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Abstract

We develop two approaches for analyzing the approximation error bound for the Nyström
method, one based on the concentration inequality of integral operator, and one based on
the compressive sensing theory. We show that the approximation error, measured in the
spectral norm, can be improved from O(N/

√
m) to O(N/m1−ρ) in the case of large eigen-

gap, where N is the total number of data points, m is the number of sampled data points,
and ρ ∈ (0, 1/2) is a positive constant that characterizes the eigengap. When the eigenval-
ues of the kernel matrix follow a p-power law, our analysis based on compressive sensing
theory further improves the bound to O(N/mp−1) under an incoherence assumption, which
explains why the Nyström method works well for kernel matrix with skewed eigenvalues.
We present a kernel classification approach based on the Nyström method and derive its
generalization performance using the improved bound. We show that when the eigenval-
ues of kernel matrix follow a p-power law, we can reduce the number of support vectors
to N2p/(p2

−1), a number less than N when p > 1 +
√
2, without seriously sacrificing its

generalization performance.

1. Introduction

The Nyström method has been widely applied in machine learning to approximate large
kernel matrices to speed up kernel algorithms (Williams and Seeger, 2001; Drineas and
Mahoney, 2005; Fowlkes et al., 2004; Kumar et al., 2009; Silva and Tenenbaum, 2003;
Platt, 2004; Talwalkar et al., 2008; Zhang et al., 2008; Belabbas and Wolfe, 2009; Talwalkar
and Rostamizadeh, 2010; Cortes et al., 2010). In order to evaluate the quality of the
Nyström method, we typically bound the norm of the difference between the original kernel
matrix and the low rank approximation created by the Nyström method. Several analysis
were developed to bound the approximation error of the Nyström method (Drineas and
Mahoney, 2005; Kumar et al., 2009; Belabbas and Wolfe, 2009; Li et al., 2010; Talwalkar
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and Rostamizadeh, 2010; Mackey et al., 2011; Gittens, 2011). Most of them focus on
additive error bound, and base their analysis on the theoretical results from (Drineas and
Mahoney, 2005). When the target matrix is of low rank, significantly better bounds for the
approximation error of the Nyström method were given in (Talwalkar and Rostamizadeh,
2010) and (Mackey et al., 2011). They are further generalized to kernel matrix of an
arbitrary rank by a relative error bound in (Gittens, 2011). Although a relative error
bound is usually tighter than an additive bound (Mahoney, 2011), the relative error bound
in (Gittens, 2011) is proportional to N , where N is the total number of data points, making
it unattractive for kernel matrix of very large size. In this study, we focus on the additive
error bound of the Nyström method for general matrices, and will compare our results
mainly to the ones stated in (Drineas and Mahoney, 2005) 1. Below, we review the main
results in (Drineas and Mahoney, 2005) and their limitations.

Let K ∈ R
N×N be the kernel matrix to be approximated, and λi, i = 1, . . . , N be the

eigenvalues of K ranked in the descending order. Let K̃(r) be an approximate kernel matrix
of rank r generated by the Nyström method. Letm be the number of columns sampled from
K used to construct K̃(r). Then, under the assumption Ki,i = O(1), Drineas and Mahoney
(2005) showed that for any m uniformly sampled columns 2, with a high probability,

‖K − K̃(r)‖2 ≤ λr+1 +O

(
N√
m

)
,

where ‖ · ‖2 stands for the spectral norm of a matrix. By setting r = m, the bound in (1)
becomes

‖K − K̃(m)‖2 ≤ λm+1 +O

(
N√
m

)
. (1)

The main problem with the bound in (1) is its slow reduction rate in the number
of sampled columns (i.e., O(m−1/2)), implying that a large number of samples is needed
in order to achieve a small approximation error. In this study, we aim to improve the
approximation error bound in (1) by considering two special cases of the kernel matrix K.
In the first case, we assume there is a large eigengap in the spectrum of K. More specifically,
we assume there exists a rank r ∈ [N ] such that λr = Ω(N/mρ) and λr+1 = O(N/m1−ρ),
where ρ < 1/2. Here, parameter ρ is introduce to characterize the eigengap λr − λr+1: the
smaller the ρ, the larger the eigengap will be. We show that the approximation error bound
is improved to O(N/m1−ρ) in the case of large eigengap. The second case assumes that the
eigenvalues of K follow a p-power law with p > 1. We show that the approximation error
is improved to O(N/mp−1) provided that the eigenvector matrix satisfies an incoherence
assumption 3. This result explains why the Nyström method works well for kernel matrices
with skewed eigenvalue distributions (Talwalkar and Rostamizadeh, 2010).

The second contribution of this study is a kernel classification algorithm that explicitly
explores the improved bounds of the Nyström method developed here. We show that when

1. For completeness, we did include the comparison to the relative error bound in (Gittens, 2011) in the
later remarks.

2. Although the main results in (Drineas and Mahoney, 2005) use a data dependent sampling scheme, it
was stated in the original paper that the results also hold for uniform sampling.

3. A similar assumption was used in the previous analysis of the Nyström method (Talwalkar and Ros-
tamizadeh, 2010; Mackey et al., 2011; Gittens, 2011).
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the eigenvalues of the kernel matrix follow a p-power law with p > 1, we can construct a
kernel classifier that yields a similar generalization performance as the full version of kernel
classifier but with no more than N2p/(p2−1) support vectors, which is sublinear in N when
p > (1 +

√
2). Although the generalization error bound of using the Nyström method for

classification has been studied in (Cortes et al., 2010), to the best of knowledge, this is the
first work that bounds the number of support vectors using the analysis of the Nyström
method.

2. Notations and Background

Let D = {x1, . . . ,xN} be a collection of N samples, where xi ∈ X , and K = [κ(xi,xj)]N×N

be the kernel matrix for the samples in D, where κ(·, ·) is a kernel function. For simplicity, we
assume κ(x,x) ≤ 1 for any x ∈ X . We denote by (vi, λi), i = 1, . . . , N the eigenvectors and
eigenvalues of K ranked in the descending order of eigenvalues, and by V = (v1, · · · ,vN )
the orthonormal eigenvector matrix. In order to build the low rank approximation of kernel
matrix K, the Nyström method first samples m < N examples randomly from D, denoted
by D̂ = {x̂1, . . . , x̂m}. Let K̂ = [κ(x̂i, x̂j)]m×m measure the kernel similarity between any

two samples in D̂ and Kb = [κ(xi, x̂j)]N×m measure the similarity between the samples in

D and D̂. Using the samples in D̂, with rank r set to m (or the rank of K̂ if it is less
than m), the Nyström method approximates K by KbK̂

†K⊤
b , where K̂

† denote the pseudo

inverse of K̂. Our goal is to provide a high probability bound for the approximation error∥∥∥K −KbK̂
†K⊤

b

∥∥∥
2
. We choose r = m (or the rank of K̂) because according to (Drineas and

Mahoney, 2005; Kumar et al., 2009), it yields the best approximation error for a non-singular
kernel matrix.

In this study, we focus on the spectral norm for measuring the approximation error,
which is particularly suitable for kernel classification (Cortes et al., 2010). We also restrict
the analysis to the uniform sampling for the Nyström method. Although different sampling
approaches have been suggested for the Nyström method (Drineas and Mahoney, 2005;
Kumar et al., 2009; Zhang et al., 2008; Belabbas and Wolfe, 2009), according to (Kumar
et al., 2009), for real-world datasets, uniform sampling is the most efficient and yields
performance comparable to the other sampling approaches. We notice that in (Belabbas
and Wolfe, 2009), the authors show a significantly better approximation bound for the
Nyström method when employing the determinantal process (Hough et al., 2006) for column
selection; however, it is important to point out that the determinantal process is usually
computationally expensive as it requires computing the determinant of the submatrix for the
selected columns/rows, making it unsuitable for the case when a large number of columns
are needed to be sampled.

Our analysis for the Nyström method extensively exploits the properties of the integral
operator. This is in contrast to most of the previous studies for the Nyström method that
rely on matrix analysis. The main advantage of using the integral operator is its convenience
in handling the unseen data points (i.e., test data), making it attractive for the analysis of
generalization error bounds. In particular, we introduce a linear operator LN defined over
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the samples in D. For any function f(·), operator LN is defined as

LN [f ](·) = 1

N

N∑

i=1

κ(xi, ·)f(xi).

It can be shown that the eigenvalues of the operator LN are λi/N, i = 1, . . . , N (Smale
and Zhou, 2009). Let ϕ1(·), . . . , ϕN (·) be the corresponding eigenfunctions of LN that are
normalized by functional norm, i.e., 〈ϕi, ϕj〉Hκ = δ(i, j), 1 ≤ i ≤ j ≤ N , where 〈·, ·〉Hκ

denotes the inner product in Hκ. According to (Smale and Zhou, 2009), the eigenfunctions
satisfy

√
λjϕj(·) =

N∑

i=1

Vi,jκ(xi, ·), j = 1, · · · , N, (2)

where Vi,j is the (i, j)th element in V . Similarly, we can write κ(xj , ·) by its eigen-expansion
as

κ(xj , ·) =
N∑

i=1

√
λiVj,iϕi(·), j = 1, . . . , N. (3)

Furthermore, let Lm be an operator defined on the samples in D̂, i.e.,

Lm[f ](·) = 1

m

m∑

i=1

κ(x̂i, ·)f(x̂i).

Finally we denote by 〈f, g〉Hκ and ‖f‖Hκ the inner product and function norm in Hilbert
spaceHκ, respectively, and denote by ‖L‖HS and ‖L‖2 the Hibert Schmid norm and spectral
norm of a linear operator L, respectively, i.e.

‖L‖HS =

√∑

i,j

〈ϕi, Lϕj〉2Hκ
and ‖L‖2 = max

‖f‖Hκ≤1
‖Lf‖Hκ ,

where {ϕi, i = 1, · · · , } is a complete orthogonal basis of Hκ. The two norms are the analogs
of Frobenius and spectral norm in Euclidean space, respectively. In the following analysis,
omitted proofs are presented in the appendix.

3. Approximation Error Bound by the Nyström Method

Our first step is to turn ‖K−KbK̂
†K⊤

b ‖2 into a functional approximation problem. To this
end, we introduce two sets:

Ha = span (κ(x̂1, ·), . . . , κ(x̂m, ·))

Hb =

{
f(·) =

N∑

i=1

uiκ(xi, ·) :
N∑

i=1

u2i ≤ 1

}
,

where Ha is the subspace spanned by kernel functions defined on the samples in D̂, and Hb

is a subset of a functional space spanned by kernel functions defined on the samples in D
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with bounded coefficients. Using the eigen-expansion of κ(xj , ·) in (3), it is straightforward
to show that Hb can be rewritten in the basis of the eigenfunctions {ϕi}Ni=1

Hb =

{
f(·) =

N∑

i=1

wi

√
λiϕi(·) :

N∑

i=1

w2
i ≤ 1

}
.

Define E(g,Ha) as the minimum error in approximating a function g ∈ Hb by functions
in Ha, i.e.,

E(g,Ha) = min
f∈Ha

‖f − g‖2Hκ

= ‖f‖2Hκ
+ ‖g‖2Hκ

− 2 〈f, g〉Hκ
.

Define E(Ha) as the worst error in approximating any function g ∈ Hb by functions in Ha,
i.e.,

E(Ha) = max
g∈Hb

E(g,Ha). (4)

The following proposition connects
∥∥∥K −KbK̂

†K⊤
b

∥∥∥
2
with E(Ha).

Proposition 1 For any random samples x̂1, . . . , x̂m, we have

∥∥∥K −KbK̂
†K⊤

b

∥∥∥
2
= E(Ha).

Proof Since g ∈ Hb and f ∈ Ha, we can write g and f as

g =
N∑

i=1

uiκ(xi, ·) and f =
m∑

i=1

ziκ(x̂i, ·),

where u = (u1, . . . , uN )⊤ ∈ R
N satisfies ‖u‖2 ≤ 1 and z = (z1, . . . , zm)⊤ ∈ R

m. We thus
can rewrite E(g,Ha) as an optimization problem in terms of z, i.e.,

E(g,Ha) = min
z∈Rm

z⊤K̂z− 2u⊤Kbz+ u⊤Ku

= u⊤
(
K −KbK̂

†K⊤
b

)
u,

and therefore

E(Ha) = max
g∈Hb

E(g,Ha)

= max
‖u‖2≤1

u⊤
(
K −KbK̂

†K⊤
b

)
u

=
∥∥∥K −KbK̂

†K⊤
b

∥∥∥
2
.
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Remark 2 We can restrict the space Ha to its subspace Hr
a =

{
m∑

i=1

ziκ(x̂i, ·) : z ∈ span(v̂1, . . . , v̂r)

}
,

where v̂i, i = 1, . . . , r are the first r eigenvectors of K̂, to conduct the analysis for the rank
r < m approximation of the Nyström method.

To proceed our analysis, for any r ∈ [N ] we define

Hr = span(ϕ1(·), · · · , ϕr(·)),
Hr = span(ϕr+1(·), · · · , ϕN (·)),

Hr
b =

{
f(·) =

r∑

i=1

wi

√
λiϕi(·) :

r∑

i=1

w2
i ≤ 1

}
,

Hr
b =

{
f(·) =

N−r∑

i=1

wi

√
λi+rϕi+r(·) :

N−r∑

i=1

w2
i ≤ 1

}
.

Define E(Ha, r) = max
g∈Hr

b

E(g,Ha) as the worst error in approximating any function g ∈ Hr
b

by functions in Ha. The proposition below bounds E(Ha) by E(Ha, r).

Proposition 3 For any r ∈ [N ], we have

E(Ha) ≤ max (E(Ha, r), λr+1) ≤ E(Ha, r) + λr+1.

Proof We first note that for any f ∈ Ha can be written as f = f1+f2, where f1 ∈ Ha∩Hr,
and f2 ∈ Ha ∩ Hr. For any g ∈ Hb, we can write g = g1 + g2, where g1 ∈

√
1− δHr

b ,
g2 ∈

√
δHr

b , and δ ∈ [0, 1]. Using these notations, we rewrite E(Ha) as

E(Ha)

= max
δ ∈ [0, 1]

g1 ∈
√
1− δHr

b

g2 ∈
√
δHr

b

min
f1 ∈ Ha ∩Hr

f2 ∈ Ha ∩Hr

‖f1 − g1‖2 + ‖f2 − g2‖2Hκ

≤ max
δ∈[0,1]

(1− δ) max
g∈Hr

b

min
f∈Ha∩Hr

‖f − g‖2Hκ
+ δmax

g∈H
r

b

‖g‖2Hκ

= max
δ∈[0,1]

{
(1− δ) max

g∈Hr
b

min
f∈Ha

‖f − g‖2Hκ
+ δmax

g∈H
r

b

‖g‖2Hκ

}

= max
δ∈[0,1]

(1− δ)E(Ha, r) + δλr+1 = max (E(Ha, r), λr+1) ,

where the second equality follows that for any g ∈ Hr
b , min

f∈Ha

‖f−g‖2Hκ
= min

f∈Ha∩Hr

‖f−g‖2Hκ
,

and the last inequality follows the definition of E(Ha, r).

As indicated by Proposition 3, in order to bound the approximation error E(Ha), we
can bound E(Ha, r), namely the approximation error for functions in the subspace spanned
by the top eigenfunctions of LN . In the next two subsections, we discuss two approaches
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for bounding E(Ha, r): the first approach relies on the concentration inequality of integral
operator (Smale and Zhou, 2009), and the second approach explores the compressive sensing
theory (Candés and Romberg, 2007). Before proceeding to upper bound E(Ha), we first
provide a lower bound for E(Ha).

Theorem 4 There exists a kernel matrix K ∈ R
N×N with all its diagonal entries being 1

such that for any sampling strategy that selects m columns, the approximation error of the
Nyström method is lower bounded by Ω(Nm ), i.e.,

∥∥∥K −KbK̂
†K⊤

b

∥∥∥
2
≥ Ω

(
N

m

)
,

provided N > 64[ln 4]2m2.

Remark 5 Theorem 4 shows that the lower bound for the approximation error of the
Nyström method is Ω(N/m). The analysis developed in this work aims to bridge the gap
between the known upper bound (i.e., O(N/

√
m)) and the obtained lower bound.

3.1 Bound for E(Ha, r) using Concentration Inequality of Integral Operator

In this section, we bound E(Ha, r) using the concentration inequality of integral opera-
tor. We show that the approximation error of the Nyström method can be improved to
O(N/m1−ρ) when there is a large eigengap in the spectrum of kernel matrix K, where
ρ < 1/2 is introduced to characterize the eigengap. We first state the concentration in-
equality of a general random variable.

Proposition 6 (Proposition 1 (Smale and Zhou, 2009)) Let ξ be a random variable on
(X , PX ) with values in a Hilbert space (H, ‖ · ‖). Assume ‖ξ‖ ≤ M < ∞ is almost sure.
Then with a probability at least 1− δ, we have

∥∥∥∥∥
1

m

m∑

i=1

ξ(xi)− E[ξ]

∥∥∥∥∥ ≤ 4M ln(2/δ)√
m

.

The approximation error of the Nyström method using the concentration inequality is
given in the following theorem.

Theorem 7 With a probability at least 1− δ, for any r ∈ [N ], we have

∥∥∥K −KbK̂
†K⊤

b

∥∥∥
2
≤ 16[ln(2/δ)]2N2

mλr
+ λr+1.

We consider the scenario where there is very large eigengap in the spectrum of kernel
matrix K. In particular, we assume that there exists a rank r and ρ ∈ (0, 1/2) such that
λr = Ω(N/mρ) and λr+1 = O(N/m1−ρ). Parameter ρ is introduced to characterize the
eigengap which is given by

λr − λr+1 = Ω

(
N

mρ
− N

m1−ρ

)
= Ω

(
N

mρ

[
1− 1

m1−2ρ

])

7



Evidently, the smaller the ρ, the larger the eigengap. When ρ = 1/2, the eigengap is small.
Under the large eigengap assumption, the bound in Theorem 7 is simplified as

∥∥∥K −KbK̂
†K⊤

b

∥∥∥
2
≤ O

(
N

m1−ρ

)
. (5)

Compared to the bound in (1), the bound in (5) improves the approximation error from
O(N/

√
m) to O(N/m1−ρ), when ρ < 1/2.

To prove Theorem 7, we define two sets of functions

Hr
c =

{
h =

r∑

i=1

wi

√
λiϕi(·) :

1

N2

r∑

i=1

w2
i λ

2
i ≤ 1

}
,

Hr
d =

{
f ∈ Hκ : ‖f‖2Hκ

≤ N2/λr
}
.

where r corresponds to the rank with a large eigengap. It is evident that Hr
c ⊆ Hr

d; and for
any g ∈ Hr

b , it can also be written as g = LN [h], where h ∈ Hr
c .

Using Hr
c and Hr

d, we have

E(Ha, r) = max
g∈Hr

b

E(g,Ha) = max
h∈Hr

c

min
f∈Ha

‖LNh− f‖2Hκ

≤ max
h∈Hr

d

min
f∈Ha

‖LNh− f‖2Hκ
.

By constructing f as Lm[h] we can bound E(Ha, r) as

E(Ha, r) ≤ max
h∈Hr

d

min
f∈Ha

‖LN (h) − f‖2Hκ

≤ max
h∈Hr

d

‖(LN − Lm)h‖2Hκ

≤ ‖LN − Lm‖22
N2

λr

≤ ‖LN − Lm‖2HS

N2

λr
, (6)

where the last step follows the fact ‖LN − Lm‖2 ≤ ‖LN − Lm‖HS . The following corol-
lary allows us to bound the difference between LN and Lm and follows immediately from
Proposition 6.

Corollary 8 With a probability 1− δ, we have

‖LN − Lm‖HS ≤ 4 ln(2/δ)√
m

.

Finally, Theorem 7 follows directly the inequality in (6) and the result in Corollary 8.

3.2 Bound for E(Ha, r) using Compressive Sensing Theory

In this subsection, we aim to develop a better error bound for the Nyström method for
kernel matrices with eigenvalues that follow a power law distribution. Our analysis ex-
plicitly explores some of the key results in the theory of compressive sensing (Candés and
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Romberg, 2007; Donoho, 2006). To this end, we first introduce the definition of the power
law distribution of eigenvalues (Koltchinskii and Yuan, 2010; Kloft and Blanchard, 2011).
The eigenvalues σi, i = 1, . . . ranked in the non-increasing order follows a p-power law
(distribution) if there exists constant c > 0 such that

σk ≤ ck−p.

In the sequel, we assume the normalized eigenvalues λi/N, i = 1, . . . , N (i.e., the eigen-
values of the operator LN ), follow a p-power law distribution 4. A well-known example of
kernel with a power law eigenvalue distribution (Koltchinskii and Yuan, 2010) is the kernel
function that generates Sobolev Spaces Wα,2(Td) of smoothness α > d/2, where T

d is d-
dimensional torus. Its eigenvalues follow a p-power law with p = 2α > d. It is also observed
that the eigenvalues of a Gaussian kernel by appropriately setting the width parameter
follow a power law distribution (Ji et al., 2012).

In order to exploit the compressive sensing theory (Candés and Romberg, 2007), we
introduce the definition of the coherence µ for the eigevenvector matrix V = (v1, . . . ,vN )
as

µ =
√
N max

1≤i,j≤N
|Vi,j |.

Intuitively, the coherence measures the degree to which the eigenvectors in V are correlated
with the canonical bases. According to the theory of compressive sensing, highly coherent
matrices are difficult (even impossible) to be recovered by matrix completion with random
sampling. As observed in previous studies (Talwalkar and Rostamizadeh, 2010) and seen
later in our analysis, the coherence of V also plays an important role in measuring the
approximation performance of the Nyström method using an uniform sampling.

The coherence measure was first introduced into the error analysis of the Nyström
method by Talwalkar and Rostamizadeh (Talwalkar and Rostamizadeh, 2010). Their anal-
ysis shows that a low rank kernel matrix with incoherent eigvenvectors (i.e., with low coher-
ence) can be accurately approximated by the Nyström method using an uniform sampling.
This result is generalized to noisy observation in (Mackey et al., 2011) for low rank matrix.
The main limitation of these results is that they only apply to low rank matrices. Recently,
A. Gittens (Gittens, 2011) developed a relative error bound of the Nyström method for
kernel matrices with an arbitrary rank using a slightly different coherence measure. Unlike
the previous studies, we focus on the error bound of the Nyström method for kernel ma-
trices with an arbitrary rank and a skewed eigenvalue distribution. The main result of our
analysis is given in the following theorem.

Theorem 9 Assume the eigenvalues λi/N, i = 1, . . . , N follow a p-power law with p > 1.
Given a sufficiently large number of samples, i.e.,

m > µ2max

(
16

(
lnN

γ

)2

, 2Cab ln(3N
3), 4C2

ab ln
2(3N3)

)

4. We assume a power law distribution for the normalize eigenvalues λi/N because the eigenvalues λi of K
scales in N .
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we have, with a probability 1− 2N−3,

∥∥∥K −KbK̂
†K⊤

b

∥∥∥
2
≤ Õ

(
N

mp−1

)
,

where Õ(·) suppresses the polynomial factor that depends on lnN , and Cab is a numerical
constant as revealed in our later analysis.

Remark 10 Compared to the approximation error in (1), Theorem 9 improves the bound
from O(N/

√
m) to O(N/mp−1) provided the eigenvalues of kernel matrix follow a power law.

For the relative error bound given in (Gittens, 2011), the approximation error is dominated
by O(N2/mp+1) for eigenvalues following a p-power law. It is straightforward to see that
the result in Theorem 9 is better than O(N2/mp+1) when m ≤

√
N , a favorable setting

when N is very large and m is small. Finally it is worth noting that similar to (Talwalkar
and Rostamizadeh, 2010; Mackey et al., 2011; Gittens, 2011), the bound in Theorem 9 is
meaningful only when the coherence µ of the eigenvector matrix is small (i.e., the eigenvector
matrix satisfies the incoherence assumption).

We emphasize that the result in Theorem 9 does not contradict the lower bound given
in Theorem 4 because Theorem 9 holds only for the cases when eigenvalues of the kernel
matrix follow a power law. In fact, an updated lower bound for kernel matrix with a skewed
eigenvalue distribution is given in the following theorem.

Theorem 11 There exists a kernel matrix K ∈ R
N×N with all its diagonal entries being 1

and its eigenvalues following a p-power law such that for any sampling strategy that selects
m columns, the approximation error of the Nyström method is lower bounded by Ω( N

mp ),
i.e., ∥∥∥K −KbK̂

†K⊤
b

∥∥∥
2
≥ Ω

(
N

mp

)
,

provided N > 64[ln 4]2m2.

We skip the proof of this theorem as it is almost identical to that of Theorem 4. The gap
between the upper bound and the lower bound given in Theorems 9 and 11 indicates that
there is potentially a room for further improvement .

Next, we present several theorems and corollaries to pave the path for the proof of Theo-
rem 9. We borrow the following two theorems from the compressive sensing theory (Candés
and Romberg, 2007) that are the key to our analysis.

Theorem 12 (Theorem 1.2 from (Candés and Romberg, 2007)) Let V be an N×N orthog-
onal matrix (V ⊤V = I) with coherence µ. Fix a subset T of the signal domain. Choose a
subset S of the measurement domain of size |S| = m uniformly at random. Suppose that the
number of measurements m obeys m ≥ |T |µ2max (Ca ln |T |, Cb ln(3/δ)) for some positive
constants Ca and Cb. Then

Pr

(∥∥∥∥
N

m
V ⊤
S,TVS,T − I

∥∥∥∥
2

≥ 1/2

)
≤ δ.

10



Theorem 13 (Lemma 3.3 from (Candés and Romberg, 2007)) Let V , S, and T be the same
as defined in Theorem 12. Let u⊤

k be the k-th row of V ⊤
S,∗VS,T . Define σ2 = µ2mmax (1, µ|T |/√m).

Fix a > 0 obeying a ≤ (m/µ2)1/4 if µ|T |/√m > 1 and a ≤ (m/[µ2|T |])1/2 otherwise. Let
zk = (V ⊤

S,TVS,T )
−1uk. Then, we have

Pr

(
sup
k∈T c

‖zk‖2 ≥ 2µ
√

|T |/m+ 2aσ/m

)

≤ N exp(−γa2) + Pr
(
‖V ⊤

S,TVS,T‖2 ≤
m

2N

)

for some positive constant γ, where T c stands for the complementary set to T .

Combining the results from Theorem 12 and Theorem 13, we have the following high
probability bound for supk∈T c ‖zk‖2.

Corollary 14 If |T | ≥ max
(
Cab ln(3N

3), 4 lnN
γ

)
, and

µ2 max

(
|T |Cab ln(3N

3), 16

(
lnN

γ

)2
)

≤ m < µ2|T |2,

where Cab = max(Ca, Cb), then with a probability 1− 2N−3, we have

sup
k∈T c

‖zk‖2 ≤ 4µ

√
|T |
m
.

Using Corollary 14, we have the following bound for E(Ha, r).

Theorem 15 If r > max(Cab ln(3N
3), 4 lnN/γ) and

µ2 max

(
rCab ln(3N

3), 16

(
lnN

γ

)2
)

≤ m < µ2r2,

then, with a probability 1− 2N−3, we have

E(Ha, r) ≤
16µ2r

m

N∑

i=r+1

λi.

Proof For the sake of simplicity, we assume that the first m examples are sampled, i.e.,

D̂ = {x1, . . . ,xm}. For any g ∈ Hr
b , we have g(·) =

∑r
i=1 wiλ

1/2
i ϕi(·), with

∑r
i=1 w

2
i ≤ 1.

Below, we will make specific construction of f based on g that ensures a small approximation
error. Let f be

f(·) =
m∑

j=1

ajκ(xj , ·) =
N∑

i=1

ϕi(·)λ1/2i




m∑

j=1

ajVj,i




=

N∑

i=1

biλ
1/2
i ϕi(·),

11



where bi =
∑m

j=1 ajVj,i, i = 1, . . . , N , and the value of a = (a1, . . . , am)⊤ will be given later.
Define T = {1, . . . , r} and S = {1, . . . ,m}. Under the condition that

m ≥ rµ2max (Ca, Cb)) ln(3N
3)

≥ rµ2max
(
Ca ln r, Cb ln(3N

3)
)
,

Theorem 12 holds, and therefore with a probability at least 1−N−3,

m

2N
≤ λmin

(
V ⊤
S,TVS,T

)
≤ λmax

(
V ⊤
S,TVS,T

)
≤ 3m

2N
. (7)

We construct a as a = VS,T

[
V ⊤
S,TVS,T

]−1
w, where w = (w1, . . . , wr)

⊤. Since

b = V ⊤
S,∗a = V ⊤

S,∗VS,T

(
V ⊤
S,TVS,T

)−1
w,

where b = (b1, · · · , bN )⊤, it is straightforward to see that bj = wj for j ∈ T . Using the
result from Corollary 14, we have, with a probability at least 1− 2N−3,

max
j∈T c

|bj | ≤ max
j∈T c

‖zj‖2‖w‖2 ≤ 4µ

√
r

m
,

where z⊤j is the j-th row of matrix V ⊤
S,∗VS,T

(
V ⊤
S,TVS,T

)−1
. We thus obtain

‖f − g‖2Hκ
=

∥∥∥∥∥
∑

i∈T c

λ
1/2
i biϕi(·)

∥∥∥∥∥

2

Hκ

≤ 16µ2r

m

N∑

i=r+1

λi.

Hence,

E(Ha, r) = max
g∈Hr

b

min
f∈Ha

‖f − g‖2Hκ
≤ 16µ2r

m

N∑

i=r+1

λi.

Remark 16 It is worthwhile to compare the result in Theorem 15, i.e., E(Ha, r) = O
(
µ2r

∑N
i=r+1 λi/m

)
,

to the relative error bound given in (Gittens, 2011), i.e., E(Ha, r) ≤ O (λr+1N/m). In
the case when the eigenvalues decay fast (e.g., eigenvalues follow a power law), we have∑N

i=r+1 λi ≪ Nλr+1, and therefore our bound is significantly better than the relative bound
in (Gittens, 2011). On the other hand, when eigenvalues follow a flat distribution (e.g.,
λi ≈ λr+1 for all i ∈ [r + 2, N ]), we have

∑N
i=r+1 λi ≈ Nλr+1, and therefore our bound is

worse than the relative bound in (Gittens, 2011) by a factor of µ2r.

Finally, we show the proof of Theorem 9 using Theorem 15.

Proof [Proof of Theorem 9] Let r =

⌊
m

µ2Cab ln(3N3)

⌋
, then

µ2rCab ln(3N
3) ≤ m < µ2r2,

12



where the right inequality follows that r ≥ m

2µ2Cab ln(3N3)
, and m > 4µ2C2

ab ln
2(3N3).

Then the conditions in Theorem 15 hold and we have
∥∥∥K −KbK̂

†K⊤
b

∥∥∥
2
≤ max (E(Ha, r), λr+1)

≤ max

(
16µ2r

m
, 1

) N∑

i=r+1

λi.

Since max(16µ2r/m, 1) ≤ O(1) due to the specific value we choose for r, and
∑N

i=r+1 λi ≤
O(N/rp−1) due to the power law distribution, then

∥∥∥K −KbK̂
†K⊤

b

∥∥∥
2
≤ O

(
N

rp−1

)
≤ Õ

(
N

mp−1

)
.

4. Application of the Nyström Method to Kernel Classification

Although the Nyström method was proposed in (Williams and Seeger, 2001) to speed up
kernel machine, few studies examine the application of the Nyström method to kernel clas-
sification. In fact, to the best of our knowledge, (Williams and Seeger, 2001) and (Cortes
et al., 2010) are the only two pieces of work that explicitly explore the Nyström method for
kernel classification. The key idea of both works is to apply the Nyström method to approx-
imate the kernel matrix with a low rank matrix in order to reduce the computational cost.
More specifically, we consider the following optimization problem for kernel classification

min
f∈Hκ

LN (f) =
λ

2
‖f‖2Hκ

+
1

N

N∑

i=1

ℓ(yif(xi)), (8)

where yi ∈ {−1,+1} is the class label assigned to instance xi, and ℓ(z) is a convex loss
function. To facilitate our analysis, we assume (i) ℓ(z) is strongly convex with modulus σ,
i.e. |ℓ′′(z)| ≥ σ 5, and (ii) ℓ(z) is Lipschitz continuous, i.e. |ℓ′(z)| ≤ C for any z within
the domain. Using the convex conjugate of the loss function ℓ(z), denoted by ℓ∗(α), α ∈ Ω,
where Ω is the domain for dual variable α, we can cast the problem in (8) into the following
optimization problem over α

max
{αi∈Ω}Ni=1

− 1

N

N∑

i=1

ℓ∗(αi)−
1

2λN2
(α ◦ y)⊤K(α ◦ y), (9)

with the solution f given by f = − 1
Nλ

∑N
i=1 αiyiκ(xi, ·). By the Fenchel conjugate theory,

we have max
α∈Ω

|α|2 ≤ C2. because |ℓ′(z)| ≤ C.

5. Loss functions such as square loss used for regression and logit function used for logistic regression are
strongly convex

13



To reduce the computational cost, Williams and Seeger (2001) and Cortes et al. (2010)
suggest to replace the kernel matrix K with its low rank approximation K̃ = KbK̂

†K⊤
b ,

leading to the following optimization problem for α

max
{αi∈Ω}Ni=1

− 1

N

N∑

i=1

ℓ∗(αi)−
1

2λN2
(α ◦ y)⊤K̃(α ◦ y). (10)

One main problem with this approach is that although it simplifies the computation of
kernel matrix, it does not simplify the classifier f , because the number of support vectors,
after the application of the Nyström method, is not guaranteed to be small (Dekel and
Singer, 2006; Joachims and Yu, 2009), leading to a high computational cost in performing
function evaluation.

We address this difficulty by presenting a new approach to explore the Nyström method
for kernel classification. Similar to the previous analysis, we randomly select a subset of
training examples, denoted by D̂ = (x̂1, . . . , x̂m), and restrict the solution of f(·) to the
subspace Ha = span(κ(x̂1, ·), . . . , κ(x̂m, ·)), leading to the following optimization problem

min
f∈Ha

LN (f) =
λ

2
‖f‖2Hκ

+
1

N

N∑

i=1

ℓ(yif(xi)). (11)

The following proposition shows that the optimal solution to (11) is closely related to the
optimal solution to (10).

Proposition 17 The solution f to (11) is given by

f = − 1

Nλ

m∑

i=1

ziyiκ(x̂i, ·),

where z = K̂†K⊤
b α and α is the optimal solution to (10).

It is important to note that the classifier obtained from (11) is only supported by the
sampled training examples in D̂, which significantly reduces the complexity of the kernel
classifier compared to the approach suggested in (Williams and Seeger, 2001; Cortes et al.,
2010). We also note that the proposed approach is equivalent to learning a linear classifier
by representing each instance x with the vector

φ(x) = D̂−1/2V̂ ⊤ (κ(x̂1,x), . . . , κ(x̂m,x))
⊤ ,

where D̂ is a diagonal matrix with non-zero eigenvalues of K̂, and V̂ is the corresponding
eigenvector matrix. Although this idea has already been adopted by practitioners, we are
unable to find any reference on its empirical study. The remaining of this work is to show
that this approach could have a good generalization performance provided that the eigen-
values of kernel matrix follow a skewed distribution. Below, we develop the generalization
error bound for the classifier learned from (11).

Let fN and faN be the optimal solutions to (8) and (11), respectively. Let f∗ be the
optimal classifier that minimizes the expected loss function, i.e.,

f∗ = argmin
f∈Hκ

P (ℓ ◦ f) , E(x,y) [ℓ(yf(x))] .

14



Let ‖f‖2L2
= Ex[|f(x)|2] denote the ℓ2 norm square of f . In order to create a tight bound,

we exploit the technique of local Rademacher complexity (Bartlett et al., 2002; Koltchinskii,
2011). Define ψ(·) as

ψ(δ) =

(
2

N

N∑

i=1

min(δ2, λi)

)1/2

.

Let ε̃ be the solution to ε̃2 = ψ(ε̃) where the existence and uniqueness of ε̃ is determined
by the sub-root property of ψ(δ) (Bartlett et al., 2002). Finally we define

ǫ = max

(
ε̃,

√
6 lnN

N

)
. (12)

Theorem 18 Assume with a probability 1 − 2N−3, E(Ha) ≤ Γ(N,m), where Γ(N,m) is
some function depending on N and m. Assume that N is sufficiently large such that

max (‖faN‖Hκ , ‖f∗‖Hκ) ≤
eNN

12 lnN
,

max (‖faN‖L2
, ‖f∗‖L2

) ≤ eN

2

√
N

6 lnN
.

Then, with a probability at least 1− 4N−3, we have

P (ℓ ◦ faN ) ≤ P (ℓ ◦ f∗) + 2λ‖f∗‖2Hκ
+
C2Γ(N,m)

λN

+
2C2

1C
2ǫ4

λ
+

2C2
1C

2ǫ2

σ
+ C1Ce

−N

where ǫ is given in (12) and C1 is a constant independent from m and N . By choosing λ
that minimizes the above bound, we have

P (ℓ ◦ faN ) ≤ P (ℓ ◦ f∗) + 4‖f∗‖Hκǫ
2C

√
C2
1 +

Γ(N,m)

2Nǫ4

+
2C2

1C
2

σ
ǫ2 + C1Ce

−N .

Remark 19 In the case when the eigenvalues of the kernel matrix follow a p-power law
with p > 1, we have ǫ2 = O(N−p/(p+1)) according to (Koltchinskii and Yuan, 2010), and
Γ(N,m) = O(N/mp−1) according to Theorem 9. Applying these results to Theorem 18, the
generalization performance of faN becomes

P (ℓ ◦ faN ) ≤ P (ℓ ◦ f∗) + 2λ‖f∗‖2Hκ
+

C2C
2

λmp−1
+ C1Ce

−N

+
2C3C

2N−2p/(p+1)

λ
+

2C4C
2N−p/(p+1)

σ
(13)
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where C2, C3, and C4 are constants independent from N and m. By choosing λ that
minimizes the bound in (13), we have

P (ℓ ◦ faN) ≤ P (ℓ ◦ f∗) + 4‖f∗‖Hκ

Np/(p+1)
C

√
C3 +C2

N2p/(p+1)

2mp−1

+
2C4C

2

σNp/(p+1)
+C1Ce

−N

= P (ℓ ◦ f∗) +O
(
N−p/(p+1) +m−(p−1)/2

)
.

As indicated by above inequality, when the eigenvalues of the kernel matrix follow a p-
power law, by setting m = N2p/(p2−1), we are able to achieve similar performance as the full
version of kernel classifier (i.e., O(N−p/(p+1))). In other words, we can construct a kernel
classifier without sacrificing its generalization performance with no more than N2p/(p2−1)

support vectors, which could be significantly smaller than N when p > (1 +
√
2). For the

example of kernel that generates Sobolev Spaces Wα,2(Td) of smoothness α > d/2, where
T
d is d-dimensional torus, its eigenvalues follow a p-power law with p = 2α > d, which is

larger than (1 +
√
2) when d ≥ 3.

5. Conclusion

We develop new methods for analyzing the approximation bound for the Nyström method.
We show that the approximation error can be improved to O(N/m1−ρ) in the case when
there is a large eigengap in the spectrum of a kernel matrix, where ρ ∈ (0, 1/2) is introduced
to characterize the eigengap. When the eigenvalues of a kernel matrix follow a p-power law,
the approximation error is further reduced to O(N/mp−1) under an incoherence assumption.
We develop a kernel classification approach based on the Nyström method and show that
when the eigenvalues of a kernel matrix follow a p-power law (p > 1), we can reduce the
number of support vectors to N2p/(p2−1), which could be significantly less than N if p is
large, without seriously sacrificing its generalization performance.
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Appendix

Proof of Theorem 4

We argue that there exists a kernel matrix K such that (i) all its diagonal entries equal to
1, and (ii) the first m+1 eigenvalues of K are in the order of Ω(N/m). To see the existence
of such a matrix, we sample m+ 1 vectors u1, · · · ,um+1, where ui ∈ R

N , from a Bernoulli
distribution, with Pr(ui,j = +1) = Pr(ui,j = −1) = 1/2. We then construct K as

K =
m+1∑

i=1

uiu
⊤
i

1

m+ 1
=

1

m+ 1
UU⊤, (14)

where U = (u1, · · · ,um+1).

First, since ui,j = ±1, we have diag(uiu
⊤
i ) = 1, where 1 is a vector of all ones, and

thereforeKi,i = 1 for i ∈ [N ]. Second, we show that with some probability 1−δ, all non-zero
eigenvalues of 1

NU
⊤U are bounded between 1/2 and 3/2, i.e.,

1

2
≤ λmin

(
1

N
U⊤U

)
≤ λmax

(
1

N
U⊤U

)
≤ 3

2
. (15)

To prove (15), we use the concentration inequality in Proposition 6. We define ξi = ziz
⊤
i , i =

1, . . . , N , where zi ∈ R
m is the ith row of the matrix U , and ‖ · ‖ in the above proposition

as the spectral norm of a matrix. Since every element in zi is sampled from a Bernoulli
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distribution with equal probabilities of being ±1, we have E[ziz
⊤
i ] = Im and ‖ziz⊤i ‖ = m.

Thus, with a probability 1− δ, we have

∥∥∥∥
1

N
U⊤U − I

∥∥∥∥ =

∥∥∥∥∥
1

N

N∑

i=1

ξi − E[ξ]

∥∥∥∥∥ ≤ 4m ln(2/δ)√
N

.

When N > 64m2[ln 4]2, for any sampled U , with 50% chance, we have
∥∥∥∥
1

N
U⊤U − I

∥∥∥∥ ≤ 1

2
,

which implies (15).
With the bound in (15) and using the fact that the eigenvalues of UU⊤ equal to the

eigenvalues of U⊤U , it is straightforward to see that the first m + 1 eigenvalues of K are
in the order of Ω(N/m). Up to this point, we proved the existence of such a kernel matrix.
Next, we prove the lower bound for the constructed kernel matrix.

Let V1:(m+1) = (v1, · · · ,vm+1) the first m + 1 eigenvectors of K. We construct ĝ as
follows: Let u = V1:(m+1)a be a vector in the subspace span(v1, · · · ,vm+1) that sat-

isfies the condition K⊤
b u = 0. The existence of such a vector is guaranteed because

rank(K⊤
b V1:(m+1)) ≤ m. We normalize a such that ‖a‖2 = 1. Then we let ĝ =

∑N
i=1 uiκ(xi, ·) =∑m+1

i=1 wi

√
λiϕi(·), where w = V ⊤

1:(m+1)u. It is easy to verify that (i) ĝ ∈ Hb since

‖u‖2 = ‖V1:(m+1)a‖2 = 1, and (ii) ĝ ⊥ Ha since u⊤Kb = 0. Using ĝ, we have

E(Ha) = max
g∈Hb

min
f∈Ha

‖f − g‖2Hκ
≥ ‖ĝ‖2Hκ

=
m+1∑

i=1

w2
i λi

= Ω

(
N

m+ 1

)
‖w‖22 ≥ Ω

(
N

m

)
,

where we use ‖w‖2 = ‖V ⊤
1:(m+1)V1:(m+1)a‖2 = ‖a‖2 = 1. We complete the proof by using

the fact E(Ha) =
∥∥∥K −KbK̂

†K⊤
b

∥∥∥
2
.

Proof of Corollary 8

Define ξ(x̂i) to be a rank one linear operator, i.e.,

ξ(x̂i)[f ](·) = κ(x̂i, ·)f(x̂i).

Apparently, Lm = 1
m

∑m
i=1 ξ(x̂i) and E[ξ(x̂i)] = LN . We complete the proof by using the

result from Proposition 6 and the fact

‖ξ(x̂k)‖HS =

√√√√
N∑

i,j=1

〈ϕi, κ(x̂k, ·)ϕj(x̂k)〉2

=

√√√√
N∑

i,j=1

ϕi(x̂k)2ϕj(x̂k)2 = κ(x̂k, x̂k) ≤ 1,

where the last equality follows equation (3).
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Proof of Corollary 14

We choose a = 2
√

lnN/γ in Theorem 13. Since m ≥ 16µ2
(
lnN
γ

)2
, then we have a ≤

(
m
µ2

)1/4
. Additionally, by having µ|T |/√m > 1, the conditions in Theorem 13 hold, and by

setting δ = N−3 in Theorem 12, the condition in Theorem 12 holds, which together implies

Pr

(
sup
k∈T c

‖zk‖2 ≥ 2µ
√

|T |/m+ 2aσ/m

)

≤ N exp(−γa2) + Pr
(
‖V ⊤

S,TVS,T‖2 ≤ m

2N

)

≤ N−3 +Pr

(∥∥∥∥
N

m
V ⊤
S,TVS,T − I

∥∥∥∥
2

≥ 1

2

)

≤ 2N−3.

From this we have, with a probability 1− 2N−3,

sup
k∈T c

‖zk‖2 ≤ 2µ

√
|T |
m

+ 2

(
m

µ2

)1/4
√
µ3|T |m1/2

m

= 4µ

√
|T |
m
.

Proof of Proposition 17

Since
ℓ(yif(xi)) = max

αi∈Ω
αiyif(xi)− ℓ∗(αi),

we rewrite the optimization problem in (11) into a convex-concave optimization problem

min
f∈Ha

max
{αi∈Ω}mi=1

λ

2
‖f‖2Hκ

+
1

N

N∑

i=1

(αiyif(xi)− ℓ∗(αi)) .

Since f ∈ Ha, we write f =
∑m

i=1 ziκ(x̂i, ·), resulting in the following optimization problem

min
z∈Rm

max
{αi∈Ω}mi=1

λ

2
z⊤K̂z+

1

N
(α ◦ y)⊤Kbz−

1

N

N∑

i=1

ℓ∗(αi).

Since the above problem in linear (convex) in z and concave in α, we can switch minimization
with maximization. We complete the proof by taking the minimization over z.

Proof of Theorem 18

To simply our presentation, we introduce notations

PN (ℓ ◦ f) = 1

N

N∑

i=1

ℓ(yif(xi)),

Λ(f) = P (ℓ ◦ f)− P (ℓ ◦ f∗).
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Using PN (ℓ ◦ f), we can write LN(f) = PN (ℓ ◦ f) + λ
2‖f‖2Hκ

. We first prove that

LN(fN ) ≤ LN (faN ) +
C2

2λN
E(Ha),

where maxz∈Ω |z|2 ≤ C2. Note that

LN (fN )

= max
{αi∈Ω}Ni=1

− 1

N

N∑

i=1

ℓ∗(αi)−
1

2λN2
(α ◦ y)⊤K(α ◦ y)

LN (faN )

= max
{αi∈Ω}N

i=1

− 1

N

N∑

i=1

ℓ∗(αi)−
1

2λN2
(α ◦ y)⊤K̃(α ◦ y).

Then

LN (fN )

= max
{αi∈Ω}Ni=1

− 1

N

N∑

i=1

ℓ∗(αi)−
1

2λN2
(α ◦ y)⊤K̃(α ◦ y)

+
1

2λN2
(α ◦ y)⊤(K̃ −K)(α ◦ y)

≤ max
{αi∈Ω}Ni=1

− 1

N

N∑

i=1

ℓ∗(αi)−
1

2λN2
(α ◦ y)⊤K̃(α ◦ y)

+ max
{αi∈Ω}Ni=1

1

2λN2
(α ◦ y)⊤(K̃ −K)(α ◦ y)

≤ LN (faN ) +
1

2λN2
‖α‖22‖K − K̃‖2

≤ LN (faN ) +
C2

2λN
E(Ha).

Then we proceed the proof as follows

λ

2
‖faN‖2Hκ

+ P (ℓ ◦ faN )

≤ PN (ℓ ◦ faN ) +
λ

2
‖faN‖2Hκ

+ (P − PN )(ℓ ◦ faN )

≤ PN (ℓ ◦ fN ) +
λ

2
‖fN‖2Hκ

+
C2

2λN
E(Ha)

+ (P − PN )(ℓ ◦ faN)

≤ PN (ℓ ◦ f∗) + λ

2
‖f∗‖2Hκ

+
C2

2λN
E(Ha)

+ (P − PN )(ℓ ◦ faN),
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where the third inequality follows from the fact that fN is the minimizer of PN (ℓ ◦ f) +
λ
2‖f‖2Hκ

. Hence,

Λ(faN ) ≤ λ

2
‖f∗‖2Hκ

− λ

2
‖faN‖2Hκ

+
C2

2λN
E(Ha)

+ (P − PN )(ℓ ◦ faN − ℓ ◦ f∗).

Let r = ‖f∗ − faN‖L2
and R = ‖f∗ − faN‖Hκ . Define

G(r,R) = {f ∈ Hκ : ‖f − f∗‖L2
≤ r, ‖f∗ − f‖Hκ ≤ R} .

Using the domain G, we rewrite the bound for Λ(faN ) by

Λ(faN ) ≤ λ

2
‖f∗‖2Hκ

− λ

2
‖faN‖2Hκ

+
C2

2λN
E(Ha)

+ sup
f∈G(r,R)

(P − PN )(ℓ ◦ f − ℓ ◦ f∗).

Since ǫr ≤ eN and ǫ2R ≤ eN , using Lemma 9 from (Koltchinskii and Yuan, 2010), we have,
with a probability 1− 2N−3, for any

sup
f∈G(r,R)

(P − PN )(ℓ ◦ f − ℓ ◦ f∗)) ≤ C1C(rǫ+Rǫ2 + e−N ),

where C1 is a constant independent from N . Thus, with a probability at least 1 − 4N−3,
we have

Λ(faN )− C1Ce
−N

≤ λ

2
‖f∗‖2Hκ

− λ

2
‖faN‖2Hκ

+
C2Γ(N,m)

2λN

+ C1Cǫ‖faN − f∗‖L2
+ C1Cǫ

2‖f∗ − faN‖Hκ

≤ λ

2
‖f∗‖2Hκ

− λ

2
‖faN‖2Hκ

+
C2Γ(N,m)

2λN

+
C2
1C

2ǫ2

σ
+
σ

4
‖faN − f∗‖2L2

+
C2
1C

2ǫ4

λ
+
λ

4
‖f∗ − faN‖2Hκ

≤ λ

2
‖f∗‖2Hκ

− λ

2
‖faN‖2Hκ

+
C2Γ(N,m)

2λN
+
λ

2
‖f∗‖2Hκ

+
C2
1C

2ǫ2

σ
+
σ

4
‖faN − f∗‖2L2

+
C2
1L

2ǫ4

λ
+
λ

2
‖faN‖2Hκ

≤ λ‖f∗‖2Hκ
+
C2Γ(N,m)

2λN
+
C2
1C

2ǫ2

σ
+
C2
1C

2ǫ4

λ

+
σ

4
‖faN − f∗‖2L2

≤ λ‖f∗‖2Hκ
+
C2Γ(N,m)

2λN
+
C2
1C

2ǫ2

σ
+
C2
1C

2ǫ4

λ
+

1

2
Λ(faN ),

where in the second inequality we apply Young’s inequality ab ≤ a2

2ǫ + ǫb2

2 twice, the last
inequality follows from the strong convexity of ℓ(z) and f∗ is the minimizer of P (ℓ ◦ f) =
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E(x,y)[ℓ(yf(x))]. Thus, with a probability at least 1− 4N−3, we have

P (ℓ ◦ faN) ≤P (ℓ ◦ f∗) + 2λ‖f∗‖2Hκ
+
C2Γ(N,m)

λN

+
2C2

1C
2ǫ2

σ
+

2C2
1C

2ǫ4

λ
+ C1Ce

−N .

We complete the proof by minimizing over λ in the R.H.S. of the above inequality.
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