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Abstract

We study (constrained) least-squares regression as well as multiple response least-squares regression
and ask the question of whether a subset of the data, a coreset, suffices to compute a good approximate
solution to the regression. We give deterministic, low order polynomial-time algorithms to construct
such coresets with approximation guarantees, together with lower bounds indicating that there is not
much room for improvement upon our results.

1 Introduction

Linear regression is an important technique in data analysis [18]. Research in the area ranges from
numerical techniques [1] to robustness of the prediction error to noise (e.g., using feature selection [13]).
We ask whether it is possible to efficiently identify a small subset of the data that contains all the essential
information of a learning problem. Such a subset is called a “coreset”. We show that the answer is yes, for
linear regression. Such a coreset is analogous to the support vectors in support vector machines [9]. Such
coresets contain the meaningful or important points in the data and can be used to find good approximate
solutions to the full problem by solving a (much) smaller problem. When the constraints are complex (e.g.,
non-convex constraints), solving a much smaller regression problem could be a significant saving [12].

We present coreset constructions for constrained regression (both simple and multiple response), as well
as lower bounds for the size of coresets that achieve certain accuracy. In addition to potential computational
savings, a coreset identifies the important core of a machine learning problem and is of considerable interest
in applications with huge data where incremental approaches are necessary (for example chunking) and
applications where the data is distributed and bandwith is costly (hence communicating only the essential
data is imperative [15]).

Our first contribution is a deterministic, polynomial-time algorithm for constructing a coreset for
arbitrarily constrained linear regression. Let k be the “effective dimension” of the data (the rank of the
data matrix) and let ǫ > 0 be the desired accuracy parameter. Our algorithm constructs a coreset of
size O

(

k/ǫ2
)

, which achieves a (1 + ǫ)-relative error performance guarantee. In other words, solving the
regression problem on the coreset results in a solution which fits all the data with an error which is at most
(1 + ǫ) worse than the best possible fit to all the data. We extend our results to the setting of multiple
response regression using more sophisticated techniques. Our proofs are based on two sparsification tools
from linear algebra [2, 7], which may be of general interest to the machine learning community, and we
discuss these in some detail.

∗Mathematical Sciences Department, IBM T.J. Watson Research Center. Email: cboutsi@us.ibm.com.
†Computer Science Department, Rensselaer Polytechnic Institute. Email: drinep@cs.rpi.edu.
‡Computer Science Department, Rensselaer Polytechnic Institute. Email: magdon@cs.rpi.edu.

1

http://arxiv.org/abs/1202.3505v2


1.1 Problem Setup

Assume the usual setting with n data points (z1, y1), . . . , (zn, yn); zi ∈ R
d are feature vectors (which

could have been obtained by applying a non-linear feature transform to raw data) and yi ∈ R are targets
(responses). The linear regression problem asks to determine a vector xopt ∈ D ⊆ R

d that minimizes

E(x) =
n
∑

i=1

wi(z
T

i x− yi)
2,

over x ∈ D, where wi ∈ R are positive weights. So, E(xopt) ≤ E(x), for all x ∈ D. The domain D
represents the constraints on the solution, e.g., in non-negative least squares (NNLS) [16, 3], D = R

d
+, the

nonnegative orthant. Our results hold for arbitrary D.
A coreset of size r < n is a subset of the data points, (zi1 , yi1), . . . , (zir , yir). The coreset regression

problem considers the squared error on the coreset with a (possibly) different set of weights sj > 0,

Ẽ(x) =
r
∑

j=1

sj(z
T

ijx− yij)
2.

Suppose that Ẽ is minimized at x̃opt ∈ D ⊆ R
d, so Ẽ(x̃opt) ≤ Ẽ(x), for all x ∈ D. Such a coreset is of

interest if, for some set of weights sj, x̃opt is nearly as good as xopt for the original regression problem on
all the data. That is, for some small ǫ > 0,

E(xopt) ≤ E(x̃opt) ≤ (1 + ǫ)E(xopt).

The algorithm which constructs the coreset should also provide the weights sj . For the remainder of the
paper, we switch to an equivalent matrix formulation of the problem. (See Appendix for linear algebra
background.)

1.1.1 Matrix Formulation

Let A ∈ R
n×d be the data matrix whose rows are the weighted data points

√
wiz

T

i ; and let b ∈ R
n be the

similarly weighted target vector, bi =
√
wiyi, where for i = 1, ..., n, bi denotes the ith element of b ∈ R

n.
The effective dimension of the data can be measured by the rank of A; let k = rank(A). Our results hold
for arbitrary n > d, however, in most applications, n ≫ d and rank(A) ≈ d. We can rewrite the squared
error as E(x) = ‖Ax− b‖22, so,

xopt ∈ argmin
x∈D

‖Ax− b‖22. (1)

A coreset of size r < n is a subset C ∈ R
r×d of the rows of A and the corresponding elements bc ∈ R

r

of b. Let D ∈ R
r×r be a positive diagonal matrix for the coreset regression (the weights sj of the coreset

regression will depend on D). The weighted squared error on the coreset is given by

Ẽ(x) = ‖D(Cx− bc)‖22,

so the coreset regression seeks x̃opt defined by

x̃opt ∈ argmin
x∈D

‖D (Cx− bc) ‖22.

We say that such a coreset is an (1+ ǫ)-coreset if the solution obtained by fitting the coreset data is almost
optimal for all the data. Formally,

‖Axopt − b‖22 ≤ ‖Ax̃opt − b‖22 ≤ (1 + ǫ)‖Axopt − b‖22.
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Type of Regression Approximation Ratio

Constrained single-response 1 +O(
√

k/r) [Eqn. (1), Thm. 1]

Multi-objective 1 +O(
√

k/r) [Eqn. (3), Thm. 4]

Constrained multiple-response (Frobenius) 1 +O(
√

kω/r) [Eqns. (4), (5)]

Unconstrained multiple-response (Spectral) 2 +O(
√

ω/r + ω/r +
√

k/r) [Eqn. (6), Thm. 6]

Unconstrained multiple-response (Frobenius) 2 +O(
√

k/r) [Eqn. (6), Thm. 7]

Unconstrained multiple-response (b-agnostic) O(n/r) [Eqn. (6), Thm. 12]

Table 1: Summary of our results for coreset construction in linear regression. In all cases, our algorithms
are deterministic and construct a coreset of size r. The approximation ratios are values β such that
‖AX̃opt −B‖/‖AXopt −B‖ ≤ β. In the first row in the table, Xopt, X̃opt, and B are vectors. Notation:

n is the number of data points of dimension d < n; k is the rank of the matrix whose rows correspond to
the n data points; r is the size of the coreset, k < r < n; ω ≥ 1 is the number of “response” vectors in
multiple-response regression (in the last four rows in the table Xopt, X̃opt, and B have ω columns).

1.2 Our contributions

In this section, we discuss our main results for various formulations of linear regression (also summarized
in Table 1). In the next section we present the relevant algorithms and proofs.

1.2.1 Constrained Linear Regression (Section 2)

Our main result for constrained simple regression is Theorem 1, which describes a deterministic polynomial
time algorithm that constructs a (1+ǫ)-coreset of size O

(

k/ǫ2
)

. Prior to our work, the best result achieving
comparable relative error performance guarantees is Theorem 1 of [6] for constrained regression, and the
work of [11] for unconstrained regression. Both of these prior results construct coresets of size O

(

k log k/ǫ2
)

and they are randomized, so, with some probability, the fit on all the data can be arbitrarily bad (despite
the coreset being a logarithmic factor larger). Our methods have comparable, low order polynomial
running times and provide deterministic guarantees. The results in [11] and [6] were achieved using the
matrix concentration results in [17]. However, these concentration bounds break unless the coreset size is
Ω
(

k log k/ǫ2
)

.
We extend our results to multiple response regression, where the target is a matrix B ∈ R

n×ω with
ω ≥ 1. Each column of B is a seperate target (or response) that we wish to predict. We seek to minimize
‖AX−B‖ over all X ∈ D ⊆ R

d×ω. Multiple response regression has numerous applications, but is perhaps
most common in multivariate time series analysis; see for example [14, 8]. To illustrate, consider prediction
of time series data: let Z ∈ R

(n+1)×d be a set of d time series, where each column is a time series with
n + 1 time steps; we wish to predict time step t + 1 from time step t. Let A contain the first n rows of
Z and let B contain the last n rows. Then, we seek X that minimizes ‖AX−B‖ξ under some norm ξ,
which is exactly the multiple response regression problem. In our work, we consider the spectral (ξ = 2)
and Frobenius (ξ = F) norms.
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1.2.2 Multi-Objective Regression (Section 3.1)

An important variant of multiple response regression is the so-called multi-objective regression. Let

B = [b1, . . . ,bω] ∈ R
n×ω,

where we explicitly identify each column in B as a target response bj ∈ R
n where j ∈ {1, 2, . . . , ω}.

We seek to simultaneously fit multiple target vectors with the same x, i.e., to simultaneously minimize
‖Ax− bj‖22. This is common when the goal is to trade off different quality criteria simultaneously. Writing
X = [x,x, . . . ,x] ∈ R

d×ω (ω copies of x ∈ D ⊆ R
d), we consider minimizing ‖AX−B‖F, which is

equivalent to multiple regression with a strong constraint onX. We present results for coreset constructions
for the Frobenius-norm multi-objective regression problem in Theorem 4, which describes a deterministic
algorithm to construct (1 + ǫ)-coresets of size O

(

k/ǫ2
)

, where k = rank(A). Theorem 4 emerges by
applying Theorem 1 after converting the Frobenius-norm multi-objective regression problem to a simple
response regression problem.

1.2.3 Arbitrarily-Constrained Multiple-Response Regression (Section 3.2)

Using the same approach, converting the problem to a single response regression, we construct a (1 + ǫ)-
coreset for Frobenius-norm arbitrarily-constrained regression in Section 3.2. The coreset size in this case
is O

(

kω/ǫ2
)

.

1.2.4 Unconstrained Multiple-Response Regression (Section 4)

In Section 4, we consider coresets for unconstrained multiple-response regression for both the spectral and
Frobenius norms. The sizes of the coresets are smaller than the constrained case, and our main results are
presented in Theorems 6 and 7. Theorem 6 presents a (2 + ǫ)-coreset of size O((k + ω)/ǫ2) for spectral
norm regression, while Theorem 7 presents a (2+ ǫ)-coreset of size O(k/ǫ2) for Frobenius norm regression.

1.2.5 Lower Bounds (Section 5)

Finally, in Section 5, we present lower bounds on coreset sizes. In the single response regression setting,
we note that our algorithms need to look at the target vector b. We show that this is unavoidable,
by arguing that no b-agnostic deterministic coreset construction algorithm can construct coresets which
are small (Theorem 13). We also present similar results for b-agnostic randomized coreset constructions
(Theorem 14).

Then, we present lower bounds on the size of coresets for spectral and Frobenius norm multiple response
regression that apply in the general, non b-agnostic, setting (Theorems 15 and 16).

2 Constrained Linear Regression

We define constrained linear regression as follows: given A ∈ R
n×d of rank k, b ∈ R

n, and D ⊆ R
d, we

seek xopt ∈ D for which ‖Axopt−b‖22 ≤ ‖Ax−b‖22, for all x ∈ D (the domain D represents the constraints
on x and can be arbitrary). To construct a coreset C ∈ R

r×d (i.e., C consists of r rows of A) and bc ∈ R
r

(i.e., bc consists of r elements of b), we introduce sampling and rescaling matrices S and D respectively.
More specifically, we define the row-sampling matrix S ∈ R

r×n whose rows are basis vectors eTi1 , . . . , e
T

ir
.

Our coreset C is now equal to C = SA; clearly, C is a matrix whose rows are the rows of A corresponding
to indices i1, . . . , ir. Similarly, bc = Sb contains the corresponding elements of the target vector. Next,

4



let D ∈ R
r×r be a positive diagonal rescaling matrix and define the D-weighted regression problem on the

coreset as follows:
x̃opt ∈ argmin

x∈D

‖D (Cx− bc) ‖22 = argmin
x∈D

‖DS (Ax− b) ‖22. (2)

In the above, the operator DS first samples and then rescales rows of A and b. Theorem 1 is the main
result in this section and presents a deterministic algorithm to select a coreset by constructing D and S.

Input: A ∈ R
n×d of rank k, b ∈ R

n, and r > k + 1.
Output: sampling matrix S ∈ R

r×n and rescaling matrix D ∈ R
r×r.

1: Compute the SVD of Y = [A,b]. Let Y = UΣVT, where U ∈ R
n×ℓ, Σ ∈ R

ℓ×ℓ and
V ∈ R

(d+1)×ℓ, with ℓ ≤ k + 1 (the rank of Y).
2: Return [D,S] = SimpleSampling(U, r) (see Lemma 2)

Algorithm 1: Deterministic coreset construction for constrained linear regression.

Theorem 1. Given A ∈ R
n×d of rank k, b ∈ R

n, and D ⊆ R
d, Algorithm 1 constructs matrices S ∈ R

r×n

and D ∈ R
r×r (for any r > k + 1) such that x̃opt of Eqn. (2) satisfies

‖Ax̃opt − b‖22
‖Axopt − b‖22

≤ r + k + 1 + 2
√

r(k + 1)

r + k + 1− 2
√

r(k + 1)
= 1 + 4

√

k

r
+ o

(

√

k/r
)

.

The running time of the proposed algorithm is T
(

U[A,b]

)

+O
(

rnk2
)

, where T
(

U[A,b]

)

is the time needed

to compute the left singular vectors of the matrix [A,b] ∈ R
n×(d+1).

For any 0 < ǫ < 1, we can set r = k/ǫ2 to get an approximation ratio roughly equal to 1+4ǫ. This result
considerably improves the result in [6], which needs r = O(k log k/ǫ2) to achieve the same approximation
ratio. Additionally, our bound is deterministic, whereas the bound in [6] fails with constant probability.
[6] also requires an SVD computation in the first step, so its running time is comparable to ours.

In order to prove the above theorem, we need a linear algebraic sparsification result from [2], specifically
Theorem 3.1 in [2], which we restate using our notation (we present the corresponding algorithm below).

Lemma 2 (Single-set Spectral Sparsification [2]). Given U ∈ R
n×ℓ satisfying UTU = Iℓ and r > ℓ, we

can deterministically construct sampling and rescaling matrices S ∈ R
r×n and D ∈ R

r×r such that, for all
y ∈ R

ℓ:
(

1−
√

ℓ/r
)2

‖Uy‖22 ≤ ‖DSUy‖22 ≤
(

1 +
√

ℓ/r
)2

‖Uy‖22.

The algorithm runs in O(rnℓ2) time and we denote it as [D,S] = SimpleSampling(U, r).

Proof. (of Theorem 1) Let Y = [A,b] ∈ R
n×(d+1) and compute its SVD: Y = UΣVT. Let ℓ be the

rank of Y (ℓ ≤ k + 1, since rank(A) = k) and note that U ∈ R
n×ℓ, Σ ∈ R

ℓ×ℓ, and V ∈ R
(d+1)×ℓ. Let

[D,S] = SimpleSampling(U, r) and define y1,y2 ∈ R
ℓ as follows:

y1 = ΣVT

[

xopt

−1

]

, and y2 = ΣVT

[

x̃opt

−1

]

.

Note thatUy1 = Axopt−b, Uy2 = Ax̃opt−b,DSUy1 = DS (Axopt − b), andDSUy2 = DS (Ax̃opt − b).
We will bound ‖Uy2‖2 in terms of ‖Uy1‖2:

(

1−
√

ℓ/r
)2

‖Uy2‖22
(a)

≤ ‖DSUy2‖22
(b)

≤ ‖DSUy1‖22
(c)

≤
(

1 +
√

ℓ/r
)2

‖Uy1‖22.
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Input: U = [u1,u2, . . . ,un]
T ∈ R

n×ℓ with ui ∈ R
ℓ and r > ℓ.

Output: Sampling matrix S ∈ R
r×n and rescaling matrix D ∈ R

r×r.

1: Initialize A0 = 0ℓ×ℓ, S = 0r×n, and D = 0r×r.

2: Set constants δL = 1 and δU = (1 + ℓ/r)
(

1−
√

ℓ/r
)−1

.

3: for τ = 0 to r − 1 do
4: Let lτ = τ −

√
rℓ; uτ = δU

(

τ +
√
ℓr
)

.

5: Pick index iτ ∈ {1, 2, ..., n} and number tτ > 0 (see Section 2.1 for the definition of U,L):

U(uiτ , δU ,Aτ ,uτ ) ≤
1

tτ
≤ L(uiτ , δL,Aτ , lτ ).

6: Update Aτ+1 = Aτ + tτuiτu
T

iτ ; and set Sτ+1,iτ = 1, Dτ+1,τ+1 = 1/
√
tτ .

7: end for

8: Multiply all the weights in D by

√

r−1
(

1−
√

ℓ/r
)

.

9: Return: S and D.

Algorithm 2: SimpleSampling (Lemma 2)

(a) and (c) follow from Lemma 2; (b) follows from the optimality of x̃opt for the coreset regression in
Eqn. (2). Using ℓ ≤ k+1 and manipulating the above expression concludes the proof of the theorem. The
running time of the algorithm is equal to the time needed to compute U and the time needed to run the
algorithm of Lemma 2 with ℓ ≤ k + 1.

2.1 Single-set Spectral Sparsification Algorithm (Lemma 2)

We now discuss in more detail the sparsification algorithm of Lemma 2. We present the corresponding
algorithm as Algorithm 6. Our notation deviates from the original in [2]; we employ our own presentation
of the corresponding algorithm in [7]. Algorithm 6 is a greedy technique that selects columns one at a
time. To describe the algorithm in more detail, it is convenient to view the input matrix as a set of n
column vectors,

UT = [u1,u2, . . . ,un],

with ui ∈ R
ℓ (i = 1, ..., n). Given ℓ and r > ℓ, introduce the iterator τ = 0, 1, 2, ..., r − 1, and define the

parameter lτ = τ −
√
rℓ. For a square symmetric matrix A ∈ R

ℓ×ℓ with eigenvalues λ1, . . . , λℓ, vector
u ∈ R

ℓ and scalar l ∈ R, define

φ(l,A) =

ℓ
∑

i=1

1

λi − l
,

and let L(u, δL,A, l) be defined as

L(u, δL,A, l) =
uT(A− l

′Iℓ)
−2u

φ(l′,A)− φ(l,A)
− uT(A− l

′Ik)
−1u,

where
l
′ = l+ δL = l+ 1.

6



Similarly, for a square symmetric matrix A ∈ R
ℓ×ℓ with eigenvalues λ1, . . . , λℓ, u ∈ R

ℓ, u ∈ R, define:

φ̂(u,A) =

ℓ
∑

i=1

1

u− λi
,

and let U(u, δU ,A,u) be defined as

U(u, δU ,A,u) =
uT(A− u

′Iℓ)
−2u

φ̂(u,A)− φ̂(u′,A)
− uT(A− u

′Iℓ)
−1u,

where

u
′ = u+ δU = u+ (1 + ℓ/r)

(

1−
√

ℓ/r
)−1

.

The running time of the algorithm is dominated by the search for an index iτ satisfying

U(uiτ , δU ,Aτ ,uτ ) ≤
1

tτ
≤ L(uiτ , δL,Aτ , lτ )

(one can achieve that by exhaustive search). One needs φ(l,A) and φ̂(l,A), and hence the eigenvalues
of A. This takes O(ℓ3) time, once per iteration, for a total of O(rℓ3). Then, for i = 1, . . . , n, we need to
compute the functions L and U for every ui. This takes O(nℓ2) per iteration, for a total of O(rnℓ2). So,
the total running time of the algorithm is O(nrℓ2).

3 Constrained Multiple-Response Regression

Constrained multiple-response regression in the Frobenius norm can be reduced to simple regression. So,
we can apply the results of the previous section to this setting.

3.1 Multi-Objective Regression

Let A ∈ R
n×d and B ∈ R

n×ω, with ω ≥ 1. The objective of multi-objective regression is:

min
x∈D

‖A[x, . . . ,x]−B‖2F, (3)

where [x, . . . ,x] ∈ R
d×ω contains ω copies of x ∈ D ⊆ R

d. Let bavg = 1
ωB1ω (here 1ω ∈ R

ω is a vector of
all ones and thus bavg ∈ R

n is the average of the columns in B). Recall that A ∈ R
n×d, B ∈ R

n×ω, and
let X = [x, . . . ,x] ∈ R

d×ω.

Lemma 3. For X = [x, . . . ,x] ∈ R
d×ω, ‖AX−B‖2F = ω‖Ax− bavg‖22 +

ω
∑

i=1

‖bavg −B(i)‖22.

In the above, B(i) ∈ R
n denotes the i-th column of B as a column vector. Note that the second term in

Lemma 3 does not depend on x and thus the generalized multi-objective regression can be reduced to simple
regression on A and bavg. Using Theorem 1, we can get a coreset: let x̃opt minimize ‖DS (Ax− bavg) ‖2,
where S and D are obtained via Theorem 1 applied to A and bavg . If X̃opt = [x̃opt, . . . , x̃opt], then,
by Lemma 3, X̃opt minimizes ‖DS (AX−B) ‖F. Similarly, if xopt minimizes ‖Ax − bavg‖2 and Xopt =
[xopt, . . . ,xopt], then Xopt minimizes ‖AX−B‖F. Theorem 4 states that X̃opt approximates Xopt.

7



Theorem 4. Given A ∈ R
n×d of rank k and B ∈ R

n×ω, we can construct matrices S ∈ R
r×n and D ∈ R

r×r

(for any r > k+1) such that the matrix X̃opt = [x̃opt, . . . , x̃opt] that minimizes ‖DS (AX−B) ‖F over all
matrices X = [x,x, . . . ,x] with x ∈ D ⊆ R

d satisfies:

‖AX̃opt −B‖2F ≤
(

1 +O
(

√

k/r
))

‖AXopt −B‖2F.

The run time of the proposed algorithm is T
(

U[A,bavg]

)

+O
(

nω + rnk2
)

, where T
(

U[A,bavg]

)

is the time

needed to compute the left singular vectors of the matrix [A,bavg ] ∈ R
n×(d+1).

Proof. We first construct D and S via Theorem 1 applied to A and bavg. The running time is O (nω)
(the time needed to compute bavg) plus the running time of Theorem 1. The result is immediate from the
following derivation:

‖AX̃opt −B‖2F
(a)
= ω‖Ax̃opt − bavg‖2 +

ω
∑

i=1

‖bavg −B(i)‖2

(b)

≤
(

1 +O
(

√

k/r
))2

ω‖Axopt − bavg‖2 +
ω
∑

i=1

‖bavg −B(i)‖2

≤
(

1 +O
(

√

k/r
))2

(

ω‖Axopt − bavg‖2 +
ω
∑

i=1

‖bavg −B(i)‖2
)

(a)
=

(

1 +O
(

√

k/r
))2

‖AXopt −B‖2F.

(a) follows by Lemma 3; (b) follows because x̃opt is the output of a coreset regression as in Theorem 1.

Finally, r > k + 1 implies that
(

1 +O
(

√

k/r
))2

= 1 +O
(

√

k/r
)

.

3.2 Arbitrarily-Constrained Multiple-Response Regression

Multi-objective regression is a special case of constrained multiple-response regression for which we can
efficiently obtain the coresets. In the general case, the problem still reduces to simple regression, but the
coresets are now larger. The objective of arbitrarily-constrained multiple-response regression is

min
X∈D⊆Rd×ω

‖AX−B‖F. (4)

Since R
d×ω is isomorphic to R

dω, we can view X ∈ R
d×ω as a “stretched out” vector X̂ ∈ R

dω; corre-
sponding to the domain D is the domain D̂ ⊆ R

dω. Similarly, we can stretch out B ∈ R
n×ω to B̂ ∈ R

nω.
To complete the transformation to simple linear regression, we build a transformed block-diagonal data
matrix Â from A, by repeating ω copies of A along the diagonal:

Â =











A
A

. . .

A











∈ R
nω×dω, X̂ =











X(1)

X(2)

...

X(ω)











∈ R
dω, B̂ =











B(1)

B(2)

...

B(ω)











∈ R
nω.

Lemma 5. For all A, X and B of appropriate dimensions, ‖AX−B‖2F = ‖ÂX̂− B̂‖22.

Theorem 1 gives us coresets for this equivalent regression. Note that rank(Â) ≤ ω · rank(A). The coreset
will identify the important rows of A (the same row may get identified multiple times as different rows of
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Â), and the important elements of B, because the entries in B̂ are elements of B, not rows of B. Let X̂opt

be the solution constructed from the coreset, which minimizes ‖ÂX̂− B̂‖ over X̂ ∈ D̂, and let X̃opt ∈ D
be the corresponding solution in the original domain D. If r is the size of the coreset and rank(A) = k,
then, by Theorem 1,

‖AX̃opt −B‖2F ≤
(

1 +O
(

√

kω/r
))

‖AXopt −B‖2F. (5)

So, for the approximation ratio to be 1+O(ǫ), we set r = O
(

kω/ǫ2
)

. The running time would involve the

time needed to compute the SVD of [Â, B̂].
Notice that the coresets are large and somewhat costly to compute and they only work for the Frobe-

nius norm. In the next section, using more sophisticated techniques, we will get smaller coresets for
unconstrained regression in both the Frobenius and spectral norms.

Input: A ∈ R
n×d of rank k, B ∈ R

n×ω, and r > k.
Output: sampling matrix S ∈ R

r×n and rescaling matrix D ∈ R
r×r.

1: Compute the SVD of A: A = UAΣAV
T

A, where UA ∈ R
n×k, ΣA ∈ R

k×k, and VA ∈ R
d×k;

compute E = UAU
T

AB−B.
2: return [S,D] = MultipleSpectralSampling(UA,E, r) (see Lemma 10)

Algorithm 3: Deterministic coresets for multiple regression in spectral norm.

4 Unconstrained Multiple-Response Regression

Consider the following problem: given a matrix A ∈ R
n×d with rank k and a matrix B ∈ R

n×ω with
ω ≥ 1, we seek to identify the matrix Xopt ∈ R

d×ω that satisfies (ξ = 2 and ξ = F)

Xopt ∈ arg min
X∈Rd×ω

‖AX−B‖2ξ . (6)

We can compute Xopt via the pseudoinverse of A, namely Xopt = A†B. If S and D are sampling and
rescaling matrices respectively, then the coreset regression problem is:

X̃opt ∈ arg min
X∈Rd×ω

‖DS (AX−B) ‖2ξ = arg min
X∈Rd×ω

‖DSAX−DSB‖2ξ . (7)

The solution of the coreset regression problem is X̃opt = (DSA)†DSB. The main results in this section
are presented in Theorems 6 and 7.

Theorem 6 (Spectral norm). Given a matrix A ∈ R
n×d with rank k, a matrix B ∈ R

n×ω, and r > k,
Algorithm 3 deterministically constructs matrices S ∈ R

r×n and D ∈ R
r×r such that the solution of the

problem of Eqn. (7) satisfies:

‖AX̃opt −B‖22 ≤ ‖AXopt −B‖22 +
(

1 +
√

ω/r

1−
√

k/r

)2

‖AXopt −B‖22.

The running time of the proposed algorithm is T (UA)+O
(

rn
(

k2 + ω2
))

, where T (UA) is the time needed
to compute the left singular vectors of A.
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Since r > k, the approximation ratio is 2+O(
√

ω/r+ω/r+
√

k/r). So, for ǫ > 0 and r = O((ω+k)/ǫ2)
the approximation ratio is 2 + ǫ. For r > ω, the approximation is O(1), while for r < ω, is asymptotic to
O (ω/r). We will argue that this is nearly optimal by providing a matching lower bound in Theorem 15.

Theorem 7 (Frobenius norm). Given matrix A ∈ R
n×d of rank k, matrix B ∈ R

n×ω, and r > k,
Algorithm 4 deterministically constructs a sampling matrix S ∈ R

r×n and a rescaling matrix D ∈ R
r×r

such that the solution of the problem of Eqn. (7) satisfies:

‖AX̃opt −B‖2F ≤ ‖AXopt −B‖2F +
1

(

1−
√

k/r
)2 ‖AXopt −B‖2F.

The running time of the proposed algorithm is T (UA) + O
(

rnk2
)

, where T (UA) is the time needed to
compute the left singular vectors of A.

Input: A ∈ R
n×d of rank k, B ∈ R

n×ω, and r > k.
Output: sampling matrix S ∈ R

r×n and rescaling matrix D ∈ R
r×r.

1: Compute the SVD of A: A = UAΣAV
T

A, where UA ∈ R
n×k, ΣA ∈ R

k×k, and VA ∈ R
d×k;

compute E = UAU
T

AB−B.
2: return [S,D] = MultipleFrobeniusSampling(UA,E, r) (see Lemma 11)

Algorithm 4: Deterministic coresets for multiple regression in Frobenius norm.

The approximation ratio in the above theorem is 2 + O(
√

k/r). In Theorem 16, we will give a lower
bound for the approximation ratio which is 1 + Ω(k/r). We conjecture that our lower bound can be
achieved (deterministically), perhaps by a more sophisticated algorithm or analysis.

Finally, we note that the B-agnostic randomized construction of [10] achieves a (1 + ǫ) approximation
ratio using a significantly larger coreset, r = O(k log k/ǫ2). Importantly, [10] does not need any access
to B in order to construct the coreset, whereas our approach constructs coresets by carefully choosing
important data points with respect to the particular target response matrix B. We will also discuss B-
agnostic algorithms in Section 4.2 (Theorem 12) and we will present matching lower bounds in Section 5.

4.1 Proofs of Theorems 6 and 7

We will make heavy use of facts from Section A in the Appendix. We start with a few simple lemmas.

Lemma 8. Let E = AXopt −B ∈ R
n×ω be the regression residual. Then, rank(E) ≤ min{ω, n− k}.

Proof. Using our notation, AXopt − B = −
(

In −UAUT

A

)

B = −U⊥
A

(

U⊥
A

)T
B. To conclude notice that

rank(XY) ≤ min{rank(X), rank(Y)} for any matrices X and Y.

We now present our main tool for obtaining approximation guarantees for coreset regression.

Lemma 9. Assume that the rank of the matrix DSUA ∈ R
r×k is equal to k (i.e., the matrix has full

rank). Then, for ξ = 2,F,

‖AX̃opt −B‖2ξ ≤ ‖AXopt −B‖2ξ + ‖(DSUA)†DS (AXopt −B) ‖2ξ .

10



Proof. To simplify notation, let W = DS. Using the SVD of A, A = UAΣAV
T

A, we get:

‖B−AX̃opt‖
2

ξ = ‖B−UAΣAV
T

A(WUAΣAV
T

A)†WB‖2ξ = ‖B−UA(WUA)†WB‖2ξ ,

where the last equality follows from properties of the pseudo-inverse and the fact that WUA is a full-rank

matrix (see Lemma 18 in the Appendix). Using B =
(

UAUT

A +U⊥
A

(

U⊥
A

)T
)

B, we obtain

‖B−AX̃opt‖
2

ξ = ‖B−UA (WUA)†W

(

UAUT

A +U⊥
A

(

U⊥
A

)T
)

B‖
2

ξ

= ‖B−UA (WUA)†WUAUT

AB+UA (WUA)†WU⊥
A

(

U⊥
A

)T

B‖
2

ξ

(a)
= ‖U⊥

A(U⊥
A)TB+UA(WUA)†WU⊥

A(U⊥
A)TB‖2ξ

(b)

≤ ‖U⊥
A(U⊥

A)TB‖2ξ + ‖UA(WUA)†WU⊥
A(U⊥

A)TB‖2ξ .

(a) follows from the assumption that the rank of WUA is equal to k and thus (WUA)†WUA = Ik and
(b) follows by matrix-Pythagoras (Lemma 17). To conclude, we use spectral submultiplicativity on the

second term and the fact that U⊥
A

(

U⊥
A

)T
B = −(AXopt −B).

This lemma provides a framework for coreset construction: all we need are sampling and rescaling matrices
S and D, such that rank(DSUA) = k and

‖ (DSUA)†DS (AXopt −B) ‖2ξ

is small. The final ingredients for the proofs of Theorems 6 and 7 are two matrix sparsification results
that we present in the Appendix.

Lemma 10. Let Y ∈ R
n×ℓ1 and Ψ ∈ R

n×ℓ2 with respective ranks ρY, and ρΨ. Given r > ρY, there
exists a deterministic algorithm that runs in time TSVD (Y)+TSV D (Ψ)+O(rn(ρ2Y+ρ2Ψ)) and constructs
sampling and rescaling matrices S ∈ R

r×n, D ∈ R
r×r satisfying:

rank (DSY) = rank (Y) ; ‖ (DSY)† ‖2 <
1

1−
√

ρY/r
‖Y†‖2; ‖DSΨ‖2 <

(

1 +

√

ρΨ
r

)

‖Ψ‖2.

If Ψ = In, the running time of the algorithm reduces to TSV D (Y) + O
(

rnρ2Y
)

. We write [D,S] =
MultipleSpectralSampling (Y,Ψ, r) to denote such a deterministic procedure.

Lemma 11. Let Y ∈ R
n×ℓ1 and Ψ ∈ R

n×ℓ2 with respective ranks ρY, and ρΨ. Given r > ρY, there
exists a deterministic algorithm that runs in time TSVD(Y)+O(rnρ2Y+ ℓ2n) and constructs sampling and
rescaling matrices S ∈ R

r×n, D ∈ R
r×r satisfying:

rank (DSY) = rank (Y) ; ‖ (DSY)† ‖2 <
1

1−
√

ρY/r
‖Y†‖2; ‖DSΨ‖F ≤ ‖Ψ‖F.

If Ψ = In, the running time of the algorithm reduces to TSV D (Y) + O
(

rnρ2Y
)

. We write [D,S] =
MultipleFrobeniusSampling (Y,Ψ, r) to denote such a deterministic procedure.

11



Proof. (of Theorem 6) Theorem 6 follows from Lemmas 9 and 10. First, compute the SVD of A to obtain
UA ∈ R

n×k, and let E = AXopt − B = UAUT

AB − B. Next, run the algorithm of Lemma 10 to obtain
[D,S] = MultipleSpectralSampling (UA,E, r). This algorithm runs in time TSVD (E)+O

(

rn
(

k2 + ρ2E
))

,
where k is the rank of UA and A. The total running time of the algorithm is T (UA) + TSVD (E) +
O
(

rn
(

k2 + ρ2E
))

= T (UA) +O
(

rn
(

k2 + ω2
))

.
Lemma 10 guarantees that D and S satisfy the rank assumption of Lemma 9. To conclude the proof,

we bound the second term of Lemma 9, using the bounds of Lemma 10 and ρE ≤ min{ω, n− k} ≤ ω:

‖(DSUA)†DS (AXopt −B) ‖22 ≤ ‖ (DSUA)† ‖22‖DS (AXopt −B) ‖22
≤

(

1−
√

k/r
)−2 (

1 +
√

ω/r
)2

‖AXopt −B‖22.

Proof. (of Theorem 7) The proof is similar to the proof of Theorem 6, using Lemma 11 instead of Lemma 10.
Let [D,S] = MultipleFrobeniusSampling (UA,E, r) We bound the second term of Lemma 9, using the
bounds of Lemma 11:

‖(DSUA)†DS (AXopt −B) ‖2F ≤ ‖ (DSUA)† ‖22‖DS (AXopt −B) ‖2F
≤

(

1−
√

k/r
)−2

‖AXopt −B‖2F.

4.2 B-Agnostic Coreset Construction

All the coreset construction algorithms that we presented so far carefully construct the coreset using
knowledge of the response vector. If the algorithm does not need knowledge of B to construct the coreset,
and yet can provide an approximation guarantee for every B, then the algorithm is B-agnostic. A B-
agnostic coreset construction algorithm is appealing because the coreset, as specified by the sampling and
rescaling matrices S and D, can be computed off-line and applied to any B. We briefly digress to show
how our methods can be extended to develop B-agnostic coreset constructions.

Theorem 12 (B-agnostic Coresets). Given a matrix A ∈ R
n×d with rank k, a matrix B ∈ R

n×ω, and
r > k, there exists an algorithm to deterministically construct a sampling matrix S and a rescaling matrix
D such that for any B ∈ R

n×ω, the matrix X̃opt that solves the problem of Eqn. (7) satisfies:

‖AX̃opt −B‖2ξ ≤ ‖AXopt −B‖2ξ +
(

1 +
√

n/r

1−
√

k/r

)2

‖AXopt −B‖2ξ .

The running time of the proposed algorithm is T (UA) + O
(

rnk2
)

, where T (UA) is the time needed to
compute the left singular vectors of A.

Proof. The proof is similar to the proof of Theorem 6, except we now construct the sampling and rescaling
matrices as [S,D] = MultipleSpectralSampling (UA, In, r). To bound the second term in Lemma 9, we
use

‖ (DSUA)†DS (AXopt −B) ‖2ξ = ‖ (DSUA)†DSIn (AXopt −B) ‖2ξ
≤ ‖ (DSUA)† ‖22‖DSIn‖22‖ (AXopt −B) ‖2ξ ,

and the bounds of Lemma 10.

The above bound decreases with r and holds for any B, guaranteeing a constant-factor approximation
with a constant fraction of the data. The approximation ratio is O(n/r), which seems quite weak. In the
next section, we show that this result is indeed tight.
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Type of Regression Lower bound Known Approximation Ratio

Deterministic b-agnostic n/r [Thm. 13] O(n/r) [Thm. 12]

Randomized b-agnostic 1+Ω(1/r) [Thm. 14] 1 +O(
√

k log k/r) [Thm. 5 in [10]]

Multiple-regression (ξ = 2) ω/(r + 1) [Thm. 15] 2+O(
√

ω/r + ω/r +
√

k/r) [Thm. 6]

Multiple-regression (ξ = F) 1 + Ω(k/r) [Thm. 16] 2 +O
(

√

k/r
)

[Thm. 7]

Table 2: Lower bounds on the approximation ratio for different formulations of linear regression
and a coreset of size r. The randomized algorithm in the second row of the table delivers a con-
stant probability of success (all other algorithms are deterministic). The lower bounds are values
γ such that ‖AX̃opt −B‖/‖AXopt −B‖ ≥ γ. The approximation ratios are values β such that
‖AX̃opt −B‖/‖AXopt −B‖ ≤ β. In the first two rows in the table, Xopt, X̃opt, and B are vectors. Nota-

tion: n is the number of data points of dimension d < n; k is the rank of the matrix whose rows correspond
to the n data points; r is the size of the coreset, k < r < n; ω ≥ 1 is the number of “response” vectors in
multiple-response regression (in the last two rows in the table Xopt, X̃opt, and B have ω columns).

5 Lower Bounds on Coreset Size

We have just seen a B-agnostic coreset construction algorithm with a rather weak worst case guarantee
of O(n/r) approximation error. We will now show that no deterministic B-agnostic coreset construction
algorithm can guarantee a better error (Theorem 13) by providing lower bounds on coreset size as a
function of approximation error. These results are also summarized in Table 2.

[10] provides another B-agnostic coreset construction algorithm with r = O(k log k/ǫ2). For a fixed B,
the method in [10] delivers a probabilistic bound on the approximation error. However, there are target
matrices B for which the bound fails by an arbitrarily large amount. The probabilistic algorithms get away
with this by brushing all these (possibly large) errors into a low probability event, with respect to random
choices made in the algorithm. So, in some sense, these algorithms are not B-agnostic, in that they do
not construct a coreset which works well for all B with some (say) constant probability. Nevertheless, the
fact that they give a constant probability of success for a fixed but unknown B makes these algorithms
interesting and useful. We will give a lower bound on the approximation ratio of such algorithms as well,
for a given probability of success (Theorem 14). Finally, we will give lower bounds on the size of the
coreset for the general (non-agnostic) multiple regression setting (Theorems 15 and 16).

5.1 An Impossibility Result for B-Agnostic Coreset Construction

We first present the lower bound for simple regression. Recall that a coreset construction algorithm is
b-agnostic if it constructs a coreset without knowledge of b, and then provides an approximation guarantee
for every b. We show that no coreset can work for every b; therefore a b-agnostic coreset will be bad for
some vector b. In fact, there exists a matrix A such that every coreset has an associated “bad” b.

Theorem 13 (Deterministic b-Agnostic coresets). There exists a matrix A ∈ R
n×d such that for every

coreset C ∈ R
r×d of size r ≤ n, there exists b ∈ R

n (depending on C) for which

‖Ax̃opt − b‖22 ≥
n

r
‖Axopt − b‖22.
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Proof. Let A be any matrix with orthonormal columns whose first column is 1n/
√
n, and consider any

coreset C of size r. Let b = 1C/
√
n− r, where 1C is the n-vector of 1’s except at the coreset locations.

So for the coreset regression, bc = 0, and so x̃opt = 0d×1. Therefore,

‖Ax̃opt − b‖22 = ‖b‖22 = 1.

Let PA project onto the columns of A and PA(1) project onto the first column of A. The following
sequence establishes the result:

‖Axopt − b‖22 = ‖(I −PA)b‖22 ≤ ‖(I −PA(1))b‖22 =
r

n

We now consider randomized algorithms that construct a coreset without looking at b (e.g. [10]). These
algorithms work for any fixed (but unknown) b, and deliver a probabilistic approximation guarantee for
any single fixed b; in some sense they are b-agnostic. By the previous discussion, the returned coreset
must fail for some b, i.e., the probabilistic guarantee does not hold for all b, and, when it fails, it could
do so with very bad error. We will now present a lower bound on the approximation accuracy of such
existing randomized algorithms for coreset construction, even for a single b.

First, we define randomized coreset construction algorithms. Let C1,C2, . . . ,C(n

r )
be the

(n
r

)

different

coresets of size r. A randomized algorithm assigns probabilities p1, p2, . . . , p(n

r )
to each coreset, and selects

one according to these probabilities. The probabilities pi may depend on A. The algorithm is b-agnostic
if the probabilities pi do not depend on b. As usual, let r be the size of the coreset.

Theorem 14 (Probabilistic b-Agnostic Coresets). For any randomized b-agnostic coreset construction
algorithm, and any integer 0 ≤ ℓ ≤ n − r, there exists A ∈ R

n×d and b ∈ R
n, such that, with probability

at least
(

n−r
ℓ

)

/
(

n
ℓ

)

,

‖Ax̃opt − b‖22 ≥
n

n− ℓ
‖Axopt − b‖22.

Proof. Let A be any matrix with orthonormal columns whose first column is 1n/
√
n, as in the proof of

Theorem 13. Let T be a set of size ℓ ≤ n − r. The neighborhood N(T) is the set of coresets (of size
r) that have non-empty intersection with T. Every coreset appears in

(n
ℓ

)

−
(n−r

ℓ

)

such neighborhoods
(the number of sets of size ℓ which intersect with a coreset of size r). Let C be the random coreset (of
size r) selected by the algorithm. Let Pr [C ∈ N(T)] be the probability that the coreset selected by the
algorithm is in N (T); then, Pr [C ∈ N(T)] =

∑

Ci∈N(T)Pr [Ci]. Therefore,

∑

T

Pr [C ∈ N(T)] =
∑

T

∑

Ci∈N(T)

Pr [Ci] =
(n

ℓ

)

−
(

n− r

ℓ

)

,

where the last equality follows because each coreset appears exactly
(n
ℓ

)

−
(n−r

ℓ

)

times in the summation
and

∑

iPr [Ci] = 1. Thus, there is at least one set T∗ for which

Pr [C ∈ N(T∗)] ≤
(n
ℓ

)

−
(n−r

ℓ

)

(

n
ℓ

) = 1−
(n−r

ℓ

)

(

n
ℓ

) .

So, with probability at least
(

n−r
ℓ

)

/
(

n
ℓ

)

, the selected coreset does not intersect with T∗. Select b = 1T∗

(the unit vector which is 1/
√
ℓ at the indices corresponding to T∗). Now, with probability at least

(

n−r
ℓ

)

/
(

n
ℓ

)

, x̃opt = 0, and the analysis in the proof of Theorem 13 shows that

‖Ax̃opt − b‖22 ≥
n

n− ℓ
‖Axopt − b‖22.
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By Stirling’s formula, after some algebra, the probability
(

n−r
ℓ

)

/
(

n
ℓ

)

is asymptotic to e−2rℓ/n. Setting
ℓ = Θ(n/r) gives a success probability that is a constant. Then, the approximation ratio cannot be better
than 1 + Ω(1/r). With regard to high probability (approaching one) algorithms, consider ℓ = n log n/2r
to conclude that if the success probability is at least 1 − 1/n, the approximation ratio is no better than
1 + log(n)/(2r − log n).

5.2 Lower Bounds for Non-Agnostic Multiple Regression

For both the spectral and the Frobenius norm, we now consider non-agnostic unconstrained multiple
regression, and give lower bounds for coresets of size r > d = rank(A) (for simplicity, we set rank(A) = d).
The results are presented in Theorems 15 and 16.

Theorem 15 (Spectral Norm). There exists A ∈ R
n×d with rank d and B ∈ R

n×ω such that for any r > d
and any sampling and rescaling matrices S ∈ R

r×n and D ∈ R
r×r, the solution to the coreset regression

X̃opt = (DSA)†DSB ∈ R
d×ω satisfies

‖AX̃opt −B‖22 ≥
ω

r + 1
‖AXopt −B‖22.

Proof. First, we need some results from [7]. Consider the matrix

H = [e1 + αe2, e1 + αe3, . . . , e1 + αeω] ∈ R
ω×(ω−1),

where ei ∈ R
ω are the standard basis vectors. Then, let B = HT ∈ R

(ω−1)×ω. Theorem 34 in [7] (with
α = 1) argues the following: given B and any sampling matrix S ∈ R

r×(ω−1) and diagonal rescaling matrix
D ∈ R

r×r, with Ĉ = DSB (rescaled sampled coreset of B), and any k with 1 ≤ k ≤ ω − 1,

‖B−Π
Ĉ,k(B)‖22 ≥ ω

r + 1
‖B−Bk‖22.

In the above, Π
Ĉ,k(B) ∈ R

(ω−1)×ω of rank k is the best rank-k approximation to B (in the spectral norm)

whose rows lie in the span of all the rows in Ĉ (the row-space of Ĉ); and, Bk ∈ R
(ω−1)×ω of rank k is the

best rank-k approximation to B (which could be computed via the truncated SVD of B).1

Since Π
Ĉ,k(B) is the best rank-k approximation to B in the row-space of Ĉ, it follows that

‖B−Π
Ĉ,k(B)‖22 ≤ ‖B−XĈ‖22,

for any X∈ R
(ω−1)×r with rank at most k (because XĈ will have rank at most k and is in the row space

of Ĉ). Set X = UB,k(DSUB,k)
†, where UB,k ∈ R

(ω−1)×k has k columns which are the top-k left singular

vectors of B. It is easy to verify that X has the correct dimensions and rank at most k. Since Ĉ = DSB,
we have that

‖B−Π
Ĉ,k(B)‖22 ≤ ‖B−UB,k(DSUB,k)

†DSB‖22.
We now construct the regression problem which exhibits the lower bound in the theorem. Let A =

UB,d ∈ R
(ω−1)×d (i.e., we choose k = d in the above discussion) and n = ω − 1. B is as we described

above. Suppose a coreset construction algorithm gives sampling and rescaling matrices S and D, for a
coreset of size r. So, the coreset regression is with Ã = DSA = C and B̃ = DSB. The solution to the
coreset regression is

X̃opt = C†DSB = (DSA)†DSB = (DSUB,d)
†DSB,

1Actually, D is irrelevant here because the row-space of SB is the same as the row space of DSB.
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which means that

‖AX̃opt −B‖22 = ‖UB,d(DSUB,d)
†DSB−B‖22 ≥ ‖ΠC,d(B)−B‖22 ≥ ω

r + 1
‖Bd −B‖22.

To conclude the proof, observe that Bd = UB,dU
T

B,dB = AA†B = AXopt.

Theorem 16 (Frobenius Norm). There exists A ∈ R
n×d of rank d and B ∈ R

n×ω such that for any r > d
and any sampling and rescaling matrices S ∈ R

n×r and D ∈ R
r×r, the solution to the coreset regression

X̃opt = (DSA)†DSB ∈ R
d×ω satisfies (for any α > 0)

‖AX̃opt −B‖2F ≥ n− r

n− d

(

1 +
d

r + α2

)

‖AXopt −B‖2F.

As α → 0 and n → ∞ the lower bound is 1 + d/r.

Proof. First, we need some results from [7]. For any integer γ > 1 and any integer k ≥ 1, Theorem 36 in
[7] exhibits a matrix B ∈ R

γk×(γ+1)k such that for any sampling matrix S ∈ R
r×γk and diagonal rescaling

matrix D ∈ R
r×r, with Ĉ = DSB (rescaled sampled coreset of B), any α > 0, and any r ≥ 1,

‖B−Π
Ĉ,k(B)‖2F

‖B−Bk‖2F
≥ γk − r

γk − k

(

1 +
k

r + α2

)

.

The matrix B is constructed as follows. Recall that γ is any positive integer with γ > 1. Let A have
dimensions (γ + 1)× γ and be constructed as follows.

A =

[

e1 +
α√
k
e2, e1 +

α√
k
e3, . . . , e1 +

α√
k
eγ

]

,

where ei ∈ R
γ+1 are the standard basis vectors. Now construct H to be block diagonal, with k copies of

A along its diagonal; so, the dimensions of H are (γ + 1)k × γk. Then, B = HT.
In the above, Π

Ĉ,k(B) ∈ R
γk×(γ+1)k of rank k is the best rank-k approximation to B (in the Frobenius

norm) whose rows lie in the span of all the rows in Ĉ (the row-space of Ĉ); and, Bk ∈ R
γk×(γ+1)k of rank

k is the best rank-k approximation to B (which could be computed via the truncated SVD of B). Since
Π

Ĉ,k(B) is the best rank-k approximation to B in the row-space of Ĉ, it follows that

‖B −Π
Ĉ,k(B)‖2F ≤ ‖B−XĈ‖2F,

for any X∈ R
γk×r with rank at most k (because XĈ will have rank at most k and is in the row space

of Ĉ). Set X = UB,k(DSUB,k)
†, where UB,k ∈ R

γk×k has k columns which are the top-k left singular

vectors of B. It is easy to verify that X has the correct dimensions and rank at most k. Since Ĉ = DSB,
we have that

‖B−Π
Ĉ,k(B)‖2F ≤ ‖B−UB,k(DSUB,k)

†DSB‖2F.
We now construct the regression problem which proves the lower bound in the theorem. Let A =

UB,d ∈ R
γd×d (i.e., we choose k = d in the above discussion), n = γd (i.e. n is a multiple of d in the

regression problem), and ω = (γ + 1)d. B is as we described above. Suppose a coreset construction
algorithm gives sampling and rescaling matrices S and D, for a coreset of size r > d. So, the coreset
regression is with C = DSA ∈ R

r×d and DSB ∈ R
r×ω. The solution to the coreset regression is

X̃opt = C†DSB = (DSA)†DSB = (DSUB,d)
†DSB,

which means that

‖AX̃opt −B‖2F = ‖UB,d(DSUB,d)
†DSB−B‖2F ≥ ‖ΠC,d(B)−B‖2F ≥ ω − d− r

ω − 2d

(

1 +
d

r + α2

)

‖Bd−B‖2F.

To conclude the proof, observe that Bd = UB,dU
T

B,dB = AA†B = AXopt and ω = n+ d.

16



6 Open problems

An important open problem arises in our work: can we determine the minimum size of a coreset that
provides a (1 + ǫ) relative-error guarantee for simple linear regression? We conjecture that Ω (k/ǫ) is a
lower bound, which will make our results almost tight. Certainly, coresets of size exactly k cannot be
guaranteed: consider two data points (1, 1), (−1, 1). The optimal regression is zero; however any coreset
of size one will give non-zero regression.
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A Linear Algebra Background

The Singular Value Decomposition (SVD) of a matrix A ∈ R
n×d of rank k is a decomposition

A = UAΣAV
T

A.

The singular values σ1 ≥ σ2 ≥ · · · ≥ σk > 0 are contained in the diagonal matrix ΣA ∈ R
k×k; UA ∈

R
n×k contains the left singular vectors of A; and VA ∈ R

d×k contains the right singular vectors. The
Moore-Penrose pseudo-inverse of A is A† = VAΣ

−1
A UT

A. Given an orthonormal matrix UA ∈ R
n×k,

the perpendicular matrix U⊥
A ∈ R

n×(n−k) to UA satisfies: (U⊥
A)TU⊥

A = In−k, U
T

AU
⊥
A = 0k×(n−k), and

UAUT

A +U⊥
A(U⊥

A)T = In. All the singular values of both UA and U⊥
A are equal to one. Given UA, U

⊥
A

can be computed in deterministic O
(

n (n− k)2
)

time via the QR factorization.

We remind the reader of the Frobenius and spectral matrix norms: ‖A‖2F =
∑

i,j A
2
ij =

∑k
i=1 σ

2
i and

‖A‖22 = σ2
1. We will sometimes use the notation ‖A‖ξ to indicate that an expression holds for both

ξ = 2 or ξ = F. For any two matrices X and Y, ‖X‖2 ≤ ‖X‖F ≤
√

rank(X)‖X‖2; ‖XY‖F ≤
‖X‖F‖Y‖2; ‖XY‖F ≤ ‖X‖2‖Y‖F. These are stronger variants of the standard submultiplicativity
property ‖XY‖ξ ≤ ‖X‖ξ‖Y‖ξ and we will refer to them as spectral submultiplicativity. It follows that, if
Q is orthonormal, then ‖QX‖ξ ≤ ‖X‖ξ and ‖YQT‖ξ ≤ ‖Y‖ξ. Finally, we will make frequent use of the
following two lemmas.

Lemma 17 (matrix-Pythagoras). Let X and Y be two n× d matrices. If XYT = 0n×n or XTY = 0d×d,
then

‖X+Y‖2ξ ≤ ‖X‖2ξ + ‖Y‖2ξ .

Lemma 18 (Fact 6.4.12 in [4]). Let A ∈ R
m×n,B ∈ R

n×ℓ, and assume that rank(A) = rank(B) = n.
Then,

(AB)† = B†A†.

B Algorithms and Proofs of Lemmas 10 and 11

We now provide all the details of the proofs and the corresponding algorithms of Lemmas 10 and 11. Those
results, which have been described in detail in [5], are slight extensions of two algorithms presented in [7],
which themselves extend the original spectral sparsification result of Batson, Spielman, and Srivastava [2].
More specifically, Lemma 20 below - in some sense - generalizes Lemma 2; indeed, setting V = QT := U in
Lemma 20 gives Lemma 2. Lemma 19 below also describes a deterministic algorithm for sampling columns
from two matrices but the goal here is to optimize different spectral properties in the sampled matrices.

In this section of the Appendix, we will slightly abuse notation by denoting with Ŝ ∈ R
n×r a sampling

matrix which samples columns - not rows - from matrices. We will later use S = ŜT to be consistent with
the notation used throughout the paper.

Lemma 19 (Lemma 13 in [7]). Let VT ∈ R
k×n and B ∈ R

ℓ1×n with VTV = Ik. Let r > k. Algorithm 5
runs in O(rk2n+ ℓ1n) time and deterministically constructs a sampling matrix Ŝ ∈ R

n×r and a rescaling
matrix D ∈ R

r×r such that,

σk(V
TŜD) ≥ 1−

√

k/r; ‖BŜD‖F ≤ ‖B‖F.

We write [D, Ŝ] = DeterministicSamplingI(VT,B, r) to denote this procedure.
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Input: VT = [v1,v2, . . . ,vn] ∈ R
k×n, B = [b1,b2, . . . ,bn] ∈ R

ℓ1×n, and r > k.
Output: Sampling matrix Ŝ ∈ R

n×r and rescaling matrix D ∈ R
r×r.

1: Initialize A0 = 0k×k, Ŝ = 0n×r, and D = 0r×r.
2: Set constants δB = ‖B‖2F(1−

√

k/r)−1; δL = 1.
3: for τ = 0 to r − 1 do
4: Let lτ = τ −

√
rk.

5: Pick index iτ ∈ {1, 2, ..., n} and number tτ > 0 (see text for the definition of U,L):

U(biτ , δB) ≤
1

tτ
≤ L(viτ , δL,Aτ , lτ ).

6: Update Aτ+1 = Aτ + tτviτv
T

iτ ; set Ŝiτ ,τ+1 = 1 and Dτ+1,τ+1 = 1/
√
tτ .

7: end for
8: Multiply all the weights in D by

√

r−1(1−
√

k/r).

9: Return: Ŝ and D.

Algorithm 5: DeterministicSamplingI (Lemma 19)

Algorithm 5 is a greedy technique that selects columns one at a time. To describe the algorithm in
more detail, it is convenient to view the input matrices as two sets of n vectors,

VT = [v1,v2, . . . ,vn],

and
B = [b1,b2, . . . ,bn].

Given k and r > k, introduce the iterator τ = 0, 1, 2, ..., r − 1, and define the parameter

lτ = τ −
√
rk.

For a square symmetric matrix A ∈ R
k×k with eigenvalues λ1, . . . , λk, v ∈ R

k and l ∈ R, define

φ(l,A) =
k
∑

i=1

1

λi − l
,

and let L(v, δL,A, l) be defined as

L(v, δL,A, l) =
vT(A− l

′Ik)
−2v

φ(l′,A)− φ(l,A)
− vT(A− l

′Ik)
−1v,

where l
′ = l+ δL = l+ 1. For a vector z and scalar δ > 0, define the function

U(z, δ) =
1

δ
zTz.
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Input: VT = [v1,v2, . . . ,vn] ∈ R
k×n, Q = [q1,q2, . . . ,qd] ∈ R

ℓ2×n, and r > k.
Output: Sampling matrix Ŝ ∈ R

n×r and rescaling matrix D ∈ R
r×r.

1: Initialize A0 = 0k×k, B0 = 0ℓ2×ℓ2 , Ω = 0n×r, and Ŝ = 0r×r.

2: Set constants δQ = (1 + ℓ2/r)
(

1−
√

k/r
)−1

; δL = 1.

3: for τ = 0 to r − 1 do
4: Let lτ = τ −

√
rk; uτ = δQ

(

τ +
√
ℓ2r
)

5: Pick index iτ ∈ {1, 2, ..., n} and number tτ > 0 (see text for the definition of U,L):

Û(qiτ , δQ,Bτ ,uτ ) ≤
1

tτ
≤ L(viτ , δL,Aτ , lτ ).

6: Update Aτ+1 = Aτ + tτviτv
T

iτ ; Bτ+1 = Bτ + tτqiτq
T

iτ , and

set Ŝiτ ,τ+1 = 1, Dτ+1,τ+1 = 1/
√
tτ .

7: end for

8: Multiply all the weights in D by

√

r−1
(

1−
√

k/r
)

.

9: Return: Ŝ and D.

Algorithm 6: DeterministicSamplingII (Lemma 20)

At each iteration τ , the algorithm selects iτ , tτ > 0 for which

U(biτ , δB) ≤ t−1
τ ≤ L(viτ , δL,Aτ , lτ ).

The running time of the algorithm is dominated by the search for an index iτ satisfying

U(biτ , δB) ≤ t−1
τ ≤ L(viτ , δ

−1,Aτ , lτ )

(one can achieve that by exhaustive search). One needs φ(l,A), and hence the eigenvalues of A. This
takes O(k3) time, once per iteration, for a total of O(rk3). Then, for i = 1, . . . , n, we need to compute
L for every vi. This takes O(nk2) per iteration, for a total of O(rnk2). To compute U , we need bT

i bi

for i = 1, . . . , n, which need to be computed only once for the whole algorithm and takes O(ℓ1n). So, the
total running time is O(nrk2 + ℓ1n).

Lemma 20 (Lemma 12 in [7]). Let VT ∈ R
k×n, Q ∈ R

ℓ2×n, VTV = Ik, and QTQ = Iℓ2 . Let r > k.
Algorithm 6 runs in O(rk2n + rℓ22n) time and deterministically constructs a sampling matrix Ŝ ∈ R

n×r

and a rescaling matrix D ∈ R
r×r such that,

σk(V
TŜD) ≥ 1−

√

k/r; ‖QŜD‖2 ≤ 1 +
√

ℓ2/r.

If Q = In, it runs in O(rk2n); we write [D, Ŝ] = DeterministicSamplingII(VT,Q, r) for this procedure.

Algorithm 6 is similar to Algorithm 5; we only need to define the function Û . For a square symmetric
matrix B ∈ R

ℓ2×ℓ2 with eigenvalues λ1, . . . , λℓ2 , q ∈ R
ℓ2 , u ∈ R, define: φ̂(u,B) =

∑ℓ2
i=1

1
u−λi

, and let

Û(q, δQ,B,u) be defined as Û(q, δQ,B,u) =
qT(B−u

′Iℓ2 )
−2q

φ̂(u,B)−φ̂(u′,B)
− qT(B − u

′Iℓ2)
−1q, where u

′ = u + δQ =

u+ (1 + ℓ2/r)
(

1−
√

k/r
)−1

. The running time of the algorithm is O(nrk2 + nrℓ22).
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B.1 Proof of Lemma 10

We first restate the lemma.

Lemma 21 (Restatement of Lemma 10). Let Y ∈ R
n×ℓ1 and Ψ ∈ R

n×ℓ2 with respective ranks ρY, and
ρΨ. Given r > ρY, there exists a deterministic algorithm that runs in time TSV D (Y) + TSVD (Ψ) +
O(rn(ρ2Y + ρ2Ψ)) and constructs sampling and rescaling matrices S ∈ R

r×n, D ∈ R
r×r satisfying:

rank (DSY) = rank (Y) ; ‖ (DSY)† ‖2 <
1

1−
√

ρY/r
‖Y†‖2; ‖DSΨ‖2 <

(

1 +

√

ρΨ
r

)

‖Ψ‖2.

If Ψ = In, the running time of the algorithm reduces to TSV D (Y) + O
(

rnρ2Y
)

. We write [D,S] =
MultipleSpectralSampling (Y,Ψ, r) to denote such a deterministic procedure.

Proof. Let the SVD of Y ∈ R
n×ℓ1 is Y = UYΣYVT

Y, with UY ∈ R
n×ρX , ΣY ∈ R

ρY×ρY , VY ∈ R
ℓ1×ρX .

Let the SVD of Ψ ∈ R
n×ℓ2 is Ψ = UΨΣΨVT

Ψ, with UΨ ∈ R
n×ρΨ , ΣΨ ∈ R

ρΨ×ρΨ , and VΨ ∈ R
ℓ2×ρΨ . Let

[D, Ŝ] = DeterministicSamplingII(UT

Y,UT

Ψ, r).

By Lemma 20,

σmin(U
T

YŜD) ≥
(

1−
√

ρY/r
)

,

which implies

‖(UT

YŜD)†‖2 ≤
(

1−
√

ρY/r
)−1

,

and
rank(UT

YŜD) = ρY.

Also,

‖UT

ΨŜD‖2 ≤
(

1 +
√

ρΨ/r
)

because
σmax(U

T

ΨŜD) ≤
(

1 +
√

ρΨ/r
)

.

Thus,

‖(YTŜD)†‖2 = ‖(VYΣYUT

YŜD)†‖2
(a)
= ‖(UT

YŜD)†(VYΣY)†‖2
≤ ‖(UT

YŜD)†‖2‖(VYΣY)†‖2
≤

(

1−
√

ρY/r
)−1

‖(VYΣY)†‖2

=
(

1−
√

ρY/r
)−1

‖(YT)†‖2

(a) uses Lemma 18. To obtain the first inequality in the lemma we need to take S = ŜT and observe that
‖(YTŜD)†‖2 = ‖(DSY)†‖2, and ‖(YT)†‖2 = ‖Y†‖2. We now prove the second inequality in the lemma,

‖ΨTŜD‖2 = ‖VΨΣΨUT

ΨŜD‖2 ≤ ‖VΨΣΨ‖2‖UT

ΨŜD‖2 = ‖ΨT‖2‖UT

ΨŜD‖2 ≤ ‖ΨT‖2
(

1 +
√

ρΨ/r
)

.

To obtain the second inequality in the lemma we need to take S = ŜT and use ‖ΨTŜD‖2 = ‖DSΨ‖2, and
‖ΨT‖2 = ‖Ψ‖2.
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B.2 Proof of Lemma 11

We first restate the lemma.

Lemma 22 (Restatement of Lemma 11). Let Y ∈ R
n×ℓ1 and Ψ ∈ R

n×ℓ2 with respective ranks ρY, and
ρΨ. Given r > ρY, there exists a deterministic algorithm that runs in time TSVD(Y) + O(rnρ2Y + ℓ2n)
and constructs sampling and rescaling matrices S ∈ R

r×n, D ∈ R
r×r satisfying:

rank (DSY) = rank (Y) ; ‖ (DSY)† ‖2 <
1

1−
√

ρY/r
‖Y†‖2; ‖DSΨ‖F ≤ ‖Ψ‖F.

If Ψ = In, the running time of the algorithm reduces to TSV D (Y) + O
(

rnρ2Y
)

. We write [D,S] =
MultipleFrobeniusSampling (Y,Ψ, r) to denote such a deterministic procedure.

Proof. Let the SVD of Y ∈ R
n×ℓ1 is Y = UYΣYVT

Y, with UY ∈ R
n×ρX , ΣY ∈ R

ρY×ρY , VY ∈ R
ℓ1×ρX .

Let the SVD of Ψ ∈ R
n×ℓ2 is Ψ = UΨΣΨVT

Ψ, with UΨ ∈ R
n×ρΨ , ΣΨ ∈ R

ρΨ×ρΨ , and VΨ ∈ R
ℓ2×ρΨ . Let

[D, Ŝ] = DeterministicSamplingI(UT

Y ,ΨT, r).

By Lemma 19,

σmin(U
T

YŜD) ≥
(

1−
√

ρY/r
)

,

which implies
‖(UT

YŜD)†‖2 ≤ (1−√
ρY/r)−1 ,

and
rank(UT

YŜD) = ρY.

Also,
‖ΨTŜD‖F ≤ ‖ΨT‖F,

which by taking S = ŜT gives the second inequality in the lemma,

‖DSΨ‖F ≤ ‖Ψ‖F.

Now we prove the first inequality in the lemma,

‖(YTŜD)†‖2 = ‖(VYΣYUT

YŜD)†‖2
(a)
=‖(UT

YŜD)†(VYΣY)†‖2 ≤ ‖(UT

YŜD)†‖2‖(VYΣY)†‖2
≤ (1−√

ρY/r)−1‖(VYΣY)†‖2.

(a) uses Lemma 18. To conclude, use ‖(YTSD)†‖2 = ‖(DSY)†‖2; ‖(VYΣY)†‖2 = ‖(YT)†‖2 = ‖(Y)†‖2.
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