. CDF of weighted-norm of isotropically distributed beamforming vectors.



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, APRIL 2011 29

Fig. 5 illustrates the trends of the cumulative distribution function (CDF) by plotting the fit

between the theoretical expressions in Lemmas 1 and 2, and the CDF estimated by Monte Carlo

methods. The cases considered are: a)Λi = diag([2 1]) for M = 2, b) Λi = diag([3 2 1]) for

M = 3, and c)Λi = diag([4 3 2 1]) for M = 4. The figure shows the excellent match between

theory and Monte Carlo estimates.

B. Rewriting the Rate Expression in the High-SNR Extreme

A straightforward exercise shows that (36) can be rewrittenas in (124) below:

E [Ri]
ρ→∞→ 1

2
g (dΣi

(w1,w2)) + log

(
1 +

Ai

Bi

)
− log(2) (124)

whereg(•) is a function defined as

g(z) , f(z) + 2 log(z), (125)

f(z) =
1√

1− z2
log

(
1 +

√
1− z2

1−
√
1− z2

)
, 0 < z < 1. (126)

In (124), dΣi
(w1,w2) is defined as

dΣi
(w1,w2) ,

√
4 (AiBi − C2

i )

(Ai +Bi)
2 (127)

with Ai, Bi andCi as in Theorem 1. As illustrated in Fig. 6,f(•) is monotonically decreasing

as a function of its argument andg(•) is increasing with

2 log(2) = lim
z→0

g(z) ≤ g(z) ≤ lim
z→1

g(z) = 2 (128)

∞ = lim
z→0

f(z) ≥ f(z) ≥ lim
z→1

f(z) = 2. (129)

Formal proofs of these facts are provided in Appendix C next.Some properties ofdΣi
(w1,w2)

are now established.

• The quantitydΣi
(w1,w2) is a generalized “distance” semi-metric16 betweenw1 and w2

satisfying

0 ≤ dΣi
(w1,w2) ≤ 1. (130)

To establish the lower bound in (130), note that an application of the Cauchy-Schwarz

inequality implies thatC2
i ≤ AiBi. Equality in the lower bound in (130) is achieved if and

only if Σ
1/2
i w1 = ζΣ

1/2
i w2 for someζ ∈ C. SinceΣi is positive-definite, this is possible

only whenw1 = ζw2. Since bothw1 and w2 are unit-norm, this is possible only with

|ζ | = 1. In other words, equality in the lower bound only occurs forw1 = w2 on G(2, 1).

16A semi-metric satisfies all the properties necessary for a distance metric except the triangle inequality.
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Fig. 6. The behavior off(x) andg(x).

The fact thatdΣi
(w1,w2) ≤ 1 is obvious. Symmetry of the distance metric inw1 andw2

is obvious.

• The triangle inequality does not hold in general. One counter-example is as follows:

Σi = diag
(
[20, 1]

)
, w1 =

[
1√
3
,

√
2

3

]
, (131)

w2 =

[
1√
2
,
−1√
2

]
, w3 =

[
−
√

3.3

7
,

√
3.7

7

]
. (132)

This choice results in

dΣi
(w1,w3) ≈ 0.2536, dΣi

(w1,w2) + dΣi
(w2,w3) ≈ 0.2534. (133)

Many such counter-examples can be listed out via a routine numerical search. Numerical

studies also suggest that the triangle inequality holds foralmost all choices of{wi} provided

thatχi =
λ1(Σi)
λ2(Σi)

is not too large (unlike the example in (131)-(132)).

• The upper bound in (130) is achieved only ifAi = Bi andCi = 0. By decomposingw1

andw2 along the orthonormal set of basis vectors{u1(Σi),u2(Σi)}, it can be checked that

Ai = Bi andCi = 0 is possible only if

w1 = ejν1 ·
[
u1(Σi) ·

√
1

χi + 1
+ ejν2 · u2(Σi) ·

√
χi

χi + 1

]
(134)

w2 = ej(ν1+ν3) ·
[
u1(Σi) ·

√
1

χi + 1
− ejν2 · u2(Σi) ·

√
χi

χi + 1

]
(135)

for some choice ofνj ∈ [0, 2π), j = 1, 2, 3.
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• The semi-metric reduces to the standardchordal distance metric [42] onG(2, 1)

dΣi
(w1,w2) =

√
1− |wH

1 w2|2 (136)

if Σi = λI for someλ > 0.

C. Monotonicity off(•) and g(•)
We first claim that

2 ≤ 1√
1− z2

· log
(
1 +

√
1− z2

1−
√
1− z2

)
≤ 2

z2
, 0 < z < 1, (137)

which is equivalent to:

exp
(
2 ·

√
1− z2

)
≤ 1 +

√
1− z2

1−
√
1− z2

≤ exp

(
2
√
1− z2

z2

)
, 0 < z < 1. (138)

For this, we start with the exponential series expansion ofexp
(
2 ·

√
1− z2

)
that results in:

exp
(
2 ·

√
1− z2

)
= 1 +

∞∑

k=1

2k · (1− z2)
k
2

Γ(k + 1)
(139)

≤ 1 + 2

∞∑

k=1

(
1− z2

)k
2 = 1 +

2
√
1− z2

1−
√
1− z2

(140)

whereΓ(·) is the Gamma function, the second inequality follows from the fact that 2k−1

Γ(k+1)
≤ 1

for all k ≥ 1, and the last equality from the sum of an infinite geometric series. For the other

side of (137), note that

exp

(
2
√
1− z2

z2

)
≥ 1 +

2
√
1− z2

z2
+

2(1− z2)

z4
(141)

≥ 1 +
2
√
1− z2

z2

(
1 +

√
1− z2

)
= 1 +

2
√
1− z2

1−
√
1− z2

(142)

where the first inequality follows by truncating the terms ofthe asymptotic expansion and the

second follows by using the fact thatz2 < 1. The proof is complete by noting that

∂f(z)

∂z
=

−z

1− z2
·
[
2

z2
− 1√

1− z2
log

(
1 +

√
1− z2

1−
√
1− z2

)]
< 0 (143)

∂g(z)

∂z
=

z

1− z2
·
[

1√
1− z2

log

(
1 +

√
1− z2

1−
√
1− z2

)
− 2

]
> 0. (144)
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D. Completing the Proof of Theorem 2

With the description ofw1 andw2 as in (48)-(49), elementary algebra shows that

A1 = w
H
1 Σ1w1 =

|α|2η1 + |β|2η2
X2

, X = ‖αΣ
− 1

2

2 v1 + βΣ
− 1

2

2 v2‖ (145)

B1 = w
H
2 Σ1w2 =

|γ|2η1 + |δ|2η2
Y 2

, Y = ‖γΣ− 1

2

2 v1 + δΣ
− 1

2

2 v2‖ (146)

C1 = |wH
1 Σ1w2| =

∣∣α⋆γη1 + β⋆δη2
∣∣

XY
(147)

A2 = w
H
2 Σ2w2 =

1

Y 2
(148)

B2 = w
H
1 Σ2w1 =

1

X2
(149)

C2 = |wH
1 Σ2w2| =

∣∣α⋆γ + β⋆δ
∣∣

XY
. (150)

As in the statement of the theorem, letτi, i = 1, 2, 3 denote

τ1 = v
H
1 Σ

−1
2 v1, τ2 = v

H
2 Σ

−1
2 v2, τ3 = v

H
1 Σ

−1
2 v2. (151)

We can rewriteX2 andY 2 in terms of{τi} as

X2 = |α|2τ1 + |β|2τ2 + 2|α||β||τ3| cos(θ1) (152)

Y 2 = |γ|2τ1 + |δ|2τ2 + 2|γ||δ||τ3| cos(θ2) (153)

whereθ1 = arg(τ3) + θβ − θα and θ2 = arg(τ3) + θδ − θγ . Now note that if{v1, v2} is a pair

of eigenvectors forΣ, then so is the pair{ejν1 v1, e
jν2 v2} for any choice ofν1 andν2. In other

words, the choice of{v1, v2} is uniqueonly on G(2, 1), and not onSt(2, 1). Hence,arg(τ3)

can be chosen arbitrarily andindependentlyin determining the values ofX2 andY 2. With the

specific choice thatarg(vH
1 Σ

−1
2 v2) =

π
2
+ θα − θβ in (152) andarg(vH

1 Σ
−1
2 v2) =

π
2
+ θγ − θδ

in (153), we have

X2 = |α|2τ1 + |β|2τ2 (154)

Y 2 = |γ|2τ1 + |δ|2τ2. (155)

Thus, the high-SNR expression for the ergodic sum-rate can be simplified as

2E [R1] + 2E [R2] + 4 log(2)

= g


 2

√
η1η2XY · |βγ − αδ|(

|α|2η1 + |β|2η2
)
· Y 2 +

(
|γ|2η1 + |δ|2η2

)
·X2


+ 2 log

(
1 +

X2

Y 2

)

+ g

(
2XY · |βγ − αδ|

X2 + Y 2

)
+ 2 log

(
1 +

Y 2

X2
· |α|

2η1 + |β|2η2
|γ|2η1 + |δ|2η2

)
. (156)
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Using (126) to rewrite the above equation in terms off(•), we have after simplification:

2E [R1] + 2E [R2]− log(η1η2) = f

(
2
√
η1η2XY · |βγ − αδ|(

|α|2η1 + |β|2η2
)
Y 2 +

(
|γ|2η1 + |δ|2η2

)
X2

)

+ f

(
2XY · |βγ − αδ|

X2 + Y 2

)
+ 2 log

( |βγ − αδ|2
|γ|2η1 + |δ|2η2

)
. (157)

We now claim that the following two inequalities hold:

XY

X2 + Y 2
≥

√
τ1τ2

τ1 + τ2
(158)

XY ·
(
|γ|2η1 + |δ|2η2

)
(
|α|2η1 + |β|2η2

)
Y 2 +

(
|γ|2η1 + |δ|2η2

)
X2

≥
√
τ1τ2 · η2

τ1η2 + τ2η1
. (159)

The proof of (158) and (159) will be tackled later.

Using (158) and (159) in conjunction with the decreasing nature of f(•), we have

2E [R1] + 2E [R2]− log(η1η2) ≤ f

(
2
√
η1η2τ1τ2 · η2
τ1η2 + τ2η1

· |βγ − αδ|(
|γ|2η1 + |δ|2η2

)
)

+ f

(
2
√
τ1τ2

τ1 + τ2
· |βγ − αδ|

)
+ 2 log

( |βγ − αδ|2
|γ|2η1 + |δ|2η2

)
(160)

= g

(
2
√
η1η2τ1τ2 · η2
τ1η2 + τ2η1

· |βγ − αδ|(
|γ|2η1 + |δ|2η2

)
)

+ g

(
2
√
τ1τ2

τ1 + τ2
· |βγ − αδ|

)
+ 2 log

((
τ1η2 + τ2η1

)(
τ1 + τ2

)

4τ1τ2η2
√
η1η2

)
. (161)

Note that{θ•} enter the above optimization only via the term|βγ − αδ| and

|βγ − αδ| ≤ |α|
√
1− |γ|2 + |γ|

√
1− |α|2 (162)

with equality achieved if and only ifθα+ θδ − θβ − θγ = π (modulo2π). Parameterizing|α| and

|γ| as |α| = sin(θ) and |γ| = sin(φ) for some{θ, φ} ∈ [0, π/2], we have

|βγ − αδ| ≤ sin(θ) cos(φ) + cos(θ) sin(φ) = sin(θ + φ) ≤ 1 (163)

since0 ≤ θ + φ ≤ π. Further,η1 ≥ η2 implies that|γ|2η1 + |δ|2η2 ≥ η2 and hence, we have

|βγ − αδ|
|γ|2η1 + |δ|2η2

≤ 1

η2
. (164)

Using the fact thatg(•) is an increasing function, we get an upper bound for the sum-rate as

2E [R1] + 2E [R2] ≤ f

(
2
√
η1η2τ1τ2

η1τ2 + η2τ1

)
+ f

(
2
√
τ1τ2

τ1 + τ2

)
+ log

(
η1
η2

)
. (165)
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This upper bound is achievable with the choice of|α| = 1 and |γ| = 0 in (48) and (49), which

is equivalent to (44). Substituting this choice in the sum-rate expression yields

E [R1] + E [R2]
ρ→∞→ 1

2
f

(
2
√
η1η2τ1τ2

η1τ2 + η2τ1

)
+

1

2
f

(
2
√
τ1τ2

τ1 + τ2

)
+

1

2
log

(
η1
η2

)
(166)

=
1

2
· η1τ2 + η2τ1
|η1τ2 − η2τ1|

· log
(
η1τ2 + η2τ1 + |η1τ2 − η2τ1|
η1τ2 + η2τ1 − |η1τ2 − η2τ1|

)

+
1

2
· τ1 + τ2
|τ1 − τ2|

· log
(
τ1 + τ2 + |τ1 − τ2|
τ1 + τ2 − |τ1 − τ2|

)
+

1

2
log

(
η1
η2

)
. (167)

To simplify (167), we defineκ1 andκ2 as

κ1 =
η1τ2
η2τ1

and κ2 =
τ2
τ1
. (168)

The fact thatη1 ≥ η2 implies thatκ1 ≥ κ2. Thus, there are three possibilities: i)κ1 ≥ κ2 ≥ 1,

ii) κ1 ≥ 1 ≥ κ2, and iii) 1 ≥ κ1 ≥ κ2. It is straightforward but tedious to check that in all of the

three cases, (167) reduces to (45) as in the statement of the theorem. The proof will be complete

if the inequalities (158) and (159) can be established.

Proof of (158): For the first inequality, note that

X2 + Y 2

XY
=

X

Y
+

Y

X
= t+

1

t
, q(t) (169)

can be written as a symmetric functionq(t) in t where t = X
Y

. Further, noting thatq(t) is

decreasing int for t ≤ 1 and is increasing int for t ≥ 1, the maximum ofX
2+Y 2

XY
is achieved

either whenX
Y

achieves its largest or smallest value. The inequality in (158) follows since
√

min(τ1, τ2)

max(τ1, τ2)
≤ X

Y
≤
√

max(τ1, τ2)

min(τ1, τ2)
. (170)

Proof of (159): The proof of (159) is more involved. For this, note that

L1 ,

(
|α|2η1 + |β|2η2

)
Y 2 +

(
|γ|2η1 + |δ|2η2

)
X2

XY ·
(
|γ|2η1 + |δ|2η2

) (171)

=

√
|α|2(τ1 − τ2) + τ2
|γ|2(τ1 − τ2) + τ2

·
(
1 +

|α|2(η1 − η2) + η2
|γ|2(η1 − η2) + η2

· |γ|
2(τ1 − τ2) + τ2

|α|2(τ1 − τ2) + τ2

)
. (172)

By taking derivative with respect to|α|2, note that the first term in (172) is increasing in|α|2 for

any fixed choice of|γ| if and only if τ1
τ2

≥ 1. Similarly, for any fixed choice of|γ|, the second

term in (172) is increasing in|α|2 if and only if η1
η2

≥ τ1
τ2

. Thus, the condition

1 ≤ τ1
τ2

≤ η1
η2

(173)

is necessary and sufficient to ensure that for any choice of|γ|, L1 is maximized by the choice

|α| = 1. On analogous lines, taking the derivative with respect to|γ|2, it can be seen that for

any fixed choice of|α|, both the terms in (172) are decreasing in|γ|2 if and only if the same
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condition in (173) holds. In other words, under (173),L1 is maximized by|α| = 1 and |γ| = 0.

At this stage, two other possibilities need to be considered: i) τ1
τ2

≤ 1 ≤ η1
η2

, and ii) 1 ≤ η1
η2

≤ τ1
τ2

.

In either case, we will show that
( |α|2(η1 − η2) + η2
|γ|2(η1 − η2) + η2

− η1
η2

)
· Y
X

+

(
X

Y
−
√

τ1
τ2

)
·
(
1− η1

η2

√
τ2
τ1

Y

X

)
≤ 0, (174)

which is equivalent to (159), or the statement thatL1 is maximized by|α| = 1 and |γ| = 0. For

this, note that in either case, we have

|α|2(η1 − η2) + η2
|γ|2(η1 − η2) + η2

≤ η1
η2
. (175)

In the first case, we also have
√

τ1
τ2

≤ X

Y
≤
√

τ2
τ1

≤ η1
η2

√
τ2
τ1
, (176)

where the last step in (176) follows fromη1
η2

≥ 1. Combining (175) and (176), we note that (174)

is immediate whenτ1
τ2

≤ 1 ≤ η1
η2

. In the second case, however, (176) is replaced with
√

τ2
τ1

≤ X

Y
≤
√

τ1
τ2
. (177)

It can be seen that if|α| and |γ| are such that

X

Y
= D · η1

η2

√
τ2
τ1
, (178)

for some choice ofD satisfying1 ≤ D ≤ τ1
τ2
· η2
η1

, (174) holds immediately. Thus, we only need

to show that (174) holds when|α| and |γ| are such that

X

Y
= D · η1

η2

√
τ2
τ1
, (179)

for some choice ofD satisfying η2
η1

≤ D ≤ 1. After some elementary algebra, our task is to

show that

|α|2(η1 − η2) + η2
|γ|2(η1 − η2) + η2

≤ η1
η2

·
(
1− (1−D) ·

(
1−D · η1

η2
· τ2
τ1

))
(180)

X

Y
= D · η1

η2

√
τ2
τ1

(181)

By bounding the denominator of (180) asη2 ≤ |γ|2(η1− η2)+ η2 ≤ η1, it can be seen that (180)

holds if the following quadratic inequality inD is true:

D2 · η
2
1τ2
η22τ1

·
(
2− τ1η2 − τ2η1

η1(τ1 − τ2)

)
−D · η1

η2
·
(
1 +

η1τ2
η2τ1

)
+

τ1η2 − τ2η1
η2(τ1 − τ2)

≤ 0. (182)
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For this, we note that the left-hand side represents a convexparabola inD with maximum

achieved at eitherD = η2
η1

or D = 1. SubstitutingD = η2
η1

andD = 1 and simplifying, we see

that

LHS of (182)
∣∣∣
D=

η2
η1

= − τ2
η1η2τ1

· η1 − η2
τ1 − τ2

· (η1(τ1 − τ2) + τ1(η1 − η2)) ≤ 0 (183)

LHS of (182)
∣∣∣
D=1

= −(η1 − η2) · (η2τ1 − η1τ2)

η22(τ1 − τ2)
≤ 0. (184)

Since the maximum of the parabola in the domainη2
η1

≤ D ≤ 1 is below0, (174) holds. Thus,

we are done with the aspect of showing that|α| = 1, |γ| = 0 is sum-rate optimal.

E. Proof of Theorem 3

Following the logic of Appendix D, we decomposew1 and w2 along {u1,u2} since they

form an orthonormal basis:

w1 = αu1 + βu2 (185)

w2 = γu1 + δu2 (186)

for some choice of{α, β, γ, δ} with α = |α|ejθα (similarly, for other quantities) satisfying

|α|2 + |β|2 = |γ|2 + |δ|2 = 1. We now study the ergodic sum-rate optimization over the six-

dimensional parameter space. With the description ofw1 andw2 as in (185)-(186), elementary

algebra shows that

A1 = w
H
1 Σ1w1 = |α|2λ1 + |β|2λ2 (187)

B1 = w
H
2 Σ1w2 = |γ|2λ1 + |δ|2λ2 (188)

C1 = |wH
1 Σ1w2| = |α⋆γλ1 + β⋆δλ2| (189)

A2 = w
H
2 Σ2w2 = |γ|2µ1 + |δ|2µ2 (190)

B2 = w
H
1 Σ2w1 = |α|2µ1 + |β|2µ2 (191)

C2 = |wH
1 Σ2w2| = |α⋆γµ1 + β⋆δµ2| (192)

and hence,

dΣ1
(w1,w2)

2 =
4(A1B1 − C2

1 )

(A1 +B1)2
=

4λ1λ2 · |βγ − αδ|2
[
(|α|2 + |γ|2)λ1 + (|β|2 + |δ|2)λ2

]2 (193)

dΣ2
(w1,w2)

2 =
4(A2B2 − C2

2 )

(A2 +B2)2
=

4µ1µ2 · |βγ − αδ|2
[
(|α|2 + |γ|2)µ1 + (|β|2 + |δ|2)µ2

]2 . (194)
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The high-SNR expression of the ergodic sum-rate can be written as

2E [R1] + 2E [R2] + 4 log(2)

= g

( √
4λ1λ2 · |βγ − αδ|

(|α|2 + |γ|2)λ1 + (|β|2 + |δ|2)λ2

)
+ g

( √
4µ1µ2 · |βγ − αδ|

(|α|2 + |γ|2)µ1 + (|β|2 + |δ|2)µ2

)

+ 2 log

(
1 +

|α|2λ1 + |β|2λ2

|γ|2λ1 + |δ|2λ2

)
+ 2 log

(
1 +

|γ|2µ1 + |δ|2µ2

|α|2µ1 + |β|2µ2

)
. (195)

Note that{θ•} enter the above optimization only via the term|βγ − αδ| and as in (162), we

have

|βγ − αδ| ≤ |β||γ|+ |α||δ| ≤ 1. (196)

Given thatχ1 = λ1

λ2
≥ 1, three possibilities arise depending on the relationship between1, χ1

andχ2 =
µ1

µ2
: i) χ1 > 1 ≥ χ2, ii) χ1 > χ2 > 1, and iii) χ2 ≥ χ1 > 1.

Case i): In the first case whereχ2 ≤ 1, we use the fact thatg(•) is an increasing function to

bound the sum-rate as

2E [R1] + 2E [R2] + 4 log(2)

≤ f

( √
4λ1λ2 · sin(θ + φ)

(sin2(θ) + sin2(φ))(λ1 − λ2) + 2λ2

)
+ f

( √
4µ1µ2 · sin(θ + φ)

2µ2 − (sin2(θ) + sin2(φ))(µ2 − µ1)

)

+ 2 log

( √
4λ1λ2 · sin(θ + φ)

sin2(φ)(λ1 − λ2) + λ2

)
+ 2 log

( √
4µ1µ2 · sin(θ + φ)

µ2 − sin2(θ)(µ2 − µ1)

)
. (197)

Observing that

(sin2(θ) + sin2(φ))(λ1 − λ2) + 2λ2 ≤ sin2(φ)(λ1 − λ2) + λ1 + λ2 (198)

2µ2 − (sin2(θ) + sin2(φ))(µ2 − µ1) ≤ 2µ2 − sin2(θ)(µ2 − µ1) (199)

andf(•) is a decreasing function, we have

2E [R1] + 2E [R2] + 4 log(2)

≤ f

( √
4λ1λ2 · sin(θ + φ)

sin2(φ)(λ1 − λ2) + λ1 + λ2

)
+ f

( √
4µ1µ2 · sin(θ + φ)

2µ2 − sin2(θ)(µ2 − µ1)

)

+ 2 log

( √
4λ1λ2 · sin(θ + φ)

sin2(φ)(λ1 − λ2) + λ2

)
+ 2 log

( √
4µ1µ2 · sin(θ + φ)

µ2 − sin2(θ)(µ2 − µ1)

)
(200)

= g

( √
4λ1λ2 · sin(θ + φ)

sin2(φ)(λ1 − λ2) + λ1 + λ2

)
+ g

( √
4µ1µ2 · sin(θ + φ)

2µ2 − sin2(θ)(µ2 − µ1)

)

+ 2 log

(
1 +

λ1

sin2(φ)(λ1 − λ2) + λ2

)
+ 2 log

(
1 +

µ2

µ2 − sin2(θ)(µ2 − µ1)

)
. (201)

It is straightforward to note that the right-hand side of (201) is decreasing insin2(φ) and

increasing insin2(θ). If in addition, the condition thatθ + φ = π/2 is satisfied, then an upper
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bound onE [R1]+E [R2] can be maximized. This results in the choiceθ = π/2 andφ = 0 (that

is, |α| = 1 and |γ| = 0) and with this choice, we have

2E [R1] + 2E [R2] ≤ f

(√
4λ1λ2

λ1 + λ2

)
+ f

(√
4µ1µ2

µ1 + µ2

)
+ log

(
λ1

λ2

)
+ log

(
µ2

µ1

)
. (202)

It is also straightforward to check that the choice ofw1 and w2 as in the statement of the

theorem meets this upper bound and is thus optimal.

Case ii): In the second case whereχ1 > χ2 > 1, we start as inCase i) and after optimization

over {θ•}, we can bound the sum-rate as

2E [R1] + 2E [R2] + 4 log(2)

≤ f

(
2
√
χ1 · sin(θ + φ)

(χ1 − 1)(sin2(θ) + sin2(φ)) + 2

)
+ f

(
2
√
χ2 · sin(θ + φ)

(χ2 − 1)(sin2(θ) + sin2(φ)) + 2

)

+ 2 log

(
2
√
χ1 · sin(θ + φ)

(χ1 − 1) sin2(φ) + 1

)
+ 2 log

(
2
√
χ2 · sin(θ + φ)

(χ2 − 1) sin2(θ) + 1

)
(203)

= g

(
2
√
χ1 · sin(θ + φ)

(χ1 − 1)(sin2(θ) + sin2(φ)) + 2

)
+ g

(
2
√
χ2 · sin(θ + φ)

(χ2 − 1)(sin2(θ) + sin2(φ)) + 2

)

+ 2 log

(
(χ1 − 1)(sin2(θ) + sin2(φ)) + 2

(χ1 − 1) sin2(φ) + 1

)
+ 2 log

(
(χ2 − 1)(sin2(θ) + sin2(φ)) + 2

(χ2 − 1) sin2(θ) + 1

)
.

(204)

The joint dependence betweenθ andφ in the right-hand side of (204) precludes the possibility

of breaking down the double variable optimization of (204) into a pair of single variable

optimizations. That is, the technique fromCase i) fails here and this case needs to be studied

differently.

The proof in this case follows in three steps. In the first step, whenχ1 > χ2, we show that

L2 (defined as below) is maximized byθ = π/2 andφ = 0:

L2 ,
(χ1 − 1)(sin2(θ) + sin2(φ)) + 2

(χ1 − 1) sin2(φ) + 1
· (χ2 − 1)(sin2(θ) + sin2(φ)) + 2

(χ2 − 1) sin2(θ) + 1
(205)

=
(χ1 − 1)(χ2 − 1)

[
sin2(θ) + sin2(φ)

]2
+ 2 (χ1 + χ2 − 2)

[
sin2(θ) + sin2(φ)

]
+ 4[

(χ1 − 1) sin2(φ) + 1
] [

(χ2 − 1) sin2(θ) + 1
] . (206)

For this, we setsin2(θ) + sin2(φ) to take a specific value ofα. Since the numerator is only a

function ofα, maximizingL2 is equivalent to minimizing the denominator of (206). Thereare

two possible cases depending on whetherα ≤ 1 or 1 < α ≤ 2. In the former case, it can be seen

that the denominator is minimized byφ = 0 and θ = sin−1(
√
α), whereas in the latter case, it

is minimized byφ = sin−1(
√
α− 1) andθ = π/2. Substituting these values, it can be seen that

L2 ≤





(χ1−1)(χ2−1)α2+2α(χ1+χ2−2)+4
1+(χ2−1)α

if α ≤ 1

(χ1−1)(χ2−1)α2+2α(χ1+χ2−2)+4
χ2·[1+(χ1−1) (α−1)]

if 1 < α ≤ 2.
(207)
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A straightforward derivative calculation (using the critical fact thatχ1 > χ2) shows that while

the right-hand side of (207) is increasing forα ≤ 1, it is decreasing for1 < α ≤ 2. In other

words,

L2 ≤
(1 + χ1) · (1 + χ2)

χ2

, (208)

and this upper bound is achieved withθ = π/2, φ = 0.

In the second step, ifθ + φ > π/2, we have
sin(θ + φ)

(χi − 1)
(
sin2(θ) + sin2(φ)

)
+ 2

≤ sin(θ + φ)

χi + 1
≤ 1

χi + 1
, i = 1, 2 (209)

sincesin(θ) > sin(π/2− φ) = cos(φ). Therefore,

2E [R1] + 2E [R2] + 4 log(2)

≤ g

(
2
√
χ1 · sin(θ + φ)

(χ1 − 1)(sin2(θ) + sin2(φ)) + 2

)
+ g

(
2
√
χ2 · sin(θ + φ)

(χ2 − 1)(sin2(θ) + sin2(φ)) + 2

)
+ 2 log(L2)

(210)

≤ g

(
2
√
χ1

χ1 + 1

)
+ g

(
2
√
χ2

χ2 + 1

)
+ 2 log(L2), (211)

2E [R1] + 2E [R2] ≤ f

(
2
√
χ1

χ1 + 1

)
+ f

(
2
√
χ2

χ2 + 1

)
+ log

(
χ1

χ2

)
, (212)

where the second inequality follows from the monotonicity of g(•) and the third from Step 1.

Note that (209) fails ifθ+ φ = ν ≤ π/2. Thus, in the third step, we consider this possibility.

Here, a straightforward manipulation shows that

sin2(θ) + sin2(ν − θ) = sin2(ν)− 2 sin(θ) sin(ν − θ) cos(ν) ≤ sin2(ν), (213)

where the last inequality follows becauseν ≤ π/2. Hence, we have

2E [R1] + 2E [R2] + 4 log(2) ≤ g

(
2
√
χ1 sin(ν)

(χ1 − 1) sin2(ν) + 2

)
+ g

(
2
√
χ2 sin(ν)

(χ2 − 1) sin2(ν) + 2

)

+ 2 log

( [
(χ1 − 1) sin2(ν) + 2

]
·
[
(χ2 − 1) sin2(ν) + 2

]
[
(χ1 − 1) sin2(ν − θ) + 1

]
·
[
(χ2 − 1) sin2(θ) + 1

]
)

, L3. (214)

It can be easily seen thatL3 is maximized byθ = π/2 andφ = 0. The upper bound is the same

in both the casesθ + φ ≤ π/2 and θ + φ > π/2. And this upper bound is met by the choice

θ = π/2 andφ = 0 (that is, |α| = 1 and |γ| = 0) and is hence optimal.

Case iii): Since the expression for the sum-rate is symmetric inχ1 andχ2, an argument analogous

to Case ii) completes the theorem in the caseχ1 ≤ χ2.

The optimal sum-rate in all the three cases is given by the unified expression

2E [R1] + 2E [R2]
ρ→∞→ f

(
2
√
χ1

χ1 + 1

)
+ f

(
2
√
χ2

χ2 + 1

)
+
∣∣∣ log (χ1)− log (χ2)

∣∣∣ (215)

wheref(•) is as defined in (126). This expression can be simplified as in the statement of the

theorem.
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F. Comparison of Proof Techniques of Theorems 2 and 3

We first show that Theorem 2 reduces to Theorem 3 under the assumption that the eigenvectors

of Σ1 andΣ2 coincide. For this, we set

α′ =
α
√
τ1

X
, β ′ =

β
√
τ2

X
, γ′ =

γ
√
τ1

Y
, δ′ =

δ
√
τ2

Y
(216)

whereX andY are as in (152) and (153), respectively. Note that the above transformation is a

bijection from the space
{
α, β, γ, δ : |α|2 + |β|2 = 1 = |γ|2 + |δ|2

}
to the space

{
α′, β ′, γ′, δ′ :

|α′|2 + |β ′|2 = 1 = |γ′|2 + |δ′|2
}

. With this transformation, it can be checked that (156) reduces

to (195). It can also be seen that the sum-rate expression in (45) reduces to that in (66) in both

cases.

The technique pursued in the general case diverges from thatin Appendix E in two ways.

Difference 1: It can be easily checked thatτ3 = 0 if and only if the set of eigenvectors ofΣ1

and Σ2 coincide. In general,τ3 6= 0 and arg(τ3) could affect the sum-rate optimization. The

first step in Appendix D is to show that this is not the case andarg(τ3) plays no role in the

optimization. This is done by exploiting the fact that the sum-rate optimization (see (14)) is a

problem overG(2, 1) and not overSt(2, 1).

Difference 2: The second complication is that there is a definitive (and easily classifiable)

comparative relationship betweenτ1 = v
H
1 Σ

−1
2 v1 andτ2 = v

H
2 Σ

−1
2 v2 in the special case. This

comparative relationship does not generalize to the setting where the eigenvectors ofΣ1 andΣ2

are different.

Specifically, under Case i) of the discussion in Theorem 3,τ1 > τ2 if and only if χ2 < 1

whereas under Case ii),τ1 > τ2 if and only if χ2 > 1. On the other hand, in the general case,

all the three possibilities: i)τ1 > τ2, ii) τ1 < τ2, iii) τ1 = τ2 can occur for appropriate choices

of Σ1 andΣ2. We now illustrate this with a numerical example. LetΣ2 be fixed such that

Σ2 =


 1 −0.6897

−0.6897 1


 . (217)

With the choice

Σ1 =


 1 0.8

0.8 1


 , (218)

it can be seen thatη1 = 5.8, η2 = 0.1184, τ1 = 3.2222 and τ2 = 0.5918, whereas if

Σ1 =


 1 −0.8

−0.8 1


 , (219)
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it can be seen thatη1 = 1.0653, η2 = 0.6444, τ1 = 0.5918 and τ2 = 3.2222. It can be seen that

η1 = 1.4603, η2 = 0.5397 and τ1 = τ2 = 1.90725 if Σ1 satisfies

Σ1 =




2
3

−0.34485

−0.34485 1
3


 . (220)

These differences imply that, in general, there exists no bijective transformation (as in (216))

to transform the objective function from the form in (156) tothat in (195). Despite these issues,

it would be of interest to pursue a theme that could unify the general case with the special case.

G. Proof of Prop. 4

The proof in the low-SNR extreme is obvious. In the high-SNR extreme, we first note that the

optimization problem over the choice of a pair(w1,w2) that results in a corresponding choice

of (Ai, Bi, Ci) can be recast in the form of a two parameter optimization problem over(Mi, Ni)

with Mi =
Ai

Bi
andNi =

Ci

Bi
under the constraint that

0 ≤ N2
i ≤ Mi ≤ χi =

λ1(Σi)

λ2(Σi)
. (221)

For this, observe that for any given choice of(w1,w2), the resultant(Ai, Bi, Ci) has to satisfy

C2
i ≤ AiBi (Cauchy-Schwarz inequality) andAi

Bi
≤ χi (Ritz-Raleigh ratio) [47]. Thus, we have

max
w1,w2

lim
ρ→∞

E [Ri] ≤ max
0≤N2

i ≤Mi ≤χi

lim
ρ→∞

E [Ri] . (222)

Since the high-SNR expression forE [Ri] satisfies

2E [Ri] + 2 log(2) = g

(
2
√
Mi −N2

i

Mi + 1

)
+ 2 log (1 +Mi) , (223)

andg(•) is an increasing function, optimization overNi which affects only the first term on the

right-hand side implies that the optimal choice ofNi is zero. Plugging this choice and using the

structure ofg(•) andf(•) from (125) and (126) respectively, we have

E [Ri] ≤
Mi

|Mi − 1| · | log(Mi)|. (224)

The right-hand side of (224) is increasing inMi since the derivative function satisfies

dMi·| log(Mi)|
|Mi−1|

dMi

=





Mi−1−log(Mi)
(Mi−1)2

ifMi > 1

1
2

ifMi = 1

log
(

1

Mi

)
−(1−Mi)

(1−Mi)2
ifMi < 1,

(225)

where all the three pieces are positive and hence, the derivative function is smooth. The goal of

maximizingMi under the constraints ofNi = 0 and unit-normedness ofw1 andw2 is met by
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the choice as in the statement of the proposition. This upperbound toE [Ri] is also met by the

same choice of beamforming vectors and this choice is thus optimal.

Recall from (124) (the high-SNR expression) thatE [Ri] is the sum of two terms. The

increasing nature ofg(•) means that the first term of (124) is maximized whendΣi
(w1,w2)

is maximized. That is, by the choice{w1,w2} as in (134)-(135). On the other hand, the second

term as well asE [Ri] (which is the sum of the two terms) are maximized by the choicein (85).

With this choice of beamforming vectors,dΣi
(·, ·) can be written as

dΣi
(wi, opt,wj,opt) =

2
√
χi

χi + 1
. (226)

Note thatdΣi
(·, ·) decreases asχi increases.
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