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SINR Statistics
of Correlated MIMO Linear Receivers

Aris L. Moustakas and Pavlos Kazakopoulos

Abstract—Linear receivers offer a low complexity option for
multi-antenna communication systems. Therefore, understanding
the outage behavior of the corresponding SINR is important in
a fading mobile environment. In this paper we introduce a large
deviations method, valid nominally for a large number M of
antennas, which provides the probability density of the SINR of
Gaussian channel MIMO Minimum Mean Square Error (MMSE)
and zero-forcing (ZF) receivers, with arbitrary transmission
power profiles and in the presence of receiver antenna correla-
tions. This approach extends the Gaussian approximation ofthe
SINR, valid for large M asymptotically close to the center of the
distribution, obtaining the non-Gaussian tails of the distribution.
Our methodology allows us to calculate the SINR distribution
to next-to-leading order (O(1/M)) and showcase the deviations
from approximations that have appeared in the literature (e.g.
the Gaussian or the generalized Gamma distribution). We also
analytically evaluate the outage probability, as well as the
uncoded bit-error-rate. We find that our approximation is qu ite
accurate even for the smallest antenna arrays (2× 2).

Index Terms—Gaussian approximation, information capacity,
large-system limit, multiple-input multiple-output (MIM O) chan-
nels.

I. I NTRODUCTION

Multi-antenna systems have been known [1], [2] to offer
considerable advantages, not only at the link-level, providing
higher multiplexing gains and increased robustness through di-
versity, but also at a system-level by allowing a more effective
interference mitigation in a multi-user setting. It is therefore no
surprise that next generation wireless communications systems
will include multi-antenna systems [3] in order to capitalize
on these benefits. To obtain the full advantages from multiple
antennas, it is necessary to have an optimal receiver structure,
which however is quite complex to implement in real systems.
Instead, low complexity, albeit suboptimal, linear receivers
offer a practical alternative.

Such receivers include the so-called MMSE (minimum
mean square error) and the zero-forcing (ZF) receivers, as
well as a new class of receivers recently proposed [4] called
moment-based receivers. In addition to the simplification due
to the linearization of the received signal operation, the re-
ceived signal may then be iteratively treated to cancel the
interference from other antennas. However, in many cases,
even this may impose significant complexity. An even simpler
receiver structure can be constructed, in which, after the linear
spatial equalization the data is decoded in a single-input single-
output fashion [5], [6]. Here we will focus on the latter,
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especially since we are interested in the cellular context,with
separated transmitter antenna arrays in the uplink with a multi-
antenna receiver terminal.

The throughput performance depends on the ability of the
linear receiver structure to mitigate interference. One very
useful method to quantify the performance is through the
asymptotic analysis of the signal to interference and noiseratio
(SINR) for the receiver in the limit of large antenna numbers
using tools from random matrix theory. Its application was
initially spearheaded in the context of Direct-Sequence Code-
Division-Multiple-Access (DS-CDMA) where the effective
channel consists of the matrix of pseudorandom codes. In this
direction, the first breakthrough was made by [7], [8], who
showed that in the infinite matrix-size limit the SINR of a
fixed random channel realization converges to its mean. Later,
similar results were obtained for more general channels [9],
[10]. More recently, the effectiveness of linear receiverswere
analyzed in terms of the total throughput from all transmitting
nodes in the asymptotic limit [11]–[13].

Nevertheless, one often needs to assume that the fading
channel is “quasi-static”, i.e. varies in time much more slowly
than the typical coding delay. In this case the channel matrix
and hence the SINR have to be considered as random quanti-
ties. In this regime, the relevant performance metric is the“rate
(or SINR) versus outage probability” tradeoff [14], captured by
the cumulative distribution function of the SINR. This situation
is especially relevant in the context of multi-antenna channels,
when the number of antennas is usually much smaller than the
size of the CDMA codes.

In a seminal work [15] the authors proved the asymptotic
normality of the SINR for the MMSE and ZF receivers when
all transmitters have equal power. The normality of the SINR
was later extended to the normality of the multiple access inter-
ference (MAI) of CDMA channels [16] and a variety of linear
receivers [17]. More recently, [18], [19] showed the normality
of the MMSE SINR, including the case of the mismatched
receiver. Interestingly, [18] showed also that the logarithm
of the SINR becomes asymptotically normal. Unfortunately,
and in contrast to the total mutual information, the Gaussian
approximation for the SINR is extremely inaccurate, unless
the number of antennas is quite large. As a result, inspired
by the fact that the SINR for the equal power MIMO ZF
receiver has a Gamma distribution [15], [20], several works
were devoted to approximating the SINR statistics with other
distributions, such as the Beta distribution for the SINR ofthe
CDMA ZF receiver [21], [22], or the Gamma and generalized
Gamma distributions [23]–[26], in which case their first three
moments were fitted to match the actual SINR distribution.
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Nevertheless, this methodology, although perhaps providing
good agreement under certain conditions, is ad-hoc and does
not offer any intuition on the SINR statistics. The same can
be argued for the calculation of the exact probability density
function (PDF) and the cumulative density function (CDF) of
the MMSE SINR [27] using ratios of determinants, a method
however which is only valid for uncorrelated channels at the
receiver.

In this paper, we take a different approach. Instead of trying
to prove Gaussian behavior close to the peak of the distribution
of SINR, we develop a large-deviations methodology, which
allows us to calculate the distribution of the SINR arbitrarily
far from its most probable, mean value. The success of
our method lies on the fact that we can exactly express
the moment generating function (MGF) of the SINR as the
moment generating function of the difference of two correlated
MIMO mutual information functions. Taking advantage of
the robustness of the Gaussian approximation of the MIMO
mutual information we obtained an expression of the MGF
of the SINR correct toO(1/M). We are then able to obtain
the full distribution of the SINR for both MMSE and ZF with
similar precision. It is therefore no surprise that our results
are very close to the exact ones down to the smallest MIMO
systems (2× 2). It is worth mentioning a related recent work
[28] in which we used the Coulomb Gas method [29] to
calculate the leading termO(M) in the exponent of the SINR
for uncorrelated channels. In that work we demonstrate that
the large deviations tails are determined by the behavior ofa
single singular value of the channel matrix.

Outline: In the next section we present the channel model
and introduce the MMSE and the ZF SINR. In Section III
we present our analytical results, providing the PDF, CDF
and BER for both MMSE and ZF SINRs. In Section IV we
demonstrate their validity numerically and we conclude in
Section V. Appendices A, B, C and D contain details on the
proofs of Lemma 1, Propositions 1, 2 and 3, respectively.

II. CHANNEL MODEL

In this section we define the channel model. The receiver
array hasM antennas, receiving the signal fromK + 1
transmitter arrays, not necessarily collocated. Without loss of
generality1 we assume that the 0th transmitter has a single
antenna, while the remainingK transmitters haveNk antennas
each fork = 1, . . . ,K. The M -dimensional received signal
vectory can be written as

y = R
1/2
0 g0x0 +

K
∑

k=1

R
1/2
k Gkxk + z (1)

In the above equationz is the noise vector, with complex
Gaussian elements∼ CN (0, 1). The transmitted signal am-
plitudes x0 and xk have i.i.d. elements with variancep0
andpkINk

respectively, wherepk are the average transmitted
power per antenna from thekth array with k = 1, . . . ,K.
The channel vector from transmitter 0 isR1/2

0 g0, whereg0

1For example, we may assume that the zeroth and the first arrayscorrespond
to the same transmitter

is an M -dimensional vector with i.i.d. entries∼ CN (0, 1).
R0 is the M -dimensional receive-side correlation matrix of
the channel originating from user 0, normalized so that
trR0 = M . Similarly, the channel matrix from thekth
user isR1/2

k Gk, whereGk is a M × Nk matrix with i.i.d.
elements∼ CN (0, 1/Nk) andRk has the same interpretation
and properties asR0. To be concrete, we will assume that
all correlation matricesRk, for k = 1, . . . ,K are positive
semidefinite, whileR0 is positive definite. Also, we assume
that their eigenvalue spectra converge to proper probability
distributions for largeM . We will be interested in calculating
the SINR of transmitter0 in the presence of the other trans-
mitters and noise. For notational convenience we also define
the matrixH0 = [R

1/2
1 g1

√
p1, . . . ,R

1/2
K GK

√
pK ] as well as

the matrixH = [R
1/2
0 g0

√
p0,H0].

This channel model describes a set of transmitting antennas
dispersed in a cellular setting with their signal arriving pos-
sibly from different mean angles and/or with different angle-
spreads at the receiver array, thereby having different receive
correlation matrices. Of course, not all correlation matrices
need to be different, e.g. if some of the interfering antennas
are collocated. To obtain analytic results we will take the limit
of largeM andNk (k = 1, . . . ,K), with the ratios

nk =
Nk

M
, (2)

as well as the number of arraysK fixed in that limit. In the re-
mainder of the paper the term “largeM limit” will denote both
Nk andM going to infinity, while keeping the corresponding
ratiosnk constant and finite. For notational convenience, we
defineNtot =

∑K
k=0 Nk. Despite the assumptions above, we

will apply and test our results in the case whenM andK are
not too large andNk = 1.

A. MMSE Receiver

The SINR of the 0-th MMSE transmitter above can be
expressed as

γ(H) =
p0
M

g
†
0R

1/2
0 L−1R

1/2
0 g0 (3)

L = IM +H0H
†
0 (4)

with the second line serving as the definition ofL. Our
objective is to evaluate the probability density function of
γ(H0), omitting theH0 dependence when obvious.

B. ZF Receiver

The SINR of the zero-forcing (ZF) receiver can be obtained
in a similar fashion. In this case, we focus only in the case
M ≥ Ntot. Then the SINR for this receiver can be expressed
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as a limit of the standard MMSE SINR (3) as follows

γ(H) =
p0
M

1
[

{H†H}−1
]

11

(5)

=
p0
M

lim
z→0+

z





1
{

[IN + z−1H†H]
−1
}

11

− 1





=
p0
M

lim
z→0+

g
†
0

[

IM + z−1H0H
†
0

]−1

g0

=
p0
M

lim
z→0+

zg†
0

[

zIM +H0H
†
0

]−1

g0

The inverse of the matrix in the right-hand side of the first
equality is finite only forM ≥ Ntot with probability one. The
second equality results from taking thez → 0+ limit. The
third equality above results from the matrix inversion lemma
[30]. Following the same argumentation as in Section II-A we
obtain the moment generating function as in (6), withH0H

†
0 in

(7) replaced byz−1H0H
†
0. The expression in the fourth line,

easily derived from the third, showcases the singular nature of
thez → 0 limit, which focuses on the projection of the kernel
of H0H

†
0 to g0, which, for M ≥ Ntot is guaranteed to be

non-empty. For compactness, below we will continue to use
this dummy variablez, setting it equal toz = 1 and z = 0+

for the cases of the MMSE and ZF SINR, respectively.

III. R ESULTS

In this section we will go through the basic steps of the
calculation of the probability distribution (PDF), the outage
distribution (CDF) and the BER of the SINR denoted byγ. We
start with a very useful first result for the moment generating
function of γ.

Lemma 1 (MGF of γ). The moment generating function ofγ
for the MMSE (3) and the ZF case (5) can be written in the
following form

gM (s) = EH0

{

e−∆I(s,H0)
}

(6)

where∆I(s,H0) is given by

∆I(s,H0) = ln det
[

z(IM + sp0R0) +H0H
†
0

]

− ln det
[

zIM +H0H
†
0

]

(7)

The parameterz takes thez = 1 for the MMSE SINR (3) and
the limiting valuez = 0+ for the ZF SINR (5).

Proof: See Appendix A.

Remark1. Once again we see that the limitz → 0+ in (6) is
not trivial because the matrixH0H

†
0 has a non-empty kernel.

Remark2. The usefulness of this result is that it makes the
connection of the moment generating function of the SINR to
a difference of mutual information functions for the remaining
K users. This will allow us to take advantage of the Gaussian
behavior of this difference of mutual informations [31], [32]
close to their ergodic values, in order to analyze the large
deviations of the distribution ofγ arbitrarily far away fromits
ergodic value. Note that the above argument holds for general
H0, as long as the logdets difference above remains Gaussian,
as e.g. in [33].

A. Derivation of PDF

We will now obtain the probability distribution density of
the SINR. This density may be expressed as an expectation of
a Diracδ-function as follows:

PM (γ) = EH

[

δ

(

γ − zp0
M

g
†
0

[

zIM +H0H
†
0

]−1

g0

)]

(8)

The parameterz will take the value ofz = 1 for the case
of the MMSE SINR introduced in Section II-A, while, as
discussed in Section II-B, thez = 0+ limit will correspond to
the ZF SINR. The following proposition provides an analytic
expression of the probability density of the SINR, valid forall
γ > 0 in the largeM limit.

Proposition 1 (PDF of SINR). Let PM (γ) be given by

PM (γ) =
1√
2π

eMs0γ−Ierg(s0)+Ierg(0)+
v1(s0)+v2(s0)

2 (9)

In the above equation,Ierg(s) is the ergodic mutual informa-
tion given by

Ierg(s) = tr ln

[

IM +R0p0s+
K
∑

k=1

Rkrk(s)

]

(10)

+

K
∑

k=1

Nk ln(z + pktk(s))−
K
∑

k=1

Nkrk(s)tk(s)

rk(s) =
pk

z + pktk(s)
(11)

tk(s) =
1

Nk
tr



Rk

(

IM + p0sR0 +

K
∑

q=1

Rqrq(s)

)−1


(12)

for k = 1, . . . ,K. The parameterz takes the valuez = 1 for
the case of the MMSE SINR and the valuez = 0 for the case
of the ZF SINR. The variables0 in (9) is evaluated through
the saddle-point equation

γ =
1

M
I ′erg(s0) (13)

= p0
1

M
tr



R0

(

IM + p0s0R0 +
K
∑

k=1

Rkrk(s0)

)−1




I ′erg(s) is the derivative ofIerg(s) with respect tos. The
expressions of theO(1) termsv1(s0) and v2(s0) are given in
Appendix B.Ierg(0) is obtained by settings = 0 in Ierg(s),
tk(s), rk(s) above.

Then for everyγ > 0, the probability density converges
weakly toPM (γ) in the sense that

lim
M→∞

M
∣

∣PM (γ)− PM (γ)
∣

∣ < ∞ (14)

Proof: See Appendix B.

Remark3. As it will become clear in the appendix, this result
means that for largeM the PDF of the SINR becomes asymp-
totically equal withPM (γ), up to corrections ofO(1/M).

Remark4. The solution of (11), (12) has been shown to be
unique for the case of the MMSE SINR (z = 1) [31], [34],
[35]. To show that this is also the case for thez → 0+ limit, we
observe that we can rewrite (11) asrk(s) = (tk(s)+z/pk)

−1.
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Fig. 1. (a) Probability density (PDF) curves and (b) Outage probability (CDF) curves for the MMSE SINR in dB forN = M = 2, with transmission
and interference powersp0 = 2 and p1 = 1 respectively. The channel elements are assumed to be iid. Weplot the PDF for the Monte Carlo-generated
simulations (MC), the LD approximation, the Gaussian approximation and the generalized Gamma approximations. In the Gaussian curves we have used
N (γdB,erg , σ

2

dB
) with γdB,erg = 10 ∗ log10 γerg and σ2

dB
= σ2

erg/(γerg ln 10)2. The ergodic meanγerg and varianceσ2
erg of the SINR can be

calculated directly, see e.g. [24]. The generalized gamma curves have been plotted using the parameters of the generalized gamma distribution as calculated
in [23].

Hence we may view the ZFz → 0 limit as the MMSE solution
with pk → ∞ limit (k = 1, . . .K). Since the MMSE (z = 1)
solution for therk(s), tk(s) is continuous with respect the
values ofpk, we may take the MMSErk(s), tk(s) solutions
in the limit of largepk, and then plug them in (10), setting
alsoz = 0.

Also, note that the most probable value ofγ corresponds
to the solution of (13) fors0 = 0. This involves the joint
solution of (12), (11), which gives the correct value of the
ergodic SINR [24], [36]. Expanding the leadingO(M) term
in the exponent of the PDF (i.e. the first three terms) to second
order in(γ−γerg) provides the Gaussian approximation of the
PDF of the SINR. Furthermore, sincePM (γ) in (9) is valid
for all positiveγ, not necessarily close to the ergodic value,
it can provide the tails of the distribution accurately.

In [37] we derived a simplified expression for the case when
all correlation matrices are identical. This result can also be
obtained from the above analysis by settingN1 = K and all
otherNk = 0, andR0 = R1 = R, while g0 ∼ CN (0, 1/K),
G1 ∼ CN (0, diag(p1, . . . , pK)/K).

Corollary 1. [37] Let each of theK + 1 transmitters have
a single antenna with same correlation matrix at the receiver
given byR. Then in the limit of largeK, and N with q =
K/N fixed the expressions (10), (11), (12) are simplified to

Ierg(s) = tr ln [IM +R (p0s+ r(s))] (15)

+
K
∑

k=1

ln(z + pkt(s))−Kr(s)t(s)

r(s) =
1

K

K
∑

k=1

pk
z + pkt(s)

(16)

t(s) =
1

K

M
∑

i=1

Ri

1 +Ri(p0s+ r(s))
(17)

whereRi, (i = 1, . . . ,M ) are the eigenvalues of the matrix
R, while z takes the valuez = 1 for the MMSE case and

z = 0 for the ZF case. As a result, (13) simply becomes

γ = p0t(s0) (18)

with the corresponding expressions forIerg(0), r(0), t(0) re-
sulting from settings = 0 to (15), (16), (17), respectively. The
expressions ofv1(s0), v2(s0) are also accordingly simplified
(see Appendix B).

To be able to compare the obtained distribution of the
MMSE SINR with other proposed distributions [18], [19],
[23], [24], it is instructive to further simplify the assumptions.
In particular, we have the following

Corollary 2. In the case of equal power transmit antennas
p0 = pk = ρ and uncorrelated receiver antennasR = IM , the
result simplifies and, to leading order inN takes the following
simple form:

PM (γ) ∝ e−Kγ/ρ γM

(z + γ)K
(19)

This extremely simple result is quite remarkable. Although
for largeM and close to the ergodic value ofγ this equation
will behave approximately as a normal distribution, for general
values ofγ this is far from a Gaussian or generalized Gamma-
distribution. This is partly the reason why all efforts to
approximate the distribution ofγ using a central limit theorem
approach have largely failed, at least for relatively smallvalues
of M . At the same time, whenz = 0, the above distribution
becomes exactly a Gamma distribution as shown in [20].

B. Outage Distribution ofγ

Using the expressions of the probability densityPM (γ)
from the previous section we may now evaluate the asymp-
totic expression of the outage probability of the SINR
PM,out(γ0) = P(γ(H) < γ0). It turns out that it can be
evaluated using the information obtained thus far. In particular,
we have
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Fig. 2. (a) Probability density (PDF) curves and (b) Outage probability (CDF) curves for the ZF SINR in dB forN = M = 2, with signal and interference
powersp0 = 2, p1 = 1, respectively. The angles of arrival of the signal and interference paths areθ0 = 0o and θ = 45o, respectively, measured from the
vertical of the receive antenna array. The angle-spreads ofboth paths at the receiver areσas = 30o. As in Fig. 1, the LD curve using this approximation is
consistently closer to the Monte-Carlo generated curve (MC). The way the Gaussian curve of generated is identical to Fig. 1III.

Proposition 2 (Outage Probability). Let PM,out(γ) be given
by

PM,out(γ) = eMs0γ−Ierg(s0)+Ierg(0)−
s20
2 I′′

erg(s0)+
v1(s0)

2

· Q
(√

|I ′′erg(s0)|s20
)

(20)

for γ < γerg and

1− PM,out(γ) = eMs0γ−Ierg(s0)+Ierg(0)−
s20
2 I′′

erg(s0)+
v1(s0)

2

· Q
(√

|I ′′erg(s0)|s20
)

(21)

when γ ≥ γerg. I ′′erg(s0) is the second derivative of
Ierg(s) with respect to s. Q(x) is defined asQ(x) =
∫∞

x dxe−x2/2/
√
2π. The definitions ofs0, Ierg(s0) andv1(s0)

can be found in Proposition 1 and Appendix B. The de-
pendence ofs0 on γ can be obtained through (13).γerg
corresponds to the value ofγ in (13) when s = 0. The
parameterz = 1 for the MMSE (3) case andz = 0+ for
the ZF (5) case.

Then for everyγ > 0, the outage probability function
converges toPM,out(γ) in the sense that

lim
M→∞

M
∣

∣PM (γ(H) < γ)− PM,out(γ)
∣

∣ < ∞ (22)

Proof: See Appendix C.

C. Evaluation of Average BER

In addition to the outage probability, another important
metric of performance for the linear receivers is the average
uncoded bit-error probability (BER). This can be expressed
as an average overγ of Pe(γ), the bit-error probability
conditioned on the channel realization, which for different

modulations can be expressed as

Pe(γ) =











Q(
√
2γ) BPSK

Q(
√
γ) QPSK

2
log2 LQ(

√

3γ
L−1 ) L−QAM

(23)

where the latter expression holds approximately for largeL
[25]. The average BER is given by the following

Proposition 3 (Average BER). Define the following function

BERM =
b

2
eIerg(0)−Ierg(

a
2M )+ 1

2v1(
a

2M )+ a
2M I′

erg(
a

2M )(24)

· Γ

(

1

2
,

a

2M
I ′erg(

a

2M
)

)

whereΓ(x, y) =
∫∞

y dttx−1e−t/Γ(x) is the normalized in-
completeΓ-function andIerg(s), I ′erg(s) and v1(s) are the
ergodic mutual information, its derivative with respect tos,
and the variance defined in (10), (13) and (40) respectively.
The above function and parameters are defined both for the
MMSE (z = 1) and the ZFz = 0) receiver cases. Also the
parametersa, b describing the modulation are defined in (23).

Then ifBERM is the average uncoded bit-error rate of the
MMSE (3) and the ZF (5) receivers, in the limit of largeM
we have

lim
M→∞

M
∣

∣BERM −BERM

∣

∣ < ∞ (25)

Proof: See Appendix D.

IV. N UMERICAL SIMULATIONS

To test the applicability of this approach, we have performed
a series of numerical simulations and have compared our large
deviations (LD) approach with Monte Carlo (MC) simula-
tions, the Gaussian approximation and the generalized gamma
approximation by [23]–[26]. We start with the simpler case
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where no correlations are present in the receiver side using
different powers for the transmit antennas. In Fig. 1 we plotthe
probability density (PDF) and the outage probability (CDF)of
the MMSE SINR in dB for the2× 2 antenna case. The PDF
curve of our large deviations (LD) approach is consistently
closer to the Monte-Carlo (MC) numerical curves. The same
is true also for the outage curves even for such small antenna
arrays.

In Fig. 2 we plot the PDF and CDF curves for the zero-
forcing (ZF) SINR in dB for the2 × 2 antenna case, using
different correlation matricesR for the two transmitter paths.
In particular, we parameterize the correlation matrix elements
using the mean angle of arrivalθ, as measured from the
vertical of the antenna array, and a Gaussian angle-spreadσas

as follows:

Rab = C

∫ π

−π

dφe2πidab sin(φ)/λe
− (φ−θ)2

2σ2
as (26)

whereλ is the carrier wavelength,dab is the distance between
antennasa, b, taken to bedab = (a − b)λ/2 and C a
normalization to ensureRaa = 1. Using the above notation,
the angles of arrival of the signal and the interferer areθ0 = 0o

andθ = 45o, respectively, while all angle spreads are taken to
be σas = 30o. In this case, we also see very good agreement
with the Monte-Carlo curves.

Finally, in Fig. 3 we test our predictions of the uncoded
BER, both for MMSE and ZF. In Fig. 3(a) we take un-
correlated receivers and compare to Monte-Carlo simulations
and the generalized gamma approximation. We see that at
large SNRs, the generalized gamma distribution deviates up
to several dB. In contrast, our LD approximation is quite
close to the numerical curve. We see similar behavior for our
approximation in the ZF case. In Fig 3(b) we plot the BER
as a function of angle-of arrival of the signal path, in the
presence of two interfering paths, for several angle-spreads
and receive array sizes. We find that low angle-spreads lead
to deterioration of the BER when the signal path has the same
direction of arrival as the interfering paths. In addition,we
find that lower angle-spreads increase the BER away from the
interferers’ direction. This last observation is due to thefact
that higher angle-spread leads to higher diversity and hence re-
duced outage probability. Interestingly, an angle-spreadof just
σas = 5o is enough to make two interference paths separated
by 30o practically indistinguishable forM = 6, N = 3.

V. CONCLUSION

In this paper we have used a large deviation approach to
calculate the key statistics of the SINR, i.e. PDF, outage
probability and BER for the MMSE and ZF receivers of
the Gaussian MIMO channel with arbitrary receive antenna
correlations. Our results agree very well with simulationsboth
close to the peak of the distribution as well as at its tails, where
other suggested approximations, such as the Gaussian or the
generalized Gamma distributions are inaccurate. As a technical
byproduct, we have found an exact relationship between the
SINR distribution and the moment generating function of a
difference of related mutual informations. Remarkably, the
accuracy of the calculated distribution, even at its tails,is a

by-product of the robustness of the Gaussian behavior of the
MIMO mutual information. Several direct generalizations are
possible. This approach may be generalized to include multi-
tap or frequency selective MIMO channels [38].

APPENDIX A
PROOF OFLEMMA 1

The moment generating function ofγ is

gM (s) = EH

[

e−sp0g
†
0R

1/2
0 L−1R

1/2
0 g0

]

(27)

We can integrate overg0 to obtain

gM (s) = EH0

{∫

dg0e
−g

†
0

(

IM+sp0R
1/2
0 L−1R

1/2
0

)

g0

}

= EH0

{

e
− ln det

[

IM+p0sR
1/2
0 L−1R

1/2
0

]
}

(28)

= EH0

{

e−∆I(s,H0)
}

where the quantity∆I(s,H0) is exactly (7). ∆I(s,H0)
and thereforegM (s) will be analytic in s when ℜ(s) >
−λmin(H0), whereλmin(H0) is the minimum eigenvalue of

the matrixp−1
0 R

−1/2
0

(

IM +H0H
†
0

)

R
−1/2
0 . We will assume

that in the largeM limit λmin(H0) will converge with proba-
bility one to a fixed valueλ∗

min and hence forℜ(s) > −λ∗
min,

gM→∞(s) is analytic. This has been shown forK = 1 [39]
and is expected to be true for generalK ≥ 1 [34].

APPENDIX B
PROOF OFPROPOSITION1

Before discussing some elements of the proof, we introduce
the normalized mutual information difference as

δI(s,H0) =
1

M
∆I(s,H0) (29)

where ∆I(s,H0) is given by (7). We also introduce an
important property ofδI(s,H0).

Lemma 2 (Hardening ofδI(s,H0)). In the limit M → ∞
the quantityδI(s,H0) converges with high probability to

δIerg(s) =
∆Ierg(s)

M
=

Ierg(s)− Ierg(0)

M
(30)

whereIerg(s) is defined in (10), (11), (12).

This Lemma was proved in [34] for the cases ∈ R
+. We

will assume it is valid forℜ(s) > −λ∗
min. We should mention

that for the caseK = 1, or for the case of equal correlation
matricesRk = R0 (k = 1, . . . ,K), the generalization to
ℜ(s) < 0 can be inferred from [39]. From the above result and
using the linearity of the derivative operation, we can deduce
the “hardening”of all derivatives ofδI(s,H0) with respect to
s.

Corollary 3. (Hardening of Derivatives ofδI(s,H0)) In the
limit M → ∞ the derivatives ofδI(s,H0) with respect tos
converge with high probability to their deterministic equiv-
alents, which are the corresponding derivatives ofIerg(s),
defined in (10), (11), (12).
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From the convexity of the function∆I(s,H0) with respect
to s, we can deduce thatI ′′erg(s) < 0.

To show Proposition 1, we start by expressing the probabil-
ity density function ofγ as follows

PM (γ) = M

∫ i∞

−i∞

ds

2πi
eMsγgM (s) (31)

= EH0

[

M

∫ i∞

−i∞

ds

2πi
eMf(s)

]

(32)

where
f(s,H0) = sγ − δI(s,H0) (33)

Keeping in mind that in the largeM limit δI(s,H0) = O(1)
we proceed tofirst integrate overs before averaging overH0.
Since forℜ(s) > −λmin(H0) f(s) is analytic, we deform the
contour of thes-integral to pass through the saddle point(s)
of f(s) from the steepest descent path [40], which are defined
by f ′(s0) = 0 or

γ = δI ′(s0)

=
p0
M

tr

[

R0

(

IM + p0s0R0 +H0H
†
0z

−1
)−1

]

(34)

It is easy to see that the above equation only has real solutions
for Re(s0) > −λmin(H0). This is so, because in this region
the right-hand-side is real only ifs0 is real. Also, since the
right-hand-side above is a decreasing function ofs, (becoming
unbounded whens → −λmin(H0) and going to zero when
s → ∞), it can also be shown that it can only have one
solution, which depends onγ. Hence forM → ∞ we expect
the resulting limiting equationγ = δI ′erg(s0) to have a single
real solution fors > −λ∗

min.
For largeM , the integral will dominated by the behavior

close to the saddle point. As a result, we may expand the
exponent close tos0. Thus

f(s) = f(s0) +

∞
∑

k=2

(−1)k(s− s0)
kfk (35)

fk =
1

M
tr

[

(

p0R0

(

IM + p0s0R0 +H0H
†
0z

−1
)−1

)k
]

Sincef2 < 0 the steepest descent path in the neighborhood
of s0 is s = s0 + it, t ∈ R. Keeping the first non-trivial term
in the expansion off(s) (36) in the exponent, we expand the
rest obtaining an expansion of the form

M

2π
eMf(s0)

∫ ∞

−∞

dte−
M
2 |f2|t

2

(

1 +

∞
∑

q=1

M qAq(t)

)

(36)

where the functionAq(t) can be expressed as an expansion
of t, with the minimum degree3q if q is even and minimum
degree3q + 1 if q is odd. Integrating overt and performing
simple power counting ofM we conclude that to leading order
in M we have

P (γ) =

√

M

2π
EH0

[

eM(s0γ−δI(s0,H0))

√

|δI ′′(s0,H0)|

(

1 +O(
1

M
)

)

]

(37)

A number of comments are due for this expression. First, at
least in principle,δI(s0,H0) and all its derivatives (given

by fk) are functions of the realization ofH0, directly or
throughs0, which is the solution of (13). Nevertheless, from
Corollary 3 we can replace the derivatives ofδI(s0,H0) with
their deterministic equivalents to leading order. As a result, to
leading order inM we have

PM (γ) =

√
Mes0γ

√

2π |E [δI ′′(s0)]|
EH0

[

e−MδI(s0,H0)
]

(38)

=

√
Mes0γ

√

2π |E [δI ′′(s0)]|
g(s0)

To conclude the calculation, we need an expression ofg(s0).
Clearly, the “hardening” of the mutual information itself
δI(s0,H0) has also been shown elsewhere. However, here we
need an expression accurate toO(1/M), hence we will need
the next, i.e.O(1) correction. This correction can be evaluated
using the fact that∆I(s0,H0) is a difference of two MIMO
mutual information functions with noise covariance matrixthat
differs by s0p0R0. We can then take advantage of a number
of works in the literature that has analyzed the statistics of
mutual information functions.

Lemma 3 (CLT for ∆I(s,H0)). In the limit M → +∞,
Nk → +∞ (for k = 1, . . . ,K), such thatnk = Nk/M
remains finite, and fors ≥ −λ∗

min the quantity∆I(s,H0)
in (7) becomes asymptotically normal. In particular,

∆I(s,H0)−∆Ierg(s)
√

v1(s)

M→∞−−−−→ N (0, 1) (39)

where∆Ierg(s0) and its related parameters are given by (10).
The variancev1(s) of ∆Ierg(s) is given by

v1(s) = var(I(s,H0)) + var(I(0,H0)) (40)

− 2 cov(I(s,Hk), I(0,H0))

= − log det |IK −Π2Σ2|
− log det |IK −Π0Σ0|
+ 2 log det |IK −Π1Σ1|

The elements of the positive-definite matricesΠ and Σ are
given below

Σ2,ab = δab

(

pa
z + pata(s0)

)2

(41)

Π2,ab =
1

Na
tr
[

RaQ(s0)
−1RbQ(s0)

−1
]

Σ0,ab = δab

(

pa
z + pata(0)

)2

Π0,ab =
1

Na
tr
[

RaQ(0)−1RbQ(0)−1
]

Σ1,ab = δab
p2a

(z + pata(s0))(1 + pata(0))

Π1,ab =
1

Na
tr
[

RaQ(s0)
−1RbQ(0)−1

]

for a, b = 1, . . . ,K and z = 1 (z = 0) for the MMSE (ZF)
cases. The matrixQ(s) is defined as

Q(s) = IM + p0sR0 +
∑

k

Rkrk(s) (42)
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For convenience we generalize the above notation to include
Π2,ab, when any of its indicesa, b can take the value0, in
which case the corresponding matrixRa (and/orRb) becomes
R0 andNa=0 → M .

Although we do not formally prove this lemma, we will
briefly motivate its validity and discuss how one can go about
to prove it. The Gaussian behavior of MIMO mutual informa-
tion functions was first introduced in [31], where in addition
to the ergodic mutual information of the form appearing here,
the variance of the difference of two mutual informations in
both of which the same random matrix appears was calculated
using the replica trick with both complex and Grasmann vari-
ables. Using this methodology the variancev1(s0) above was
evaluated. Furthermore it was shown that all higher cumulant
moments vanish as increasing inverse powers ofM−1. This
shows that∆I(s,H0) converges to a Gaussian variable in the
largeM limit. Similar results have been shown using more
formal arguments for the case of a single mutual information
function with Kronecker-correlated Gaussian channels in [32]
or with independent but not identically distributed channels
[33].

Armed with the above result, we can now integrate over the
channelH0 by changing variables, fromH0 to the random
Gaussian variableZ = (∆I(s0,H0) −∆Ierg(s0))/

√

v1(s0).
The reason we shift from∆I(s0,H0) to Z is because we
know from the analysis above that it isZ that becomes
asymptotically Gaussian. It is also the case thatgM (s) itself
involves the expectation of an exponentially small quantity
(e−∆I(s0,H0)) when M is large, hence its average is not
necessarily well defined2

g(s0)e
∆Ierg(s0) = EH0

[

e−(∆I(s0,H0)−∆Ierg(s0))
]

(43)

= EZ

[

e−Zv1(s0)
]

=

∫ ∞

−∞

dz√
2π

e−
z2

2 −zv1(s0)
(

1 +O(M−1)
)

= e
v1(s0)

2 (1 +O(M−1))

The corrections of orderO(1/M) stem from a number of
sources. Specifically, the correction to∆I(s0,H0)−∆Ierg(s0)
is O(1/M) [31], while the correction to the variancev1(s0) is
O(1/M2) [31]. Both these corrections result to anO(1/M)
correction to the above result. Also, for finite largeM we
may incorporate corrections to the Gaussian approximationby
including the higher order statistics, e.g. the skewness [41].
Here again the leading contribution stems from the skewness,
which isO(1/M) [31].

The expressions in Lemma 3 allow us to express the second

2For example, even ifZ above is asymptotically Gaussian the expectation
E
[

e−MZ
]

is not well defined.

derivative ofδIerg(s0) with respect tos as follows:

δI ′′erg(s0) = −p0

K
∑

j=1

Π2,0j
drj(s0)

ds
− p20Π2,00 (44)

= −p20

K
∑

k,j=1

Π2,0j

(

Σ2 [IK −Π2Σ2]
−1
)

jk
Π2,0k

−p20Π2,00

≡ −e−v2(s0)

The second equality follows from the expression of the deriva-
tives of rk(s), tk(s) in (11), (12) with respect tos in terms of
the matricesΠ2, Σ2. Finally, the last line above definesv2(s)
in (9).

APPENDIX C
PROOF OFPROPOSITION2

We will now provide some details in the proof of (20). We
will deal only with the caseγ < γerg, since the opposite
caseγ > γerg can be analyzed in a similar way.PM,out(γ) is
defined as

PM,out(γ) =

∫ γ

0

dtPM (t) (45)

up to negligible correctionsO(M−1) due to replacingPM (t)
for PM (t). The analysis is based on the fact that for largeM
the outage probabilityPM,out(γ) is determined from the be-
havior ofPM (t) close to the We will need to focus separately
in two regions of interest in the intervalγ ∈ (0, γerg]. In the
first region|γ − γerg| = O(1), to asymptotically evaluate the
outage probability we expand the exponent ofPM (t) (9) in
γ around the end point of the integral. SincePM (γ) is an
increasing function forγ < γerg its derivative will be always
positive in this region. Hence we have

PM,out(γ) ≈
∫ γ

0

dt√
2π

eMs0(t−γ) (46)

·eMs0γ−∆Ierg(s0)+
v1(s0)+v2(s0)

2

=
eMs0γ−∆Ierg(s0)+

v1(s0)+v2(s0)

2√
2πMs0

(

1 +O(M−1)
)

where s0 above is evaluated at the endpointγ. We have
used the fact that to leading the derivative of the exponent
with respect toγ is simply Ms0. The above approximation
begins to break down when|s0|

√
M ≪ 1, i.e. in the region√

M |γ − γerg| = O(1). Although this situation will rarely
occur when we take the limitM → ∞ for fixed0 < γ < γerg
it useful to pay attention to this region so that we can provide
an approximation that is valid for everyγ whenM is large
but fixed. In this increasingly diminishing region asM → ∞,
the Gaussian approximation of the SINR is valid, where the
probability density ofPM (γ) will be approximately quadratic
in γ. Hence we expand the exponent ofPM (t) to second order
around the endpointt = γ, and then integrate overt. After
some algebra and using the fact that

ds0(γ)

dγ
=

1

δI ′′erg(s0(γ))
(47)
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Fig. 3. Uncoded BER for (a) MMSE and (b) ZF SINR. In the MMSE case, we takeM = N = 3 and compare to Monte Carlo simulations and generalized
gamma distributions with iid channels. In the ZF case, we take N = 3 andM = 6 or M = 9. We plot the BER as a function of the angle of the signal path
in the presence of two interfering paths arriving atθ = 30, 60o, with various angle spreadsσas = 1o, 3o, 5o. The dashed lines in (b) are the Monte Carlo
simulation results.

we obtain (20). To obtain the expression in (21) we express
Pout(γ0) = 1−P(γ > γ0) and work as above withP(γ > γ0).
The final expressions (20), (21) smoothly interpolate between
(46) (for |γ − γerg| = O(1)) and the Gaussian approximation
(for |γ − γerg|

√
M = O(1)).

APPENDIX D
PROOF OFPROPOSITION3

The average uncoded bit-error rate (BER) for signals with
modulation as in (23) can be expressed in terms of the
moment-generating functiong(is) as follows

BERM = b

∫ ∞

0

dγPM (γ)Q(
√
aγ) (48)

=
b

2

(

1−
∫ +∞

−∞

ds

2πi

gM (is)

s+ i0+
1

√

1− i2sM/a

)

=
b

2π

∫ ∞

0

dt√
t

gM

(

a(1+t)
2M

)

t+ 1

In the first equation the parametersa, b correspond to the
different cases in (23). The second equation results from
the definition ofPM (γ) in terms of the moment-generating
function. The third equation follows by deforming the integral
from the real axis to follow the branch cut appearing due to the
square root. Using (43) to expressgM (s) in terms of∆Ierg(s)
etc, we get

BER =
b

2π

∫ ∞

0

dt√
t(1 + t)

e−∆Ierg( a(1+t)
2M )+ 1

2 v1(
a(1+t)

2M )

=
b

2π
e−∆Ierg( a

2M )+ 1
2 v1(

a
2M ) (49)

·
∫ ∞

0

dt√
t(1 + t)

e−
a

2M I′
erg( a

2M )t(1 +O(M−1))

In the second line above we have expanded the exponent for
small arguments and kept only theO(M) andO(1), neglecting

all lower order terms. Integrating the above expression over t
gives (24). It should be noted that if we wanted to be strict
regarding the leading corrections beingO(M−1), in the above
expression the arguments ofv1(s), Ierg(s) andI ′erg(s) should
be set tos = 0, rather thans = a/(2M). Nevertheless,
we have found numerically that these expressions are slightly
more accurate.
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