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Quantum rate distortion coding
with auxiliary resources

Mark M. Wilde, Nilanjana Datta, Min-Hsiu Hsieh, and Andreas Winter

Abstract—We extend quantum rate distortion theory by con-
sidering auxiliary resources that might be available to a sender
and receiver performing lossy quantum data compression. The
first setting we consider is that of quantum rate distortion coding
with the help of a classical side channel. Our result here is
that the regularized entanglement of formation characterizes
the quantum rate distortion function, extending earlier work
of Devetak and Berger. We also combine this bound with the
entanglement-assisted bound from our prior work to obtain the
best known bounds on the quantum rate distortion function for
an isotropic qubit source. The second setting we consider is that
of quantum rate distortion coding with quantum side information
(QSI) available to the receiver. In order to prove results in this
setting, we first state and prove a quantum reverse Shannon
theorem with QSI (for tensor-power states), which extends the
known tensor-power quantum reverse Shannon theorem. The
achievability part of this theorem relies on the quantum state
redistribution protocol, while the converse relies on the fact that
the protocol can cause only a negligible disturbance to the joint
state of the reference and the receiver’s QSI. This quantum
reverse Shannon theorem with QSI naturally leads to quantum
rate-distortion theorems with QSI, with or without entanglement
assistance.

Index Terms—quantum rate distortion, quantum side infor-
mation, entanglement of purification, isotropic qubit source,
quantum reverse Shannon theorem

I. INTRODUCTION

Schumacher proved that the optimal rate of data compres-
sion of a memoryless, quantum information source is given
by its von Neumann entropy [1]. This data compression limit
was evaluated under the requirement that the data compression
scheme is lossless, in the sense that the information emitted by
the source is recovered with arbitrary precision in the limit of
asymptotically many copies of the source. However, the lack
of sufficient storage could make it necessary to compress a
source beyond its von Neumann entropy. By the converse of
Schumacher’s theorem, this would mean that the information
recovered after the compression-decompression scheme would
suffer a certain amount of distortion compared to the original
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information. In other words, the data compression scheme
would be lossy.

The theory of lossy quantum data compression is called
quantum rate distortion theory, in analogy with its classical
counterpart developed by Shannon [2]. It deals with the trade-
off between the rate of compression and the allowed distortion.
The trade-off is characterized by a rate distortion function
which is defined as the minimum rate of data compression for
a given distortion, with respect to a suitably defined distortion
measure.

In the first paper to discuss quantum rate distortion theory,
Barnum considered a symbol-wise entanglement fidelity as
a distortion measure [3]. With respect to it, he obtained a
lower bound on the quantum rate distortion function in terms
of an entropic quantity, namely, the coherent information [4].
Even though this was the first result in quantum rate distortion
theory, it is unsatisfactory since the coherent information can
become negative, whereas the rate distortion function, by its
very definition, is always non-negative.

In [5], we obtained an expression for the quantum rate
distortion function in terms of the entanglement of purification
[6], which, in contrast to the coherent information, is always
non-negative. However, our result too is not entirely satisfac-
tory since the expression is given in terms of a regularized for-
mula and hence cannot be effectively computed. Furthermore,
there is recent evidence that the entanglement of purification is
a non-additive quantity [7], which if true would lead to further
complications in evaluating the expression. The search for a
single-letter formula for the quantum rate distortion function
hence remains an important open problem.

It is often convenient to consider data compression in
the communication paradigm, in which a sender (say, Alice)
compresses the information emitted by the quantum informa-
tion source and sends it to a receiver (say, Bob) who then
decompresses it. In this setting, one considers Alice and Bob
to have additional, auxiliary resources which they can employ
to assist them in their compression-decompression task. One
such auxiliary resource is prior shared entanglement between
Alice and Bob. In [5], we proved that in its presence, the
quantum rate distortion function is characterized by a single-
letter expression in terms of the quantum mutual information.
This expression obviously provides a single-letter lower bound
on the unassisted quantum rate distortion function, since, for
any given distortion, the extra resource could in principle
allow for improved compression. Furthermore, this result
demonstrates that the coherent information (at least in the
form suggested by Barnum [3]) is irrelevant for the task
of unassisted quantum rate distortion coding because half
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the quantum mutual information is a lower bound on the
unassisted quantum rate distortion function and it is also an
upper bound on the coherent information.

II. SUMMARY OF RESULTS

In this paper, we consider rate-distortion coding in the
presence of other auxiliary resources, e.g., access to a noiseless
classical side channel or quantum side information. Doing so
not only provides new bounds on the unassisted quantum rate
distortion function, but it also offers new scenarios that are
unique to the quantum setting.

Alice and Bob are said to have a noiseless, forward classical
side channel if Alice is allowed unlimited classical communi-
cation to Bob. Quantum rate distortion in the presence of such
an auxiliary resource was studied for the special case of an
isotropic qubit source – i.e., one that produces a maximally
mixed state on a qubit system – by Devetak and Berger [8].
We consider the general case of an arbitrary, memoryless
quantum information source, and prove that the corresponding
rate distortion function is given in terms of a regularized
entanglement of formation [9]. This classically-assisted rate
distortion function serves as an alternate lower bound to the
unassisted quantum rate distortion function, and we show that
it can be tighter than the above entanglement-assisted lower
bound in some cases.

Quantum rate distortion coding in the presence of quantum
side information (QSI) corresponds to the following setting:
Suppose a third party (say, Charlie) maps the source state ρ
via some isometry to a bipartite state ρAB , and distributes the
systems A and B to Alice and Bob, respectively. The goal
is for Alice to transfer her system A to Bob, up to some
given distortion, using as little quantum communication as
possible. The rate distortion function is then defined as the
minimum rate of quantum communication required for this
task, evaluated in the limit in which Alice and Bob share
asymptotically many copies of the state ρAB . We obtain an ex-
pression for the rate distortion function under the assumption
that the protocol causes asymptotically negligible disturbance
to the joint state of Bob and a reference system R that purifies
the state ρAB . This assumption may be motivated naturally in
light of the fact that Bob may want to reuse his quantum
side information in some future information processing task.
Furthermore, if we allow Alice and Bob to have sufficient
prior shared entanglement in addition to Bob’s QSI, then,
under the above assumption, the rate distortion function is
given by a single-letter expression in terms of the quantum
conditional mutual information. A classical analogue of the
above problem was solved by Wyner and Ziv [10]. Our results
on quantum rate distortion with QSI also generalize Luo and
Devetak’s results on classical rate distortion in the presence of
QSI [11] and our prior results in [12] on quantum-to-classical
rate distortion coding with QSI.

The techniques used to prove these results are generaliza-
tions of those which we employed in [5] to obtain expres-
sions for the unassisted and entanglement-assisted quantum
rate distortion functions. The main ingredient in the proof
of the achievability part for the entanglement-assisted case

in [5] is the quantum reverse Shannon theorem [13], [14],
which quantifies the minimum rate of quantum communication
required from Alice to Bob in order to asymptotically simulate
a memoryless quantum channel, when they share entangle-
ment. (It has been pointed out in both [15] and [16] how a
reverse Shannon theorem immediately leads to a rate distortion
protocol.) Analogously, to establish the achievability of our
rate distortion functions in the presence of QSI, we employ
a generalization of the quantum reverse Shannon theorem to
the case in which Bob has QSI as an auxiliary resource. This
theorem constitutes a result which is interesting in its own
right, and the protocol of quantum state redistribution [17],
[18] plays a key role in the proof of the achievability part. The
achievability of the rate distortion function in the unassisted
case was proved by using Schumacher compression [5], which
can be viewed as a special reverse Shannon theorem where
the goal is to simulate the identity channel. Analogously, the
achievability of our rate distortion function in the presence of
a classical side channel is proved by exploiting a variant of
Schumacher compression.

The converse proofs of the results in this paper have certain
similarities, using various identities and entropic inequalities,
e.g., the quantum-data processing inequality [4], superaddi-
tivity of the quantum mutual information, and the Alicki-
Fannes inequality [19]. However, a non-trivial aspect of the
QSI converse proofs is that they exploit the assumption that the
protocol causes only a negligible disturbance to the joint state
of the reference system and Bob’s QSI. We can then invoke
Uhlmann’s theorem [20] as in Refs. [21], [12] to demonstrate
the existence of a map which does not act at all on Bob’s
quantum side information, such that the overall map on the
source state is close to the original map that acts in part on
Bob’s quantum side information. As such, this feature of the
converse proof is unique to quantum information theory and
simply is not present in related classical results [10].

The paper is organized as follows. In Section III, we
introduce necessary notation and definitions, especially for the
entropic quantities arising in the statements of the theorems. In
Section IV, we introduce the basic concepts of quantum rate
distortion theory, and unify our results from [5] on unassisted
and entanglement-assisted quantum rate distortion functions in
order to obtain a trade-off between the rate of compression and
the rate of entanglement consumption. We analyse quantum
rate distortion in the presence of a classical side channel
in Section V and in the presence of QSI in Section VI.
The latter section also contains our theorem on the rate
distortion function in the presence of both QSI and prior shared
entanglement. The necessary generalizations of the quantum
reverse Shannon theorem required for our proofs are stated
and proved in Section VI-B. We conclude in Section VII with
a summary and some open questions.

III. NOTATIONS AND DEFINITIONS

Let B(H) denote the algebra of linear operators acting on
a finite-dimensional Hilbert space H, and let D(H) denote
the set of positive operators of unit trace (density operators)
acting on H. For any given pure state |ψ〉 ∈ H we denote the
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projector |ψ〉〈ψ| simply as ψ. The trace distance between two
operators M and N is given by

‖M −N‖1 ≡ Tr(|M −N |),

where |C| ≡
√
C†C. Throughout this paper we restrict our

considerations to finite-dimensional Hilbert spaces, and we
take the logarithm to base two.

We denote the Hilbert space associated to a quantum
system A by HA, and the quantum systems corresponding
to n copies of a pure state ψ⊗nABC by An, Bn and Cn. For a
multiparty state ρAB , we unambiguously refer to its reduced
states on systems A and B simply as ρA and ρB , respectively,
so that it is implicit that ρA = TrB(ρAB) and ρB = TrA(ρAB).
Moreover, we denote a completely positive trace-preserving
(CPTP) map N : B(HA) → B(HB) simply as NA→B .
Similarly we denote an isometry U : B(HA)→ B(HB⊗HE)
simply as UA→BE . The identity map on states in D(HA) is
denoted as idA.

The von Neumann entropy of a state ρ ∈ D(HA) is defined
as

H(ρ) ≡ H(A)ρ ≡ −Tr(ρ log ρ),

and satisfies the bound H(ρ) ≤ log dim(HA). The conditional
entropy H(A|B)ρ, the quantum mutual information I(A;B)ρ,
and the conditional quantum mutual information I(A;B|C)ρ
of a tripartite state ρABC are defined as follows:

H(A|B)ρ ≡ H(AB)ρ −H(B)ρ,

I(A;B)ρ ≡ H(A)ρ −H(A|B)ρ,

I(A;B|C)ρ ≡ H(A|C)ρ −H(A|BC)ρ. (1)

The entanglement of formation [9] of a bipartite state ρAB is
defined as

EF (ρAB) ≡ min
{p(x),|ψxAB〉}

∑
x

p(x)H(A)ψx , (2)

where {p(x), |ψxAB〉} is an ensemble of pure states such that
ρAB =

∑
x p(x) |ψxAB〉〈ψxAB |. The entanglement of purifica-

tion [6] of a bipartite state ρAB is given by the following
expression:

Ep(ρAB) = min
N

H((idB ⊗NE→E′)(σBE(ρ))), (3)

where σBE(ρ) = TrA(φρABE), φρABE is some purification of
ρAB , and the minimization is over all CPTP maps NE→E′
acting on the system E.

We also employ the following lemmas in our proofs.
Lemma 1 (Quantum data processing inequality [4]): If

ωAB′ = (idA ⊗ NB→B′)(σAB), where NB→B′ is a CPTP
map, then

I(A;B)σ ≥ I(A;B′)ω. (4)

Lemma 2 (Alicki-Fannes Inequality [19]): Suppose two
states ρAB and σAB are close in trace distance:

‖ρAB − σAB‖1 ≤ ε, for some ε ≥ 0.

Then their respective conditional entropies are close:

|H(A|B)ρ −H(A|B)σ| ≤ 4ε log|A|+ 2h2(ε), (5)

where h2(ε) ≡ −ε log ε − (1 − ε) log(1 − ε) is the binary
entropy.

In our converse proofs, we often deal with information
quantities evaluated on n systems. For simplicity, rather than
listing the precise bound from the Alicki-Fannes inequality,
we often just state an upper bound as nε′, where it is implicit
that ε′ = c1ε log d + c2 h2(ε)/n for positive constants c1 and
c2, and d being the dimension of a single system.

Note that it is easy to derive continuity inequalities for
the quantum mutual information and the conditional quantum
mutual information from the Alicki-Fannes inequality simply
by employing the triangle inequality.

Lemma 3 (Superadditivity of q. mutual information [5]):
The quantum mutual information is superadditive in the sense
that, for any CPTP map NA1A2→B1B2 ,

I(R1R2;B1B2)σ ≥ I(R1;B1)σ + I(R2;B2)σ,

where

σR1R2B1B2 = NA1A2→B1B2(φR1A1 ⊗ ϕR2A2),

and φR1A1 and ϕR2A2 are pure bipartite states.
We make frequent use of the following lemma in our

converse proofs. For completeness, we give its proof.
Lemma 4 (Duality of Conditional Quantum Entropy): For

a tripartite pure state ψABC ,

H(A|B)ψ = −H(A|C)ψ.

Proof:

H(A|B)ψ = H(AB)ψ −H(B)ψ

= H(C)ψ −H(AC)ψ

= −H(A|C)ψ.

IV. QUANTUM RATE DISTORTION

Throughout this paper we consider a memoryless quan-
tum information source characterized by a density matrix
ρ ∈ D(HA). We refer to ρ as the source state and denote
a purification of it by ψρRA = |ψρRA〉〈ψρRA|, with R being
a purifying reference system isomorphic to A. The state
ρn ≡ ρ⊗n ∈ D(H⊗nA ) characterizes n copies of the source.
A source coding (or compression-decompression) scheme of
rate R is defined by a block code,1 which consists of two
quantum operations—the encoding and decoding maps. The
encoding En is a CPTP map from n copies of the source
space to a Hilbert space H̃Qn of dimension ≈ 2nR:

En : D(H⊗nA )→ D(H̃Qn),

and the decoding Dn is a CPTP map from the compressed
space to the original Hilbert space H⊗nA :

Dn : D(H̃Qn)→ D(H⊗nA ).

1It should be very clear from the context whether R refers to “rate” or
“reference system.”
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The average distortion resulting from this compression-
decompression scheme is defined as an average [2], [3]:

d(ρ,Dn ◦ En) ≡ 1

n

n∑
i=1

d(ρ,F (i)
n ),

where F (i)
n is the “marginal operation” on the i-th copy of the

source space induced by the overall operation Fn ≡ Dn ◦ En,
and is defined as

F (i)
n (ξ) ≡ TrA1A2···Ai−1Ai+1···An [Fn(ρ⊗(i−1)⊗ξ⊗ρ⊗(n−i))],

(6)
and for any CPTP map N ,

d(ρ,N ) = 1− Fe(ρ,N ),

with Fe being the entanglement fidelity of N :

Fe(ρ,N ) ≡ 〈ψρRA|(idR ⊗NA→A)(ψρRA)|ψρRA〉. (7)

The quantum operations Dn and En define an (n,R) quantum
rate distortion code.

Motivated by the observation that d is the average of a
linear function of the marginal channels, and by Shannon’s
rate distortion theory [2], which allows a general average-type
distortion function of input and output, we can generalize the
above setting as follows [22], [23], [12]: Let ∆ ≥ 0 be an
observable on RB, which we will (without loss of generality)
assume to be non-negative. This distortion observable ∆ will
define the distortion function between a reference for the input
(R) and the output (B) of the compression and decompression
maps En : D(H⊗nA ) → D(H̃Qn) and Dn : D(H̃Qn) →
D(H⊗nB ), respectively, with R not necessarily equal to B. With
this, we can define the distortion of a channel N with respect
to a source ρ, as

d(ρ,N ) ≡ Tr(∆RB((idR⊗NA→B)(ψρRA))),

and the average distortion on a block of n as

d(ρ,Dn ◦ En) ≡ 1

n

n∑
i=1

d(ρ,F (i)
n )

= Tr
(
∆
(
(idR⊗Fn)

(
(ψρRA)⊗n

)))
.

Here, the marginal channels F (i)
n are now given by

F (i)
n (ξ) ≡ TrB1B2···Bi−1Bi+1···Bn [Fn(ρ⊗(i−1)⊗ξ⊗ρ⊗(n−i))],

and

∆ ≡ 1

n

n∑
i=1

11⊗(i−1) ⊗∆⊗ 11⊗(n−i)

is the average distortion observable.
Allowing different input and output spaces, and comparing

them via the otherwise completely arbitrary observable ∆ may
look like a drastic departure from the source coding paradigm,
but looking at Shannon’s rate distortion theory [2] and its
applications reveals that it is indeed very natural – see also
the examples below.

For any R,D ≥ 0, the pair (R,D) is said to be an
achievable rate distortion pair if there exists a sequence of
(n,R) quantum rate distortion codes (En,Dn) such that

lim
n→∞

d(ρ,Dn ◦ En) ≤ D. (8)

The quantum rate distortion function is then defined as

Rq(D) = inf{R : (R,D) is achievable}.

In [5], we proved that the quantum rate distortion function ad-
mits the following characterization in terms of the regularized
entanglement of purification:

Rq(D) = lim
k→∞

1

k

[
min

N (k) : d(ρ,N (k))≤D
Ep

(
ρ⊗k,N (k)

)]
.

(9)
In the presence of an auxiliary resource, the rate distortion

function is defined analogously, the only difference being
in the encoding and decoding maps. In particular, if Alice
and Bob have prior shared entanglement, then, denoting the
entangled systems by TA and TB (with TA being with Alice
and TB being with Bob), the encoding and decoding maps are
respectively given by

En : D(H⊗nA ⊗HTA)→ D(H̃Qn), (10)

and
Dn : D(H̃Qn ⊗HTB )→ D(H⊗nB ). (11)

We denote the corresponding entanglement-assisted quantum
rate distortion function, for a given distortion D ≥ 0 and
unlimited amount of entanglement, as Rqea(D). In [5], we
proved that the entanglement-assisted quantum rate distortion
function is equal to the following single-letter expression:

Rqea(D) =
1

2

[
min

N : d(ρ,N )≤D
I(R;B)ω

]
where ωRB = NA→B(ψρRA).

Remark 5: It should be noted that for every choice of distor-
tion observable ∆, the quantum rate distortion function Rq(D)
is convex in the distortion D, and likewise the entanglement-
assisted rate distortion function Rqea(D). This is seen by
observing that time-sharing codes of rate Rj and distortion Dj

(j = 1, 2) on fractions λ and 1−λ of a block, yields directly a
code of rate λR1+(1−λ)R2 and distortion λD1+(1−λ)D2.

By the above observation and the coding theorem expressed
by (9), we can conclude that the regularized expression on
the RHS of (9) is convex in D. This is true, even though
the convexity of the expression on the RHS of (9) is not
immediately evident, since it is known that the entanglement
of purification and even its regularization are not convex in
the state on which it is being evaluated [6]. In fact, all the
coding theorems in this paper contain expressions for the
rate distortion function (or for rate regions) that are convex
in the distortion parameter D. Indeed, one well-known way
of proving convexity of an expression for a rate-distortion
function is as outlined in Lemma 14 of [5], and this approach
relies on convexity of the underlying information measure
with respect to a distortion channel. Thus, for any finite
k, the expression in (9) is not convex in D because the
entanglement of purification is not convex, and it is only in the
regularized limit that this expression is convex in D. For the
curious reader, we show in Appendix A that the mathematical
expression on the RHS of (9) is convex in D.
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Example 6: The original distortion measure based on en-
tanglement fidelity is recovered in the case where A = B, by
letting the distortion observable ∆ = 11− ψρ.

Example 7: Given a classical distortion function d : X ×
Y → R≥0, as considered in [2], for input and output alphabets
X and Y , we consider HA = CX and HB = CY , and let

∆ ≡
∑
xy

d(x, y)|x〉〈x| ⊗ |y〉〈y|.

In classical rate distortion theory we also consider an IID
source with single-letter marginal probability distribution
P (x), giving rise to the diagonal source density ρ =∑
x P (x)|x〉〈x| and its purification |ψρ〉 =

∑
x

√
P (x)|x〉|x〉.

Now, a classical source coding scheme of rate R and
distortion D naturally turns into a source code in the above
quantum sense, by lifting the stochastic encoding and decoding
maps to CPTP maps sending diagonal matrices to diagonal
matrices; furthermore the quantum version still has rate R
(now qubits) and the same distortion D.

Conversely, given a source code in our above sense, the
relation to classical Shannon-style rate distortion coding is a
little more subtle. To start, however, we can at least say that
without loss of generality the overall map Fn is a classical
channel from Xn to Yn, because we can dephase the input to
En in the x-basis, and the output of Dn in the y-basis, without
affecting rate or distortion. The compressed system Qn may
of course still use quantum states in a nontrivial way, for
instance if unlimited entanglement is available, to “superdense-
code” [24] the classical compressed information of a classical
rate distortion code, thus halving the bit rate to the qubit
rate. On the other hand, Theorem 3 of [5] shows that this is
the only improvement; indeed, the entanglement-assisted rate
distortion function is exactly half the classical one R(D) in
[2]. From this we can deduce that the unassisted quantum rate
distortion function equals the classical one. If we assume the
opposite, namely that the former were strictly smaller than
the latter, then by invoking remote state preparation of the
compressed quantum states at an asymptotic cbit/qubit rate of
one [25], and then “superdense-coding” the classical bits, we
would get an entanglement-assisted rate distortion code of the
same distortion but rate 1

2R
q(D) < 1

2R(D), resulting in a
contradiction.

Example 8: Quantum-to-classical rate distortion [12] is
based on an observable of the form

∆ =
∑
y

∆y ⊗ |y〉〈y|.

In [12] a source code for it was defined as a measurement
(i.e., a qc-channel) taking values in a subset of Yn, and as
in Example 7, these codes can be understood as quantum rate
distortion codes in the above sense. We add as an aside that
in the limit of zero distortion, this model can be traced back
to the work of Massar and Popescu [26] and of Massar with
one of us [27].

However, given a quantum rate distortion code in our
present sense, by the same logic as in Example 7, the overall
map Fn is without loss of generality a qc-channel, and the
coding part in Theorem 3 of [12] achieves the same classical

communication rates as Theorem 2 in [5] – with the difference
that only shared randomness rather than entanglement is
required, which then can be removed entirely. With quantum
communication assisted by entanglement, we hence get half
that rate, Rqea(D) = 1

2R
qc(D).

Conversely, assuming that the (unassisted) quantum rate
distortion function were strictly smaller than Rqc(D), leads
to a contradiction along the same lines as in Example 7: we
could use entanglement to replace the compressed qubits by
cbits at asymptotic exchange rate 1, and by superdense coding
would obtain an entanglement-assisted rate distortion code (of
the same distortion) of rate < 1

2R
qc(D), contradicting our

conclusion in the previous paragraph.
In summary, the theory of quantum-to-classical rate distor-

tion coding is subsumed in the above general framework.
As reviewed above, in [5] we obtained expressions for the

quantum rate distortion function Rq(D) and the entanglement-
assisted quantum rate distortion function Rqea(D) in terms
of entropic quantities (note that going to general distortion
observables does not change the form of these results). By
unifying these results, we obtain a rate region characterizing
the quantum communication and entanglement consumption
that is necessary and sufficient for lossy compression of an
IID quantum source. This is given by Theorem 9 below.

Theorem 9: For a memoryless quantum information source
defined by the density matrix ρ ∈ D(HA) with a purification
|ψρRA〉, and any given distortion D ≥ 0, the quantum rate
distortion coding region for lossy source coding with noiseless
quantum communication, with the help of rate-limited shared
entanglement at rate E, is given by the union of the following
regions, letting k become arbitrarily large:

Q ≥ 1

2k
I(Rk;BkEB)ω,

Q+ E ≥ 1

k
H(BkEB)ω, (12)

where the entropic quantities are with respect to the following
state:

ωRkBkEAEB ≡ VEk→EAEB (UN
(k)

Ak→BkEk((ψρRA)⊗k)), (13)

and the union is over all isometric extensions UN
(k)

of
CPTP maps N (k) such that d(ρ,N (k)) ≤ D and isometries
VEk→EAEB .

Proof: Our proof of these bounds requires just a slight
modification of the proofs of the converse theorems in Ref. [5].
Indeed, consider the most general protocol for rate-limited
entanglement-assisted quantum rate distortion coding. The
protocol begins with the reference and Alice sharing the state
(ψρRA)⊗n. Let Rn denote the reference’s systems, and let An

denote Alice’s systems. Alice and Bob share entanglement in
the systems TA and TB before communication begins, and we
suppose that the logarithm of the dimension of system TB is
no larger than nE. Alice acts with an encoder (some general
CPTP map) on her systems An, obtaining a system W . She
then sends W to Bob, who subsequently feeds W and TB into
a decoder to produce the system Bn. By Stinespring’s dilation
theorem [28], [29], we can simulate this protocol by one in
which Alice’s encoder is replaced by an isometric extension
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of it, with outputs W and an environment E1, and Bob’s
decoder is replaced by an isometric extension of this decoder,
with outputs Bn and an environment E2. At the end of the
simulation, the state on systems RnBnE1E2 is a state of the
form in (13).

We can now obtain a lower bound on the rate Q of quantum
communication as follows:

nQ ≡ log(dimHW) ≥ H(W )

= H(WTB)−H(TB |W )

≥ H(BnE2)− nE.
The first equality is the entropy chain rule. The second inequal-
ity follows because H(WTB) = H(BnE2) (considering an
isometric extension of the decoder) and because conditioning
cannot increase entropy: H(TB |W ) ≤ H(TB) ≤ nE.

The other bound results as follows:

2nQ ≥ 2H(W )

= I(W ;RnTBE1)

≥ I(W ;RnTB)

= I(WTB ;Rn) + I(W ;TB)− I(Rn;TB)

≥ I(WTB ;Rn)

= I(BnE2;Rn).

The first equality follows from the fact that H(W ) =
H(RnTBE1) and H(WRnTBE1) = 0 for a pure state on sys-
tems WRnTBE1. The second inequality results from applying
the quantum data processing inequality. The second equality is
an identity. The third inequality follows because systems Rn

and TB are in a product state (implying I(Rn;TB) = 0) and
from the fact that I(W ;TB) ≥ 0. The final equality results
because entropy is invariant under isometries (in this case, the
isometric extension of the decoder taking systems WTB to
BnE2. This proves the converse part of this theorem.

The achievability part of this theorem follows simply by
picking a map that meets the distortion constraint and applying
Theorem 3b of [13].

It is worth remarking that in the case there is sufficient
entanglement available, the above theorem reduces to the
entanglement-assisted quantum rate distortion function from
Theorem 3 of [5], while if there is no entanglement avail-
able, then the above theorem reduces to the entanglement of
purification characterization from Theorem 5 of [5].

V. CLASSICALLY-ASSISTED QUANTUM RATE DISTORTION

In this section, we consider quantum rate distortion coding
in the presence of classical side information. As mentioned
in the Introduction, this corresponds to the scenario in which
Alice is allowed unlimited, forward classical communication
to Bob to assist them in their compression-decompression
task. We refer to the corresponding rate distortion function
as the classically-assisted quantum rate distortion function
and denote it by Rq→(D) for a given distortion D ≥ 0. It
is defined analogously to Rq(D) (see Section IV), except that
the encoding and decoding maps are now given by

En : D(H⊗nA )→ D(H̃Qn ⊗HX),

and
Dn : D(H̃Qn ⊗HX)→ D(H⊗nA ),

where HX denotes the Hilbert space associated with the
classical information that Alice sends to Bob. Like the previous
rate distortion functions, also Rq→(D) is convex for any given
distortion observable ∆.

We prove the following theorem, which gives an expression
for Rq→(D) in terms of the entanglement of formation defined
in (2).

Theorem 10: For a memoryless quantum information
source defined by the density matrix ρ ∈ D(HA), and any
given distortion D ≥ 0, the quantum rate distortion function
assisted by unlimited, forward classical communication is
given by

Rq→(D) = lim
k→∞

1

k
min
N(k) :

d(ρ,N(k))≤D

[
EF (ρ⊗k,N (k))

]
, (14)

where N (k) : D(H⊗kA )→ D(H⊗kB ) is a CPTP map, and

EF (ρ,N ) ≡ EF (ωRB) (15)

denotes the entanglement of formation of the state

ωRB ≡ (idR ⊗NA→B)(ψρRA). (16)

Proof: The achievability part of the above theorem was
essentially proven by Devetak and Berger [8] for the particular
case of a source of isotropic qubits, even though they did not
express their result explicitly in the form of the entanglement
of formation. Moreover, they did not give a general converse
proof. For the sake of completeness, we include a proof of
achievability in addition to giving a proof of the converse.

To prove the achievability part, our approach is the same as
that of Devetak and Berger [8], namely, to exploit a variant of
Schumacher compression with classical communication [1].
To start with, consider k = 1 on the RHS of (14), and fix
the CPTP map N ≡ N (1) such that the minimization on the
RHS of this equation is achieved. Every Kraus decomposition
of this map NA→B as

∑
xAx(·)A†x, where

∑
xA
†
xAx = I ,

leads to a pure-state decomposition of the state ωRB :

ωRB =
∑
x

(IR ⊗Ax)(ψρRA)(IR ⊗A†x).

In fact, all the pure-state decompositions of ωRB and the Kraus
decompositions of NA→B are in one-to-one correspondence.
Note that each operator (IR⊗Ax)(ψρRA)(IR⊗A†x) is of rank
one, so that each normalized version is a pure state. Consider
the following extension of the above state:

ωRBX =
∑
x

(IR ⊗Ax)(ψρRA)(IR ⊗A†x)⊗ |x〉〈x|X , (17)

where X denotes a classical register. Note that the above state
can be considered to result from the action of a quantum
instrument on ψρRA since it has both a quantum and a classical
part.

The entanglement of formation of the state ωRB is then
equal to

EF (ωRB) = min
{Ax}

H(B|X)ω, (18)
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where the minimization is over the choice of Kraus operators.
The protocol proceeds as follows. To start with, the refer-

ence and Alice share n copies of ψρRA, which is a purification
of the source state ρ ∈ D(HA). Alice determines the Kraus de-
composition of the CPTP map N (chosen as described above)
that minimizes the conditional entropy H(B|X)ω . Henceforth,
we denote the corresponding set of Kraus operators simply
as {Ax}. On every copy of the source state, she performs
the quantum instrument given by (17). She then measures the
classical register X of each copy of the resulting state ωRBX ,
thus obtaining a classical sequence xn ≡ (x1, x2, . . . , xn),
where xi denotes the outcome of measuring the X register
of the ith copy of ω⊗nRBX . From (17) it is clear that the
probability that Alice gets an outcome x upon measuring an
X register is given by pX(x) ≡ Tr(A†xAxρ). In the large n
limit, with high probability, there are approximately npX(x)
states in the length n sequence such that the outcome of the
measurement is x (i.e., the sequence xn will be strongly typical
[29] with very high probability). If the sequence Alice obtains
is not strongly typical, she aborts the protocol. Otherwise,
she groups together the states in the length n sequence with
the same measurement outcome and performs Schumacher
compression on each of these blocks, compressing each block
to approximately npX(x)H(B)ρx qubits, where

ρx ≡
1

pX(x)
AxρA

†
x ∈ D(HB),

and H(B)ρx ≡ H(ρx). She then sends these qubits to
Bob, along with the classical sequence xn representing her
measurement outcomes.

Thus, the total rate at which she sends qubits to Bob is
given by (18) because∑

x

pX(x)H(B)ρx = H(B|X)ω.

Conditional on the sequence xn that he receives, Bob decom-
presses the qubits in each block (according to Schumacher
decompression) and finally discards the classical sequence.
The result of this protocol is that, for n large enough, a state
very close to ω⊗nRB is shared between the reference and Bob. Of
course, in the above development, we analyzed the protocol by
assuming that each block consists of exactly npX(x) states,
but one can analyze this more carefully (see Ref. [30], for
example).

One could then execute the above protocol by blocking k
of the states together and by having the CPTP map to be of
the form N (k) : D(HAk) → D(HBk), (where HAk = H⊗kA
and HBk = H⊗kB ) acting on each block of k states. By letting
k become large, such a protocol leads to the rate in (14) for
classically-assisted quantum rate distortion coding.

The converse part of the theorem is proved as follows. The
most general protocol begins with many copies of the state
ψρRA being shared between the reference and Alice. The most
general map that Alice can perform is a quantum instrument
from An to a quantum system W and a classical system M .
Let this be described by a set of trace non-increasing maps
{Em}, with

∑
m Em = I . She sends the quantum system

W and the classical message M to Bob. Hence the rate of

quantum communication is given by Q ≡ (1/n) log(dimHW ).
Bob then performs a CPTP map from WM to Bn. For him,
performing a CPTP map on a classical system M and a
quantum system W is equivalent to performing CPTP maps
Dm, on the quantum system W , conditional on the value m
of the classical register M (see, e.g., [31] or Section 4.4.8 of
Ref. [29]). Let σRnBn denote the state shared by the reference
and Bob at the end of the protocol, and let MAn→Bn denote
the classically-coordinated encoding-decoding map:

σRnBn ≡ (idRn ⊗MAn→Bn)
(
(ψρRA)⊗n

)
,

MAn→Bn ≡
∑
m

Dm ◦ Em.

Note that the quantum instrument employed by Alice can
be simulated by an isometry followed by a von Neumann
measurement. Specifically, we can consider Alice to perform
an isometry from An to quantum systems W , M ′, and an
environment E1, and then do a von Neumann measurement
on M ′ to get a classical system M . After tracing over
the environment E1, the original instrument is recovered.
However, without loss of generality, we could also consider
Alice to perform a von Neumann measurement of E1, thus
obtaining a classical system L. Let ω denote the state at this
point. Observe that the joint state of Rn and W is pure,
when conditioned on the classical systems L and M . Each
decoding map Dm can be simulated by Bob by performing
an isometry Um from W to Bn and an environment E2. Bob
could subsequently perform a von Neumann measurement on
E2, thus obtaining a classical system K. Let σ denote the state
at the end of the protocol. Note that the state on RnBn is pure
when conditioned on the classical registers MLK. Figure 1
depicts both the original general protocol and the simulation
of it outlined in this paragraph.

We can now prove a lower bound on the rate of classically-
assisted lossy quantum data compression as follows:

nQ ≡ log(dimHW ) ≥ H(W )ω

≥ H(W |LM)ω

= H(Rn|LM)ω

≥ H(Rn|LMK)σ

≥ EF (σRnBn)

≥ min
N(n) :

d(ρ⊗n,N(n))≤D

[
EF (ρ⊗n,N (n))

]
.

The second inequality follows because conditioning on clas-
sical variables L and M (after Alice’s simulation of the
encoding) cannot increase entropy. The first equality follows
because (as stated above) the joint state of Rn and W is
pure, when conditioned on the classical systems L and M .
The third inequality follows again because conditioning on
the classical register K cannot increase entropy (note that this
latter entropy is with respect to the state after Bob’s simulation
of the decoder). Now, for the fourth inequality, as we stated
above, the variables LMK induce a particular pure-state
decomposition of the state on RnBn, and by the definition of
entanglement of formation given in (2), the conditional entropy
of this particular pure-state decomposition cannot be larger
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Fig. 1. (a) A general protocol for quantum rate distortion coding with the assistance of a forward classical side channel from Alice to Bob. (b) A simulation
of the general protocol in (a), in which Alice and Bob respectively act with isometric extensions of the encoder and decoder in (a).

than the minimal one given by the entanglement of formation.
The final bound follows because the map

∑
mDm ◦ Em

is a particular CPTP map meeting the distortion constraint
d(ρ
⊗n
,N (n)) ≤ D, and thus the entanglement of formation

for the state resulting from this map cannot be larger than
the entanglement of formation of the state resulting from the
optimal map meeting the distortion constraint. Finally, we
divide both sides of the above inequality by n and take the
limit as n→∞ to obtain the lower bound.

We remark that the proof of the achievability part exploits
a strategy which is similar in spirit to that used in the proof
of the reverse Shannon theorem (see Refs. [9], [32], [33], for
example). In particular, we just pick the map that meets the
distortion constraint and minimizes the entanglement of for-
mation and simulate this map using classical communication
and Schumacher compression.

A. Bounds on the Quantum Rate Distortion Function for an
Isotropic Qubit Source

In this subsection we consider the original case of the
distortion being based on the entanglement fidelity, i.e., with
distortion observable ∆ = 11 − ψπ , for an isotropic qubit
source, meaning that the source state is a maximally mixed
qubit state, π ≡ 11/2. The following theorem provides an
exact expression for the entanglement-assisted quantum rate
distortion function of an isotropic qubit source.

Theorem 11: For an isotropic qubit source, the
entanglement-assisted quantum rate distortion function
is equal to

Rqea(D) =

{
1− 1

2H
(
{1−D, D3 , D3 , D3 }

)
if 0 ≤ D ≤ 3

4 ,

0 if 3
4 ≤ D ≤ 1,

where we have used the notation H({·}) to denote the
Shannon entropy of the probability distribution inside the
braces {·}.

Proof: First, recall the entanglement-assisted rate distor-
tion function from Theorem 3 of [5]:

Rqea(D) =
1

2
min

d(ρ,N )≤D
I(R;B)ω, (19)

where the distortion measure d(ρ,N ) is related to the entan-
glement fidelity:

d(ρ,N ) ≡ 1− Fe(ρ,N ).

The mutual information is with respect to the state

ωRB ≡ (idR ⊗NA′→B)(ψρRA′),

where ψρRA′ is a purification of the source state ρ. For an
isotropic qubit source, we have ρ = π ≡ 11/2 and ψρRA′ =
ΦRA′ (a maximally entangled state). For any channel N , it
has a Kraus decomposition as follows:

N (ρ) =
∑
x

AxρA
†
x.

We also have the well-known formula for the entanglement
fidelity (see, e.g., [29]):

Fe(ρ,N ) =
∑
x

|Tr(ρAx)|2.

Now suppose that there is some channel N achieving the
minimum in (19), with Kraus operators {Ax}. Consider the
channel Ni defined as follows:

Ni(ρ) ≡ σ†iN
(
σiρσ

†
i

)
σi,

where σi, i = 0, 1, . . . , 11 are the Clifford unitaries on a
single qubit (given explicitly, e.g., in Appendix A of [9]).
Thus, its Kraus operators are

{
σ†iAxσi

}
for any fixed i.

For an isotropic qubit source, the channel Ni has the same
entanglement fidelity as the original channel because

Fe(π,Ni) =
∑
x

∣∣∣Tr
{
πσ†iAxσi

}∣∣∣2 =
1

4

∑
x

∣∣∣Tr
{
σ†iAxσi

}∣∣∣2
=

1

4

∑
x

|Tr{Ax}|2 = Fe(π,N ). (20)

Let Ntw denote the “twirled version” of N :

Ntw(ρ) ≡ 1

12

∑
i

Ni(ρ).

A similar calculation as in (20) reveals that the “twirled
version” of the channel N has an entanglement fidelity equal
to Fe(π,N ). Also, it is well known that the Clifford twirled
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channel is equal to a depolarizing channel (a probabilistic mix-
ture of the identity channel and the constant channel mapping
every input state to the maximally mixed state π = 1

211, see,
e.g., [9], [34], [35]). Now, each of the channels Ni leads to
the same mutual information as the original channel N , in the
sense that

I(R;B)ω = I(R;B)ωi ,

where

ω ≡ ωRB ≡ (idR ⊗NA′→B)(ΦRA′),

ωi ≡ (ωi)RB ≡ (idR ⊗ (Ni)A′→B)(ΦRA′).

This is due to the fact that, for a maximally entangled state
|ΦRA′〉, 11R⊗(σi)A′ |ΦRA′〉 =

(
σTi
)
R⊗11A′ |ΦRA′〉 (where σTi

denotes the transpose of σi), and because the von Neumann
entropy is invariant under unitaries. However, we know that
the twirled channel cannot have a mutual information larger
than the original channel’s, due to the convexity of mutual
information with respect to the states (ωi)RB :

I(R;B)ω =
1

12

∑
i

I(R;B)ωi ≥ I(R;B)ωtw ,

where
ωtw ≡ (idR ⊗ (Ntw)A′→B)(ΦRA′).

This proves that the channel optimizing the expression in (19)
for an isotropic qubit source is a depolarizing channel Np,
hence of the form

Np(ρ) = (1− p)ρ+
p

3
(σX ρ σX + σY ρ σY + σZ ρ σZ).

For these channels, a simple calculation reveals that their
entanglement fidelity for an isotropic qubit source is equal to
p, because the non-identity Pauli operators are traceless. Thus,
for a given distortion D, the channel achieving the minimum
mutual information is a depolarizing channel with p ≤ D. The
latter is given by

1− 1
2H
(
{1− p, p3 ,

p
3 ,

p
3}
)
,

thus finishing the proof.
In prior work [8], Devetak and Berger showed that the

classically-assisted quantum rate distortion function in The-
orem 10 significantly simplifies for an isotropic qubit source.
For convenience, we restate their result as the following
theorem and provide a simple proof of it below.

Theorem 12 (Devetak and Berger [8]): The classically-
assisted quantum rate distortion function for an isotropic
qubit source is equal to the following expression:

Rq→(D) =

{
h2

(
1
2 +

√
D(1−D)

)
: 0 ≤ D < 1

2

0 : 1
2 ≤ D ≤ 1

In the above, h2(p) ≡ −p log p − (1 − p) log(1 − p) is the
binary entropy for any probability p.

Proof: First, recall the general expression for the
classically-assisted quantum rate distortion function from The-
orem 10. Devetak and Berger have shown that this expression
assumes a single-letter form for the case of an isotropic qubit
source [8], and we do not reproduce the proof of this statement
here.

So, the expression for the classically-assisted quantum rate
distortion function in this case reduces to

min
d(π,N )≤D

min
{Ax}

H(B|X)ω, (21)

where the conditional entropy is with respect to the following
state:

ωRBX ≡
∑
x

(IR ⊗Ax)(ΦRA′)(IR ⊗A†x)⊗ |x〉〈x|X ,

and the operators {Ax}x are the Kraus operators for a channel
N meeting the distortion constraint. For simplicity, let us
denote the optimal channel meeting the distortion constraint
in (21) as N and the optimal Kraus decomposition for the
entanglement of formation as {Ax}x, so that d(π,N ) ≤ D.
By the same argument as in the previous theorem, the channel
with the set of Kraus operators

{
σ†iAxσi

}
x for a fixed i

causes the same distortion D to an isotropic qubit source while
having the same value for the entanglement of formation.
Also, by the same argument, the twirled channel with Kraus
operators

{
σ†iAxσi/

√
12
}
x,i causes the same distortion D as

the optimal channel, but this channel can have only a lower
value of the entanglement of formation, due to the convexity
of the entanglement of formation [9]. Now, the twirled channel
is a depolarizing channel causing distortion ≤ D to the source,
implying that its effect on a maximally entangled state is to
produce an isotropic state, i.e., a mixture of Bell states of the
following form:

(1− p)ΦRA′ + p
3Ψ+

RA′ + p
3Ψ−RA′ + p

3Φ−RA′ ,

where p ≤ D. In the above mixture, it must be the case that
1 − D is larger than all of the other components whenever
D < 1/2. In this case, it is well known that the entanglement
of formation of such a Bell mixture is equal to the following
expression [9]:

h2

(
1
2 +

√
D(1−D)

)
.

For D ≥ 1/2, the strategy requiring no quantum commu-
nication is very simple, implying that there is no need to
explicitly evaluate the expression in the theorem statement.
For every copy of the source, Alice just measures it in
the basis {|0〉, |1〉} and sends the measurement outcome to
Bob over the classical channel. Bob then prepares the state
|0〉 or |1〉 depending on what he receives from Alice, and
he forgets what Alice sent to him. This procedure prepares
the dephased state 1

2 (|0〉〈0|R ⊗ |0〉〈0|B + |1〉〈1|R ⊗ |1〉〈1|B)
shared between Bob and the reference, which has distortion
1/2 from the maximally entangled state. To achieve an even
larger distortion with no quantum communication (if one so
wishes), Bob could just depolarize his state locally.

The expressions from Theorems 11 and 12 give two lower
bounds on the unassisted quantum rate distortion function of
an isotropic qubit source, plotted in Figure 2.

We can also obtain an upper bound on the quantum rate
distortion function for the isotropic qubit source by computing
the unregularized entanglement of purification bound from
Theorem 5 of Ref. [5]. In particular, a strategy to achieve the
unregularized bound is as follows. The protocol begins with
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Fig. 2. Bounds on the unassisted quantum rate distortion function for an
isotropic qubit source. We have lower bounds from the classically-assisted and
entanglement-assisted (EA) quantum rate distortion function of this source.
The convexified entanglement of purification (EoP) provides an upper bound
on the quantum rate distortion function of this source.

Alice and the reference sharing many copies of a maximally
entangled state ΦRA′ (the reduction of each of these to
Alice’s systems is a maximally mixed state). Given a distortion
constraint D, Alice applies some isometric extension of the
following depolarizing channel to each of her systems:

ND(ρ) ≡ (1−D)ρ+ D
3 (σX ρ σX + σY ρ σY + σZ ρ σZ),

resulting in the following state shared between the reference
and Alice:

(1−D)ΦRA′ + D
3

(
Ψ+
RA′ + Ψ−RA′ + Φ−RA′

)
. (22)

Alice then Schumacher compresses the output of the depolar-
izing channel and some share of the environment (which she
possesses since she performs the isometric extension), and she
can do this at a rate equal to the entanglement of purification
of the above state. Furthermore, Alice and Bob can time-share
between any two strategies of this form, implying that the
rates and distortions of the time-shared protocol combine as
in Remark 5. The authors of Ref. [6] have already numerically
calculated the entanglement of purification of the state in (22)
in Figure 1 of their paper. As such, the convex hull of their
plot serves equally well as an upper bound on the quantum
rate distortion function of the isotropic qubit source, and we
have reproduced this plot in our Figure 2 above.2

2The only change we need to make to their plot to suit our purposes is to
flip it with respect to the horizontal axis, eliminate values of the entanglement
of purification beyond D = 3/4, and take the convex hull of the resulting
curve. The maximally mixed state on Alice and the reference is a state that
meets the distortion constraint at D = 3/4 so that at this distortion or beyond,
there is no quantum communication needed—Alice simply discards her qubits
and Bob prepares the maximally mixed state at his end.

VI. QUANTUM RATE DISTORTION IN THE PRESENCE OF
QUANTUM SIDE INFORMATION

In this section we study quantum rate distortion in the
case in which Bob has some quantum side information (QSI)
about the source, as an auxiliary resource. As mentioned in
the Introduction, this corresponds to the following setting:
Suppose a third party (say, Charlie) maps the source state ρ
via some isometry to a bipartite state ρAB and distributes the
systems A and B to Alice and Bob, respectively. The goal
is for Alice to transfer her system A to Bob, up to some
given distortion, using as few qubits as possible. The system
B, which is in Bob’s possession, acts as the quantum side
information, and he can make use of it in his decompression
task. It is required that the protocol causes only a negligible
disturbance to the state of the reference system and Bob’s
quantum side information, in case Bob might want to use his
system in some subsequent quantum information processing
task. The above problem is a quantum generalization of the
Wyner-Ziv [10] problem and is also a natural extension of the
work of Luo and Devetak [11] which dealt with classical rate
distortion theory in the presence of QSI (and thus considered
Alice to receive a classical system instead of a quantum one).

The rate distortion function, which we denote as Rqqsi(D)
for any given distortion D ≥ 0, is then the minimum rate of
quantum communication required for this task, evaluated in
the limit in which Alice and Bob share asymptotically many
copies of the state ρAB . It is defined analogously to Rq(D)
(see Section IV), except that the encoding and decoding maps
are now given by

En : D(H⊗nA )→ D(H̃Qn),

and
Dn : D(H̃Qn ⊗H⊗nB )→ D(H⊗nA ),

where H⊗nB denotes the Hilbert space associated with Bob’s
QSI.

Theorem 16 of Section VI-D gives an expression for
Rqqsi(D). Before going over to it, we briefly recall an impor-
tant protocol of quantum information theory, namely, quantum
state redistribution [17], [18]. After doing so, we then employ
it in Section VI-B to develop a quantum reverse Shannon
theorem in the presence of QSI—the main tool that we use to
prove Theorem 16.

A. Quantum State Redistribution

Quantum state redistribution is an important protocol in
quantum information theory [17], [18] and is defined as
follows. Alice and Bob share many copies of a tripartite
state ρABC , where Alice holds the systems labeled by A and
C, and Bob holds the systems labeled by B. Let the state
ρABC be purified by a reference system R, the pure state
being denoted as ψABCR. The task is for Alice to transfer
the systems labeled by C to Bob, while keeping the overall
purification ψABCR approximately unchanged (possibly with
the help of prior shared entanglement). The quantity of interest
is the minimum rate of quantum communication from Alice
to Bob needed to accomplish this task. The rate is evaluated
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in the limit of asymptotically many copies of the state ρABC
that is initially shared between Alice and Bob.

Let Q and E denote the rates of quantum communica-
tion and entanglement consumption,3 respectively, required to
achieve quantum state redistribution. Devetak and Yard [17]
proved that the corresponding resource inequality is given as
follows:

ψAC|B|R +Q[q → q] + E[qq] ≥ ψA|CB|R, (23)

if and only if Q and E satisfy the following inequalities:

Q ≥ 1
2I(R;C|B)ψ

Q+ E ≥ H(C|B)ψ. (24)

The meaning of the resource inequality in (23) is that, for
n large enough, Q qubits of quantum communication and
E1 ebits of entanglement are sufficient to transfer all n
of the C systems from Alice to Bob, while generating an
additional E2 ebits of entanglement, such that E = E1 −E2.
Moreover, the fidelity of this protocol is equal to one in
the asymptotic limit, and ψAC|B|R and ψA|CB|R denote the
states before and after the protocol because Alice begins by
holding the systems labeled by AC and ends by holding only
the systems labeled by A. From (23)-(24), we infer that if
1
2I(R;C|B)ψ > H(C|B)ψ then the protocol redistributes the
system C to Bob as well as generates entanglement. In this
case, the resource inequality takes the form:

ψAC|B|R + 1
2I(R;C|B)ψ[q → q]

≥ ψA|CB|R +
(
1
2I(R;C|B)ψ −H(C|B)ψ

)
[qq], (25)

which can be equivalently written as

ψAC|B|R + 1
2I(R;C|B)ψ[q → q]

≥ ψA|CB|R + 1
2 (I(B;C)ψ − I(A;C)ψ)[qq], (26)

which follows from the definitions of the conditional mutual
information and the conditional entropy, duality of conditional
entropy (Lemma 4), and the fact that ψABCR is a pure state.

If, in contrast, 1
2I(R;C|B)ψ < H(C|B)ψ , then entangle-

ment is consumed in order to achieve state redistribution, and
the resource inequality can be written as

ψAC|B|R + 1
2I(R;C|B)ψ[q → q]

+ 1
2 (I(A;C)ψ − I(B;C)ψ)[qq] ≥ ψA|CB|R . (27)

From (26) and (27) it follows that if Alice and Bob have no
prior shared entanglement, then they could still achieve their
task of state redistribution: if 1

2I(R;C|B)ψ ≥ H(C|B)ψ then
they also generate entanglement, whereas if 1

2I(R;C|B)ψ ≤
H(C|B)ψ then they need to invest quantum communication
at a rate of ≈ H(C|B)ψ qubits per copy of the source in order
to generate the entanglement that the protocol corresponding
to (27) requires.

3A negative entanglement consumption rate implies that entanglement is
instead generated! The reader should keep this in mind any time we refer to
the “entanglement consumption rate” of a protocol.

B. Quantum Reverse Shannon Theorem with Quantum Side
Information

As mentioned above, before moving on to quantum rate
distortion theorems with QSI, we prove two quantum reverse
Shannon theorems with quantum side information.

Quantum reverse Shannon theorems [13], [14] deal with
the simulation of noisy quantum channels between two parties
(Alice and Bob, say), with the aid of noiseless resources, such
as prior shared entanglement and quantum communication.
Here we consider the situation in which Bob has quantum side
information as an auxiliary resource, which he can employ in
this simulation task.

In particular, we consider Alice and Bob to share many
(say, n) copies of a bipartite state ρAB , the systems A being
with Alice and B being with Bob, the latter acting as the
quantum side information. In addition, Alice and Bob can
share entanglement with each other. The aim is for Alice and
Bob to simulate many instances of a noisy channel NA→B′ ,
such that Bob receives the output systems. The quantities of
interest are the minimum rates of quantum communication and
entanglement consumption required for this purpose.

We consider two different scenarios. In the first, which is
referred to as a feedback simulation, the environments of the
simulated channels are required to be in Alice’s possession.
In contrast, in the second scenario, which is referred to as a
non-feedback simulation, no such requirement is imposed. The
minimum rates of quantum communication and entanglement
consumption that are required in these two scenarios are given
by Theorems 13 and 14, respectively.

These theorems are generalizations of Theorems 3a, 3b,
and 3c of Ref. [13] and are interesting in their own right.
Furthermore, both theorems are useful in establishing quantum
rate distortion theorems that exploit quantum side information.

Theorem 13 (Feedback QRST with QSI): If Alice and Bob
share many copies of a state ρAB , then they can achieve a
feedback simulation of many instances of a noisy channel
NA→B′ if and only if the rates of quantum communication and
entanglement consumption are in the following rate region:

Q+ E ≥ H(B′|B)ω, (28)
Q ≥ 1

2I(R;B′|B)ω, (29)

where
ωRB′B ≡ NA→B′(φρRAB),

φρRAB is a purification of ρAB . Equivalently, we can write
the rate of quantum communication as a function of the
entanglement consumption rate E as follows:

Qf,qsi(E) = max
{

1
2I(R;B′|B)ω, H(B′|B)ω − E

}
.

(Recall that E can be either positive or negative depending
on whether the protocol consumes or generates entanglement,
respectively.) The subscript f denotes that the rate corresponds
to a feedback simulation. In particular, if there is no entan-
glement available (E = 0), then the optimal rate of quantum
communication is equal to

Qf,qsi(0) = max
{

1
2I(R;B′|B)ω, H(B′|B)ω

}
.
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Theorem 14 (Non-Feedback QRST with QSI): If Alice and
Bob share many copies of a state ρAB , then the minimum rates
of quantum communication and entanglement consumption
that they need for a non-feedback simulation of many instances
of a noisy channel NA→B′ are given by the union of the
following rate regions:

Q+ E ≥ 1

k
H
(
B′ kEB |Bk

)
ω, (30)

Q ≥ 1

2k
I
(
Rk;B′ kEB |Bk

)
ω, (31)

where k is an arbitrary positive integer and the union is with
respect to all states ω of the following form:

ωRkEAEBB′ kBk ≡ VEk→EAEB
((
UNA→B′E(φρRAB)

)⊗k),
(32)

φρRAB is a purification of ρAB , UNA→B′E is some isometric
extension of the channel NA→B′ , and VEk→EAEB is an
arbitrary isometry that splits the k environment systems Ek

into two parts EA and EB . Equivalently, we can write the rate
of quantum communication as a function of the entanglement
consumption rate E as follows:

Qqsi(E) = lim inf
k→∞,∃V

max

{
1

2k
I
(
Rk;B′ kEB |Bk

)
ω,

1

k
H
(
B′ kEB |Bk

)
ω − E

}
. (33)

In particular, if there is no entanglement available (E = 0),
then the optimal rate of quantum communication is equal to

Qqsi(0) = lim inf
k→∞,∃V

max

{
1

2k
I
(
Rk;B′ kEB |Bk

)
ω,

1

k
H
(
B′ kEB |Bk

)
ω

}
. (34)

Proof of Theorems 13 and 14: We prove the two theorems
using similar arguments. The achievability parts of both of
the above theorems follow directly by applying the protocol
of Devetak and Yard for quantum state redistribution [17],
[18], [36]. We prove the achievability part of the non-feedback
theorem first and then argue how the feedback version is a
special case of it.

To start with, Alice, Bob, and the reference share n copies
of the state φρRAB , which is a purification of the state ρAB .
Alice locally applies an isometric extension UNA→B′E of the
channel NA→B′ to each system A in her possession, and then
applies an environment-splitting isometry VE→EAEB to each
system E that results. At this point, the three parties share n
copies of the following pure state:

ωREAEBB′B ≡ VE→EAEB
(
UNA→B′E(φρRAB)

)
,

where the reference has R, Alice has EAEBB′, and Bob has
B. Alice would like to transmit all of her EBB′ systems to
Bob, and she can do this by using the protocol of quantum
state redistribution.

By setting C = B′EB , A = EA, and ψRACB =
ωREAEBB′B in (23)-(27), we infer that the following rate

WAlice

Bob

Reference
Rn

An

Bn

E

D

TA

TB
ĤBn

B’n

Fig. 3. A general protocol for simulating a quantum channel when quantum
side information and shared entanglement are available.

region is achievable with quantum state redistribution:

Q ≥ 1
2I(R;B′EB |B)ω,

Q+ E ≥ H(B′EB |B)ω.

Now, a protocol that achieves the regularized rate region in
(30)-(31), is very similar, but Alice and Bob instead act on
blocks of k states at a time. That is, they share n copies of
the state (φρRAB)⊗k (if they are allowed access to an arbitrary
number of shares of this state, then they can block them in this
way). Alice applies n instances of the isometry

(
UNA→B′E

)⊗k
to her systems An and then applies an environment splitting
isometry VEk→EAEB to each Ek resulting from the previous
step. By the same arguments as given above, the rate region
in (30)-(31) is achievable, where the division by k is needed
to obtain the rates.

The achievability of the feedback protocol in Theorem 13
follows as a special case of the above. In particular, there is
no splitting of the environment into two parts, so that Alice
merely redistributes the B′ system to Bob. Thus, the rate
region in (28)-(29) is achievable. Furthermore, there is no need
to double-block the protocol as above because our converse
theorem for this case demonstrates that it is not necessary to
do so.

We now prove the converse part of Theorem 14, that is,
we establish that the bounds (30)-(31) hold for any protocol
that results in a non-feedback simulation of the noisy channel
NA→B′ . The most general protocol begins with the reference,
Alice, and Bob sharing n copies of φρRAB , where n is some
arbitrarily large positive integer. Alice and Bob also share
some entangled state ΦTATB on systems TA and TB , which
they can use to help them in their task. In particular, the
Schmidt rank of this entangled state is equal to 2nE , so
that E quantifies the rate of entanglement consumption. Alice
performs some encoding map E on systems An and TA which
produces a system W as output. She sends system W to Bob,
who then performs a decoding map D on systems W , TB ,
and Bn. This decoding map has two outputs B′n and B̂n,
where B′n approximates the output of the channel simulation
and B̂n represents an approximation of Bob’s quantum side
information. If the protocol is any good for accomplishing the
task of a non-feedback channel simulation, then the output of
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this simulation protocol and the output of the ideal protocol
should be asymptotically indistinguishable as n becomes large.
That is, for any arbitrary ε > 0, for n large enough, it should
hold that

∥∥∥∥DWTBBn→B′nB̂n
(
EAnTA→W

(
(φρRAB)⊗n ⊗ ΦTATB

))
− (NA→B′(φρRAB))⊗n

∥∥∥∥
1

≤ ε. (35)

Figure 3 illustrates the protocol discussed above.
A useful observation for proving the converse is that an

arbitrary encoding map E and a decoding map D can be
simulated by a protocol involving only isometric operations.
In particular, we can replace the encoding E with an isometric
extension UE that has as output the original output W and
an environment system E1. Let σ ≡ σRE1WTBBn denote the
pure state shared between the reference, Alice, and Bob after
the action of UE . We can also replace the decoding map D
with an isometric extension of it that has as output the original
outputs B′nB̂n and an additional environment system E2. Let
ωRE1E2B′nB̂n

denote the pure state resulting from applying
an isometric extension of the decoder to the state σ.

Due to monotonicity of the trace distance under partial trace,
the condition in (35) implies that the inequality in (36) holds,
with the partial trace of the states in (35) being taken over the
system B′n.

Since ωRE1E2B′nB̂n
is a purification of the first term in

the trace distance in (36), and σRE1WTBBn is a purifica-
tion of the second term in the trace distance, Uhlmann’s
theorem [20], [37] implies the existence of an isometry
V ≡ VE1WTB→E1E2B′n such that the trace distance between
V (σRE1WTBBn) and ωRE1E2B′nB̂n

is no larger than 2
√
ε. Let

ω′ denote the state resulting from applying V to σRE1WTBBn .
Thus, the original decoder can be simulated by the isometry
V which does not act on Bob’s quantum side information (we
should expect for this to be possible, given that the condition
in (35) implies that Bob’s QSI should not be disturbed too
much). We also observe that ω′ is ε-close in trace distance
to a state of the form in (32) because UE and V do not
act on the systems RnBn. By applying Uhlmann’s theorem
once again and the triangle inequality, we conclude that there
exists some isometry U ≡ UEn→E1E2

such that when U† is
applied to ω′, the resulting state is close in trace distance to(
UNA→B′E(φρRAB)

)⊗n. Figure 4 summarizes the observations
made in this paragraph and the previous one.

Consider the following state:

τ ≡ UEn→E1E2

(
UNA→B′E(φρRAB)

)⊗n, (37)

where φρRAB is a purification of ρAB , UNA→B′E is a Stinespring
isometry of the noisy channel N which is to be simulated, and
UEn→E1E2 is an isometry. This state is of the form as given in
(32). We proceed to find a lower bound on the optimal rate Q
of quantum communication needed for the channel simulation

as follows:

nQ ≡ log(dimHW ) ≥ H(W )σ

= H(WTBB
n)σ −H(BnTB |W )σ

= H(E2B
′nB̂n)ω −H(BnTB |W )σ

≥ H(E2B
′nBn)ω′ − nε′ −H(Bn)σ

−H(TB)σ

= H(E2B
′nBn)ω′ − nε′ −H(Bn)ω′

−H(TB)σ

≥ H(E2B
′n|Bn)ω′ − nE − nε′

≥ H(E2B
′n|Bn)τ − nE − 2nε′. (38)

The first equality is an entropy identity. The second equality
follows because entropy is invariant under the action of an
isometry (in this case, the isometry is UD). The second
inequality follows from Uhlmann’s theorem (as mentioned
above), the Alicki-Fannes’ inequality (continuity of entropy)
with an appropriate choice of ε′ (a similar convention to
what we had in our previous converse theorems), and from
subadditivity of entropy:

H(BnTB |W )σ ≤ H(BnTB)σ ≤ H(Bn)σ +H(TB)σ.

The third equality follows because the map
V E1WTB→E1E2B

′n does not act on the Bn system.
The third inequality follows because H(TB)σ ≤ nE. The
final inequality follows from another application of the
Alicki-Fannes’ inequality to the state τ defined in (37).

We prove the second bound in (31):

I(Rn;B′nBnE2)τ ≤ I(Rn;B′nBnE2)ω + n2ε′

= I(Rn;BnWTB)σ + n2ε′

≤ n2Q+ I(Rn;BnTB)σ + n2ε′

= n2Q+ I(Rn;Bn)σ + n2ε′

= n2Q+ I(Rn;Bn)τ + n2ε′ (39)

The first inequality results from the fact that τ is ε-close to
ω′, ω′ is ε-close to ω, and from applying the Alicki-Fannes
inequality. The second inequality follows from quantum data
processing. The third inequality follows from the following
property of quantum conditional mutual information:

I(A;BC) = I(A;B) + I(A;C|B)

= I(A;B) +H(A|B)−H(A|BC)

≤ I(A;B) +H(A) +H(A|D)

≤ I(A;B) + 2 log|A|,
where the entropies are evaluated on a tripartite state ρABC
purified by some state on a purifying system D. The first
equality in the chain in (39) follows because TB is product
with systems Rn and Bn for the state σ. The above inequalities
then imply that

n2Q ≥ I(Rn;B′nE2|Bn)τ − n2ε′,

by finally applying the chain rule for quantum mutual infor-
mation.

To obtain a converse proof for Theorem 13, we can exploit
the above converse with just one further observation. Since a



14∥∥∥TrE1E2B′n

{
UD
WTBBn→E2B′nB̂n

(
UEAnTA→WE1

(
(φρRAB)⊗n ⊗ ΦTATB

))}
− (φρRB)⊗n

∥∥∥1 ≤ ε, (36)

E1

W
Alice

Bob

Reference Rn

An

Bn

EU

DU

TA

TB
ĤBn
B’n
E2

E1

W
Alice

Bob

Reference Rn

An

Bn

EU
VTA

TB B’n

E2

E1

≈

σ σω ω’

Fig. 4. The protocol on the left is a simulation of the general protocol in Figure 3, in which Alice acts with an isometric extension UE of her encoder E and
Bob acts with an isometric extension UD of his decoder D. Due to the fact that the simulation causes only a negligible disturbance to the state of RnBn, by
Uhlmann’s theorem, there exists an isometry VE1WTB→E1E2B′n such that the final state on the left is approximately equal to the final state on the right.

feedback simulation requires Alice to possess the full environ-
ment of the simulation, the final state on RnE1B

′nBn must
be a pure state and E1 must be unitarily related to the En

system of
(
UNA→B′E(φρRAB)

)⊗n. Thus, it must be the case
that the system E2 is product with RnE1B

′nBn. This final
observation leads to a single-letterization of the above bounds
as follows:

nQ ≥ H(E2B
′n|Bn)τ − nE − 2nε′

= H(B′n|Bn)τ − nE − 2nε′

= n
[
H(B′|B)NA→B′ (ρAB) − E − 2ε′

]
,

and similarly,

n2Q ≥ I(E2B
′n;Rn|Bn)τ − 2nε′

= I(B′n;Rn|Bn)τ − 2nε′

= n
[
I(B′;R|B)NA→B′(ψ

ρ
RAB) − 2ε′

]
.

The main step in the above equalities is to exploit the obser-
vation that E2 must be product with the other systems for a
feedback simulation.

C. On a General Quantum Reverse Shannon Theorem with
QSI

With the above tensor-power quantum reverse Shannon
theorem with QSI in hand, one might be tempted to pursue a
general form of this theorem that holds whenever the input to
the channel is a general, non-IID state entangled with a system
available at the receiver’s end (non-IID input and quantum
side information). From the above theorem and the techniques
developed in Refs. [13], [14], we suspect that it is possible to
show that the following rate of quantum communication is
necessary and sufficient for simulating an IID channel acting
on a general input entangled with a system at the receiving
end, whenever unlimited entanglement in any form is available
between the sender and receiver:

1
2 max
φRAB

I(R;B′|B)NA→B′ (φ). (40)

Also, it is known from Refs. [13], [14] that the following
rate of quantum communication is necessary and sufficient
for simulating an IID channel acting on a general input (ne-
glecting any quantum side information), whenever unlimited
entanglement in any form is available between the sender and
receiver:

1
2 max
ψRA

I(R;B′)NA→B′ (ψ).

The following theorem clarifies that these two rates are in fact
equal, implying that pursuing a general quantum reverse Shan-
non theorem with QSI is a pointless task if the conjectured
rate in (40) is correct (at least for a feedback simulation). The
reason that such a relation should hold is that the theorems
from Refs. [13], [14] are simulating an IID channel with
respect to the diamond norm,4 which is known to be robust
under tensoring with other systems on which the channel does
not act.

Theorem 15: The following identity holds

max
ψRA

I(R;B′)NA→B′ (ψ) = max
φRAB

I(R;B′|B)NA→B′ (φ),

where each maximization is over pure states.
Proof: We first prove the following inequality:

max
ψRA

I(R;B′)NA→B′ (ψ) ≤ max
φRAB

I(R;B′|B)NA→B′ (φ).

Let ψ∗RA be the state that achieves the maximum of the LHS.
Then the state ψ∗RA ⊗ ϕB (for any pure state ϕB) leads to
NA→B′(ψ∗RA)⊗ ϕB at the channel output, and it is a special
pure state included in the maximization on the RHS, so that

I(R;B′)NA→B′ (ψ∗) = I(R;B′|B)NA→B′ (ψ∗⊗ϕ)

≤ max
φRAB

I(R;B′|B)NA→B′ (φ).

We now prove the other inequality:

max
ψRA

I(R;B′)NA→B′ (ψ) ≥ max
φRAB

I(R;B′|B)NA→B′ (φ). (41)

4See, e.g., Refs. [13], [14] for a definition of the diamond norm.
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Let φ∗RAB be the pure state that achieves the maximum on the
RHS. Then we have that

I(R;B′|B)NA→B′ (φ∗) = I(RB;B′)NA→B′ (φ∗)

− I(B;B′)NA→B′ (φ∗)

≤ I(RB;B′)NA→B′ (φ∗)

≤ max
ψRA

I(R;B′)NA→B′ (ψ).

The first equality follows from the chain rule for quantum
mutual information, and the first inequality follows because
I(B;B′) ≥ 0. The final inequality follows because φ∗ is some
pure bipartite state with respect to the cut RB|A, where the
systems R and B purify the input to the channel, and this is
of course a particular kind of state in the maximization on the
LHS of (41).

D. Quantum Rate Distortion with Quantum Side Information

Having established the quantum reverse Shannon theorem
with QSI, we now prove a theorem characterizing the quantum
rate distortion function in the presence of QSI, which is
denoted as Rqqsi(D) and was introduced at the beginning of
Section VI.

Theorem 16: Consider a bipartite state ρAB , obtained by
the action of an isometry on the source state of a memoryless
quantum information source. Suppose Alice has the system A
and Bob has the system B, the latter acting as QSI. Let φρRAB
be a purification of ρAB . Then for any given distortion D ≥
0, the quantum rate distortion function with QSI, evaluated
under the condition that the protocol causes only a negligible
disturbance to the joint state of the BR systems, is given by

Rqqsi(D) = lim
k→∞

1

k
min

N (k) : d(ρ,N (k))≤D
Ip

(
(ρAB)⊗k,N (k)

)
(42)

where

Ip(ρAB , NA→B′) ≡ inf
VE→EAEB

max

{
1

2
I(R;B′EB |B)ω,

H(B′EB |B)ω

}
,

with ωREAEBB′B ≡ VE→EAEB
(
UNA→B′E(φρRAB)

)
. In the

above, NA→B′ and N (k) : D(HAk) → D(HBk) are CPTP
maps, UNA→B′E is an isometric extension of NA→B′ , and
VE→EAEB is an environment-splitting isometry.

Proof: The achievability part of this theorem follows
easily from Theorem 14. In particular, we just fix the map
that achieves the minimum in (42), and it easily follows that
performing the protocol from Theorem 14 leads to a state on
Rn and B′n that has distortion no larger than D with the
original state on Rn and An. We can block the protocol to
achieve the regularized formula.

We now prove the converse. As before, the most general
protocol begins with the reference, Alice, and Bob sharing
n copies of the state φρRAB . Alice performs some encoding
map E on the systems An, obtaining a quantum system W .
She sends system W to Bob using noiseless qubit channels.
Bob feeds this system, and his quantum side information Bn,

into a decoding map D, which produces as output systems
B′n and B̂n. We demand that the distortion of the state of
systems RnB′n with respect to the state of RnAn at the start
of the protocol be no larger than D. Also, we demand that the
decoder causes only an asymptotically negligible disturbance
of the joint state of the reference and the quantum side
information, in the sense that for any ε > 0, for n large
enough:∥∥∥∥TrB′n

{
DWBn→B′nB̂n

(
EAn→W

(
(φρRAB)⊗n

))}
− (φρRB)⊗n

∥∥∥∥
1

≤ ε. (43)

Like our other converses, the key to this proof is the
realization that the above general protocol can be simulated by
one in which we exploit an isometric extension of the encoder
UE , which maps An to W and an environment E1. Let σ
denote the overall state after UE acts (so that σRnE1WBn is a
pure state). We also exploit an isometric extension UD of the
decoder, which maps WBn to B′nB̂n and an environment E2.
Let ω ≡ ωRnE1E2B′nB̂n

denote the overall state after UD acts.
We proceed with bounding the rate Q of noiseless quantum
communication by following the same steps as in (38) and
(39), but ignoring the entanglement assistance:

nQ ≥ H(E2B
′n|Bn)ω′ − nε′, (44)

nQ ≥ 1

2
I(E2B

′n;Rn|Bn)ω′ − nε′. (45)

Putting things together, we obtain the following lower bound
on the quantum communication rate:

nQ ≥ max

{
1

2
I(E2B

′n;Rn|Bn)ω′ , H(E2B
′n|Bn)ω′

}
− nε′

≥ inf
V E

n→E1E2

max

{
1

2
I(E2B

′n;Rn|Bn)ω′ ,

H(E2B
′n|Bn)ω′

}
− nε′

≥ min
N (n) : d(ρ⊗n,N (n))≤D

Ip

(
(ρAB)⊗n,N (n)

)
− nε′,

where N (n) : D(HAn) → D(HBn) denotes a CPTP map.
The first inequality follows by combining (44) and (45). The
second inequality follows by performing an optimization over
all possible splits of the environment. The final inequality
results from minimizing Ip over all maps N (n) that act only
on An and meet the distortion criterion.

E. Entanglement-Assisted Quantum Rate Distortion with
Quantum Side Information

If in addition to Bob having quantum side information, Alice
and Bob have prior shared entanglement (over systems TA
and TB) as an auxiliary resource, then the corresponding rate
distortion function, for any given distortion D is denoted as
Rqea,qsi(D). It is defined analogously as in (10)-(11), except
that Bob can use the QSI in his decompression task. Hence
the decompression map is given by

Dn : D(H̃Qn ⊗HTB ⊗HBn)→ D(H⊗nA ).
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We prove the following theorem:
Theorem 17: Suppose Alice and Bob share entanglement

and a state ρAB (obtained from a memoryless quantum in-
formation source), such that the system A is with Alice and
B is with Bob. Let φρRAB be a purification of ρAB . Then
the quantum rate distortion function, Rqea,qsi(D), evaluated
under the condition that the protocol causes only a negligible
disturbance to the joint state of BR is given by

Rqea,qsi(D) =
1

2

[
min

N : d(ρ,N )≤D
I(R;B′|B)σ

]
(46)

where the state σ is defined as:

σRB′B ≡ NA→B′(φρRAB).

Proof: The achievability part follows easily from the
protocol for quantum state redistribution. Fix N to be the
CPTP map which achieves the minimum in (46) for a given
distortion D. It is straightforward to compute this minimum
because the information quantity I(B′;R|B)σ is convex in the
map N . This follows easily from the identity I(B′;R|B)σ =
I(B′B;R)σ − I(B;R)σ , and the fact that the map, N , acts
only on the system A. The reference, Alice, and Bob share
n copies of φρRAB . First Alice acts on her system An with
many instances of an isometric extension UNA→B′E of the
map NA→B′ . Let (φσRB′EB)⊗n denote the resulting pure state,
with the systems B′nEn being in Alice’s possession. Note
that since N is chosen to be the CPTP map which meets the
distortion constraint d(ρ,N ) ≤ D, the rate-distortion task is
completed if the systems B′n are transmitted to Bob faithfully
in the asymptotic limit (n → ∞). This is accomplished by
using the protocol of quantum state redistribution. From (26)
it follows that the relevant resource inequality is given by:

〈φσR|B′E|B〉+ 1
2I(R;B′|B)φσ [q → q] + 1

2I(E;B′)φσ [qq]

≥ 〈φσR|E|B′B〉+ 1
2I(B;B′)φσ [qq]. (47)

Clearly, with unlimited entanglement, the protocol accom-
plishes the state redistribution task with a rate of quantum
communication given by (46).

We now prove the converse part of the above theorem.
This proof bears some similarities with our converse proof
of Theorem 3 of Ref. [5] and with the converse proof of
Theorem 6 of [12]. The most general protocol begins with the
reference, Alice, and Bob sharing the state (φρRAB)⊗n, and
Alice and Bob sharing entanglement in the systems TA and
TB , respectively (such that the dimensions of HTA and HTB
are no larger than 2nE). Alice then acts with some encoding
map E on An and TB , producing a system W . Let σ denote the
state shared by Alice, Bob and the reference after the encoding.
She sends W to Bob, who then acts with a decoding map D
on W , his share TB of the entanglement, and his quantum
side information Bn to produce systems B′n and B̂n. Let ω
denote the final shared state. Without loss of generality, we
can simulate the above protocol by considering an isometric
extension of the encoder that produces systems W and E as
output. We demand that the protocol causes only an asymptot-
ically negligible disturbance to the state on the reference and
Bob’s systems, in the sense that, for any ε > 0 and n large

enough, the inequality in (48) should hold. Then the rate of
quantum communication Q ≡ (1/n) log(dimHW ), needed for
the rate-distortion coding task, satisfies the following bound:

2nQ ≥ nRqea,qsi(D)− 3nε′, (49)

for any ε′ > 0 and n large enough. It is proved by employing
standard entropic identities and inequalities, e.g. the quantum-
data processing inequality, the Alicki-Fannes inequality [19],
and the superadditivity of the quantum mutual information
(Lemma 3). It also relies on the fact that the state RnB̂n is
ε-close in trace distance to a tensor-product state. For the sake
of completemess, we have included the proof in Appendix A.

VII. CONCLUSION

We have extended quantum rate distortion theory by consid-
ering auxiliary resources that might be available to the sender
and receiver. The first setting we considered is quantum rate
distortion coding with the help of a classical side channel.
Our result is that the regularized entanglement of formation
characterizes the quantum rate distortion function, extending
earlier work of Devetak and Berger [8]. We also combined this
bound with our entanglement-assisted bound from Ref. [5] to
obtain the best known bounds on the quantum rate distortion
function for an isotropic qubit source. The second setting we
considered is quantum rate distortion coding with quantum
side information available to the receiver. Before proving
results in this setting, we proved a quantum reverse Shannon
theorem with quantum side information (for tensor-power
input states), which naturally extends the quantum reverse
Shannon theorem (for tensor-power inputs) in Ref. [13]. The
achievability part of this theorem relies on the quantum state
redistribution protocol [17], [18], while the converse relies
on the fact that the protocol can cause only a negligible
disturbance to the state of the reference and Bob’s quantum
side information. This result naturally leads to quantum rate-
distortion theorems with quantum side information, with or
without entanglement assistance.

All of our proofs rely on one particular approach to quantum
rate distortion theory: exploiting a quantum reverse Shannon
theorem for the task of quantum rate distortion coding. It
would be a breakthrough for this theory if one could develop a
different approach that leads to better characterizations of lossy
quantum data compression tasks, beyond the ones presented
here.
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Recherches Mathématiques at the University of Montreal.
MH received support from the Chancellor’s postdoctoral
research fellowship, University of Technology Sydney (UTS),
and was also partly supported by the National Natural



17∥∥∥TrB′n
{
DWTBBn→B′nB̂n

(
EAnTA→W

(
(φρRAB)⊗n ⊗ ΦTATB

))}
− (φρRB)⊗n

∥∥∥1 ≤ ε, (48)

Science Foundation of China (Grant No. 61179030) and
the Australian Research Council (Grant No. DP120103776).
AW acknowledges support from the European Commission
(STREP “QCS” and Integrated Project “QESSENCE”), the
ERC (Advanced Grant “IRQUAT”), a Royal Society Wolfson
Merit Award and a Philip Leverhulme Prize. The Centre for
Quantum Technologies is funded by the Singapore Ministry
of Education and the National Research Foundation as part
of the Research Centres of Excellence programme.

APPENDIX

First recall that the quantum rate distortion function has the
following characterization:

Rq(D) = lim
k→∞

1

k

[
min

N (k) : d(ρ,N (k))≤D
Ep

(
ρ⊗k,N (k)

)]
.

We would like to show that the expression on the RHS above
is convex in D:

Rq(Dλ) ≤ λRq(D1) + (1− λ)Rq(D2), (50)

where Dλ ≡ λD1 + (1− λ)D2. We will choose k1 and k2 to
be large integers such that

k1
k1 + k2

≈ λ.

(We can actually just take k1 = dak2e for a =
[
1
λ − 1

]−1, so
that there is just one integer to consider.) For ki and Di where
i ∈ {1, 2}, let N (ki)

i be the CPTP map that minimizes

min
N (ki) : d(ρ,N (ki))≤Di

Ep

(
ρ⊗ki ,N (ki)

)
.

Thus, whenever the distortion measure under consideration is
linear and averaged, we have that the distortion caused by the
map N (k1)

1 ⊗ N (k2)
2 is approximately equal to Dλ. Then we

have that

1

k1 + k2

[
min

N (k1+k2) : d(ρ,N (k1+k2))≤D
Ep

(
ρ⊗(k1+k2),N (k1+k2)

)]
≤ 1

k1 + k2
Ep

(
ρ⊗(k1+k2),N (k1)

1 ⊗N (k2)
2

)
≤ 1

k1 + k2

[
Ep

(
ρ⊗k1 ,N (k1)

1

)
+ Ep

(
ρ⊗k2 ,N (k2)

2

)]
=

k1
k1 + k2

(
1

k1

)
Ep

(
ρ⊗k1 ,N (k1)

1

)
+

k2
k1 + k2

(
1

k2

)
Ep

(
ρ⊗k2 ,N (k2)

2

)
≈ λ 1

k1
Ep

(
ρ⊗k1 ,N (k1)

1

)
+ (1− λ)

1

k2
Ep

(
ρ⊗k2 ,N (k2)

2

)
.

The important second inequality follows from subadditivity of
the entanglement of purification. Since the above relation holds

for every choice of k2 and k1 = dak2e and the corresponding
minimizing maps N (k1)

1 and N (k2)
2 , it follows that it holds in

the limit, implying (50) as desired. Clearly, this argument is
very similar to the observation regarding time-sharing of rate
distortion codes in Remark 5.

Here we give the details of the proof of the converse part of
Theorem 17, which deals with entanglement-assisted quantum
rate distortion with quantum side information. Continuing
from (48), we obtain a lower bound on the optimal rate Q
of quantum communication needed for this

2nQ ≡ 2 log(dimHW )

≥ 2H(W )σ

= H(W )σ +H(RnTBB
nE)σ

= H(W )σ +H(RnTBB
nE)σ −H(WRnTBB

nE)σ

= I(W ;RnTBB
nE)σ

≥ I(W ;RnTBB
n)σ

= I(WTBB
n;Rn)σ + I(W ;TBB

n)σ − I(Rn;TBB
n)σ

= I(WTBB
n;Rn)σ + I(W ;TBB

n)σ − I(Rn;Bn)σ

≥ I(WTBB
n;Rn)σ − I(Rn;Bn)σ

≥ I(B′nB̂n;Rn)ω − I(Rn; B̂n)ω − nε′.

In the above, the states σ and ω are as defined above (48).
The first inequality follows because the entropy of a system
is never larger than the logarithm of its dimension. The
first equality follows because the entropy of the marginals
of a pure bipartite state are equal. The second equality fol-
lows because the entropy of a pure state is equal to zero,
so that H(WRnTBB

nE) = 0. The third equality is an
identity. The second inequality follows from quantum data
processing. The fourth equality follows from an identity for
the quantum mutual information. The fifth equality follows
because RnBn and TB are in a product state, so that
I(Rn;TBB

n)σ = I(Rn;Bn)σ . The third inequality follows
because I(W ;TBB

n)σ ≥ 0. The last inequality follows
from quantum data processing and the assumption that that
protocol causes only a negligible disturbance to the state of
the reference and the receiver (the term ε′ arises from an
application of the Alicki-Fannes’ inequality, where ε′ is a
function of ε such that limε→0 ε

′(ε) = 0).
Let B′k, k = 1, 2, . . . , n denote the subsystems (with Hilbert

space HB′ ) constituting the system B′n. Similarly, let B̂k and
Rk (k = 1, 2, . . . , n) denote the corresponding subsystems of
B̂n and Rn respectively. Then

RHS of (48) ≥
∑
k

[
I(B′kB̂k;Rk)ω − I(Rk; B̂k)ω

]
− 2nε′

=
∑
k

I(B′k;Rk|B̂k)ω − 2nε′.

The first inequality follows from superadditivity of quantum
mutual information (Lemma 3) and from the fact that the



18

state on RnB̂n is ε-close in trace distance to a tensor-product
state (see Lemma 10 of Ref. [21]). The second equality
follows from the identity I(B′kB̂k;Rk)ω − I(Rk; B̂k)ω =
I(B′k;Rk|B̂k)ω .

At this point, we proceed with an argument similar to
that in the converse proof of Theorem 6 of [12]. Since the
state on RnB̂n is not disturbed too much, by Uhlmann’s
theorem we know that there exists a CPTP map acting Alice’s
system alone, such that the conditional mutual information
of the state ω′ resulting from this map is a lower bound on
the conditional mutual information I(B′k;Rk|B̂k)ω for every
k ∈ {1, 2, . . . , n}:

≥
∑
k

I(B′k;Rk|B̂k)ω′ − 3nε′.

Continuing, we have the same set of inequalities as in the last
part of the proof of Theorem 6 of [12] (with Rea,qsi replacing
Rqcqsi):

≥
∑
k

Rqea,qsi

(
d
(
ρ,F (k)

n

))
− 3nε′

= n
∑
k

1

n
Rqea,qsi

(
d
(
ρ,F (k)

n

))
− 3nε′

≥ nRqea,qsi

(∑
k

1

n
d
(
ρ,F (k)

n

))
− 3nε′

≥ nRqea,qsi(D)− 3nε′.
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