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How to Construct Polar Codes
Ido Tal, Member, IEEE, and Alexander Vardy, Fellow, IEEE

Abstract—A method for efficiently constructing polar codes is
presented and analyzed. Although polar codes are explicitly de-
fined, straightforward construction is intractable since the result-
ing polar bit-channels have an output alphabet that grows expo-
nentially with the code length. Thus the core problem that needs to
be solved is that of faithfully approximating a bit-channel with an
intractably large alphabet by another channel having a manage-
able alphabet size. We devise two approximation methods which
“sandwich” the original bit-channel between a degraded and an
upgraded version thereof. Both approximations can be efficiently
computed, and turn out to be extremely close in practice. We also
provide theoretical analysis of our construction algorithms, prov-
ing that for any fixed ε > 0 and all sufficiently large code lengths n,
polar codes whose rate is within ε of channel capacity can be con-
structed in time and space that are both linear in n.

Index Terms—channel polarization, channel degrading and up-
grading, construction algorithms, polar codes

I. INTRODUCTION

POLAR codes, invented by Arıkan [3], achieve the capac-
ity of arbitrary binary-input symmetric DMCs. Moreover,

they have low encoding and decoding complexity and an exp-
licit construction. Following Arıkan’s seminal paper [3], his
results have been extended in a variety of important ways. In
[22], polar codes have been generalized to symmetric DMCs
with non-binary input alphabet. In [14], the polarization phe-
nomenon has been studied for arbitrary kernel matrices, rather
than Arıkan’s original 2× 2 polarization kernel, and error ex-
ponents were derived for each such kernel. It was shown in [24]
that, under list-decoding, polar codes can achieve remarkably
good performance at short code lengths. In terms of applica-
tions, polar coding has been used with great success in the con-
text of multiple-access channels [2,23], wiretap channels [16],
data compression [1,4], write-once channels [6], and channels
with memory [21]. In this paper, however, we will restrict our
attention to the original setting introduced by Arıkan in [3].
Namely, we focus on binary-input, discrete, memoryless, sym-
metric channels, with the standard 2× 2 polarization kernel un-
der standard successive cancellation decoding.

Although the construction of polar codes is explicit, there is
only one known instance — namely, the binary erasure channel
(BEC) — where the construction is also efficient. A first attempt
at an efficient construction of polar codes in the general case
was made by Mori and Tanaka [17,18]. Specifically, it is shown
in [17] that a key step in the construction of polar bit-channels
can be viewed as an instance of density evolution [20]. Based
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on this observation, Mori and Tanaka [18] proposed a construc-
tion algorithm utilizing convolutions, and proved that the num-
ber of convolutions needed scales linearly with the code length.
However, as indeed noted in [17], it is not clear how one would
implement such convolutions to be sufficiently precise on one
hand while being tractable on the other hand.

In this paper, we further extend the ideas of [17,18]. An ex-
act implementation of the convolutions discussed in [17,18]
implies an algorithm with memory requirements that grow ex-
ponentially with the code length. It is thus impractical. Alter-
natively, one could use quantization (binning) to try and re-
duce the memory requirements. However, for such quantization
scheme to be of interest, it must satisfy two conditions. First, it
must be fast enough, which usually translates into a rather small
number of quantization levels (bins). Second, after the calcula-
tions have been carried out, we must be able to interpret them in
a precise manner. That is, the quantization operation introduces
inherent inaccuracy into the computation, which we should be
able to account for so as to ultimately make a precise statement.

Our aim in this paper is to provide a method by which po-
lar codes can be efficiently constructed. Our main contribu-
tion consists of two approximation methods. In both methods,
the memory limitations are specified, and not exceeded. One
method is used to get a lower bound on the probability of er-
ror of each polar bit-channel while the other is used to obtain
an upper bound. The quantization used to derive a lower bound
on the probability of error is called a degrading quantization,
while the other is called an upgrading quantization. Both quan-
tizations transform the “current channel” into a new one with a
smaller output alphabet. The degrading quantization results in a
channel degraded with respect to the original one, while the up-
grading quantization results in a channel such that the original
channel is degraded with respect to it.

The fidelity of both degrading and upgrading approximations
is a function of a parameter µ, which can be freely set to an
arbitrary integer value. Generally speaking, the larger µ is the
better the approximation. The running time needed in order to
approximate all n polar bit-channels is O(n · µ2 log µ).

Our results relate to both theory and practice of polar codes.
In practice, it turns out that the degrading and upgrading ap-
proximations are typically very close, even for relatively small
values of the fidelity parameter µ. This is illustrated in what
follows with the help of two examples.
Example 1. Consider a polar code of length n = 220 for the bi-
nary symmetric channel (BSC) with crossover probability 0.11.
LetW0,W1, . . . ,Wn−1 be the corresponding bit-channels (see
the next section for a rigorous definition of a bit-channel). The
basic task in the construction of polar codes is that of classifying
bit-channels into those that are “good” and those that are “bad.”
Let Pe(Wi) denote the probability of error on the i-th bit-chan-
nel (see (13) for a precise definition of this quantity) for i =
0, 1, . . . , n− 1. We arbitrarily choose a threshold of 10−9 and
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1,048,576786,432524,288262,144
0.5×10−9

10−9
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Fig. 1. Upper and lower bounds on the bit-channel probabilities of error for a polar code of length n = 1, 048, 576 on BSC(0.11), computed using degrading and
upgrading algorithms with µ = 256. Only those 132 bit-channels for which the gap between the upper and lower bounds crosses the 10−9 threshold are shown.
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(a) Binary symmetric channel BSC(0.001)
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(b) binary-input AWGN channel with Es/N0 =
5.00 dB

Fig. 2. Upper and lower bounds on PW,n(k) as a function of rate R = k/n, for two underlying channels and two code lengths n = 210 and n = 220. The upper
bound is dashed while the lower bound is solid. For both channels, the difference between the bounds can only be discerned in the plot corresponding to n = 220.

say that the i-th bit channel is good if Pe(Wi) 6 10−9 and bad
otherwise. How well do our algorithms perform in determining
for each of the n bit-channels whether it is good or bad?

Let us set µ = 256 and compute upper and lower bounds
on Pe(Wi) for all i, using the degrading and upgrading quan-
tizations, respectively. The results of this computation are il-
lustrated in Figure 1. In 1, 048, 444 out of the 1, 048, 576 cases,
we can provably classify the bit-channels into good and bad.
Figure 1 depicts the remaining 132 bit-channels for which the
upper bound is above the threshold whereas the lower bound
is below the threshold. The horizontal axis in Figure 1 is the
bit-channel index while the vertical axis is the gap between the
two bounds. We see that the gap between the upper and lower
bounds, and thus the remaining uncertainty as to the true value
of Pe(Wi), is very small in all cases. �

Example 2. Now suppose we wish to construct a polar code of a
given length n having the best possible rate while guaranteeing
a certain block-error probability Pblock under successive can-
cellation decoding. Arıkan [3, Proposition 2] provides1 a union
bound on the block-error rate of polar codes:

Pblock 6 ∑
i∈A

Pe(Wi) (1)

whereA is the information set for the code (the set of unfrozen
bit-channels). The construction problem for polar codes can be

1In [3], Arıkan uses the Bhattacharyya parameter Z(Wi) instead of the prob-
ability of error Pe(Wi). As we shall see shortly, this is of no real importance.

phrased (cf. [3, Section IX]) as the problem of choosing an in-
formation set A of a given size |A| = k so as to minimize the
right-hand side of (1). Assuming the underlying channel W and
the code length n are fixed, let

PW,n(k)
def
= min

|A|=k
∑
i∈A

Pe(Wi) (2)

Using our degrading and upgrading algorithms, we can effici-
ently compute upper and lower bounds on PW,n(k). These are
plotted in Figure 2 for two underlying channels: BSC with cross-
over probability 0.001 and the binary-input AWGN channel
with a symbol SNR of 5.00 dB (noise variance σ2 = 0.1581).
In all2 our calculations, the value of µ did not exceed 512.

As can be seen from Figure 2, the bounds effectively coin-
cide. As an example, consider polar codes of length 220 and
suppose we wish to guarantee PW,n(k) 6 10−6. What is the
best possible rate of such a code? According to Figure 2(a), we
can efficiently construct (specify the rows of a generator ma-
trix) a polar code of rate R = 0.9732. On the other hand, we can
also prove that there is no choice of an information set A in (2)
that would possibly produce a polar code of rate R> 0.9737.
According to Figure 2(b), the corresponding numbers for the
binary-input AWGN channel are 0.9580 and 0.9587. In prac-
tice, such minute differences in the code rate are negligible. �

2The initial degrading (upgrading) transformation of the binary-input con-
tinous-output AWGN channel to a binary-input channel with a finite output
alphabet was done according to the method of Section VI. For that calculation,
we used a finer value of µ = 2000. Note that the initial degrading (upgrading)
transformation is performed only once.
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From a theoretical standpoint, one of our main contributions
is the following theorem. In essence, the theorem asserts that
capacity-achieving polar codes can be constructed in time that
is polynomial (in fact, linear) in their length n.

Theorem 1: Let W be a binary-input, symmetric, discrete
memoryless channel of capacity I(W). Fix arbitrary real con-
stants ε > 0 and β < 1/2. Then there exists an even integer

µ0 = µ0(W, ε, β) , (3)

which does not depend on the code length n, such that the fol-
lowing holds. For all even integers µ > µ0 and all sufficiently
large code lengths n = 2m, there is a construction algorithm
with running time O(n · µ2 log µ) that produces a polar code
for W of rate R > I(W)− ε such that Pblock 6 2−nβ

, where
Pblock is the probability of codeword error under successive can-
cellation decoding.

We defer the proof of Theorem 1 to Section VIII. Here, let
us briefly discuss two immediate consequences of this theorem.
First, observe that for a given channel W and any fixed ε and β,
the integer µ0 in (3) is a constant. Setting our fidelity parameter
in Theorem 1 to µ = µ0 thus yields a construction algorithm
with running time that is linear in n. Still, some might argue
that the complexity of construction in Theorem 1 does depend
on a fidelity parameter µ, and this is unsatisfactory. The fol-
lowing corollary eliminates this dependence altogether, at the
expense of super-linear construction complexity.

Corollary 2: Let W be a binary-input, symmetric, discrete
memoryless channel of capacity I(W). Fix arbitrary real con-
stants ε > 0 and β < 1/2. Then there is a construction algo-
rithm with running time O(n log2n log log n) that for all suf-
ficiently large code lengths n, produces a polar code for W of
rate R > I(W)− ε such that Pblock 6 2−nβ

.
Proof: Set µ = 2 blog2 nc in Theorem 1 (in fact, we could

have used any function of n that grows without bound).
We would now like to draw the reader’s attention to what The-

orem 1 does not assert. Namely, given W, ε and β, the theorem
does not tell us how large n must be, only that some values of n
are large enough. In fact, given W, ε, β, how large does n need
to be in order to guarantee the existence of a polar code with
R > I(W)− ε and Pblock 6 2−nβ

, let alone the complexity of
its construction? This is one of the central questions in the the-
ory of polar codes. Certain lower bounds on this value of n are
given in [10]. In the other direction, the exciting recent result of
Guruswami and Xia [11, Theorem 1] shows that for any fixed
W and β 6 0.49, this value of n grows as a polynomial in 1/ε.
The work of [11] further shows that, for any fixed W and β, the
parameter µ0 in (3) can be also taken as a polynomial in 1/ε.

The rest of this paper is oragnized as follows. In Section II,
we briefly review polar codes and set up the necessary nota-
tion. Section III is devoted to channel degrading and upgrad-
ing relations, that will be important for us later on. In Sec-
tion IV, we give a high level description of our algorithms for
approximating polar bit-channels. The missing details in Sec-
tion IV are then fully specified in Section V. Namely, we show
how to reduce the output alphabet of a channel so as to get ei-
ther a degraded or an upgraded version thereof. In Section VI,

we show how to either degrade or upgrade a channel with con-
tinuous output into a channel with a finite output alphabet of
specified size. In Section VII, we discuss certain improvements
to our general algorithms for a specialized case. The accuracy
of the (improved) algorithms is then analyzed in Section VIII.

II. POLAR CODES

In this section we briefly review polar codes with the primary
aim of setting up the relevant notation. We also indicate where
the difficulty of constructing polar codes lies.

Let W be the underlying memoryless channel through which
we are to transmit information. If the input alphabet of W is X
and its output alphabet is Y , we write W : X → Y . The prob-
ability of observing y ∈ Y given that x ∈ X was transmitted is
denoted by W(y|x). We assume throughout that W has binary
input and soX = {0, 1}. We also assume that W is symmetric.
As noted in [3], a binary-input channel W is symmetric if and
only if there exists a permutation π of Y such that π−1 = π
(that is, π is an involution) and W(y|1) = W(π(y)|0) for
all y ∈ Y (see [9, p. 94] for an equivalent definition). When the
permutation is understood from the context, we abbreviate π(y)
as ȳ, and say that ȳ and y are conjugates. For now, we will fur-
ther assume that the output alphabet Y of W is finite. This
assumption will be justified in Section VI, where we show how
to deal with channels that have continuous output.

Denote the length of the codewords we will be transmitting
over W by n = 2m. Given y = (y0, y1, . . . , yn−1) ∈ Yn and
u = (u0, u1, . . . , un−1) ∈ X n, let

Wn(y|u) def
=

n−1

∏
i=0

W(yi|ui) .

Thus Wn corresponds to n independent uses of the channel W.
A key paradigm introduced in [3] is that of transforming n iden-
tical copies (independent uses) of the channel W into n polar
bit-channels, through a successive application of Arıkan chan-
nel transforms, introduced shortly. For i = 0, 1, . . . , n− 1, the
i-th bit-channelWi has a binary input alphabet X , an output al-
phabet Yn×X i, and transition probabilities defined as follows.
Let G be the polarization kernel matrix of [3], given by

G =

[
1 0
1 1

]
.

Let G⊗m be the m-fold Kronecker product of G and let Bn be
the n × n bit-reversal premutation matrix defined in [3, Sec-
tion VII-B]. Denote ui−1 = (u0, u1, . . . , ui−1). Then

Wi
(
y, ui−1|ui

) def
=

1
2n−1 ∑

v∈{0,1}n−1−i

Wn
(

y | (ui−1, ui, v)BnG⊗m
)

. (4)

Given the bit-channel output y and ui−1, the optimal (maxim-
um-likelihood) decision rule for estimating ui is

ûi = argmax
{
Wi
(
y, ui−1|0

)
,Wi

(
y, ui−1|1

)}

with ties broken arbitrarily. This is the decision rule used in
successive cancellation decoding [3]. As before, we let Pe(Wi)
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denote the probability that ûi 6= ui under this rule, assuming
that the a priori distribution of ui is Bernoulli(1/2).

In essence, constructing a polar code of dimension k is equiv-
alent to finding the k “best” bit-channels. In [3], one is instructed
to choose the k bit-channelsWi with the lowest Bhattacharyya
bound Z(Wi) on the probability of decision error Pe(Wi). We
note that the choice of ranking according to these Bhattacharyya
bounds stems from the relative technical ease of manipulating
them. A more straightforward criterion would have been to rank
directly according to the probability of error Pe(Wi), and this is
the criterion we will follow here.

SinceWi is well defined through (4), this task is indeed ex-
plicit, and thus so is the construction of a polar code. However,
note that the output alphabet size of each bit-channel is expo-
nential in n. Thus a straightforward evaluation of the ranking
criterion is intractable for all but the shortest of codes. Our main
objective will be to circumvent this difficulty.

As a first step towards achieving our goal, we recall that the
bit-channels can be constructed recursively using the Arıkan
channel transformations W �W and W �W , defined as fol-
lows. LetW : X → Y be a binary-input, memoryless, symmet-
ric (BMS) channel. Then the output alphabet ofW �W is Y2,
the output alphabet ofW �W is Y2 ×X , and their transition
probabilities are given by

(
W�W

)
(y1, y2|u1)

def
=

1
2 ∑

u2∈X
W(y1|u1 ⊕ u2)W(y2|u2) (5)

and

(
W�W

)
(y1, y2, u1|u2)

def
=

1
2
W(y1|u1 ⊕ u2)W(y2|u2) (6)

One consequence of this recursive construction is that the ex-
plosion in the output alphabet size happens gradually: each tran-
sform application roughly squares the alphabet size. We will
take advantage of this fact in Section IV.

III. CHANNEL DEGRADATION AND UPGRADATION

As previously outlined, our solution to the explosion in growth
of the output alphabet ofWi is to replace the channelWi by an
approximation. In fact, we will have two approximations, one
yielding a “better” channel and the other yielding a “worse”
one. In this section, we formalize these notions.

We say that a channel Q : X → Z is (stochastically) de-
graded with respect toW : X → Y , if there exists a channel
P : Y → Z such that for all z ∈ Z and x ∈ X ,

Q(z|x) = ∑
y∈Y
W(y|x) · P(z|y) . (7)

For a graphical depiction, see Figure 3(a). We writeQ 4W to
denote that Q is degraded with respect toW .

In the interest of brevity and clarity later on, we also define
the inverse relation: we say that a channel Q′ : X → Z ′ is

original
channel

W

another
channel

P
︸ ︷︷ ︸

degraded channel Q
(a) Degrading

upgraded
channel

Q′

another
channel

P
︸ ︷︷ ︸

original channel W
(b) Upgrading

Fig. 3. Degrading and upgrading a channelW

upgraded with respect toW : X → Y if there exists a channel
P : Z ′ → Y such that for all z′ ∈ Z ′ and x ∈ X ,

W(y|x) = ∑
z′∈Z ′

Q′(z′|x) · P(y|z′) (8)

(see Figure 3(b)). Namely,Q′ can be degraded toW . Similarly,
we write this as Q′ <W .

By definition,

W 4W ′ if and only if W ′ <W . (9)

Also, it is easily shown that “degraded” is a transitive relation:

If W 4W ′ and W ′ 4W ′′ then W 4W ′′ . (10)

Thus, the “upgraded” relation is transitive as well. Lastly, since
a channel is both degraded and upgraded with respect to itself
(take the intermediate channel as the identity function), we have
that both relations are reflexive:

W 4W and W <W . (11)

If a channelW ′ is both degraded and upgraded with respect
to W , then we say that W and W ′ are equivalent, and denote
this by W ≡ W ′. Since “degraded” and “upgraded” are tran-
sitive relations, it follows that the “equivalent” relation is tran-
sitive as well. Also, by (9), we have that “equivalent” is a sym-
metric relation:

W ≡ W ′ if and only if W ′ ≡ W . (12)

Lastly, since a channelW is both upgraded and degraded with
respect to itself, we have by (11) that “equivalent” is a reflex-
ive relation. Thus, channel equivalence is indeed an equivalence
relation.

LetW : X → Y be a given BMS channel. We now set the
notation for three quantities of interest. i) Denote by Pe(W)
the probability of error under maximum-likelihood decision,
where ties are broken arbitrarily, and the input distribution is
Bernoulli(1/2). That is,

Pe(W) =
1
2 ∑

y∈Y
min{W(y|0),W(y|1)} . (13)
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ii) Denote by Z(W) the Bhattacharyya parameter,

Z(W) = ∑
y∈Y

√
W(y|0)W(y|1) . (14)

iii) Denote by I(W) the capacity,

I(W) = ∑
y∈Y

∑
x∈X

1
2
W(y|x) log

W(y|x)
1
2W(y|0) + 1

2W(y|1)
.

The following lemma states that these three quantities behave
as expected with respect to the degrading and upgrading rela-
tions. The equation most important to us will be (15).

Lemma 3 ( [20, page 207]): Let W : X → Y be a BMS
channel and let Q : X → Z be degraded with respect to W ,
that is, Q 4W . Then,

Pe(Q) > Pe(W) , (15)
Z(Q) > Z(W) , and (16)
I(Q) 6 I(W) . (17)

Moreover, all of the above continues to hold if we replace
“degraded” by “upgraded”, 4 by <, and reverse the inequali-
ties. Specifically, ifW ≡ Q, then the weak inequalities are in
fact equalities.

Proof: We consider only the first part, since the “More-
over” part follows easily from Equation (9). For a simple proof
of (15), recall the definition of degradation (7), and note that

Pe(Q) =
1
2 ∑

z∈Z
min{Q(Z|0),Q(Z|1)} =

1
2 ∑

z∈Z
min

{
∑

y∈Y
W(y|0) · P(z|y), ∑

y∈Y
W(y|1) · P(z|y)

}

>
1
2 ∑

z∈Z
∑

y∈Y
min{W(y|0),W(y|1)} · P(z|y) = Pe(W)

Equation (16) is concisely proved in [13, Lemma 1.8]. Equation
(17) is a simple consequence of the data-processing inequality
[8, Theorem 2.8.1].

Note that it may be the case that y is its own conjugate. That
is, y and ȳ are the same symbol (an erasure). It would make
our proofs simpler if this special case was assumed not to hap-
pen. We will indeed assume this later on, with the next lemma
providing most of the justification.

Lemma 4: LetW : X → Y be a BMS channel. There exists
a BMS channelW ′ : X → Z such that i)W ′ is equivalent to
W , and ii) for all z ∈ Z we have that z and z̄ are distinct.

Proof: IfW is such that for all y ∈ Y we have that y and
ȳ are distinct, then we are done, since we can takeW ′ equal to
W .

Otherwise, let y? ∈ Y be such that y? and ȳ? are the same
symbol. Let the alphabet Z be defined as follows:

Z = (Y \ {y?}) ∪ {z1, z2} ,

where z1 and z2 are new symbols, not already in Y . Now, define
the channelW ′ : X → Z as follows. For all z ∈ Z and x ∈
X ,

W ′(z|x) =
{
W(z|x) if z ∈ Y ,
1
2W(y?|x) if z = z1 or z = z2.

We first show that W ′ < W . To see this, take the inter-
mediate channel P : Z → Y as the channel that maps (with
probability 1) z1 and z2 to y?, and all other symbols to them-
selves. Next, we show that W ′ 4 W . To see this, define the
intermediate channel P : Y → Z as follows.

P(z|y) =





1 if z = y,
1
2 if y = y? and z ∈ {z1, z2},
0 otherwise.

To sum up, we have constructed a new channelW ′ which is
equivalent to W , and contains one less self-conjugate symbol
(y? was replaced by the pair z1, z2). It is also easy to see that
W ′ is BMS. We can now apply this construction over and over,
until the resulting channel has no self-conjugate symbols.

Now that Lemma 4 is proven, we will indeed assume from
this point forward that all channels are BMS and have no output
symbols y such that y and ȳ are equal. As we will show later
on, this assumption does not limit us. Moreover, given a generic
BMS channelW : X → Y , we will further assume that for all
y ∈ Y , at least one of the probabilities W(y|0) and W(ȳ|0)
is positive (otherwise, we can remove the pair of symbols y, ȳ
from the alphabet, since they can never occur).

Given a channelW : X → Y , we now define for each output
symbol y ∈ Y an associated likelihood ratio, denoted LRW (y).
Specifically,

LRW (y) =
W(y|0)
W(y|1) =

W(y|0)
W(ȳ|0)

(ifW(ȳ|0) = 0, then we must have by assumption thatW(y|0) >
0, and we define LRW (y) = ∞). If the channel W is under-
stood from the context, we will abbreviate LRW (y) to LR(y).

IV. HIGH-LEVEL DESCRIPTION OF THE ALGORITHMS

In this section, we give a high level description of our algo-
rithms for approximating a bit channel. We then show how these
approximations can be used in order to construct a polar code.

In order to completely specify the approximating algorithms,
one has to supply two merging functions, a degrading merging
function degrading_merge and an upgraded merging func-
tion upgrading_merge. We will now define the properties
required of our merging functions, leaving the specification of
the functions we have actually used to the next section. The next
section will also make clear why we have chosen to call these
functions “merging”.

For a degrading merge function degrading_merge, the
following must hold. For a BMS channel W and positive in-
teger µ, the output of degrading_merge(W , µ) is a BMS
channel Q such that i) Q 4W is degraded with respect toW ,
and ii) The size of the output alphabet ofQ is at most µ. We de-
fine the properties required of upgrading_merge similarly,
but with “degraded” replaced by “upgraded” and 4 by <.

Let 0 6 i < n be an integer with binary representation i =
〈b1, b2, . . . , bm〉2, where b1 is the most significant bit. Algo-
rithms A and B contain our procedures for finding a degraded
and upgraded approximation of the bit channel W (m)

i , respec-
tively. In words, we employ the recursive constructions (5) and
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(6), taking care to reduce the output alphabet size of each in-
termediate channel from at most 2µ2 (apart possibly from the
underlying channel W) to at most µ.

Algorithm A: Bit-channel degrading procedure
input : An underlying BMS channel W, a bound µ = 2ν on the

output alphabet size, a code length n = 2m, an index i
with binary representation i = 〈b1, b2, . . . , bm〉2.

output : A BMS channel that is degraded with respect to the bit
channelWi.

Q ← degrading_merge(W, µ)
for j = 1, 2, . . . , m do

if bj = 0 then
W ← Q�Q

else
W ← Q�Q
Q ← degrading_merge(W , µ)

return Q

Algorithm B: Bit-channel upgrading procedure
input : An underlying BMS channel W, a bound µ = 2ν on the

output alphabet size, a code length n = 2m, an index i
with binary representation i = 〈b1, b2, . . . , bm〉2.

output : A BMS channel that is upgraded with respect to the bit
channelWi.

Q′ ← upgrading_merge(W, µ)
for j = 1, 2, . . . , m do

if bj = 0 then
W ← Q′ �Q′

else
W ← Q′ �Q′
Q′ ← upgrading_merge(W , µ)

return Q′

The key to proving the correctness of Algorithms A and B
is the following lemma. It is essentially a restatement of [13,
Lemma 4.7]. For completeness, we restate the proof as well.

Lemma 5: Fix a binary input channel W : X → Y , and
denote

W� =W �W , W� =W �W .

Next, let Q 4W be a degraded with respect toW , and denote

Q� = Q�Q , Q� = Q�Q .

Then,
Q� 4W� and Q� 4W� .

Namely, the degradation relation is preserved by the channel
transformation operation.

Moreover, all of the above continues to hold if we replace
“degraded” by “upgraded” and 4 by <.

Proof: We will prove only the “degraded” part, since it im-
plies the “upgraded” part (by interchanging the roles ofW and
Q).

Let P : Y → Z be the channel which degradesW toQ: for
all z ∈ Z and x ∈ X ,

Q(z|x) = ∑
y∈Y
W(y|x)P(z|y) . (18)

We first prove Q� 4 W�. By (5) applied to Q, we get that
for all (z1, z2) ∈ Z2 and u1 ∈ X ,

Q�((z1, z2)|u1) = ∑
u2∈X

1
2
Q(z1|u1 ⊕ u2)Q(z2|u2) .

Next, we expand Q twice according to (18), and get

Q�((z1, z2)|u1) =

∑
(y1,y2)∈Y2

∑
u2

1
2

W(y1|u1⊕u2)W(y2|u2)P(z1|y1)P(z2|y2) .

By (5), this reduces to

Q�((z1, z2)|u1) =

∑
(y1,y2)∈Y2

W�((y1, y2)|u1)P(z1|y1)P(z2|y2) . (19)

Next, define the channel P∗ : Y2 → Z2 as follows. For all
(y1, y2) ∈ Y2 and (z1, z2) ∈ Z2,

P∗((z1, z2)|(y1, y2)) = P(z1|y1)P(z2|y2) .

It is easy to prove that P∗ is indeed a channel (we get a proba-
bility distribution on Z2 for every fixed (y1, y2) ∈ Y2). Thus,
(19) reduces to

Q�((z1, z2)|u1) =

∑
(y1,y2)∈Y2

W�((y1, y2)|u1)P∗((z1, z2)|(y1, y2)) ,

and we get by (7) that Q� 4 W�. The claim Q� 4 W� is
proved in much the same way.

Proposition 6: The output of Algorithm A (Algorithm B)
is a BMS channel that is degraded (upgraded) with respect to
W (m)

i .
Proof: The proof follows easily from Lemma 5, by induc-

tion on j.
Recall that, ideally, a polar code is constructed as follows.

We are given an underlying channel W : X → Y , a spec-
ified codeword length n = 2m, and a target block error rate
eBlock. We choose the largest possible subset of bit-channelsWi
such that the sum of their probabilities of error Pe(Wi) is not
greater than eBlock. The resulting code is spanned by the rows
in BnG⊗m corresponding to the subset of chosen bit-channels.
Denote the rate of this code as Rexact.

Since we have no computational handle on the bit channels
Wi, we must resort to approximations. Let Qi be the result of
running Algorithm A on W and i. Since Qi 4 Wi, we have
by (15) that Pe(Qi) > Pe(Wi). Note that since the output al-
phabet of Qi is small (at most µ), we can actually compute
Pe(Qi). We now mimic the ideal construction by choosing the
largest possible subset of indices for which the sum of Pe(Qi)
is at most eBlock. Note that for this subset we have that the sum
of Pe(Wi) is at most eBlock as well. Thus, the code spanned by
the corresponding rows of BnG⊗m is assured to have block error
probability of at most eBlock.

Denote the rate of this code by Rdegraded. It is easy to see that
Rdegraded 6 Rexact. In order to gauge the difference between
the two rates, we compute a third rate, Rupgraded, such that
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Rupgraded > Rexact and consider the difference Rupgraded −
Rdegraded. The rate Rupgraded is computed the same way that
Rdegraded is, but instead of using Algorithm A we use Algo-
rithm B. Recall from Figure 2 that Rdegraded and Rupgraded are
typically very close.

We end this section by noting a point that will be needed
in the proof of Theorem 14 below. Consider the running time
needed in order to approximate all n bit channels. Assume that
each invocation of either degrading_merge or upgrading_merge
takes time τ = τ(µ). Thus, the time needed for approximating
a single bit channel using either Algorithm A or Algorithm B is
O(mτ). A naive analysis suggests that the time needed in or-
der to approximate all n bit-channels is O(n · mτ). However,
significant savings can be gained by noticing that intermediate
calculations can be shared between bit-channels. For example,
in a naive implementation we would approximate W � W over
and over again, n/2 times instead of only once. A quick calcu-
lation shows that the number of distinct channels one needs to
approximate is 2n− 1− 1. That is, following both branches of
the “if” statement of (without loss of generality) Algorithm A
would produce 2j channels for each level 1 6 j 6 m. Thus, the
total running time can be reduced to O((2n− 2) · τ), which is
simply O(n · τ).

V. MERGING FUNCTIONS

In this section, we specify the degrading and upgrading func-
tions used to reduce the output alphabet size. These functions
are referred to as degrading_merge and upgrading_merge
in Algorithms A and B, respectively. For now, let us treat our
functions as heuristic (delaying their analysis to Section VIII).

A. Degrading-merge function

We first note that the problem of degrading a binary-input
channel to a channel with a prescribed output alphabet size was
independently considered by Kurkoski and Yagi [15]. The main
result in [15] is an optimal degrading strategy, in the sense that
the capacity of the resulting channel is the largest possible. In
this respect, the method we now introduce is sub-optimal. How-
ever, as we will show, the complexity of our method is superior
to that presented in [15].

The next lemma shows how one can reduce the output alpha-
bet size by 2, and get a degraded channel. It is our first step
towards defining a valid degrading_merge function.

Lemma 7: Let W : X → Y be a BMS channel, and let y1
and y2 be symbols in the output alphabet Y . Define the channel
Q : X → Z as follows (see Figure 4(a)). The output alphabet
Z is given by

Z = Y \ {y1, ȳ1, y2, ȳ2} ∪ {z1,2, z̄1,2} .

For all x ∈ X and z ∈ Z , define

Q(z|x) =





W(z|x) if z 6∈ {z1,2, z̄1,2},
W(y1|x) +W(y2|x) if z = z1,2,
W(ȳ1|x) +W(ȳ2|x) if z = z̄1,2.

Then Q 4W . That is, Q is degraded with respect toW .

Proof: Take the intermediate channel P : Y → Z as
the channel that maps with probability 1 as follows (see Fig-
ure 4(b)): both y1 and y2 map to z1,2, both ȳ1 and ȳ2 map to
z̄1,2, other symbols map to themselves. Recall that we have as-
sumed that W does not contain an erasure symbol, and this
continues to hold for Q.

We now define the degrading_merge function we have
used. It gives good results in practice and is amenable to a fast
implementation. Assume we are given a BMS channel W :
X → Y with an alphabet size of 2L (recall our assumption of
no self-conjugates), and wish to transform W into a degraded
version of itself while reducing its alphabet size to µ. If 2L 6 µ,
then we are done, since we can take the degraded version ofW
to beW itself. Otherwise, we do the following. Recall that for
each y we have that LR(y) = 1/LR(ȳ), where in this context
1/0 = ∞ and 1/∞ = 0. Thus, our first step is to choose from
each pair (y, ȳ) a representative such that LR(y) > 1. Next, we
order these L representative such that

1 6 LR(y1) 6 LR(y2) 6 · · · 6 LR(yL) . (20)

We now ask the following: for which index 1 6 i 6 L − 1
does the channel resulting from the application of Lemma 7 to
W , yi, and yi+1 result in a channel with largest capacity? Note
that instead of considering (L

2) merges, we consider only L− 1.
After finding the maximizing index i we indeed apply Lemma 7
and get a degraded channel Q with an alphabet size smaller by
2 than that of W . The same process is applied to Q, until the
output alphabet size is not more than µ.

In light of Lemma 7 and (20), a simple yet important point to
note is that if yi and yi+1 are merged to z, then

LR(yi) 6 LR(z) 6 LR(yi+1) . (21)

Namely, the original LR ordering is essentially preserved by the
merging operation. Algorithm C contains an implementation of
our merging procedure. It relies on the above observation in or-
der to improve complexity and runs in O(L · log L) time. Thus,
assuming L is at most 2µ2, the running time of our algorithm
is O(µ2 log µ). In contrast, had we used the degrading method
presented in [15], the running time would have been O(µ5).

Our implementation assumes an underlying data structure
and data elements as follows. Our data structure stores data
elements, where each data element corresponds to a pair of ad-
jacent letters yi and yi+1, in the sense of the ordering in (20).
Each data element has the following fields:

a , b , a′ , b′ , deltaI , dLeft , dRight , h .

The fields a, b, a′, and b′ store the probabilitiesW(yi|0),W(ȳi|0),
W(yi+1|0), andW(ȳi+1|0), respectively. The field deltaI con-
tains the difference in capacity that would result from applying
Lemma 7 to yi and yi+1. Note that deltaI is only a function of
the above four probabilities, and thus the function calcDeltaI
used to initialize this field is given by

calcDeltaI(a, b, a′, b′) = C(a, b)+C(a′, b′)−C(a+, b+) ,

where

C(a, b) = −(a+ b) log2((a+ b)/2)+ a log2(a)+ b log2(b) ,
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W:

Q:

a1

b1a1

b1 a2

b2a2

b2

ȳ1 y1ȳ2 y2

a1+a2
b1+b2a1+a2

b1+b2

z̄1,2 z1,2

(a)

1

1

1

1

z1,2

z̄1,2

y1

y2

ȳ1

ȳ2

P
(b)

Fig. 4. DegradingW to Q. (a) The degrading merge operation: the entry in the first/second row of a channel is the probability of receiving the corresponding
symbol, given that a 0/1 was transmitted. (b) The intermediate channel P .

Algorithm C: The degrading_merge function
input : A BMS channelW : X → Y where |Y| = 2L, a bound

µ = 2ν on the output alphabet size.
output : A degraded channel Q : X → Y ′, where |Y ′| 6 µ.
// Assume 1 6 LR(y1) 6 LR(y2) 6 · · · 6 LR(yL)
for i = 1, 2, . . . , L− 1 do

d← new data element
d.a←W(yi|0) , d.b←W(ȳi|0)
d.a′ ←W(yi+1|0) , d.b′ ←W(ȳi+1|0)
d.deltaI← calcDeltaI(d.a, d.b, d.a′, d.b′)
insertRightmost(d)

` = L
while ` > ν do

d← getMin()
a+ = d.a + d.a′ , b+ = d.b + d.b′
dLeft← d.left
dRight← d.right
removeMin()
`← `− 1
if dLeft 6= null then

dLeft.a′ = a+
dLeft.b′ = b+
dLeft.deltaI← calcDeltaI(dLeft.a, dLeft.b, a+, b+)
valueUpdated(dLeft)

if dRight 6= null then
dRight.a = a+
dRight.b = b+
dRight.deltaI←
calcDeltaI(a+, b+, dRight.a′, dRight.b′)
valueUpdated(dRight)

Construct Q according to the probabilities in the data structure
and return it.

we use the shorthand

a+ = a + a′ , b+ = b + b′ ,

and 0 log2 0 is defined as 0. The field dLeft is a pointer to the
data element corresponding to the pair yi−1 and yi (or “null”,
if i = 1). Likewise, dRight is a pointer to the element corre-
sponding to the pair yi+1 and yi+2 (see Figure 5 for a graphical
depiction). Apart from these, each data element contains an in-
teger field h, which will be discussed shortly.

Before the merge of yi and yi+1:

. . .↔
dLeft︷ ︸︸ ︷

(yi−1, yi)↔ (yi, yi+1)︸ ︷︷ ︸
merged to z

↔
dRight︷ ︸︸ ︷

(yi+1, yi+2)↔ . . .

After the merge, a new symbol z:

. . .↔ (yi−1, z)↔ (z, yi+2)↔ . . .

Fig. 5. Graphical depiction of the doubly-linked-list before and after a merge.

We now discuss the functions that are the interface to our data
structure: insertRightmost, getMin, removeMin, and
valueUpdated. Our data structure combines the attributes
of a doubly-linked-list [7, Section 10.2] and a heap3 [7, Chapter
6]. The doubly-linked list is implemented through the dLeft and
dRight fields of each data element, as well as a pointer to the
rightmost element of the list. Our heap will have the “array” im-
plementation, as described in [7, Section 6.1]. Thus, each data
element will have a corresponding index in the heap array, and
this index is stored in the field h. The doubly-linked-list will
be ordered according to the corresponding LR value, while the
heap will be sorted according to the deltaI field.

The function insertRightmost inserts a data element
as the rightmost element of the list and updates the heap ac-
cordingly. The function getMin returns the data element with
smallest deltaI. Namely, the data element corresponding to the
pair of symbols we are about to merge. The function removeMin
removes the element returned by getMin from both the linked-
list and the heap. The function valueUpdated updates the
heap due to a change in deltaI resulting from a merge, but does
not change the linked list in view of (21).

The running time of getMin is O(1), and this is obviously
also the case for calcDeltaI. Due to the need of updating
the heap, the running time of removeMin, valueUpdated,

3In short, a heap is a data structure that supports four operations: “insert”,
“getMin”, “removeMin”, and “valueUpdated”. In our implementation, the run-
ning time of “getMin” is constant, while the running time of the other operations
is logarithmic in the heap size.
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and insertRightmost is O(log L). The time needed for
the initial sort of the LR pairs is O(L · log L). Hence, since
the initializing for-loop in Algorithm C has L iterations and the
while-loop has L− ν iterations, the total running time of Algo-
rithm C is O(L · log L).

Note that at first sight, it may seem as though there might
be an even better heuristic to employ. As before, assume that
the yi are ordered according to their likelihood ratios, and all
of these are at least 1. Instead of limiting the application of
Lemma 7 to yi and yi+1, we can broaden our search and con-
sider the penalty in capacity incurred by merging arbitrary yi
and yj, where i 6= j. Indeed, we could further consider merg-
ing arbitrary yi and ȳj, where i 6= j. Clearly, this broader search
will result in worse complexity. However, as the next theorem
shows, we will essentially gain nothing by it.

Theorem 8: LetW : X → Y be a BMS channel, with

Y = {y1, y2, . . . , yL, ȳ1, ȳ2, . . . , ȳL} .

Assume that

1 6 LR(y1) 6 LR(y2) 6 · · · 6 LR(yL) .

For symbols w1, w2 ∈ Y , denote by I(w1, w2) the capacity of
the channel one gets by the application of Lemma 7 to w1 and
w2. Then, for all distinct 1 6 i 6 L and 1 6 j 6 L,

I(ȳi, ȳj) = I(yi, yj) > I(yi, ȳj) = I(ȳi, yj) . (22)

Moreover, for all 1 6 i < j < k 6 L we have that either

I(yi, yj) > I(yi, yk) ,

or
I(yj, yk) > I(yi, yk) .

We note that Theorem 8 seems very much related to [15,
Lemma 5]. However, one important difference is that Theo-
rem 8 deals with the case in which the degraded channel is
constrained to be symmetric, while [15, Lemma 5] does not.
At any rate, for completeness, we will prove Theorem 8 in Ap-
pendix A.

B. Upgrading-merge functions

The fact that one can merge symbol pairs and get a degraded
version of the original channel should come as no surprise. How-
ever, it turns out that we can also merge symbol pairs and get
an upgraded version of the original channel. We first show a
simple method of doing this. Later on, we will show a slightly
more complex method, and compare between the two.

As in the degrading case, we show how to reduce the out-
put alphabet size by 2, and then apply this method repeatedly
as much as needed. The following lemma shows how the core
reduction can be carried out. The intuition behind it is simple.
Namely, now we “promote” a pair of output symbols to have a
higher LR value, and then merge with an existing pair having
that LR.

Lemma 9: Let W : X → Y be a BMS channel, and let
y2 and y1 be symbols in the output alphabet Y . Denote λ2 =
LR(y2) and λ1 = LR(y1). Assume that

1 6 λ1 6 λ2 . (23)

Next, let a1 = W(y1|0) and b1 = W(ȳ1|0). Define α2 and β2
as follows. If λ2 < ∞

α2 = λ2
a1 + b1

λ2 + 1
β2 =

a1 + b1

λ2 + 1
. (24)

Otherwise, we have λ2 = ∞, and so define

α2 = a1 + b1 β2 = 0 . (25)

We note that the subscript “2” in α2 and β2 is meant to suggest
a connection to λ2, since α2/β2 = λ2.

For real numbers α, β, and x ∈ X , define

t(α, β|x) =
{

α if x = 0,
β if x = 1.

Define the channel Q′ : X → Z ′ as follows (see Figure 6(a)).
The output alphabet Z ′ is given by

Z ′ = Y \ {y2, ȳ2, y1, ȳ1} ∪ {z2, z̄2} .

For all x ∈ X and z ∈ Z ′,

Q′(z|x) =





W(z|x) if z 6∈ {z2, z̄2},
W(y2|x) + t(α2, β2|x) if z = z2,
W(ȳ2|x) + t(β2, α2|x) if z = z̄2.

Then Q′ <W . That is, Q′ is upgraded with respect toW .
Proof: Denote a2 = W(y2|0) and b2 = W(ȳ2|0). First,

note that
a1 + b1 = α2 + β2 .

Next, let γ be defined as follows. If λ2 > 1, let

γ =
a1 − β2

α2 − β2
=

b1 − α2

β2 − α2
,

and note that (23) implies that 0 6 γ 6 1. Otherwise (λ1 =
λ2 = 1), let

γ = 1 .

Define the intermediate channel P : Z ′ → Y as follows.

P(y|z) =





1 if z 6∈ {z2, z̄2} and y = z,
α2γ

a2+α2
if (z, y) ∈ {(z2, y1), (z̄2, ȳ1)},

a2
a2+α2

if (z, y) ∈ {(z2, y2), (z̄2, ȳ2)},
α2(1−γ)

a2+α2
if (z, y) ∈ {(z2, ȳ1), (z̄2, y1)},

0 otherwise.

Notice that when λ2 < ∞, we have that

a2

a2 + α2
=

b2

b2 + β2
and

α2

a2 + α2
=

β2

b2 + β2
.

Some simple calculations finish the proof.
The following corollary shows that we do not “lose anything”

when applying Lemma 9 to symbols y1 and y2 such that LR(y1) =
LR(y2). Thus, intuitively, we do not expect to lose much when
applying Lemma 9 to symbols with “close” LR values.

Corollary 10: Let W , Q′, y1, and y2 be as in Lemma 9.
If LR(y1) = LR(y2), then Q′ ≡ W . That is, W and Q′
are equivalent. Moreover, all of the above holds if we replace
“Lemma 9” by “Lemma 7”.
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W:

Q′:

a1

b1a1

b1 a2

b2a2

b2

ȳ1 y1ȳ2 y2

a2+α2
b2+β2a2+α2

b2+β2

z̄2 z2

a2

b2
≥ a1

b1
α2

β2
=

a2

b2

α2+β2 = a1 + b1

(a)

p2

p2

p1

p1

p3

p3

z2

z̄2

y2

y1

ȳ2

ȳ1

P

γ =
a1 − β2

α2 − β2

p1 =
α2γ

a2 + α2

p2 =
a2

a2 + α2

p3 =
α2(1− γ)

a2 + α2

(b)

Fig. 6. First method of UpgradingW to Q′. (a) The upgrading merge operation. (b) The intermediate channel P .

Proof: The proof follows by noticing that the channel Q′
we get by applying Lemma 9 to W , y1, and y2, is exactly the
same channel we get if we apply Lemma 7 instead. Thus, we
have both Q′ <W and Q′ 4W .

In Lemma 9, we have essentially transferred the probabil-
ityW(y1|0) +W(ȳ1|0) onto a symbol pair with a higher LR
value. We now show a different method of merging that in-
volves dividing the probability W(y1|0) +W(ȳ1|0) between
a symbol pair with higher LR value and a symbol pair with
lower LR value. As we will prove latter on, this new approach
is generally preferable.

Lemma 11: LetW : X → Y be a BMS channel, and let y1,
y2, and y3 be symbols in the output alphabet Y . Denote λ1 =
LR(y1), λ2 = LR(y2), and λ3 = LR(y3). Assume that

1 6 λ1 < λ2 < λ3 .

Next, let a2 =W(y2|0) and b2 =W(ȳ2|0). Define α1, β1, α3,
β3 as follows. If λ3 < ∞

α1 = λ1
λ3b2 − a2

λ3 − λ1
β1 =

λ3b2 − a2

λ3 − λ1
, (26)

α3 = λ3
a2 − λ1b2

λ3 − λ1
β3 =

a2 − λ1b2

λ3 − λ1
. (27)

Otherwise, we have λ3 = ∞, and so define

α1 = λ1b2 β1 = b2 , (28)
α3 = a2 − λ1b2 β3 = 0 . (29)

Let t(α, β|x) be as in Lemma 9, and define the BMS channel
Q′ : X → Z ′ as follows (see Figure 7(a)). The output alphabet
Z ′ is given by

Z ′ = Y \ {y1, ȳ1, y2, ȳ2, y3, ȳ3} ∪ {z1, z̄1, z3, z̄3} .

For all x ∈ X and z ∈ Z ′, define

Q′(z|x) =





W(z|x) if z 6∈ {z1, z̄1, z3, z̄3},
W(y1|x) + t(α1, β1|x) if z = z1,
W(ȳ1|x) + t(β1, α1|x) if z = z̄1,
W(y3|x) + t(α3, β3|x) if z = z3,
W(ȳ3|x) + t(β3, α3|x) if z = z̄3.

Then Q′ <W . That is, Q′ is upgraded with respect toW .

Proof: Denote a1 = W(y1|0), b1 = W(ȳ1|0), a3 =
W(y3|0), and b3 =W(ȳ3|0). Define the intermediate channel
P : Z ′ → Y as follows.

P(y|z) =





1 if z 6∈ {z3, z̄3, z1, z̄1} and y = z,
a1

a1+α1
= b1

b1+β1
if (z, y) ∈ {(z1, y1), (z̄1, ȳ1)},

α1
a1+α1

= β1
b1+β1

if (z, y) ∈ {(z1, y2), (z̄1, ȳ2)},
a3

a3+α3
if (z, y) ∈ {(z3, y3), (z̄3, ȳ3)},

α3
a3+α3

if (z, y) ∈ {(z3, y2), (z̄3, ȳ2)},
0 otherwise.

Notice that when λ3 < ∞, we have that

a3

a3 + α3
=

b3

b3 + β3
and

α3

a3 + α3
=

β3

b3 + β3
.

The proof follows by observing that, whatever the value of λ3,

α1 + α3 = a2 and β1 + β3 = b2 .

The following lemma formalizes why Lemma 11 results in a
merging operation that is better than that of Lemma 9.

Lemma 12: Let W , y1, y2, and y3 be as in Lemma 11. De-
note by Q′123 : X → Z ′123 the result of applying Lemma 11 to
W , y1, y2, and y3. Next, denote by Q′23 : X → Z ′23 the result
of applying Lemma 9 toW , y2, and y3. Then Q′23 < Q′123 <
W . Namely, in a sense, Q′123 is a more faithful representation
ofW than Q′23 is.

Proof: Recall that the two alphabets Z ′123 and Z ′23 satisfy

Z ′123 = {z1, z̄1, z3, z̄3} ∪ A ,
Z ′23 = {y1, ȳ1, z3, z̄3} ∪ A ,

where
A = Y \ {y1, ȳ1, y2, ȳ2, y3, ȳ3}

is the set of symbols not participating in either merge operation.
In order to prove that Q′123 is degraded with respect to Q′23,

we must supply a corresponding intermediate channelP : Z ′23 →
Z ′123. To this end, let

λ3 =
Q′123(z3|0)
Q′123(z3|1)

=
Q′23(z3|0)
Q′23(z3|1)

=
W(y3|0)
W(y3|1)

and

γ =
Q′123(z3|0)
Q′23(z3|0)

=
Q′123(z̄3|1)
Q′23(z̄3|1)

.



IEEE TRANSACTIONS ON INFORMATION THEORY: submitted for publication 11

W:

Q′:

a1

b1a1

b1 a2

b2a2

b2 a3

b3a3

b3

ȳ1 y1ȳ2 y2ȳ3 y3

a1+α1
b1+β1a1+α1

b1+β1

z̄1 z1

a3+α3
b3+β3a3+α3

b3+β3

z̄3 z3

a1

b1
<

a2

b2
<

a3

b3

α1

β1
=

a1

b1
α3

β3
=

a3

b3

α1+α3 = a2

β1+β3 = b2

(a)

p3

p3

q3

q3

q1

q1

p1

p1

z3

z̄3

z1

z̄1

y3

y2

y1

ȳ3

ȳ2

ȳ1

P

p1 =
a1

a1 + α1

q1 =
α1

a1 + α1

p3 =
a3

a3 + α3

q3 =
α3

a3 + α3

(b)

Fig. 7. Second method of UpgradingW to Q′. (a) The upgrading merge operation. (b) The intermediate channel P .

Note that in both Lemma 11 and 9 we have that α3/β3 = λ3.
Next, we recall that in Lemma 9 we have that α3 + β3 = a2 +
b2 whereas in Lemma 11 we have α3 + β3 = a2 + b2 − α1 −
β1. Thus, we conclude that 0 6 γ 6 1. Moreover, since 0 6
γ 6 1, we conclude that the following definition of an interme-
diate channel is indeed valid.

P(z123|z23) =



1 if z123 = z23 and z123 ∈ A,
1 if (z23, z123) ∈ {(y1, z1), (ȳ1, z̄1)},
γ if (z23, z123) ∈ {(z3, z3), (z̄3, z̄3)},
(1−γ)λ1

λ1+1 if (z23, z123) ∈ {(z3, z1), (z̄3, z̄1)},
(1−γ)
λ1+1 if (z23, z123) ∈ {(z3, z̄1), (z̄3, z1)},

0 otherwise.

A short calculation shows thatP is indeed an intermediate chan-
nel that degrades Q′23 to Q′123.

At this point, the reader may be wondering why we have cho-
sen to state Lemma 9 at all. Namely, it is clear what disadvan-
tages it has with respect to Lemma 11, but we have yet to in-
dicate any advantages. Recalling the conditions of Lemma 11,
we see that it can not be employed when the set {λ1, λ2, λ3}
contains non-unique elements. In fact, more is true. Ultimately,
when one wants to implement the algorithms outlined in this
paper, one will most probably use floating point numbers. Re-
call that a major source of numerical instability stems from sub-
tracting two floating point numbers that are too close. By con-
sidering the denominator in (26) and (27) we see that λ1 and λ3
should not be too close. Moreover, by considering the numera-
tors, we conclude that λ2 should not be too close to both λ1 and
λ3. So, when these cases do occur, our only option is Lemma 9.

We now define the merge-upgrading procedure we have used.
Apart from an initial step, it is very similar to the merge-degrading
procedure we have previously outlined. Assume we are given
a BMS channelW : X → Y with an alphabet size of 2L and
wish to reduce its alphabet size to µ, while transforming W
into a upgraded version of itself. If 2L 6 µ, then, as before,
we are done. Otherwise, as in the merge-degrading procedure,
we choose L representatives y1, y2, . . . , yL, and order them ac-
cording to their LR values, all of which are greater than or equal
to 1. We now specify the preliminary step: for some specified
parameter epsilon (we have used ε = 10−3), we check if there
exists an index 1 6 i < L such that the ratio LR(yi+1)/LR(yi)

is less than 1 + ε. If so, we apply Lemma 9 repeatedly, until no
such index exists. Now comes the main step. We ask the follow-
ing question: for which index 1 6 i 6 L− 1 does the channel
resulting from the application of Lemma 11 toW , yi, yi+1, and
yi+2 result in a channel with smallest capacity increase? After
finding the minimizing index i, we indeed apply Lemma 11 and
get an upgraded channel Q′ with an alphabet size smaller by 2
than that ofW . The same process is applied toQ′, until the out-
put alphabet size is not more than µ. As before, assuming the
output alphabet size of W is at most 2µ2, an implementation
similar to that given in Algorithm C will run in O(µ2 log µ)
time.

As was the case for degrading, the following theorem proves
that no generality is lost by only considering merging of con-
secutive triplets of the form yi, yi+1, yi+2 in the main step. The
proof is given in Appendix B.

Theorem 13: Let W : X → Y be a BMS channel. De-
note by IW the capacity ofW and by I(y1, y2, y3) the capacity
one gets by the application of Lemma 11 to W and symbols
y1, y2, y3 ∈ Y such that

1 6 LR(y1) 6 LR(y2) 6 LR(y3) .

Let LR(y1) = λ1, LR(y2) = λ2, LR(y3) = λ3, π2 =W(y2|0)+
W(y2|1), and denote the difference in capacities as

∆[λ1; λ2, π2; λ3] = I(y1, y2, y3)− IW .

Then, for all λ′1 6 λ1 and λ′3 > λ3,

∆[λ1; λ2, π2; λ3] 6 ∆[λ′1; λ2, π2; λ′3] . (30)

We end this section by considering the running time of Algo-
rithms A and B.

Theorem 14: Let an underlying BMS channel W, a fidelity
parameter µ, and codelength n = 2m be given. Assume that
the output alphabet size of the underlying channel W is at most
µ. The running time of either Algorithm A or Algorithm B
is as follows. Approximating a single bit-channel takes O(m ·
µ2 log µ) time; approximating all n bit-channels takes O(n ·
µ2 log µ) time.

Proof: Without loss of generality, we consider Algorithm A.
Recall that the output alphabet size of W is at most µ. Thus, by
induction, at the start of each loop the size of the output alpha-
bet of Q is at most µ. Therefore, at each iteration, calculating
W from Q takes O(µ2) time, since the output alphabet size
of W is at most 2µ2. Next, we have seen that each invocation
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of degrading_merge takes O(µ2 log µ) time. The number
of times we loop in Algorithm A is m. Thus, for a single bit-
channel, the total running time is O(m · µ2 log µ).

As was explained at the end of Section IV, when approximat-
ing all n bit channels, the number of distinct channels that need
to be approximated is 2n − 2. Thus, the total running time in
this case is O(n · µ2 log µ).

VI. CHANNELS WITH CONTINUOUS OUTPUT ALPHABET

Recall that in order to apply either Algorithm A or B to an
underlying BMS channel W, we had to thus far assume that W

has a finite output alphabet. In this section, we show two trans-
forms (one degrading and the other upgrading) that transform
a BMS channel with a continuous alphabet to a BMS channel
with a specified finite output alphabet size. Thus, after apply-
ing the degrading (upgrading) transform we will shortly spec-
ify to W, we will be in a position to apply Algorithm A (B) and
get a degraded (upgraded) approximation ofWi. Moreover, we
prove that both degraded and upgraded versions of our original
channels have a guaranteed closeness to the original channel, in
terms of difference of capacity.

Let W be a given BMS channel with a continuous alphabet.
We will make a few assumptions on W. First, we assume that
the output alphabet of W is the reals R. Thus, for y ∈ R, let
f (y|0) and f (y|1) be the p.d.f. functions of the output given
that the input was 0 and 1, respectively. Next, we require that
the symmetry of W manifest itself as

f (y|0) = f (−y|1) , for all y ∈ R .

Also, for notational convenience, we require that

f (y|0) > f (y|1) , for all y > 0 . (31)

Note that all of the above holds for the BAWGN channel (after
renaming the input 0 as −1).

We now introduce some notation. For y > 0, define the like-
lihood ratio of y as

λ(y) =
f (y|0)
f (y|1) . (32)

As usual, if f (y|1) is zero while f (y|0) is not, we define λ(y) =
∞. Also, if both f (y|0) and f (y|1) are zero, then we arbitrarily
define λ(y) = 1. Note that by (31), we have that λ(y) > 1.

Under these definitions, a short calculation shows that the ca-
pacity of W is

I(W) =
∫ ∞

0
( f (y|0) + f (y|1))C[λ(y)] dy ,

where for 1 6 λ < ∞

C[λ] = 1− λ

λ + 1
log2

(
1 +

1
λ

)
− 1

λ + 1
log2 (λ + 1) ,

and (for continuity) we define C[∞] = 1.
Let µ = 2ν be the specified size of the degraded/upgraded

channel output alphabet. An important property of C[λ] is that
it is strictly increasing in λ for λ > 1. This property is easily
proved, and will now be used to show that the following sets

form a partition of the non-negative reals. For 1 6 i 6 ν− 1,
let

Ai =

{
y > 0 :

i− 1
ν
6 C[λ(y)] <

i
ν

}
. (33)

For i = ν we similarly define (changing the second inequality
to a weak inequality)

Aν =

{
y > 0 :

ν− 1
ν
6 C[λ(y)] 6 1

}
. (34)

As we will see later on, we must assume that the sets Ai are
sufficiently “nice”. This will indeed be the case of for BAWGN
channel.

A. Degrading transform

Essentially, our degrading procedure will consist of ν appli-
cations of the continuous analog of Lemma 7. Denote by Q :
X → Z the degraded approximation of W we are going to
produce, where

Z = {z1, z̄1, z2, z̄2, . . . , zν, z̄ν} .

We define Q as follows.

Q(zi|0) = Q(z̄i|1) =
∫

Ai

f (y|0) dy , (35)

Q(z̄i|0) = Q(zi|1) =
∫

Ai

f (−y|0) dy . (36)

Lemma 15: The channel Q : X → Z is a BMS channel
such that Q 4W.

Proof: It is readily seen thatQ is a BMS channel. To prove
Q 4W, we now supply intermediate channel P : R→ Z .

P(z|y) =





1 if z = zi and y ∈ Ai ,
1 if z = z̄i and −y ∈ Ai ,
0 otherwise .

The following lemma bounds the loss in capacity incurred by
the degrading operation.

Lemma 16: The difference in capacities of Q and W can be
bounded as follows,

0 6 I(W)− I(Q) 6 1
ν
=

2
µ

. (37)

Proof: The first inequality in (37) is a consequence of the
degrading relation and (17). We now turn our attention to the
second inequality.

Recall that since the Ai partition the non-negative reals, the
capacity of W equals

I(W) =
ν

∑
i=1

∫

Ai

( f (y|0) + f (y|1))C[λ(y)]dy . (38)

As for Q, we start by defining for 1 6 i 6 ν the ratio

θi =
Q(zi|0)
Q(zi|1)

,
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where the cases of the numerator and/or denominator equaling
zero are as in the definition of λ(y). By this definition, similarly
to the continuous case, the capacity of Q is equal to

I(Q) =
ν

∑
i=1

(Q(zi|0) +Q(zi|1))C[θi] . (39)

Recall that by the definition of Ai in (33) and (34), we have
that for all y ∈ Ai,

i− 1
ν
6 C[λ(y)] 6

i
ν

.

Thus, by the definition ofQ(zi|0) andQ(zi|1) in (35) and (36),
respectively, we must have by the strict monotonicity of C that

i− 1
ν
6 C[θi] 6

i
ν

, if Q(zi|0) > 0 .

Thus, for all y ∈ Ai,

|C[θi]− C[λ(y)]| 6 1
ν

, if Q(zi|0) > 0 .

Next, note that Q(zi|0) > 0 implies Q(zi|0) +Q(zi|1) > 0.
Thus, we may bound I(Q) as follows,

I(Q) =
ν

∑
i=1

(Q(zi|0) +Q(zi|1))C[θi] =

ν

∑
i=1

∫

Ai

( f (y|0) + f (y|1))C[θi]dy >

ν

∑
i=1

∫

Ai

( f (y|0) + f (y|1))
(

C[λ(y)]− 1
ν

)
dy =

(
ν

∑
i=1

∫

Ai

( f (y|0) + f (y|1))C[λ(y)]dy

)
− 1

ν
= I(W)− 1

ν
,

which proves the second inequality.

B. Upgrading transform

In parallel with the degrading case, our upgrading procedure
will essentially consist of ν applications of the continuous ana-
log of Lemma 9. Denote by Q′ : X → Z ′ the upgraded ap-
proximation of W we are going to produce, where

Z ′ = {z1, z̄1, z2, z̄2, . . . , zν, z̄ν} .

As before, we will show that the loss in capacity due to the up-
grading operation is at most 1/ν.

Let us now redefine the ratio θi. Recalling that the function
C[λ] is strictly increasing in λ > 1, we deduce that it has an
inverse in that range. Thus, for 1 6 i 6 ν, we define θi > 1 as
follows,

θi = C−1
[

i
ν

]
. (40)

Note that for i = ν, we have that θν = ∞. Also, note that for
y ∈ Ai we have by (33) and (34) that

1 6 λ(y) 6 θi . (41)

We now define Q′. For 1 6 i 6 ν, let,

πi =
∫

Ai

(
f (α|0) + f (−α|0)

)
dα . (42)

Then,

Q′(z|0) =





θiπi
θi+1 if z = zi and θi 6= ∞ ,

πi
θi+1 if z = z̄i and θi 6= ∞ ,
πi if z = zi and θi = ∞ ,
0 if z = z̄i and θi = ∞ ,

(43)

and

Q′(zi|1) = Q′(z̄i|0) , Q′(z̄i|1) = Q′(zi|0) . (44)

Lemma 17: The channel Q′ : X → Z ′ is a BMS channel
such that Q′ <W.

Proof: As before, the proof that Q′ is a BMS channel is
easy. To show that Q′ < W, we must supply the intermediate
channel P . The proof follows easily if we define P : Z ′ → R

as the cascade of two channels, P1 : Z ′ → R and P2 : R →
R.

The channel P1 : Z ′ → R is essentially a renaming channel.
Denote by g(α|z) the p.d.f. of the output of P1 given that the
input was z. Then, for 1 6 i 6 ν,

g(α|z) =



f (α|0)+ f (−α|0)
πi

if z = zi and α ∈ Ai ,
f (α|0)+ f (−α|0)

πi
if z = z̄i and −α ∈ Ai ,

0 otherwise .

(45)

Note that by (42), the function g(α|z) is indeed a p.d.f. for ev-
ery fixed value of z ∈ Z ′.

Next, we turn to P2 : R→ R, the LR reducing channel. Let
α ∈ Ai and recall the definition of λ(y) given in (32). Define
the quantity pα as follows,

pα =





θi−λ(α)
(λ(α)+1)(θi−1) if 1 < θi < ∞ ,
1
2 if θi = 1 ,

1
λ(α)+1 if θi = ∞ and λ(α) < ∞ ,

0 if λ(α) = ∞ .

(46)

By (41) with α in place of y we deduce that 0 6 pα 6 1/2. We
define the channel P2 : R→ R as follows. For y > 0,

P2(y|α) =
{

1− pα if y = α ,
pα if y = −α ,

(47)

and
P2(−y| − α) = P2(y|α) .

Consider the random variable Y, which is defined as the output
of the concatenation of channelsQ′, P1, and P2, given that the
input to Q′ was 0. We must show that the p.d.f. of Y is f (y|0).
To do this, we consider the limit

lim
ε→0

Prob(y 6 Y 6 y + ε)

ε
.

Consider first a y such that y ∈ Ai, and assume further that ε is
small enough so that the whole interval between y and y + ε is
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in Ai. In this case, the above can be expanded to

lim
ε→0

1
ε

[
Q′(zi|0) ·

∫ y+ε

y
g(α|zi)(1− pα) dα

+Q′(z̄i|0) ·
∫ −y

−y−ε
g(α|z̄i)p−α dα

]
.

Assuming that the two integrands are indeed integrable, this re-
duces to

Q′(zi|0) · g(y|zi)(1− py) +Q′(z̄i|0) · g(−y|z̄i)py .

From here, simple calculations indeed reduce the above to f (y|0).
The other cases are similar.

As in the degrading case, we can bound the loss in capacity
incurred by the upgrading operation.

Lemma 18: The difference in capacities ofQ′ and W can be
bounded as follows,

0 6 I(Q′)− I(W) 6
1
ν
=

2
µ

. (48)

Proof: The first inequality in (48) is a consequence of the
upgrading relation and (17). We now turn our attention to the
second inequality.

For all y ∈ Ai, by (33), (34) and (40), we have that

C[θi]− C[λ(y)] 6
1
ν

, if Q′(zi|0) > 0 .

Next, notice that by (43),

θi =
Q′(zi|0)
Q′(zi|1)

, if Q′(zi|0) > 0 .

As in the degrading case, we have that Q′(zi|0) > 0 im-
plies Q′(zi|0) +Q′(zi|1) > 0. Thus, we may bound I(Q′) as
follows,

I(Q′) =
ν

∑
i=1

(
Q′(zi|0) +Q′(zi|1)

)
C[θi] =

ν

∑
i=1

∫

Ai

( f (y|0) + f (y|1))C[θi]dy 6

ν

∑
i=1

∫

Ai

( f (y|0) + f (y|1))
(

C[λ(y)] +
1
ν

)
dy =

(
ν

∑
i=1

∫

Ai

( f (y|0) + f (y|1))C[λ(y)]dy

)
+

1
ν
= I(W)+

1
ν

,

which proves the second inequality.

VII. VARIATIONS OF OUR ALGORITHMS

As one might expect, Algorithms A and B can be tweaked
and modified. As an example, we now show an improvement to
Algorithm A for a specific case. As we will see in Section VIII,
this improvement is key to proving Theorem 1. Also, it turns out
that Algorithm A is compatible with the result by Guruswami
and Xia [11], in the following sense: if we were to use algorithm
Algorithm A with the same n and µ dictated by [11], then we
would be guaranteed a resulting code with parameters as least
as good as those promised by [11].

Recall our description of how to construct a polar code given
at the end of Section IV: obtain a degraded approximation of

each bit channel through the use of Algorithm A, and then se-
lect the k best channels when ordered according to the upper
bound on the probability of error. Note that Algorithm A returns
a channel, but in this case only one attribute of that channel in-
terests us, namely, the probability of error. In this section, we
show how to specialize Algorithm A accordingly and benefit.

The specialized algorithm is given as Algorithm D. We note
that the plots in this paper having to do with an upper bound
on the probability of error were produced by running this al-
gorithm. The key observation follows from Equations (26) and
(27) in [3], which we now restate. Recall that Z(W) is the Bhat-
tacharyya parameter of the channelW . Then,

Z(W �W) 6 2Z(W)− Z(W)2 (49)
Z(W �W) = Z(W)2 (50)

Algorithm D: An upper bound on the error probability
input : An underlying BMS channel W, a bound µ = 2ν on the

output alphabet size, a code length n = 2m, an index i
with binary representation i = 〈b1, b2, . . . , bm〉2.

output : An upper bound on Pe(Wi).
1 Z← Z(W)
2 Q ← degrading_merge(W, µ)
3 for j = 1, 2, . . . , m do
4 if bj = 0 then
5 W ← Q�Q
6 Z← min{Z(W), 2Z− Z2}
7 else
8 W ← Q�Q
9 Z← Z2

10 Q ← degrading_merge(W , µ)

11 return min{Pe(Q), Z}

Theorem 19: Let a codeword length n = 2m, an index 0 6
i < n, an underlying channel W, and a fidelity parameter µ =
2ν be given. Denote by p̂A and p̂D the outputs of Algorithms A
and D, respectively. Then,

p̂A > p̂D > Pe(Wi) .

That is, the bound produced by Algorithm D is always as least
as good as that produced by Algorithm A.

Proof: Denote by W (j) the channel we are trying to ap-
proximate during iteration j. That is, we start withW (0) = W.
Then, iterativelyW (j+1) is gotten by transformingW (j) using
either � or �, according to the value of bj. Ultimately, we have
W (m), which is simply the bit-channelWi.

The heart of the proof is to show that after iteration j has
completed (just after line 10 has executed), the variable Z is
such that

Z(W (j)) 6 Z 6 1 .

The proof is by induction. For the basis, note that before the
first iteration starts (just after line 2 has executed), we have Z =
Z(W (0)). For the induction step, first note that 2Z− Z2 is both
an increasing function of Z and is between 0 and 1, when 0 6
Z 6 1. Obviously, this is also true for Z2. Now, note that at the
end of iteration j we have that the variableW is degraded with
respect to W (j). Recalling (16), (49) and (50), the induction
step is proved.
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Algorithm A Algorithm D Algorithm B
µ = 8 5.096030e-03 1.139075e-04 1.601266e-11

µ = 16 6.926762e-05 2.695836e-05 4.296030e-08
µ = 64 1.808362e-06 1.801289e-06 7.362648e-07
µ = 128 1.142843e-06 1.142151e-06 8.943154e-07
µ = 256 1.023423e-06 1.023423e-06 9.382042e-07
µ = 512 9.999497e-07 9.417541e-07

TABLE I
UPPER AND LOWER BOUNDS ON PW,n(k) FOR W = BSC(0.11),

CODEWORD LENGTH n = 220 , AND RATE k/n = 445340/220 = 0.42471.

We end this section by referring to Table I. In the table, we
fix the underlying channel, the codeword length, and the code
rate. Then, we compare upper and lower bounds on PW,n(k),
for various values of µ. For a given µ, the lower bound is gotten
by running Algorithm B while the two upper bounds are got-
ten by running Algorithms A and D. As can be seen, the upper
bound supplied by Algorithm D is always superior.

VIII. ANALYSIS

As we’ve seen in previous sections, we can build polar codes
by employing Algorithm D, and gauge how far we are from the
optimal construction by running Algorithm B. As can be seen
in Figure 2, our construction turns out to be essentially opti-
mal, for moderate sizes of µ. However, we are still to prove
Theorem 1, which gives analytic justification to our method of
construction. We do so in this section.

As background to Theorem 1, recall from [5] that for a po-
lar code of length n = 2m, the fraction of bit channels with
probability of error less than 2−nβ

tends to the capacity of the
underlying channel as n goes to infinity, for β < 1/2. More-
over, the constraint β < 1/2 is tight in that the fraction of such
channels is strictly less than the capacity, for β > 1/2. Thus, in
this context, the restriction on β imposed by Theorem 1 cannot
be eased.

In order to prove Theorem 1, we make use of the results of
Pedarsani, Hassani, Tal, and Telatar [19], in particular [19, The-
orem 1] given below. We also point out that many ideas used in
the proof of Theorem 1 appear — in one form or another — in
[19, Theorem 2] and its proof.

Theorem 20 (Restatement of [19, Theorem 1]): Let an under-
lying BMS channel W be given. Let n = 2m be the code length,
and denote by W (m)

i the corresponding ith bit channel, where
0 6 i < n. Next, denote by Q(m)

i (ν) the degraded approxima-
tion ofW (m)

i returned by running Algorithm A with parameters
W, µ = 2ν, i, and m. Then,

∣∣∣
{

i : I(W (m)
i )− I(Q(m)

i (ν)) >
√

m
ν

}∣∣∣
n

6

√
m
ν

.

With respect to the above, we remark the following. Recall
that in Subsection VI-A we introduced a method of degrading
a continuous channel to a discrete one with at most µ = 2ν
symbols. In fact, there is nothing special about the continuous
case: a slight modification can be used to degrade an arbitrary
discrete channel to a discrete channel with at most µ symbols.
Thus, we have an alternative to the merge-degrading method

introduced in Subsection V-A. Thus, it follows easily that The-
orem 20 and thus Theorem 1 would still hold had we used that
alternative.

We now break the proof of Theorem 1 into several lemmas.
Put simply, the first lemma states that a laxer requirement than
that in Theorem 1 on the probability of error can be met.

Lemma 21: LetQ(m)
i (ν) be as in Theorem 20. Then, for ev-

ery δ > 0 and ε > 0 there exists an m0 and a large enough
µ = 2ν such that

∣∣∣
{

i0 : Z
(
Q(m0)

i0
(ν)
)
6 δ

}∣∣∣
n0

> I(W)− ε , (51)

where
n0 = 2m0 and 0 6 i0 < n0 .

We first note that Lemma 21 has a trivial proof: By [3, The-
orem 2], we know that there exists an m0 for which (51) holds,
if Q(m0)

i0
(ν) is replaced byW (m0)

i0
. Thus, we may take µ large

enough so that the pair-merging operation defined in Lemma 7
is never executed, and so Q(m0)

i0
(ν) is in fact equal toW (m0)

i0
.

This proof — although valid — implies a value of µ which
is doubly exponential in m0. We now give an alternative proof,
which — as we have recently learned — is a precursor to the re-
sult of Guruswami and Xia [11]. Namely, we state this alterna-
tive proof since we have previously conjectured and now know
by [11] that it implies a value of m0 which is not too large.

proof of Lemma 21: For simplicity of notation, let us drop
the subscript 0 from i0, n0, and m0. Recall that by [3, The-
orem 1] we have that the capacity of bit channels polarizes.
Specifically, for each ε1 > 0 and δ1 > 0 there exists an m such
that

∣∣∣
{

i : I
(
W (m)

i

)
> 1− δ1

}∣∣∣
n

> I(W)− ε1 . (52)

We can now combine the above with Theorem 20 and deduce
that
∣∣∣
{

i : I
(
Q(m)

i (ν)
)
> 1− δ1 −

√
m
ν

}∣∣∣
n

>

I(W)− ε1 −
√

m
ν

. (53)

Next, we claim that for each δ2 > 0 and ε2 > 0 there exist
m and µ = 2ν such that

∣∣∣
{

i : I
(
Q(m)

i (ν)
)
> 1− δ2

}∣∣∣
n

> I(W)− ε2 . (54)

To see this, take ε1 = ε2/2, δ1 = δ2/2, and let m be the guar-
anteed constant such that (52) holds. Now, we can take ν big
enough so that, in the context of (53), we have that both

δ1 +

√
m
ν

< δ2

and

ε1 +

√
m
ν

< ε2 .
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By [3, Equation (2)] we have that

Z
(
Q(m)

i (ν)
)
6

√
1− I2

(
Q(m)

i (ν)
)

.

Thus, if (54) holds then
∣∣∣
{

i : Z
(
Q(m)

i (ν)
)
6
√

2δ2 − δ2
2

}∣∣∣
n

> I(W)− ε2 .

So, as before, we deduce that for every δ3 > 0 and ε3 > 0 there
exist m and µ such that

∣∣∣
{

i : Z
(
Q(m)

i (ν)
)
6 δ3

}∣∣∣
n

> I(W)− ε3 .

The next lemma will be used later to bound the evolution of
the variable Z in Algorithm D.

Lemma 22: For every m > 0 and index 0 6 i < 2m let there
be a corresponding real 0 6 ζ(i, m) 6 1. Denote the binary
representation of i by i = 〈b1, b2, . . . , bm〉2. Assume that the
ζ(i, m) satisfy the following recursive relation. For m > 0 and
i′ = 〈b1, b2, . . . , bm−1〉2,

ζ(i, m) 6{
2ζ(i′, m− 1)− ζ2(i′, m− 1) if bm = 0 ,
ζ2(i′, m− 1) otherwise .

(55)

Then, for every β < 1/2 we have that

lim inf
m→∞

∣∣∣
{

i : ζ(i, m) < 2−nβ
}∣∣∣

n
> 1− ζ(0, 0) , (56)

where n = 2m.
Proof: First, note that both f1(ζ) = ζ2 and f2(ζ) = 2ζ −

ζ2 strictly increase from 0 to 1 when ζ ranges from 0 to 1. Thus,
it suffices to prove the claim for the worst case in which the
inequality in (55) is replaced by an equality. Assume from now
on that this is indeed the case.

Consider an underlying BEC with probability of erasure (as
well as Bhattacharyya parameter) ζ(0, 0). Next, note that the
ith bit channel, for 0 6 i < n = 2m, is also a BEC, with prob-
ability of erasure ζ(i, m). Since the capacity of the underlying
BEC is 1− ζ(0, 0), we deduce (56) by [5, Theorem 2].

We are now in a position to prove Theorem 1.
Proof of Theorem 1: Let us first specify explicitly the

code construction algorithm used, and then analyze it. As ex-
pected, we simply run Algorithm D with parameters W and
n to produce upper bounds on the probability of error of all n
bit channels. Then, we sort the upper bounds in ascending or-
der. Finally, we produce a generator matrix G, with k rows. The
rows of G correspond to the first k bit channels according to the
sorted order, and k is the largest integer such that the sum of up-
per bounds is strictly less than 2n−β

. By Theorem 14, the total
running time is indeed O(n · µ2 log µ).

Recall our definition of W (m)
i and Q(m)

i from Theorem 20.
Denote the upper bound on the probability of error returned by
Algorithm D for bit channel i by Pe(W (m)

i , µ). The theorem
will follow easily once we prove that for all ε > 0 and 0 <

β < 1/2 there exists an even µ0 such that for all µ = 2ν > µ0
we have

lim inf
m→∞

∣∣∣
{

i : Pe(W (m)
i , µ) < 2−nβ

}∣∣∣
n

> I(W)− ε . (57)

By Lemma 21, there exist constants m0 and ν such that
∣∣∣
{

i0 : Z
(
Q(m0)

i0
(ν)
)
6 ε

2

}∣∣∣
n0

> I(W)− ε

2
, (58)

where
n0 = 2m0 and 0 6 i0 < n0 .

Denote the codeword length as n = 2m, where m = m0 +
m1 and m1 > 0. Consider an index 0 6 i < n having binary
representation

i = 〈b1, b2, . . . , bm0 , bm0+1, . . . , bm〉2 ,

where b1 is the most significant bit. We split the run of Algo-
rithm D on i into two stages. The first stage will have j going
from 1 to m0, while the second stage will have j going from
m0 + 1 to m.

We start by considering the end of the first stage. Namely, we
are at iteration j = m0 and line 10 has just finished executing.
Recall that we denote the value of the variable Q after the line
has executed by Q(m0)

i0
(ν), where

i0 = 〈b1, b2, . . . , bm0〉2 .

Similarly, define Z(m0)
i0

(ν) as the value of the variable Z at that
point. Since, by (16), degrading increases the Bhattacharyya pa-
rameter, we have then that the Bhattacharyya parameter of the
variable W is less than or equal to that of the variable Q. So,
by the minimization carried out in either line 6 or 9, we con-
clude the following: at the end of line 10 of the algorithm, when
j = m0,

Z = Z(m0)
i0

(ν) 6 Z
(
Q(m0)

i0
(ν)
)
= Z(Q) .

We can combine this observation with (58) to conclude that
∣∣∣
{

i0 : Z(m0)
i0

(ν) 6 ε
2

}∣∣∣
n0

> I(W)− ε

2
. (59)

We now move on to consider the second stage of the algo-
rithm. Fix an index i = 〈b1, b2, . . . , bm0 , bm0+1, . . . , bm〉2. That
is, let i have i0 as a binary prefix of length m0. Denote by Z[t]
the value of Z at the end of line 10, when j = m0 + t. By lines
6 and 9 of the algorithm we have, similarly to (55), that

Z[t + 1] 6

{
2Z[t]− Z2[t] if bm0+t+1 = 0 ,
Z2[t] otherwise .

We now combine our observations about the two stages. Let
γ be a constant such that

β < γ <
1
2

.

Considering (59), we see that out of the n0 = 2m0 possible pre-
fixes of length m0, the fraction for which

Z[0] 6
ε

2
(60)
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is at least I(W)− ε
2 . Next, by Lemma 22, we see that for each

such prefix, the fraction of suffixes for which

Z[m1] 6 2−(n1)
γ

(61)

is at least 1 − Z[0], as n1 = 2m1 tends to infinity. Thus, for
each such prefix, we get by (60) that (in the limit) the fraction
of such suffixes is at least 1− ε

2 . We can now put all our bounds
together and claim that as m1 tends to infinity, the fraction of
indices 0 6 i < 2m for which (61) holds is at least

(
I(W)− ε

2

)
·
(

1− ε

2

)
> I(W)− ε .

By line (11) of Algorithm D, we see that Z[m1] is an upper
bound on the return value Pe(W (m)

i ). Thus, we conclude that

lim inf
m→∞

∣∣∣
{

i : Pe(W (m)
i , µ) < 2−(n1)

γ
}∣∣∣

n
= I(W)− ε

With the above at hand, the only thing left to do in order to
prove (57) is to show that for m1 large enough we have that

2−(n1)
γ
6 2−nβ

,

which reduces to showing that

(n1)
γ−β > (n0)

β .

Since γ > β and n0 = 2m0 is constant, this is indeed the case.

We end this section by pointing out a similarity between the
analysis used here and the analysis carried out in [12]. In both
papers, there are two stages. The first stage (prefix of length m0
in our paper) makes full use of the conditional probability dis-
tribution of the channel, while the second stage uses a simpler
rule (evolving the bound on the Bhattacharyya parameter in our
paper and using an RM rule in [12]).

APPENDIX A
PROOF OF THEOREM 8

This appendix is devoted to the proof of Theorem 8. Al-
though the initial lemmas needed for the proof are rather intu-
itive, the latter seem to be a lucky coincidence (probably due
to a lack of a deeper understanding on the authors’ part). The
prime example seems to be Equation (69) in the proof of Lemma 27.

We start by defining some notation. Let W : X → Y , ν,
y1, y2, . . . , yν and ȳ1, ȳ2, ȳν be as in Theorem 8. Let w ∈ Y
and w̄ ∈ Y be a symbol pair, and denote by (a, b) the corre-
sponding probability pair, where

a = p(w|0) = p(w̄|1) , b = p(w|1) = p(w̄|0) .

The contribution of this probability pair to the capacity ofW is
denoted by

C(a, b) = −(a+ b) log2((a+ b)/2)+ a log2(a)+ b log2(b) =
− (a + b) log2(a + b) + a log2(a) + b log2(b) + (a + b) ,

where 0 log2 0 = 0.
Next, suppose we are given two probability pairs: (a1, b1)

and (a2, b2) corresponding to the symbol pair w1, w̄1 and w2, w̄2,

respectively. The capacity difference resulting from the appli-
cation of Lemma 7 to w1 and w2 is denoted by

∆(a1, b1; a2, b2) = C(a1, b1)+C(a2, b2)−C(a1 + a2, b1 + b2) .

For reasons that will become apparent later on, we henceforth
relax the definition of a probability pair to two non-negative
numbers, the sum of which may be greater than 1. Note that
C(a, b) is still well defined with respect to this generalization,
as is ∆(a1, b1; a2, b2). Furthermore, to exclude trivial cases, we
require that a probability pair (a, b) has at least one positive
element.

The following lemma states that we lose capacity by per-
forming a downgrading merge.

Lemma 23: Let (a1, b1) and (a2, b2) be two probability pairs.
Then,

∆(a1, b1; a2, b2) > 0

Proof: Assume first that a1, b1, a2, b2 are all positive. In
this case, ∆(a1, b1; a2, b2) can be written as follows:

(a1 + a2)

(
−a1

a1+a2
log2

(a1+b1)(a1+a2)
a1(a1+b1+a2+b2)

+

−a2
a1+a2

log2
(a2+b2)(a1+a2)

a2(a1+b1+a2+b2)

)
+

(b1 + b2)

(
−b1

b1+b2
log2

(a1+b1)(b1+b2)
b1(a1+b1+a2+b2)

+

−b2
b1+b2

log2
(a2+b2)(b1+b2)

b2(a1+b1+a2+b2)

)

By Jensen’s inequality, both the first two lines and the last two
lines can be lower bounded be 0. The proof for cases in which
some of the variables equal zero is much the same.

The intuition behind the following lemma is that the order of
merging does matter in terms of total capacity lost.

Lemma 24: Let (a1, b1), (a2, b2), and (a3, b3) be three prob-
ability pairs. Then,

∆(a1, b1; a2, b2) + ∆(a1 + a2, b1 + b2; a3, b3) =

∆(a2, b2; a3, b3) + ∆(a1, b1; a2 + a3, b2 + b3) .

Proof: Both sides of the equation equal

C(a1, b1)+C(a2, b2)+C(a3, b3)−C(a1 + a2 + a3, b1 + b2 + b3) .

Instead of working with a probability pair (a, b), we find it
easier to work with a probability sum π = a + b and likeli-
hood ratio λ = a/b. Of course, we can go back to our previous
representation as follows. If λ = ∞ then a = π and b = 0.
Otherwise, a = λ·π

λ+1 and b = π
λ+1 . Recall that our relaxation

of the term “probability pair” implies that π is positive and it
may be greater than 1.

Abusing notation, we define the quantity C through λ and π
as well. For λ = ∞ we have C[∞, π] = π. Otherwise,

C[λ, π] =

π

(
− λ

λ + 1
log2

(
1 +

1
λ

)
− 1

λ + 1
log2(1 + λ)

)
+ π .
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Let us next consider merging operations. The merging of
the symbol pair corresponding to [λ1, π1] with that of [λ2, π2]
gives a symbol pair with [λ1,2, π1,2], where

π1,2 = π1 + π2

and

λ1,2 = λ̄[π1, λ1; π2, λ2] =

λ1π1(λ2 + 1) + λ2π2(λ1 + 1)
π1(λ2 + 1) + π2(λ1 + 1)

(62)

Abusing notation, define

∆[λ1, π1; λ2, π2] = C[λ1, π1] + C[λ2, π2]− C[λ1,2, π1,2] .

Clearly, we have that the new definition of ∆ is symmetric:

∆[λ1, π1; λ2, π2] = ∆[λ2, π2; λ1, π1] . (63)

Lemma 25: ∆[λ1, π1; λ2, π2] is monotonic increasing in both
π1 and π2.

Proof: Recall from (63) that ∆ is symmetric, and so it suf-
fices to prove the claim for π1. Thus, our goal is to prove the
following for all ρ > 0,

∆[λ1, π1 + ρ; λ2, π2] > ∆[λ1, π1; λ2, π2] .

At this point, we find it useful to convert back from the like-
lihood ratio/probability sum representation [λ, π] to the prob-
ability pair representation (a, b). Denote by (a1, b1), (a2, b2),
and (a′, b′) the probability pairs corresponding to [λ1, π1], [λ2, π2],
and [λ1, π1 + ρ], respectively. Let a3 = a′ − a1 and b3 =
b′ − b1. Next, since both (a1, b1) and (a′, b′) have the same
likelihood ratio, we deduce that both a3 and b3 are non-negative.
Under our new notation, we must prove that

∆(a1 + a3, b1 + b3; a2, b2) > ∆(a1, b1; a2, b2) .

Since both (a1, b1) and (a′, b′) have likelihood ratio λ1, this
is also the case for (a3, b3). Thus, a simple calculation shows
that

∆(a1, b1; a3, b3) = 0 .

Hence,

∆(a1 + a3, b1 + b3; a2, b2) =

∆(a1 + a3, b1 + b3; a2, b2) + ∆(a1, b1; a3, b3)

Next, by Lemma 24,

∆(a1 + a3, b1 + b3; a2, b2) + ∆(a1, b1; a3, b3) =

∆(a1, b1; a2, b2) + ∆(a1 + a2, b1 + b2; a3, b3) .

Since, by Lemma 23, we have that ∆(a1 + a2, b1 + b2; a3, b3)
is non-negative, we are done.

We are now at the point in which our relaxation of the term
“probability pair” can be put to good use. Namely, we will now
see how to reduce the number of variables involved by one, by
taking a certain probability sum to infinity.

Lemma 26: Let λ1, π1, and λ2 be given. Assume that 0 <
λ2 < ∞. Define

∆[λ1, π1; λ2, ∞] = lim
π2→∞

∆[λ1, π1; λ2, π2] .

If 0 < λ1 < ∞, then

∆[λ1, π1; λ2, ∞] =

π1

(
− λ1

λ1 + 1
log2

(
1 + 1

λ1

1 + 1
λ2

)
− 1

λ1 + 1
log2

(
λ1 + 1
λ2 + 1

))
.

(64)

If λ1 = ∞, then

∆[λ1, π1; λ2, ∞] = π1

(
− log2

(
1

1 + 1
λ2

))
. (65)

If λ1 = 0, then

∆[λ1, π1; λ2, ∞] = π1

(
− log2

(
1

λ2 + 1

))
. (66)

Proof: Consider first the case 0 < λ1 < ∞. We write out
∆[λ1, π1; λ2, π2] in full and after rearrangement get

π1


 1

1
λ1,2

+ 1
log2

(
1 +

1
λ1,2

)
− 1

1
λ1

+ 1
log2

(
1 +

1
λ1

)
+

π1

(
1

λ1,2 + 1
log2 (1 + λ1,2)−

1
λ1 + 1

log2 (1 + λ1)

)
+

π2


 1

1
λ1,2

+ 1
log2

(
1 +

1
λ1,2

)
− 1

1
λ2

+ 1
log2

(
1 +

1
λ2

)
+

π2

(
1

λ1,2 + 1
log2 (1 + λ1,2)−

1
λ2 + 1

log2 (1 + λ2)

)
,

(67)

where λ1,2 is given in (62). Next, note that

lim
π2→∞

λ1,2 = λ2 .

Thus, applying limπ2→∞ to the first two lines of (67) is straight-
forward. Next, consider the third line of (67), and write its limit
as

lim
π2→∞

1
1

λ1,2
+1

log2

(
1 + 1

λ1,2

)
− 1

1
λ2

+1
log2

(
1 + 1

λ2

)

1
π2

Since limπ2→∞ λ1,2 = λ2, we get that both numerator and de-
nominator tend to 0 as π2 → ∞. Thus, we apply l’Hôpital’s
rule and get

lim
π2→∞

1
(λ1,2+1)2

(
log2 e− log2

(
1 + 1

λ1,2

))
∂λ1,2
∂π2

1
(π2)2

=

lim
π2→∞

1
(λ1,2 + 1)2

(
log2 e− log2

(
1 +

1
λ1,2

))
·

π1(λ2 + 1)(λ1 + 1)(λ2 − λ1)

(π1(λ1+1)+π2(λ1+1)
π2

)2
=

π1(λ2 − λ1)

(λ1 + 1)(λ2 + 1)

(
log2 e− log2

(
1 +

1
λ2

))
,

where e = 2.71828 . . . is Euler’s number. Similarly, taking the
limπ2→∞ of the fourth line of (67) gives

π1(λ2 − λ1)

(λ1 + 1)(λ2 + 1)
(− log2 e− log2 (1 + λ2)) .
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Thus, a short calculations finishes the proof for this case. The
cases λ1 = ∞ and λ1 = 0 are handled much the same way.

The utility of the next Lemma is that it asserts a stronger
claim than the “Moreover” part of Theorem 8, for a specific
value of λ2.

Lemma 27: Let probability pairs (a1, b1) and (a3, b3) have
likelihood ratios λ1 and λ3, respectively. Assume λ1 6 λ3.
Denote π1 = a1 + b1 and π3 = a3 + b3. Let

λ2 = λ1,3 = λ̄[π1, λ1; π3, λ3] , (68)

as defined in (62). Then,

∆[λ1, π1; λ2, ∞] 6 ∆[λ1, π1; λ3, π3]

and
∆[λ3, π3; λ2, ∞] 6 ∆[λ1, π1; λ3, π3]

Proof: We start by taking care of a trivial case. Note that if
it is not the case that 0 < λ2 < ∞, then λ1 = λ2 = λ3, and
the proof follows easily.

So, we henceforth assume that 0 < λ2 < ∞, as was done in
Lemma 26. Let

∆(1,3) = ∆[λ1, π1; λ3, π3] ,

∆′(1,2) = ∆[λ1, π1; λ2, ∞] ,

and
∆′(2,3) = ∆[λ3, π3; λ2, ∞] .

Thus, we must prove that ∆′(1,2) 6 ∆(1,3) and ∆′(2,3) 6 ∆(1,3).
Luckily, Lemma 26 and a bit of calculation yields that

∆′(1,2) + ∆′(2,3) = ∆(1,3) . (69)

Recall that ∆′(1,2) and ∆′(2,3) must be non-negative by Lem-
mas 23 and 25. Thus, we are done.

The next lemma shows how to discard the restraint put on λ2
in Lemma 27.

Lemma 28: Let the likelihood ratios λ1, λ3 and the proba-
bility sums π1, π3 be as in be as in Lemma 27. Fix

λ1 6 λ2 6 λ3 . (70)

Then either

∆[λ1, π1; λ2, ∞] 6 ∆[λ1, π1; λ3, π3] (71)

or
∆[λ3, π3; λ2, ∞] 6 ∆[λ1, π1; λ3, π3] (72)

Proof: Let λ1,3 be as in (68), and note that

λ1 6 λ1,3 6 λ3 .

Assume w.l.o.g. that λ2 is such that

λ1 6 λ2 6 λ1,3 .

From Lemma 27 we have that

∆[λ1, π1; λ1,3, ∞] 6 ∆[λ1, π1; λ3, π3]

Thus, we may assume that λ2 < λ1,3 and aim to prove that

∆[λ1, π1; λ2, ∞] 6 ∆[λ1, π1; λ1,3, ∞] . (73)

Next, notice that

∆[λ1, π1; λ2, ∞] = 0 , if λ2 = λ1 . (74)

Thus, let us assume that

λ1 < λ2 < λ1,3 .

Specifically, it follows that

0 < λ2 < ∞

and thus the assumption in Lemma 26 holds.
Define the function f as follows

f (λ′2) = ∆[λ1, π1; λ′2, ∞] .

Assume first that λ1 = 0, and thus by (66) we have that

∂ f (λ′2)
∂λ′2

> 0 .

On the other hand, if λ1 6= 0 we must have that 0 6 λ1 < ∞.
Thus, by (64) we have that

∂ f (λ′2)
∂λ′2

=
π1

(λ1 + 1)(λ′2 + 1)

(
1− λ1

λ′2

)
,

which is also non-negative for λ′2 > λ1. Thus, we have proved
that the derivative is non-negative in both cases, and this to-
gether with (74) proves (73).

We are now in a position to prove Theorem 8.
Proof of Theorem 8: We first consider the “Moreover” part

of the theorem. Let [λ1, π1], [λ2, π2], and [λ1, π1] correspond
to yi, yj, and yk, respectively. From Lemma 28 we have that
either (71) or (72) holds. Assume w.l.o.g. that (71) holds. By
Lemma 25 we have that

∆[λ1, π1; λ2, π2] 6 ∆[λ1, π1; λ2, ∞] .

Thus,
∆[λ1, π1; λ2, π2] 6 ∆[λ1, π1; λ3, π3] ,

which is equivalent to

I(yj, yk) > I(yi, yk) .

Having finished the “Moreover” part, we now turn our atten-
tion to the proof of (22). The two equalities in (22) are straight-
forward, so we are left with proving the inequality. For λ > 0
and π > 0, the following are easily verified:

C[λ, π] = C[1/λ, π] , (75)

and
C[λ, π] increases with λ > 1 . (76)

Also, for λ̄ as given in (62), λ1, λ2 > 0, and π1 > 0, π2 > 0,
it is easy to show that

λ̄[λ1, π1, λ2, π2] increases with both λ1 and λ2 . (77)

Let [λ1, π1] and [λ2, π2] correspond to yi and yj, respec-
tively. Denote

γ = λ̄[λ1, π1; λ2, π2]

and
δ = λ̄[1/λ1, π1; λ2, π2]
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Hence, our task reduces to showing that

C[γ, π1 + π2] > C[δ, π1 + π2] . (78)

Assume first that δ > 1. Recall that both λ1 > 1 and λ2 > 1.
Thus, by (77) we conclude that γ > δ > 1. This, together with
(76) finishes the proof.

Conversely, assume that δ 6 1. Since

λ̄[λ1, π1; λ2, π2] = λ̄[1/λ1, π1; 1/λ2, π2]

we now get from (77) that γ 6 δ 6 1. This, together with (75)
and (76) finishes the proof.

APPENDIX B
PROOF OF THEOREM 13

As a preliminary step toward the proof of Theorem 13, we
convince ourselves that the notation ∆[λ1; λ2, π2; λ3] used in
the theorem is indeed valid. Specifically, the next lemma shows
that knowledge of the arguments of ∆ indeed suffices to cal-
culate the difference in capacity. The proof is straightforward.

Lemma 29: For i = 1, 2, 3, let yi and λi, as well as π2 be as
in Theorem 13. If λ3 < ∞, then

∆[λ1; λ2, π2; λ3] =
π2

(λ2 + 1)(λ1 − λ3)

[

(λ3 − λ2)

(
λ1 log2

(
1 +

1
λ1

)
+ log2(1 + λ1)

)
+

(λ2 − λ1)

(
λ3 log2

(
1 +

1
λ3

)
+ log2(1 + λ3)

)
+

(λ1 − λ3)

(
λ2 log2

(
1 +

1
λ2

)
+ log2(1 + λ2)

)]
. (79)

Otherwise, λ3 = ∞ and

∆[λ1; λ2, π2; λ3 = ∞] =

π2

λ2 + 1

[
−λ1 log2

(
1 +

1
λ1

)
− log2(1 + λ1)

+ λ2 log2

(
1 +

1
λ2

)
+ log2(1 + λ2)

]
. (80)

Having the above calculations at hand, we are in a position
to prove Theorem 13.

Proof of Theorem 13: First, let consider the case λ3 < ∞.
Since our claim does not involve changing the values of λ2 and
π2, let us fix them and denote

f (λ1, λ3) = ∆[λ1; λ2, π2; λ3] .

Under this notation, it suffices to prove that f (λ1, λ3) is de-
creasing in λ1 and increasing in λ3, where λ1 < λ2 < λ3. A
simple calculation shows that

∂ f (λ1, λ3)

∂λ1
=

−π2(λ3 − λ2)

(1 + λ2)(λ3 − λ1)2

[

λ3 log

(
1 + 1

λ1

1 + 1
λ3

)
+ log

(
1 + λ1

1 + λ3

)]
. (81)

So, in order to show that f (λ1, λ3) is decreasing in λ1, it suf-
fices to show that the term inside the square brackets is positive
for all λ1 < λ3. Indeed, if we denote

g(λ1, λ3) = λ3 log

(
1 + 1

λ1

1 + 1
λ3

)
+ log

(
1 + λ1

1 + λ3

)
,

then is readily checked that

g(λ1, λ1) = 0 ,

while
∂g(λ1, λ3)

∂λ1
=

λ3 − λ1

λ1(λ1 + 1)

is positive for λ3 > λ1. The proof of f (λ1, λ3) increasing in
λ3 is exactly the same, up to a change of variable names.

Let us now consider the second case, λ3 = ∞. Similarly
to what was done before, let us fix λ2 and π2, and consider
∆[λ1; λ2, π2; λ3 = ∞] as a function of λ1. Denote

h(λ1) = ∆[λ1; λ2, π2; λ3 = ∞] .

Under this notation, our aim is to prove that h(λ1) is decreasing
in λ1. Indeed,

∂h(λ1)

∂λ1
=
−π2 log2

(
1 + 1

λ1

)

λ2 + 1
is easily seen to be negative.
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